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Abstract 

This dissertation was written as a part of the MSc in Data Science at the International 

Hellenic University. 

The recent exponential growth of available data in today’s fast-paced technology-driven 

world has made systematic data collection and the concurrent extraction of meaningful 

information through them a necessity. In light of the adverse effects of climate change, 

data analysis and AI techniques can be directly applied to provide forecasts that could be 

used for the efficient scheduling and operation of energy usage. Especially in the built 

environment, Energy Load Forecasting (ELF) enables Distribution System Operators 

(DSO) or Aggregators to accurately predict the energy demand and generation tradeoffs. 

Today’s near-zero Energy buildings (nZEBs), which are buildings with very high energy 

performance, have become the standard in Europe in terms of building performance from 

2021 onwards and benefiting from the recent Internet of Things (IoT) technological ad-

vances, they are equipped with on-site smart monitoring systems and services, advanced 

communication technologies. The growing amount of data produced by such IoT appli-

cations has empowered decision-making via data analytics techniques. 

This dissertation focuses on the development and comparison of predictive algorithms for 

a state-of-the-art nZEB smart building and metered data produced by its sensors and ad-

vanced monitoring systems. In particular, this involves energy load consumption, as well 

as weather data which are used to develop, train, and evaluate Machine Learning (ML) 

models. Various ML algorithms and methodologies, as well as combinations thereof, are 

explored and put to the test, each with its unique characteristics, in order to produce a 

robust approach for One-Step-Ahead Energy Load Forecasting (OSA-ELF). The effect 

of exogenous parameters is assessed, and comparisons are made between the different 

methods tested on both variating portions of the training dataset but also on new unseen 

data with similar properties and characteristics.  
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1 Introduction 

One of the most dangerous global threats, climate change, is causing widespread disrup-

tion in the natural environment and affecting the lives of billions of people around the 

world, which calls for immediate actions to reduce the risks involved. To that end, the 

European Commission's action plan for climate change the so-called ‘‘Fit for 55” aims 

for Europe to achieve climate neutrality and 55% reduction of Greenhouse Gas (GHG) 

emissions by 2030 [1]. As part of the efforts to mitigate climate change and the looming 

energy crisis, the push for more energy-efficient buildings and cities is largely predicated 

on energy systems' capacity to cope with greater penetration of intermittent renewable 

energy resources under tight energy efficiency, adaptability, and resilience requirements.  

At the same time, the daily interchange of data and information between systems and 

people has become the major driving force behind the technological development of the 

so-called ‘Smart’ devices. Ranging from smart phones and tablets to smart gadgets all 

throughout today’s household, it is apparent that consumers prefer intelligent or smart 

technologies and suites that may improve their daily routines. A prime example of this 

new trend is the concept of smart cities and smart buildings.  

Indeed, the urban building infrastructure is at the center of the efforts to create smart 

grids, and to that end, benefiting from recent Internet of Things (IoT) technological ad-

vances, on-site smart monitoring systems and services, advanced communication tech-

nologies have been developed and installed today to facilitate this ‘smart’ transition[2]. 

Such technological applications enable interconnection over a network through which 

data and services related to smart meters and sensors can be exchanged and have mod-

ernized energy-management systems in the built environment[3]. At a grid level, this 

provides the capacity to dynamically adjust energy supply, which helps to reduce ineffi-

cient, which contributes to reducing energy wastage [4].  

The profiling and forecasting of building energy usage, has attracted more attention from 

researchers in order to improve energy efficiency and reduce environmental impacts. For 

example, Demand Response (DR) aggregators are able to accurately predict the potential 

demand reduction capabilities, and grid operators to effectively plan ahead for their short 

and long-term supply requirements[5].  
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The abrupt increase in the amount of data in this new era of digitalization and IoT appli-

cations has empowered such decision-making via data analytics techniques. Both Data 

Mining (DM) and Machine Learning (ML) methods are implemented to analyze, process 

historical data, and use them to accurately forecast future energy load. The primary re-

search goal of this thesis revolves around building energy load forecasting. This work 

aims to analyze the energy load time-series patterns of a smart building infrastructure 

and explore various predictive models and approaches to provide the most accurate pre-

dictions possible. To achieve these goals, the research steps for this study are the following: 

• The first part highlights the concepts of Smart and ‘near-zero Energy buildings’ 

(nZEB) buildings, their characteristics and their interaction with monitoring and 

controlling systems, which aim to reduce energy consumption.  

• Then, an extensive literature review provides key insights into several relevant 

studies, in which data-driven predictive models have been used for time series 

forecasting, with a focus on buildings’ energy load. The state-of-the-art methods 

and their inner workings are highlighted. Also, a comparative basis is synthesized 

based on the evaluation metrics of relevant studies, in order to benchmark our 

developed models.  

• The second part is focused on the data analysis approach, applied for the selection 

of input variables that should be introduced to the predictive models. This prese-

lection process is useful for the development of predictive models since it clari-

fies parameters that mostly affect the total energy load. Overall, the utilized da-

taset includes both weather and consumption data collected for a Smart House 

infrastructure for almost 2 consecutive years.  

• The third part is mainly focused on the development and validation of an inno-

vative approach for One-Step-Ahead Energy Load Forecasting (OSA-ELF). 

The analysis of the data and all the experimental modelling on this dissertation were exe-

cuted in Python 3.91. Specifically, the packages Pandas2, Matplotlib3, are mainly used 

for data preprocessing, analysis, and creation of visualizations. Also, all the implemented 

algorithms come from the Scikit-Learn [6] package and for Neural Networks the Keras4 

 

1 https://www.python.org/  
2 https://pandas.pydata.org/  
3 https://matplotlib.org/  
4 https://github.com/keras-team/keras  

https://www.python.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://github.com/keras-team/keras
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deep learning API package has been used. For the deployment of the models, the Visual 

Studio Code5 and Jupyter Notebook6 suites were used. 

The structure of the thesis is the following. After a short introduction in Chapter 1, Chap-

ter 2 includes an introduction to Smart/near-Zero Energy Building concept, Chapter 3 

presents a literature review on time series problems and forecasting methods/algorithms 

Chapter 4 discusses the proposed methodology (along with a brief description of the da-

tasets used, pre-processing steps and some exploratory data analysis results) while in 

Chapter 5 the modelling approach and results are presented. In Chapter 6 the results are 

discussed and evaluated and in Chapter 7 conclusions and future directions are high-

lighted. Finally, elements concerning the validity of our approach and future research di-

rections are touched upon in the last two chapters. 

 

5 https://code.visualstudio.com/  
6 https://jupyter.org/  

https://code.visualstudio.com/
https://jupyter.org/
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2 Smart/nZEB buildings  

2.1 Smart building concept 

Over recent decades a rapid urbanization rate has taken place, as more and more people 

have been moving to urban areas.  In fact, forecasts indicate that by 2050 more than 67% 

of the total global population will be in urban habitats [7].  Buildings are a focal point of 

our everyday routines, especially in urban areas, as we spend a significant portion of our 

time in them, whether at home, at work, or in our leisure time. At the same time, the flow 

of data between systems, sensors, and users, the so-called internet-of-things (IoT) has 

deemed the term ‘smart’ relevant to almost everything, especially for urban residents.  

Often there is some confusion or a lack of common understanding of the definition of a 

smart building. Smart buildings are designed to utilize Information and Communication 

Technologies (ICT) to automate and better control their core functions. Unlike tradi-

tional buildings, which feature systems that operate separately, smart buildings employ 

interconnected ICT (i.e., sensors, meters, wireless devices) in order to improve the daily 

lives of tenants but at the same time improve overall building energy performance. Smart 

buildings also enable building operators and tenants to interact with the structure, offer-

ing visibility into its operations and day-to-day functions data  [8]. The infrastructure of 

such systems may offer for example a precise prediction of the following day's energy 

use, allowing them to plan their activities sensibly, such as transferring the load of their 

demands to lower demand hours, in order to save money and operate in a more ecologi-

cally friendly manner. A smart building has become the new standard not only for resi-

dents but also for businesses that integrate intelligence into their goods/services and aim 

to reduce their ecological footprint. In the context of the present thesis, the term smart 

buildings should be construed broadly, since possible applications to various types of 

buildings are discussed, including commercial (e.g., offices), residential (smart houses), 

and public buildings (universities, hospitals, etc.) 
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Figure 1: Advantages of utilizing smart technologies in buildings [9]. 

2.2 nZEB buildings 

The built environment has been identified as a major contributor to fossil fuel energy use 

and global carbon dioxide emissions. Increased heating and cooling demands in the build-

ing sector are one of the primary causes of rising energy consumption and emissions 

globally. More precisely, overall, the built environment accounts for the largest share of 

the total EU energy consumed (40%) and produces approximately 35% of all energy-

related GHG emissions[10]. 

A near-zero Energy building (nZEB), constitutes a building that has high energy effi-

ciency, requiring nearly zero or very low amount of energy for its daily needs, to be at 

least partially recovered from renewable sources. In order to mitigate carbon emissions 

from the building sector the newly revised Energy Performance of Building Directive 

2021/12/14EU (EPBD) obligates EU Member States to achieve a minimum 55% reduc-

tion in greenhouse gas (GHG) emissions by 2030, compared with 1990 levels [11]. The 

abovementioned directive with its latest updates makes nZEB the standard for new build-

ings until the application of the zero Energy building (ZEB) standard in 2030, which will 

replace the nZEB. As a result, many building energy-efficient technologies, such as pas-

sive design and active system measures (e.g. photovoltaic panels), have been proposed 

and developed to meet these new European regulatory targets of lowering building energy 

load and GHG emissions, some of which are illustrated in Figure 2. 
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Figure 2: nZEB concept [12]  

Today, there seems to be a high interaction of nZEB and ICT, as an integrated design 

approach, in order to become “smarter” and more eco-friendly in their daily operations 

[13]. For example, solar energy varies depending on weather conditions, hence the use of 

photovoltaics cannot always result in a steady stream of energy supply in this case, an 

IoT-enabled demand-driven smart grid with nZEBs can help addresses issues related to 

energy generation periodicity [14].  

2.3 Case study: CERTH/ITI Smart House 

In the context of the present thesis, the research activity involves the use of data min-

ing/ML algorithms to improve the lives of urban residents of a modern-day smart house. 

This research focuses on utilizing metering or sensor data on specific time intervals to 

apply predictive and parametrized models. The data derives from a selected publicly 

available dataset which consists of measurements and data collected from and for the 

Centre for Research and Technology-Hellas (CERTH) Smart House infrastructure in 

Thessaloniki, Greece. This building is a prototype infrastructure functioning as a living 
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lab which is deployed and operated by the Information Technology Institute (ITI)7. It 

makes use of various state-of-the-art technologies in an effort to emulate to a great extent 

a real domestic building where residents can explore cutting-edge smart IoT-based tech-

nology while experiencing real-world living situations, with services for energy, health, 

big data, robotics, and artificial intelligence (AI) being offered [15]. 

 

Figure 3: CERTH/ITI Smart House and its roof-based PV Installation [16] 

The Smart house is equipped with a variety of sensors, and devices such as smart meters, 

environmental sensors, occupancy sensors, smart appliances, weather stations, etc. These 

instruments enable continuous monitoring of the energy consumption(load), energy pro-

duction from photovoltaic(PV) arrays and living conditions, whereas automated algo-

rithms perform automation and efficiency scenarios while taking occupant preferences 

into account.  

It is important to highlight, that the ITI Smart House, as part of CERTH, is used as an 

active workspace for researchers, hence as it would be analyzed in the next sections, the 

energy load patterns are closer to an office-type of building, rather than a typical residen-

tial home. 

  

 

7 www.iti.gr  

http://www.iti.gr/
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3 Time series forecasting 

3.1 Introduction 

Smart buildings ought to be capable to adapt their operations to fluctuating conditions 

and constraints such as occupants' needs, climate change effects, electricity pricing, reg-

ulatory requirements etc. Core functions that are associated with a building operating en-

vironment, such as energy load, are prone to unpredictability, necessitating the system-

level capability of learning and adapting [17].  

 

Figure 4: The range of applications of ML in modern smart buildings [4] 

At the same time, Machine Learning (ML) has become a key enabler of data analytics 

and enhanced control of energy systems. As already mentioned, the technological ad-

vancements regarding IoT devices have now made it possible to acquire a building’s en-

ergy load data via smart meters [18], which form a so-called time series. In general, time 

series is an ordered sequence of values of a variable that includes information about the 

time at which they were recorded (i.e. timestamp). Time series analysis entails compre-

hending the internal structure that these temporal points may have, while time series fore-

casting is the prediction of a future value over a period of time. The complexity of time 

series forecasting spans from predicting a single future value using a handful of past val-

ues to predicting multiple future values for many variables at each time step. 
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3.2 Energy load forecasting (ELF) 

3.2.1 Forecasting horizon and time steps 

Energy load forecasting (ELF) to precisely estimate energy load is one of its most sought-

after applications in recent times. Precise ELF can lead to the proactive optimization of 

control choices in order to achieve improved energy efficiency, and lower operating costs 

in various domains and applications [19]. Overall, ELF can be categorized into four gen-

eral groups, classified based on the time horizon of their forecasts, as follows [20], [21]: 

1) Very short-term load forecasting (VSTLF), aims at very-short time intervals, with 

their prediction ranging from a few minutes to up to one hour (1h) 

2) Short-term load forecasting (STLF), which typically deals with a prediction range 

of 1h up to 2 weeks and is a very commonly used forecasting horizon  

3) Medium-term load forecasting (MTLF), extends the prediction range from a cou-

ple of weeks to up to 1 year  

4) Long-term load forecasting (LTLF), which targets a range of more than a year 

Short-term load forecasting data that are accurate can be utilized to create a more appro-

priate building energy scheduling plan [22]. Medium-term load forecasting is often used 

for scheduling maintenance and power supply [23]. Since practical limitations exist on 

the storage of electricity, electricity generation, transmission, and distribution must occur 

concurrently with demand. As a result, for the uninterrupted operation of national rids, 

the electric energy supply and demand must constantly maintain a dynamic equilibrium 

[5]. Hence, long-term load forecasting empowers energy producers and grid distributors 

to dynamically adjust their generation and transaction plans in the market [24].  
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Figure 5: Time-based classification of ELF horizons 

Energy load prediction can be generally divided into two subgroups, in terms of forecast-

ing steps. One-step forecasting, which estimates future demand or supplies one step ahead 

in time (e.g. an hour ahead), and multi-step forecasting, which predicts variating time 

intervals into the future [25]. 

3.2.2 Characteristics of Building Energy Loads 

Building load forecasting, which produces predictions not only on the lower brackets of 

the electricity networks, namely residential homes but also for large-scale consumers such 

as commercial businesses and industry, accounts for a large portion of the overall energy 

load forecasting problem for the power industry. Monitoring the energy load of a building 

not only enables occupants to have insights into their consumption patterns but also acts 

as a vital tool to provide accurate information to power/utility suppliers to improve their 

distribution strategies and scheduling of electricity supply to the grid [26], [27]. What is 

more, load forecasting has now become increasingly important with the inclusion of smart 

grids in cities, and smart energy management systems including electric vehicle charging 

infrastructure, since they require precise forecasting to maintain optimal grid functioning. 

Certain factors that affect ELF include but are not limited to [28]: 

• Socioeconomic factors: population, GDP, income, type of industry 

• Temporal elements: seasonal effects, day of the week, hour of the day, national 

holidays 

• Weather and climate effects: ambient temperature, relative humidity, wind 

speed, cloud coverage, etc; 

• Pricing aspects: real-time electricity pricing, fuel pricing 

Since such factors affect load forecasting, ML methods are often enriched with the inclu-

sion of additional features i.e., weather information, temporal features, and demographic 

data to improve their forecasting accuracy. If there are such multiple variables introduced, 

then such a forecasting problem becomes from univariate, a multivariate problem. In such 

techniques, historical climatic data, as well as historical time series of energy load, are 

translated to a plethora of input variables. These features are utilized with energy load 

time-series data to generate multidimensional input parameters, and while more sophisti-

cated than typical forecasting models, they yield more accurate forecasts [22].  
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However, at the same time due to the constantly changing environment, energy load pat-

terns of residential as well as commercial buildings often come with complex non-sta-

tionary characteristics and display seasonal trends [29]. Despite STLF being a preferred 

method for energy load management, it can often be more challenging than mid- and 

long-term forecasting because of the greater variance in the respective energy load pat-

terns [30]. The high variance in the respective energy load patterns is because the indi-

vidual household energy load patterns can vary depending on the daily routines of the 

customers, and the short monitoring period produces a high-frequency energy load graph. 

Another reason why individual building energy load forecasting is challenging is because 

of the unique nature of the energy load pattern of different buildings, which adds addi-

tional obstacles in developing a single generalized model that can adjust to the consump-

tion patterns of each building[19].  

3.3 Forecasting methods  

Based on our literature review, three main methods can be found for performing ELF 

[18]:  

1. Physics principles and thermodynamic rules to estimate and analyze energy load 

2. Statistical based methods 

3. Machine learning-based models 

With the emergence of big data in energy-related domains, there is an inclination by re-

searchers to implement more data-driven methods instead of physics-based methods in 

load forecasting[31], and in the context of the present Thesis, we will focus on the second 

and third group.  

3.3.1 Statistical based methods 

For the second group, the so-called traditional statistical methods are implemented for 

time series predictions regarding energy load, since it is primarily a univariate time series. 

The basic concept behind such methods is to generate a stationary time series (e.g., a 

series with constant mean/variance), by filter-ing out the relevant pattern from the series 

(trend, seasonality, etc.). Some of the most widely used methods for time series analysis 

and forecasting are the Autoregressive Integrated Moving Average (ARIMA) and the 

Autoregressive Moving Average (ARMA) a special type of ARIMA where differencing 

is taken into account and other variants, for example, SARIMAX which deals with 
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seasonality effects in the time series and incorporates exogenous variables (e.g. weather 

effects) [32], [33].  The ARIMA family of models predicts future values based on its own 

past values of a time series.  

However, despite the simplicity and high interpretability of such statistical methods, they 

do not yield convincing forecasting accuracies for complicated data patterns, compared 

to the more advanced ML models of today, especially deep learning. This is mainly due 

to the fact that they fail to address potential nonlinear dependencies within the data [34], 

[35]. As ML techniques are increasingly gaining prominence in recent times there have 

been numerous studies and research papers [5], [16], [20], [36]–[40], which highlight the 

weaknesses of these traditional statistical methods compared to the state-of-the-art ML 

algorithms, especially for short-term predictions, in terms of predictive performance (Fig-

ure 6). 

 

Figure 6: Forecasting performance (sMAPE) of ML and statistical methods, for one-step-ahead-

forecasts [41] 

3.3.2 ML algorithms and approaches 

ML can be broadly classified as supervised, unsupervised, or reinforcement learning. In 

supervised learning, a considerable collection of historical data is utilized to train a map-

ping from independent variables to a projected dependent variable. Regarding building 

operations, smart meter measurements are frequently fed into the models to produce time-

series forecasts or classifications. To tackle the complexities and fluctuations in energy 

load data, the newest research activity focuses mainly on ML techniques. Despite 



 

-16- 

extensive research efforts over the last few years, the achievement of highly accurate en-

ergy load forecasts still remains an open challenge.  

 

Figure 7: Outline of ML framework for Smart building operations [4] 

Tree-based models and ensemble methods 

A regression tree, i.e. a decision tree-based method for regression, is characterized as a 

base learner in the field of ML. The key benefit of decision-trees algorithms over linear 

regression models is that in cases when the connection between the characteristics and 

the response is significantly non-linear and complicated, decision trees may outperform 

traditional ML algorithms, such as linear regression. Ensemble methods are ML tech-

niques that combine several simpler base models/learners in order to produce one optimal 

prediction model [42].  By combining predictions, ensemble techniques can deliver more 

reliable and robust forecasts than a single baseline prediction model[43]. Ensemble pre-

diction approaches can be categorized into two general types, based on the base model 

generation process[44]: 

1. Homogeneous ensemble model creates its base models by resampling from the 

original data different training data to the same learning algorithm with the same 

parameter values. 

2. Heterogeneous ensemble model creates its basic models by running the same 

training data through multiple learning algorithms or running the same algorithms 

through alternative parameter settings. 

In other words, heterogeneous ensemble aims to improve the forecast the prediction by 

exploiting the advantages of the interdependency between different ML algorithms, 

whereas the homogeneous ensemble model is similar to an optimization process that 
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improves the performance of a specific learning algorithm by training it multiple times 

with different datasets and combining their predictions. 

 

Homogeneous ensembling: Bagging 

The collection of ‘M’ base learners to ensemble is formed by bootstrap sampling on the 

training data in the case of bagging (bootstrap aggregating). M new training datasets are 

generated from the original training data set using random sampling and replacement, 

with each observation having the same chance of appearing in the new dataset. A new 

observation is predicted via bagging by averaging the responses of the M learners to the 

incoming input (or majority vote in case of classification problems). When we use bag-

ging on regression trees, each individual tree has a high variance but generally a low bias. 

Averaging the resulting forecast of these N trees reduces variation and increases accuracy 

significantly [42]. 

 

Figure 8: Bagging Ensemble method [45] 

One popular example of a bagging is the Random Forest algorithm. The Random Forest 

algorithm is actually an extension of bagging, creating bootstrap samples of the data and 

then using them to grow a regression tree, a random subsample of the features is used in 

each fitting process. This process occurs a predefined number of times and the prediction 
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is then the aggregation of the individual trees’ predictions, which for regression problems 

involves some type of averaging [46]. 

 

Heterogeneous ensembling: Boosting 

Boosting is an ML strategy that learns from prior predictor errors in order to produce 

better predictions in the future. In essence, it creates a strong learner by merging a subset 

of lesser learners with low complexity, shorter training duration, and greater resistance to 

overfitting [47].  

 

Figure 9: Boosting Ensemble method [45] 

Boosting takes many forms, including gradient boosting. Gradient descent is a popular 

boosting strategy in classification and regression applications. It creates models in the 

shape of a group of poor learners and most implementations use decision trees as base 

predictors. The primary concept is to use a gradient descent learner to optimize the loss 

function [48]. Notable examples of Gradient Boosted Decision Trees (GBDT) used due 

to their low computational complexity and effectiveness are highlighted below.  

1. Extreme Gradient Boosting (XGBoost) 

The XGBoost algorithm implements the weak learner by optimizing the structured 

loss function, and the XGBoost algorithm does not use the linear search method, 
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it directly uses the first derivative and the second derivative of the loss function. 

XGBoost has some key advantages such as better regularization in order to avoid 

overfitting, automatized handling of missing values, and cross-validation at each 

iteration step  [49].   XGBoost is considered today as state-of-the-art and one of 

the most advanced supervised ML algorithms. It produces faster results and better 

performance scores in comparison with other ensemble methods [50].  

 

 

2. Light Gradient-Boosting Machine (LGBM) 

Compared to other decision tree algorithms, LightGBM employs a novel method 

called gradient-based one-side sampling in order to pinpoint the optimal split for 

input data. LightGBM expands on a leaf-basis in contrast with other boosting al-

gorithms that have a level-wise or depth-wise decision tree growth[51]. It is con-

sidered that the LGBM is lightweight and requires fewer resources than other 

GBDTs, resulting in faster training times and less computational needs, while 

maintaining high accuracy [52].  

 

3. CatBoost 

CatBoost (for “Categorical boosting”) builds symmetric (balanced) trees, unlike 

XGBoost and LightGBM. The leaves from the previous tree are divided using the 

same criteria in each phase. The feature-split pair with the lowest loss is chosen 

and utilized for all nodes in the level. Such a balanced tree structure contributes 

towards the efficient use of computational resources, decreases training/testing 

times, and reduces overfitting as the structure serves as a regularization method. 

Furthermore, CatBoost is designed for both numerical and categorical features 

and takes advantage of dealing with them during training as opposed to prepro-

cessing time [53], [54]. Overall, CatBoost is highly effective in forecasting cases 

involving categorical, heterogeneous data. 

Artificial Neural networks (ANNs) 

An ANN is an advanced mathematical model that tries to emulate the function of the 

human brain, consisting of layers of connected units called neurons that are interlinked 

together with a weight value assigned for each connection. Today, as deep learning has 

become one of the most active technologies in many research areas, ANNs are heavily 
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implemented for image pattern recognition, algorithm optimization, and time-series pre-

diction [55], [56]. In the context of the present thesis there has been much attention in 

using deep learning algorithms for time series prediction, and hence we provide a short 

review of the basic principles, strengths and weaknesses of notable ANNs. 

 

Figure 10: Basic Artificial Neural Network ( ANN) structure [57]. 

In contrast to ARIMA-based linear forecasting approaches, ANNs are a collection of non-

linear self-adaptive methods that are data-driven, which implies that no previous 

knowledge of the connection between the models and the data variables is required. It is 

commonly known that ANNs can approximate any nonlinear function [58]. Moreover, 

compared to decision-tree based models, deep learning models automatically extract fea-

tures along with making predictions, which results in much more accurate load predic-

tions. However, these deep networks often need to be trained with large amounts of data 

in order to achieve optimum accuracies, and this tends to make them more time-consum-

ing and computationally intensive [59].   

Multilayer Perceptron 

A very common ANN architecture is known as a Multilayer Perceptron (MLP), consisting 

of a network of individual nodes, called perceptrons, organized in a series of layers, one 

input layer, a single hidden layer, and an output layer. The basic structure of MLP is 

shown in Figure 11. The overall learning process is based on the backpropagation error 

utilizing the using the gradient descent search method. Despite its simple concept and 

design, an MLP can learn any function, particularly by approximating non-linear corre-

lations between input and output variables [60]. An MLP has a very good capability of 

accurately learning from the series of past observations of a time series and making pre-

dictions of the next value or sequence of steps. However, the training process may require 

a high computational burden to be processed with a slow convergence of weights. 
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Figure 11: The Multilayer Perceptron (MLP) structure 

 

Recurrent Neural Networks: Long Short-Term Memory (LSTM) 

In earlier stages, neural network topologies, such as MLP, often treated each data point 

input as a separate parameter. However, data points are frequently interdependent on one 

another, as in natural language modeling or time series forecasting. Recurrent Neural 

Networks(RNNs) are designed to remember parts of past data through a methodology, 

called feedback, in which the training takes place not only from input to output (as feed-

forward) but also utilizes a loop in the network to preserve some information and thus 

functions like a memory [61].  

An ANN utilizing Long Short-Term Memory (LSTM), is a unique RNN architecture that 

can be utilized to learn temporal sequences and deal with long-term dependencies, which 

is in fact the basis for time series forecasting [62]. LSTM was designed to overcome the 

vanishing gradients problem of the standard RNN when dealing with long-term depend-

encies. In contrast to the standard RNN which has a series of repeating modules with a 

relatively simple structure, the hidden layers of LSTM have a more complicated format.  

Specifically, instead of neurons, LSTM networks have memory blocks that are connected 

through layers and introduce the concepts of gate and memory cells in each hidden layer. 

The basic structure for the LSTM model consists of four parts: an input gate layer, a forget 

gate layer, an output gate layer, and a memory cell layer, as depicted in Figure 12 [27]. 
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Figure 12: The basic structure of LSTM model [27] 

The above structure enables LSTM to make the decision of preserving or ignoring the 

memory information. This results in the LSTM model capturing important features from 

input data and preserving this information over long time intervals. The decision of de-

leting or preserving the information is made based on the weight values assigned to the 

information during the training process. Hence, an LSTM model learns what information 

is worth preserving or removing.  

Over recent years, several research/scientific papers [18], [27], [31], [58], [61]–[66] have 

emerged, which thoroughly explore the performance of LSTM particularly in time series 

forecasting (for variating forecasting horizons) and particularly ELF. In fact, some studies 

support that LSTM is highly suitable to forecast complex energy load time series that is 

characterized by non-stationarity effects [31], [58]. Especially for individual residential 

load forecasting, which is typically more inconsistent mainly due to the behavioral habits 

and lifestyle of residents, LSTM has proven to be able to better capture the associated 

long-term temporal dependencies [30], [63]. Another notable study [65] which imple-

mented pooling data in order to combine data from interconnected users, showed very 

good results compared to other ‘traditional’ ML algorithms. However, LSTM models of-

ten come with certain notable drawbacks: 

• They have a large range of parameters that need to be finetuned to reach an opti-

mal structure to maximize their performance  

• They tend to require a lot of computational resources and time for their training 

process  
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3.4 Cross-validation techniques 

The performance of any ML model is primarily assessed by its performance when tested 

on new (unseen) data. Cross-validation (CV) is one of the primary techniques used to test 

the effectiveness of a model, by re-sampling and splitting data into two parts (referred to 

as splits) [67], one used to learn or train a model and another used to validate the model. 

Adopting appropriate CV techniques when dealing with complicated forecasting prob-

lems is critical for objectively replicating post-sample accuracy, avoiding over-fitting, 

and managing uncertainty. 

A typical approach in CV is the k-fold validation method, in which data are randomly 

shuffled and split in K equally sized folds or blocks. Each fold is a subset of the data 

comprising N/K randomly assigned observations, where N is the number of observations. 

After this partitioning, k iterations of training and validation are performed such that 

within each iteration a different fold of the data is picked for testing for validation while 

the remaining K − 1 folds are used for training. However, as we already discussed, time 

series data due to their temporal structure are interdependent, such dependencies mean 

that it is not possible to randomly mix data in a fold, thus the use of standard cross-vali-

dation (i.e. k-fold) ineffective.  

As a result, since we are working with a time series case study, a distinct portioning strat-

egy is chosen. Time-series split is a sort of train-test split that tries to evaluate model 

predictions regardless of how train-test data sets are split. The model is trained on a subset 

of the time series from the beginning through time T, and predictions for the future T+i 

steps must be obtained, as well as errors. The training sample is then extended to T+i 

values, predictions from T+i to T+2i steps are produced, and the process of extending the 

time series' test segment is repeated until the final available information is reached.. In 

other words, the time series split ensures the train sets precede the test datasets, as de-

picted in Figure 13, which captures the temporal interdependencies of the time series. 
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Figure 13: Time series cross-validation split strategy [68] 

3.5 Relevant studies and metrics 

For the present thesis, a systemic approach to the review of literature has been employed. 

A comprehensive literature search was conducted and was followed by a meta-analysis 

of the findings. To that end, key research queries and keywords were developed, like 

“energy load/consumption timeseries forecasting”, “electric/energy load forecasting 

models”, “electric/energy load prediction models” or “electric/energy load demand mod-

els”. After this first search, texts including the keywords “office”, “building”, “house-

hold”, “smart building(s)”, “building energy load/consumption” were further targeted.  

This initial screening process was followed by the analysis, which involved examining 

the scope and scenario objectives of each scientific work. The attention then shifts to an 

examination of the forecasting models used, as well as the prediction horizon, variables, 

and techniques applied. Finally, relevant patterns and repeating methods in the applica-

tion of the chosen forecasting models are examined. In total, more than 70 scientific pa-

pers and research outputs were finally gathered, as a result of the above procedure, which 

were categorized on a structured basis, based on their content, source, year of publication, 

relevance etc. 

Overall, over recent years, researchers have been developing and experimenting with var-

ious ML algorithms such as Linear Regression models, Neural Networks (NN), Decision-

tree based models, and Support Vector Regression (SVR) for building ELF with promis-

ing results [69].  As a summary, emphasizing performance and relevance, this section 

includes a structured presentation of the gathered key literature in terms of ELF and no-

table performance metrics, mainly MAPE, since it is the most used metric for direct com-

parisons illustrated in Table 1.  
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Table 1: Taxonomy of related literature findings in building-related ELF 

# Model 

Input 
Exoge-

nous 

Fore-

cast 
Indicative 

Reference 
resolu-

tion 
Inputs  

hori-

zon 
Metrics 

1 BPN8 15 min No 2h  MAPE: 6.21%  
[20] 

2 SVR 15 min No 2h  MAPE: 5.2%  

3 MLP 1h Yes 24h MAPE: 1.7, R2: 0.98 [24] 

4 MLP 15 min No 1h 
MAPE: 12.96%, 

RMSE (kWh): 0.651  

[21] 5 LSTM 15 min No 1h 
MAPE: 14.09%, 

RMSE (kWh): 0.668  

6 XGBoost 15 min No 1h 
MAPE: 15.37%, 

RMSE (kWh): 0.699   

7 LGBM 30 min Yes 1h MAPE: 21.5% [34] 

8 LSTM 30 min No 1h MAPE: 9.1%  [22] 

9 XGBoost 1h Yes 1h MAPE: 12% [70] 

10 XGBoost 1h No 1h MAPE: 3.50% 
[42] 

12 EBT9 15 min Yes 1h MAPE: 4.62% [69] 

13 XGBoost 1h Yes 1h R2 : 0.977 

[5] 
14 RF 1h Yes 1h R2 : 0.972 

15 MLP 1h Yes 1h R2 : 0.98 

16 LSTM 1h Yes 1h R2 : 0.977 

17 FF-DNN10 1h Yes 1h MAPE: 1.42% [28] 

18 GBDT 1h No 24h MAPE: 1.32% 

[71] 19 RF 1h No 24h MAPE: 1.97% 

20 MLP 15 min No 24h MAPE: 14.53% 

[26] 21 ELM11 15 min No 24h MAPE: 14.54% 

22  
Model  

Ensemble 
15 min Yes 24h MAPE:2.32% 

[72] 

23  ANN 1h Yes 1h MAPE: 5% [2] 

 

This summarized table acts only as a reference basis, to compare and contrast the results 

of the developed models of the present thesis. That said, each of these forecasting models 

 

8 Backpropagation Neural Network 
9 Ensemble Bagging Tree 
10 Feed-forward Deep Neural Network 
11 Extreme learning machine 
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has advantages and disadvantages and none is considered 100% efficient and applicable 

to all case studies. It should be emphasized that this listing comprises a detailed assess-

ment of the results published in the models' respective publications, rather than an exper-

imental evaluation by replication of the reported results. The scope, objectives, forecast-

ing horizon, input data resolution and magnitude, model variables, and pre-processing 

techniques of the reference models differ from the present thesis’s models. Also, some of 

the mentioned studies implemented some type of data smoothing, aggregation and/or 

clustering method. Hence the referenced metrics should be treated with a critical ap-

proach, more as a cumbersome point of comparison which has some scalability. As a 

notable example, Papadopoulos & Karakatsanis, 2015,  show a very good performance 

of their forecasting model (MAPE around 1.5%), so we tried to understand the potential 

reasons behind this: 

• Area of application: It is far bigger than a single building as they deal with an 

entire region in the US, the New England Electricity Market (with the Boston 

area as its epicenter) 

• Input resolution: The load dataset spans over a 4-year period, from 2009 to 

2012(Figure 14). 

 

   Figure 14: Energy load time series used in [71] 

The dataset has a distinct pattern and repeatability, while its max/min values seem 

in the same range. This behavior is possibly due to it being a whole area as an 

energy consumer, hence there are no extreme highs and lows observed as small 

differentiations cannot gravely affect the mean values of energy needs, of a whole 

area.  



 

  -27- 

• More training data: To train their models, the whole 4-year period from 2009 to 

2012 except the last day of the year 2012 which has been used for testing. In our 

case study, the training data consisted of 18 months and the test dataset 6 months. 

As a consequence of the above, the min/max range of the produced evaluation metrics 

from related scientific work varies significantly. From the related studies that were ana-

lyzed we see the MAPE value ranging from around 1.5% to about 20%, although most 

studies are in the 5-15% range. Hence, a MAPE value in this range was our general ob-

jective in the experimental modeling process. 
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4 Methodology 

The goal of this thesis is to forecast the energy load for a prototype modern smart build-

ing. The strategy for the above goal was to utilize and evaluate well-known, state-of-the-

art, conceptually simple, yet diverse data mining/ML models and techniques. 

For this overall project three main steps were followed: 

• At first, the raw dataset is explored, merged, visualized, and preprocessed. This 

was implemented via the use of python 3.9 programming language via Visual 

Studio Code interactive development environment. 

• Implementation and evaluation of machine learning algorithms, primarily regres-

sion and ANN models, for ELF utilizing python’s 3.9 Scikit learn and Tensor flow 

libraries 

• Hyperparameter tuning was utilized to improve the performance of the forecasting 

models. Moreover, cross-validation techniques and model ensembling methods 

were utilized in order to test the capability/performance of the developed forecast-

ing models to predict new (unseen) data. Finally, the developed ensemble ap-

proach was validated with an alternative dataset, with similar properties. 
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•  

4.1 Data preparation  

4.1.1 Dataset description 

The open-access dataset [73] includes measurements and raw data collected from and for 

the CERTH Smart House nanogrid infrastructure discussed in Section 2.3. Mainly en-

ergy-related aspects are included in the publicly available datasets utilized, covering En-

ergy load, Generation, and Storage, as well as Weather data information from external 

online APIs, between October 2018 and September 2020, with 15-minute resolution. 

More precisely, the dataset categories utilized for our analysis are described below: 

Table 2: Dataset fields used for our analysis  

Fields Description 
Unit of  

Measurement 

Timestamp Time of the recording in UTC time zone  
2018-10-

03T21:00:00Z 

Energy Consumption 
Total energy consumed from the entire building in 

a quarter 
kWh 

Photovoltaic Energy 

Generation 

Energy Produced from an installed photovoltaic 

system in a quarter 
kWh 

Temperature_v1 Temperature from Online Weather API °C 

Relative_Humid-

ity_v1 
Relative Humidity from Online Weather API   % 

Wind_Speed_v1 Wind Speed from Online Weather API km/h 

Clouds_v1 Cloud Coverage from Online Weather API % 

 

Other available data are excluded primarily due to a very high number of null values 

and/or irrelevance of the research goal.  

4.1.2 Pre-processing  

Single dataset construction 

The dataset was provided in the form of .csv files and the very useful Pandas library in 

Python 3.9 was utilized in order to conduct the pre-processing. This is because the data 

are in their raw format as extracted from the physical installation including missing val-

ues, outliers, etc. 

The first step was to combine the available energy load, and energy generation data from 

PV of the ITI Smart House with the weather/ambient data described in Section 4.1.1, as 
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these were contained in separate .csv files. Since the temporal resolution is the same for 

all data sets (i.e. 15 mins), the merging process was implanted with the use of the 

timestamps (e.g. 2018-10-10 15:00:00), to construct a single data frame containing all 

values (Figure 12)  

 

Figure 15: Instance of the single merged data frame (15-min resolution) 

Missing values and resampling 

Our dataset contained a great number of missing values, in many cases for prolonged peri-

ods. This sort of irregularity in the data can have a significant impact on the accuracy of a 

forecasting model, hence data pretreatment procedures should be used prior to the building 

of forecasting models. Hence, the next step was to deal with missing values in the time 

series by assessing the best strategy that should be followed. The first exploratory attempt 

was to create and then fill the missing 15min intervals with the forward linear interpolation. 

As a result of this filling process, admittedly it is very challenging to have a genuine-look-

ing pattern, especially in large periods of absent data/metering, as indicated in Figure 16. 

 

Abnormal  

behavior 
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Figure 16: Instance of 1st attempt of interpolating missing values (Energy load) 

 

In order to tackle the above problem, first we proceeded to resample the 15min time series 

to a 1h resolution. Using the sum for energy-related values (Energy load and PV Genera-

tion) and the average for weather recordings (i.e. Temperature), as this provides a better 

forecasting baseline for modelling. This is especially true when we considered the extensive 

literature review, as many studies had an input resolution of 1h for STLF. However, very 

long periods of missing values still existed in the resampled dataset (e.g. 15 consecutive 

days) which is not ideal. Hence, due to the many missing values, a hybrid approach was 

chosen using a forward and backward time-based interpolation method, for time intervals 

of up to 4h and to omit missing data extending to larger time periods than 4h. This proce-

dure resulted in producing a full dataset for both target (Energy load) and exogenous fea-

tures (Temperature, PV generation) and resulted in a far more ‘normal’ behavior and daily 

pattern, capturing both periodicity and trend, as it will be shown in Section 4.1.3. 

 

Outlier detection 

Identifying and removing outliers is a vital component in creating robust forecasting mod-

els, which avoid large errors.  In particular, the analysis of outliers in time series data 

examines anomalous behaviors across time. For example, in our dataset there or illogical 

outliers such as temperatures well above 45°C (Figure 17). 

 

Figure 17: Identification of outliers in temperature 

 

Hence, an outlier detection strategy was followed, which identifies values that were above 

the 99.99th and the 99.8th percentiles for all the temperature and energy load data points 

and replaces them with their equivalent max values that are equal to the percentiles (Fig-

ure 18).  
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Figure 18: Code snippets of the outlier detection and removal strategy 

4.1.3 Exploratory Data Analysis  

Before we conduct our modelling, it is important to understand the kind of data that we 

are dealing with and their characteristics and key trends. To that end in this section pro-

vides an exploratory data analysis (EDA), by presenting certain key visualizations along 

with supplementary comments, to provide a holistic view of our time series datasets. Be-

low, Figure 19, shows the Smart House hourly Energy load in kWh, after extreme outliers 

were removed. 

 

Figure 19: Smart House Energy load per hour in kWh (Oct. 2018-Sep. 2020) 

Some notable patterns and a clear periodicity can be clearly observed. At first, we notice 

that during the winter and summer months the average hourly energy load is higher, which is 

to be expected due to the increased cooling and heating demands. Furthermore, since the 

Smart house is part of the ITI infrastructure, it acts as office space for researchers, thus it 

evident that there are periods in December and August that the energy load drops due to the 

leave of the bulk of ITI employees for Christmas and summer vacation accordingly. 
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Figure 20: Smart House’s PV Energy generation per hour in kWh (Oct. 2018-Sep. 

2020) 

Similarly, for electrical energy generated by the installed PV on the roof (Figure 20), it is 

evident that during the spring and summer months (April to September) there is increased 

energy generation due to the prolonged hours of sunshine. All energy load, generation, and 

exogenous weather parameters can be visualized in more detailed in Appendix A: Dataset 

Samples. Figure 21, illustrates the hourly resolution of both energy load and generation on a 

weekly basis. We notice here that the first day of the week (Monday) shows higher energy 

load, while naturally the energy load is minimized during the weekend, as there is no em-

ployee activity. 

 

Figure 21: Energy load and PV generation in a week (Mon.-Sun.) 

Regarding a characteristic daily profile (Figure 22), as expected both energy load and PV 

generation spike during working hours, peaking around noon. 

Weekend 
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Figure 22: Energy load and PV generation in a typical day (24h)  

 

Figure 23: Monthly average Energy load and Temperature 
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From  

Figure 23, a clear pattern stands out which shows that the periods of high energy load 

coincide with the periods where the lower and higher temperatures are recorded. The 

month of August should be disregarded, as the ITI Smart House remains closed for a large 

period of time. However, no clear patterns or trends from the other weather/ambient pa-

rameters (i.e. wind speed, relative humidity, cloud coverage) in relation to the Smart 

house’s energy load can be singled out, these parameters do not seem to have a high 

correlation with our target variable, the energy load, and do not improve the forecasting 

performance (Figure 24). 
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Figure 24: Correlation matrix of the exogenous parameters and the target variable 

Time series stationarity  

The basic assumption of a traditional regression model (e.g. linear regression) is that the 

observations are independent does not hold in this case. Due to the temporal dependencies 

in time series data, forecasting cannot rely on simple forecasting techniques. In fact, the 

autocorrelation plot(lags=500) of the ITI Smart House’s energy consumption shows that 

the time-series is non-stationary (Figure 25) 
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Figure 25: Autocorrelation plot for Energy consumption (entire dataset) 

This shows irregular dynamics which traditional forecasting techniques are less suited for 

and motivates us to use supervised ML models, as such models are suitable to handle 

non-stationary time-series. Additionally, for a multivariate time series analysis as in our 

case, adds more complexity, which can be better dealt by supervised ML algorithms. 

However, necessary transformations are required in order to restructure the data to be 

used in a supervised learning problem, as presented in Section 4.2.1. 

4.2 Data transformation 

4.2.1 Feature engineering and selection 

From empirical observations, energy load is influenced by several exogenous factors, 

such as the day of the week, holidays, or the month of the year, holidays, special occur-

rences, and weather effects, and therefore these factors must be considered in the training 

of the prediction model, in addition to historical load data[74]. In particular, ambient tem-

perature is a factor that directly affects the energy load (cooling and heating of the smart 

home). Furthermore, in our case study, PV generation is also a helpful feature as high PV 

power generation indicates sunny weather, thus a lower need for heating in the winter 

period or prolonged sunlight periods in the summer period, which might translate to in-

creased cooling needs. Both these exogenous features are used in addition to the historical 

data of the load to make a more accurate forecast. 
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Time series transformation to supervised 

As it will be shown in Section 5, the forecasting models used, come within the category 

of supervised ML algorithms, which implies that they must be trained given a collection 

of feature vectors and their corresponding target values. To do this, we created a collec-

tion of hybrid feature vectors that include both automatically picked values from the en-

ergy load time series and manually selected temporal characteristics. 

The sliding window technique was used for feature extraction, which is a standard ap-

proach for time series forecasting modelling. This entails transforming the data into 

lagged observations. That is, n prior values (t-n, t-n+1,...,t) were utilized to forecast the 

future value (t+1). This is accomplished by iteratively traversing the data, accepting n 

items as input and the next entry as output. In our case, a 3D sliding window (variables, 

rows, and time steps equal to 1) was utilized for the LSTM, while a 2D sliding window 

(time steps with variables and rows) was used for the remaining algorithms (tree-based). 

As time-series data often exhibit trends or seasonal patterns, the relation between the 

model's input variables (independent variable) and the predicted value (output variable) 

fluctuates with time. In order to discover the datapoints where the values of independent 

variables are substantially related, the time-lag value must be accurately chosen. The cor-

rect estimation of the number of previous observations is a critical factor in time-series 

forecasting (lags). 

After reviewing relevant literature for critical time-lagged features created (e.g. [71]), 

extensive experimental modelling and rating feature importance, the final selection of 

features, to forecast 1-step ahead (i.e. 1 hour ahead) included: 

1. 24 lagged features (T-1,T-2,T-3,…T-24) for Energy_Consumption (Target). In 

essence, this is the energy load value of the day preceding the hour for which the 

prediction is made,  

2. Similarly, 12 lagged features (T-1,T-2,T-3,…T-12) from 2 additional exogenous 

features the hourly PV energy generation (Energy_Generation) and the hourly 

ambient temperature (Temperature_v1), 

3. The energy load value 48h before (T-48Cons) 

4. The energy load value 72h before (T-72Cons) 

5. The absolute standard deviation (std) between the previous hour energy load and 

the previous 24h energy load. The calculation formula is presented below (Equa-

tion 1) 
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 |
Const−1 + Const−24

2
− Const−1 | (1) 

 

Naturally, as our time series dataset also implements the notion of time as a feature, the timestamp 

was split into categorical values, to create additional temporal features, as shown in (Table 3). 

This is a key difference between regular regression problems and time series problems, as it cap-

tures temporal characteristics such as periodicity and trends of the time series. Apart from the 

typically used temporal features such as hour of  day, the day of the week, the  month  of each 

load data point, some specific features were synthesized based on the characteristics of our da-

taset, acknowledging that the ITI Smart House is used as a workspace, such as a distinction feature 

of office hours (i.e. 9:00-18:00) and non-peak hours (i.e. after 18:00). Other customized temporal 

features were also considered, such as importing Greek National holidays and time periods where 

ITI is closed for vacation (i.e. Christmas, 1-15 August), however, they were not used, as it would 

hamper the ability to create a more generic model and its applicability.  

 

Table 3: Temporal features created 

Features Description 

quarter Dummy variable corresponding to the 3-month quarter of the year 

month Dummy variable corresponding to the month of the year 

hour24 Dummy variable corresponding to the hour of the day 

Week_day Dummy variable corresponding to the day of the week 

is_weekend Dummy variable corresponding to Saturday & Sunday 

off_hours Dummy variable distinguishing off-peak hours (i.e. after 18:00)  

work-

ing_hours 
Dummy variable distinguishing peak hours (i.e. 9:00-18:00)  

 

Since this is a time series forecasting problem, we preserved the order of time while split-

ting the data (utilizing a temporal train test split). Hence the first 80% of historical data 

are used for training and the remaining 20% of data points are used for testing the predic-

tions of the models. For the entire dataset, this translates to roughly 18 months for the 

training of the ML algorithms and the remaining 6 months for testing. However, then 

smaller portions of the dataset were chosen for training and testing the algorithms. 
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4.3 Evaluation metrics 

The forecasts that were produced by the regression-based algorithms’ implementation 

were contrasted to the data set’s testing segment and validated using key metrics. The 

predicted values in regression-based problems are continuous numbers and the primary 

principle behind evaluating regressor performance is to calculate the difference between 

the true and forecasted values. To that end, the performance was calculated and compared 

using five evaluation metrics: Mean Absolute Error (MAE), Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), R-squared, and the elapsed training 

time was also recorded, which are described below: 

 

1. Mean Absolute Error (MAE) 

MAE calculates the mean of the non-negative differences between observed and pre-

dicted values. All differences have equal weight, as a result MAE fails to punish large 

errors in prediction. MAE calculates the error is on the same scale as the target, hence 

it is more interpretable. MAE is defined by the formula (Equation 2): 

 

 

𝑀𝐴𝐸 = √
∑𝑖=1

𝑛  |𝑦𝑖 − 𝑦̂𝑖|

𝑛
 (2) 

 

2. Root Mean Square Error (RMSE) 

RMSE calculates the square root of the average squared difference of the observed 

and predicted values. This metric is able of identifying and heavily penalizing large 

errors and evaluate the fluctuation of model response in terms of variance. The math-

ematical formula for RMSE is (Equation 3): 

 

𝑅𝑀𝑆𝐸 = √
∑𝑖=1

𝑛  (𝑦𝑖 − 𝑦̂𝑖)2

𝑛
 (3) 
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3. Mean Absolute Percentage Error (MAPE) 

The MAPE calculates the absolute value of the difference between observed and pre-

dicted. Typically, it quantifies accuracy in percentage terms and is effective for eval-

uating the performance of the prediction model by applying more weight on positive 

errors in relation with the negative ones. The MAPE is defined by the formula (Equa-

tion 4): 

 
𝑀𝐴𝑃𝐸 =

1

𝑛
× ∑𝑖=1

𝑛   |
𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
| × 100% (4) 

 

4. Coefficient of determination or R-squared (R2): 

R-squared is often referred as the goodness of fit (of a regression model), as it deter-

mines the proportion of the variance in the dependent variable that is predictable from 

the independent variables. A high R-squared value indicates the predicted values fit 

the observed values quite well. However, a high r-squared is not necessarily always a 

good indicator for the regression model. Many factors influence the statistical 

measure's quality, including the type of the variables included in the model, the units 

of measurement of the variables, and the data transformation used. The R-squared is 

defined as follows (Equation 5): 

  

𝑅2 = 1 −
∑𝑖=1

𝑛  (𝑦𝑖 − 𝑦̂𝑖)
2

∑𝑖=1
𝑛  (𝑦𝑖 − 𝑦‾)2

 
(5) 

 

5. Elapsed Time (ET) 

Although ET is not an evaluator of a model’s precision, it is selected as it is a useful 

metric that records the models’ training times, in an effort to highlight the less com-

putationally intensive model. 
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5 Experimental modelling  

5.1 Entire dataset forecasting 

The first step in training and testing our forecasting models, was to utilize the entire da-

taset in a temporal manner (first 18 months for training, 6 remaining months for testing), 

as this would enable the training process to use the highest possible number of data points. 

This is important, in particular for the Neural Networks implemented, especially the 

LSTM, which literature indicates that they maximize their performance when fed with 

quite larger training datasets.  

Also, after some excessive modelling trials and experimenting with the effect of exoge-

nous features on improving the performance of the models, it turns out that the rest of the 

exogenous weather/ambient data (Rela-tive_Humidity_v1,Wind_Speed_v1, Clouds_v1) 

have a poor correlation with our target (Energy_Consumption). This was evident in the 

relevant feature importance graphs that were produced. In other words, they had no sig-

nificant effect in improving our forecasting accuracy and thus were not selected in the 

final feature matrix. Hence, after the data preprocessing, we finalize the training dataset 

used to feed the models. The final feature space includes 12721 rows × 59 columns, in-

cluding both temporal and lagged features of the three separate time series (Energy load, 

PV generation, Temperature). An indicative snippet is depicted in Figure 26. 

 

Figure 26: Snippet of the training dataset and features 
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Initially, the models were trained with their default parameters, without any finetuning, 

then a hyperparameter tuning process was used in a second round of training, in order to 

optimize the performance of models. In predictive analytics, hyperparameter optimization 

is an integral part of the modelling process. In general, models can perform well with the 

default parameters however, tuning can produce more accurate results. To that end, we 

attempted to identify the proper parameter grids for our selected modeling algorithms, by 

reviewing the relevant documentation for each algorithm as well as the bibliography. For 

this process a popular python library was utilized, the Grid Search Cross-Validation 

(GSCV) method. It finds the best combination of hyper-parameters that give optimal re-

sults for the model performance. For example, during the model training process, GSCV 

creates multiple models, each with a unique combination of hyper-parameters. The goal 

of GSCV is to train each of these models and evaluate their performance using cross-

validation. Ultimately, the model that gives the best results is selected. 

Furthermore, in the development of a supervised ML model, it is important to understand 

which features are most associated with the prediction outcome. In essence, they rank the 

input characteristics for a particular model, based on their contribution to predicting the 

target variable. Feature importance is frequently used for dimensionality reduction, which 

means we can use it as a filter method to remove extraneous features from our model and 

only keep those that are most strongly related to our desired outcome. The goal in ML is 

to achieve the maximum possible performance of a model, with the minimum number of 

features, as more features translate to increased training times and computational power. 

To that end feature importance scores were produced, which helped us with deciding 

which features (especially lagged features) to select for our final training dataset. This 

was implemented via Sklearn’s embedded library (feature_importance_), which for re-

gression problems, calculates the variance reduction based on the Mean Square Error. 

The steps of our overall modelling approach are summarized in Figure 27. 
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Figure 27: Flow chart of the overall modelling approach  
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5.1.1 Single algorithm selection & tuning 

Extreme Gradient Boosting (XGBoost)  

The first model utilized in our case study was the Extreme Gradient Boosting (XGB) 

Regressor. In our first attempt, the baseline model was implemented without any param-

eter tuning did not occur. For the XGBoost model, Figure 28, illustrates the feature im-

portance scoring. 

 

Figure 28: Feature importance (XGBoost) 

Evidently, the most important feature is by far the T-1 values of our target, the energy 

load, followed by the T-2, T-3 values.  This is quite anticipated in a time series dataset 

such as the energy load as in an hourly resolution a building does not frequently have 

‘jumps’ in energy load for 2 or 3 hours backward. Such abrupt changes in energy load 

would mean that a sudden event of energy need occurs, such as an electric vehicle or a 

storage battery charge. Interestingly the standard deviation (std) between the previous 

hour and the previous 24h energy load value and the dummy variable that determines if 

it is Saturday or Sunday, are also in the top ranks in terms of feature importance. This can 

be probably explained due to the fact as we mentioned earlier that the ITI smart house is 
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used as a workspace, thus the energy load pattern during the weekend shows a clear re-

duction, whatever the time of year and weather circumstances.  

The next step was to finetune the XGBoost model and focused on tuning the number of 

trees (‘n_estimators’), the maximum of a tree (‘max_depth’), the learning rate i.e. the step 

size shrinkage used in update to prevent overfitting (‘learning_rate’), the subsample 

(‘subsample’) which denotes the fraction of observations to be randomly sampled for each 

tree. Furthermore, we tuned the subsample ratio of columns when constructing each tree 

(‘colsample_bytree’) is the subsample ratio of columns when constructing each tree. Fi-

nally, the ‘objective’ defines how the loss function will be minimized 

Table 4: Hyperparameters for XGBoost 

Hyperparameters Initial grid values Final selection 

n_estimators 500, 550, 600…..1450, 1500  850 

max_depth 2,4,6,8,10 6 

learning_rate 0.01,0.05,0.1 0.01 

colsample_bytree 0.1, 0.3,0.7, 1 0.7 

subsample 0.5, 1, 2 1 

objective 
reg:squarederror, reg:abso-

luteerror 
reg:squarederror 

 

 

Random Forest  

The next model we implemented is the Random Forest. Again, initially, the baseline 

model was implemented without any hyperparameter tuning. For the Random Forest 

model, Figure 28, illustrates the feature importance scoring. 
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Figure 29: Feature importance (Random Forest) 

Regarding feature importance we see a different picture in this case. The Random Forest 

algorithms relies heavily on the T-1 lagged energy load value.  

Table 5: Hyperparameters for Random Forest 

Hyperparame-

ters 
Initial grid values Final selection 

n_estimators 
 200, 300, 500, 800, 

1000 
500 

max_depth 20,40,60,80 40 

min_samples_leaf 2,4,6,8,10 6 

min_sam-

ples_split 
2,4,6,8,10 6 

  

For Random Forest, apart from the number of estimators and the maximum depth, we 

also focused on tuning the ‘min_samples_leaf’, which determine the minimum number 

of samples required to split an internal node and ‘min_samples_split’, which indicate the 

minimum number of samples required to be at a leaf node. 
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Light Gradient-Boosting Machine (LGBM) 

We tried another notable ensemble tree-based regression algorithm the light gradient 

boosting machine (LGBM). Literature indicated that even a simple shallow learning 

model, like the LGBM has proved to provide accurate forecasts regarding residential en-

ergy load.  Figure 30, represents the feature importance scoring for the LGBM model.  

 

Figure 30: Feature importance (LGBM) 

 

We notice that compared to XGBoost, LGBM has more features in the top ranks, in terms 

of contribution to its forecasting. Especially, the temperature and the hour of the day, and 

the previous hour energy generation from PV are more important for this model, com-

pared to the other models. For the LGBM regressor, the number of leaves, the minimum 

data samples contained in a leaf and max number of bins (‘max_bin’) that feature values 

will be inserted in. Typically, smaller number of bins may reduce training accuracy but 

may increase general power (i.e. dealing with overfitting). 
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Table 6: Hyperparameters for LGBM 

Hyperparame-

ters 
Initial grid values Final selection 

max_depth 4,8,12,16 10 

num_leaves 6,10,14, 18, 22, 26, 30 20 

min_data_in_leaf 40,60,80,100 70 

max_bin 30,60,90,120 90 

 

CatBoost  

The next model implemented, CatBoost Regressor, is another member of the family of 

GBDT ensemble algorithms. Similarly, to the other GBDTs, the T-1 lagged energy load 

is by a large margin the most valuable feature, but also the day of the week is high up in 

the importance ranking. 

  

Figure 31: Feature importance (CatBoost) 
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For CatBoost regressor the parameters that were tuned were the number iterations, the 

learning rate which determines the reduction of the gradient descent step, the tree depth 

(‘depth’) and the L2 regularization parameter (‘l2_leaf_reg’), which deals overfitting by 

forcing weights to be small, but not making them exactly zero. 

Table 7: Hyperparameters for CatBoost 

Hyperparameters Initial grid values 
Final selec-

tion 

iterations 
200, 500, 850, 

1000,1500,2000 
850 

learning_rate 0.01, 0.02, 0.05,0.1 0.02 

depth 4, 6, 8, 10, 12 6 

l2_leaf_reg 0.2, 0.4, 0.6, 1 0.6 

 

 

MLP  

The first ANN we implemented was the MLP regressor, which is trained trains via back-

propagation with no activation function in the output layer, which can also be seen as 

using the identity function as activation function. Therefore, it uses the square error as the 

loss function, and the output is a set of continuous values. Initially we trained the algo-

rithm with the default parameters and then we finetuned certain key hyperparameters (Ta-

ble 8). 

Table 8: Hyperparameters for MLP 

Hyperparameters Initial grid values Final selection 

hidden_layer_sizes 
 (50,100,50), (20, 60, 20), 

(100, 200, 100) 
(50,100,50) 

max_iter 500, 1000, 2000,3000 2000 

learning_rate_ini 0.001, 0.01, 0.1 0.001 

alpha 0.001, 0.005, 0.1 0.005 

learning_rate  'constant', 'adaptive'  'adaptive' 

optimizer  'adam', ‘lbfgs’  'lbfgs' 

activation_function  'identity', 'relu'  'relu' 

 

The hidden layer sizes define the number of neurons in each of hidden layers used. The 

initial learning rate controls the step-size in updating the weights, The activation function 

dictates the standard neuron activation function per layer. The optimizer specifies the 

gradient descent optimizer. The ‘alpha’ parameter represents the strength of the L2 
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regularization term, which decreases the likelihood of overfitting. The L2 regularization 

parameter is divided by the sample size when added to the loss. 

LSTM 

Finally, we implemented a state-of-the-art RNN the LSTM, which based on related liter-

ature findings, is heavily utilized for energy load-related forecasting, being able to better 

capture the volatility in energy load profiles of residential tenants. After careful examina-

tion and understanding of the characteristics, parameters, overall logic of this RNN, the 

first step was to normalize the input data. For this we used, the MinMaxScaler normali-

zation method [75].We continued with trying out different layouts, regarding the structure 

of the LSTM model: 

• Tried multiple hidden layers combinations (max number:5) which one’s output is 

the other’s input. After experimenting I found out only two hidden layers are op-

timal for my dataset and adding more had an adverse effect. 

• Literature often mentioned that Bidirectional LSTM(B-LSTM) may behave bet-

ter. The use of only 1 hidden layer of B-LSTM had a close performance with the 

2 vanilla LSTM hidden layers but was slightly worse. Other combinations of B-

LSTM and vanilla LSTM layers turned out to not be promising as well. 

• One output layer was selected in order to have the output in the required format, 

using the linear method as the activation function. 

After this trial and error exercise, we ended up with the final structure of the LSTM, 

consisting of two-hidden layers, with the first layer being the input layer and an output 

layer. A snippet of the model structure is illustrated in Figure 32. 

 

 

Figure 32: Structure of the LSTM model 

The optimum hyperparameters for the LSTM model were then discovered using a rather time-

consuming random search (Table 9). The results have shown that the ideal number of units 

is 128, epochs are set to 40, the batch size is equal to 128 and a ‘Root Mean Squared 



 

-52- 

Propagation’ (RMSProp) optimizer. RMSprop is a gradient-based optimization technique, 

which deals with the vanishing or exploding gradient of very complex functions like ANNs, 

by using a moving average of squared gradients to normalize the gradient. A very important 

parameter is the dropout, which acts as a regularizer for LSTM to avoid potential overfitting. 

Table 9: Hyperparameters for LSTM 

Hyperparameters Initial values Final selection 

activation_function tanh, relu relu 

loss mse, mape,mae  mae 

optimizer adam, rmsprop, sgd RMSprop 

dropout 0.1,0.2,0.3 0.2 

units 64,128,256.512 128 

epochs 10,20,40,50,80 40 

batch_size 64,128,256,512 128 

 

 

Figure 33: LSTM Training vs Validation Error, RMSE, MAE  
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5.1.2 Results  

By observing the final selections for all algorithms, we can easily detect certain similari-

ties among them. More precisely, all GBDT algorithms rely primarily in the T-1 lagged 

feature of energy load to make their predictions. Furthermore, all models, including the 

ANNs required the fine tuning of a regularization parameter to deal with excessive over-

fitting. The performance was again evaluated by the following evaluation metrics, MAPE, 

MAE, RMSE, R-squared and ET, as shown in Table 10. 

Table 10: Evaluation metrics for the models applied to the entire dataset  

Evaluation met-

rics 
MAPE (%) MAE (kWh) RMSE (kWh) R-squared (%) ET(seconds) 

Entire Dataset (Oct.2018 - Sep. 2020)       

Single models w/o hypertuning       

XGBoost 12.957 0.298 0.551 90.89 0.747 

Random Forest 13.36 0.302 0.547 91.02 24.862 

LGBM 11.516 0.268 0.508 92.236 0.179 

CatBoost 11.937 0.272 0.503 92.41 4.634 

MLP 17.816 0.376 0.584 89.754 7.503 

LSTM 24.927 0.5 0.657 87.005 14.032 

Single models w/ hypertuning 
   

XGBoost 11.512 0.275 0.521 91.845 4.639 

Random Forest 11.568 0.274 0.53 91.56 11.206 

LGBM 11.383 0.266 0.502 92.427 0.12 

CatBoost 10.548 0.257 0.528 91.624 4.166 

MLP 12.374 0.293 0.545 91.071 93.922 

LSTM 16.073 0.39 0.587 89.643 112.843 

 

In both cases, with and without hyperparameter tuning, overall, the GBDTs seem to have 

the best performance, compared to the ANNs. More precisely, regarding the entire dataset 

training and validation, all the produced evaluation metrics show CatBoost to have a 

slight edge, compared to the other models, followed closely by the LGBM which offers 

similar results but with a much smaller training runtime (ET). 

For the LGBM model, the improvements in the metrics due to the hyperparameter tuning 

are somewhat limited. Particularly, the improvement of MAPE was around -1% for 

LGBM and -11% for CatBoost. As for MAE the improvement was around -0.8% for 

LGBM and -5.5% for CatBoost, indicating marginal improvements for LGBM but sig-

nificant for CatBoost. That said Random Forest, MLP and the LSTM models had the most 
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gains in accuracy for hyperparameter tuning and optimization, in particular MLP’s MAPE 

was reduced by around -32%, Random forest’s MAPE by around -13% and LSTM’s 

MAPE around -42%. We consider MAPE as the most representative value as it does not 

relate with the range of values and the target 

Variable (Energy load) and can be used for direct comparisons with other relevant scien-

tific work, taking into account the used parameters and preprocessing approach. Figure 

34, provides a visualization of the one-step forecasts for a typical 48h time interval, for 

each of the implemented models. It is evident that the LSTM performance is worse than 

the GBDTs, with all hyperparameters tuned. It captures the overall trend but with a small 

offset it the absolute values. 

 

Figure 34:  One step ahead prediction (48h) compared with the actual energy load  

5.2 Application on dataset subsets  

After developing and fine-tuning the selected forecasting models, our next approach was 

to test their behavior against smaller partitions of our dataset.   This may possibly allow 

each algorithm to be able to better recognize a less complex pattern and make more ac-

curate predictions within a subset of the data set rather than relying on a single model to 

fit into a larger portion of the data. In this regard, we partitioned the dataset in a random 

manner, aiming to create different time period each with different characteristics, and 

avoiding selecting large periods of inactivity. The developed and trained models as 
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discussed in Section 5.1.1, are tested independently using partitioned data for the follow-

ing time periods:  

• Mar.2019 - May. 2019 

• Sep. 2019 – Nov. 2019 

• Nov. 2019 – Jan. 2020 

• Jun. 2020 – Aug. 2020 

For the model performance we produced MAPE, MAE, RMSE and R-squared, as shown 

in the following tables. 

Table 11: Model performance over dataset subpart 1 (Mar.2019 - May. 2019) 

Evaluation 

metrics 
MAPE (%) MAE (kWh) RMSE (kWh) R-squared (%) 

Dataset subpart 1 (Mar.2019 - May. 2019) 

Single model performance (w/ hypertuning)     

XGBoost 6.475 0.176 0.268 94.955 

Random Forest 4.74 0.135 0.221 96.586 

LGBM 7.156 0.194 0.294 93.939 

CatBoost 6.933 0.197 0.306 93.435 

MLP 9.137 0.252 0.377 90.013 

LSTM 18.115 0.48 0.738 61.796 

 

 

Figure 35: One step ahead prediction (48h) for Dataset subpart 1 
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Figure 36: Energy load profile for dataset subpart 1 (Mar.2019 - May. 2019) 

 

This is a similar subset of the ITI Smart House energy load data used in [21] and the 

performance metrics are greatly improved than the performance over the test subpart of 

the entire dataset, with the exception of LSTM. A possible explanation for this is that the 

selected subpart seems to have a repeatable pattern, without any extensive periods of low 

consumption, while the min-max values are around the same level for most datapoints. 

Hence, the models can make more accurate forecasts for this type of a more ‘normalized’ 

pattern. 

 

Table 12: Model performance over dataset subpart 2 (Sep.2019 - Nov. 2019) 

Evaluation 
MAPE (%) MAE (kWh) 

RMSE 

(kWh) 

R-squared 

(%) metrics 

Dataset subpart 2: (Sep.2019 - Nov. 2019) 

Single model perfomance (w/ hypertuning)   

XGBoost 10.198 0.223 0.354 91.85 

Random Forest 7.415 0.167 0.302 94.083 

LGBM 11.1 0.244 0.388 90.239 

CatBoost 10.82 0.252 0.452 86.738 

MLP 14.357 0.31 0.487 84.558 

LSTM 17.321 0.394 0.708 67.442 
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Figure 37: One step ahead prediction (48h) for Dataset subpart 2 

 

 

Figure 38: Energy load profile for dataset subpart 2 (Sep.2019 - Nov. 2019) 

The metrics for the subpart 2 are worse than the metrics of subpart 1, however for some 

models they are still the same or better than the original metrics for forecasting over the 

entire dataset. Again, we see that the energy load profile for this period, is somewhat 

normal without any notable extremities, thus the models can predict with higher accura-

cies. Interestingly for both cases of subpart 1 and 2 the Random Forest algorithms has the 

best performance from the rest, by a considerable margin. More precisely, MAPE is 



 

-58- 

around -26% lower than the next best algorithm (XGBoost), indicating for such repetitive 

and less complex patterns Random Forest performs very well. 

The evaluation metrics of the performance of the trained models on dataset subpart 3 are 

presented in Table 13. Overall, the metrics are worse for all models compared to the met-

rics for subparts 1 and 2.  

Table 13: Model performance over dataset subpart 3 (Sep.2019 - Nov. 2019) 

Evaluation 

metrics 
MAPE (%) MAE (kWh) RMSE (kWh) R-squared (%) 

Dataset subpart 3 (Nov.2019 - Jan.2020)     

Single model perfomance (w/ hypertuning)     

XGBoost 10.854 0.444 0.605 86.495 

Random Forest 10.676 0.425 0.625 85.596 

LGBM 13.094 0.521 0.741 79.748 

CatBoost 15.775 0.639 0.91 69.451 

MLP 15.465 0.627 0.834 74.367 

LSTM 17.387 0.762 1.04 60.068 

 

 

Figure 39: One step ahead prediction (48h) for Dataset subpart 3 
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Figure 40: Energy load profile for dataset subpart 3 (Nov. 2019- Jan. 2020) 

However, there is a similar pattern as subpart 1 and 2, the Random Forest algorithm is 

again the best performing (based on all produced metrics) and the ANNs are less accurate 

than the GBDTs.  One possible scenario that may explain why the performance of the 

models deteriorates in this case, is the presence of a large period of near-zero energy load 

(due to Christmas holidays), as depicted in Figure 40, which disrupts the repetitive and 

similar pattern of the rest of the dataset. Also, the average energy load records an im-

portant increase towards the end of the dataset subpart 3 (i.e. January), compared with the 

early datapoints (i.e. November), indicating the change in thermal needs due to lower 

temperatures in January.  

The evaluation metrics of the performance of the trained models on dataset subpart 4, 

which includes the time period between Jun.2020 - Aug. 2020, are presented in Table 14. 

Overall, the metrics are noticeably worse for all models compared to the metrics for sub-

part 3.  Remarkably the Random Forest is once more the best-performing algorithm, in 

this subpart as well, while both ANNs continue their poor performance compared to the 

rest of the GBDTs.  
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Table 14: Model performance over dataset subpart 3 (Jun.2020 - Aug. 2020) 

Evaluation  

metrics 
MAPE (%) MAE (kWh) RMSE (kWh) R-squared (%) 

Dataset subpart 4 (Jun.2020 - Aug. 2020)     

Single model performance (w/ hypertuning)     

XGBoost 8.85 0.219 0.394 94.671 

Random Forest 8.69 0.218 0.415 94.084 

LGBM 9.14 0.215 0.384 94.935 

CatBoost 8.61 0.218 0.434 93.532 

MLP 10.79 0.238 0.422 93.897 

LSTM 18.54 0.417 0.673 84.476 

 

 

Figure 41: One step ahead prediction (48h) for Dataset subpart 4 
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Figure 42: Energy load profile for dataset subpart 4 (Jun.2020 - Aug. 2020) 

As shown in Figure 42, the energy load profile for this time period, records an even larger 

period of near-zero energy load compared to the one in subpart 3, which is due to the 

summer vacation in August, a period in which most employees take their annual summer 

leave. This possibly explains the further deterioration of the performance of all models, 

as it distorts the normally periodical pattern of energy load. 

5.3 Cross-validation results 

As highlighted in Section 3.4, cross-validation (CV) is an important step when developing 

a forecasting model, in order to assess its prediction performance over new/future test 

data. It is especially critical in our case as our dataset is not large or diverse enough to 

create representative train and test datasets. Since we are dealing with a time series prob-

lem, the typical k-fold validation technique used in most cases is not suitable, as it as-

sumes that the data points are independent of each other. Instead, the most appropriate 

TimeSeriesSplit library of Sklearn was chosen, using a 5-fold split, which progressively 

divided the dataset into training and validation fold, maintaining the chronological order 

of the data points (Figure 43). The cross-validation averaged metrics included MAPE, 

MAE, RMSE and R-squared. 
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Figure 43: Time series 5-fold training/validation splits over the entire dataset 

 

The results for the cross-validation averaged metrics concerning the entire test dataset 

are presented in Table 15. The averaged metrics from the cross-validation, are slightly 

worse than the single model runs, after hypermarket tuning (Section 5.1.2). This pos-

sibly indicates some extent of overfitting and may also be related to the hyperparam-

eter optimization based on the entire dataset training/test split. Notably, the best-per-

forming model based on the cross-validation results is the same with the single sepa-

rate model case, the CatBoost model, followed closely by the second best the LGBM. 

Another key takeaway is the performance of the LSTM, which remains about the 

same level as in the single model results, in fact having the best RMSE and R-squared 

scores than the other cross-validated model results. This indicates that LSTM better 

deals with potential overfitting and is more suitable to deal with new (unseen) data, 

which may have conflicting patterns or frequent extremities. 

Table 15: Cross validation results for the entire dataset 

Evaluation 

metrics 
MAPE (%) MAE (kWh) RMSE (kWh) R-squared (%) 

Entire Dataset (Oct.2018 - Sep. 2020)     

Cross-validation averaged results     

XGBoost 14.128 0.369 0.627 86.56 

Random Forest 14.271 0.369 0.632 86.07 

LGBM 14.140 0.362 0.607 87.07 

CatBoost 12.984 0.353 0.627 86.52 

MLP 20.037 0.517 0.818 71.84 

LSTM 15.093 0.366 0.592 87.60 
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The results for the cross-validation averaged metrics concerning the entire dataset are 

presented in Table 16.  

Table 16: Cross-validation results for the dataset subparts 

Evaluation 

metrics 

MAPE  

(%) 

MAE  

(kWh) 

RMSE 

 (kWh) 

MAPE  

(%) 

MAE  

(kWh) 

RMSE  

(kWh) 

Cross-validation averaged results 

Subpart 1 (Mar.2019 - May. 2019) Subpart 3 (Nov.2019 - Jan.2020) 

XGBoost 13.962 0.267 0.447 35.055 0.9 1.279 

Random For-

est 
12.571 0.243 0.404 22.074 0.696 1.032 

LGBM 13.058 0.261 0.433 26.929 0.781 1.105 

CatBoost 12.441 0.262 0.454 24.793 0.792 1.149 

MLP 41.845 0.615 0.799 75.788 1.899 2.704 

LSTM 20.265 0.336 0.498 24.783 0.588 0.791 

Subpart 2 (Sep.2019 - Nov. 2019) Subpart 4 (Jun.2020 - Aug. 2020) 

XGBoost 20.286 0.371 0.557 18.462 0.396 0.645 

Random For-

est 
19.321 0.353 0.524 12.789 0.32 0.559 

LGBM 19.589 0.356 0.529 21.408 0.476 0.703 

CatBoost 21.384 0.391 0.587 16.154 0.388 0.638 

MLP 34.353 0.672 1.053 41.585 0.891 1.031 

LSTM 19.725 0.363 0.572 19.54 0.339 0.547 

 

We first observe that the performance metrics of all models are generally worse than the 

single model performance presented in Section 5.2. This is to be expected as cross-vali-

dation simulates the models’ performance on new unseen data. Furthermore, it is evident 

that apart from dataset subpart 1, for the rest of the subparts the best-performing model is 

the LSTM. This is potentially linked with the fact that apart from subpart 1 which records 

a more normalized and periodical pattern regarding the energy load profile, the rest sub-

parts, and especially subparts 3 and 4, had a more complex pattern. More precisely the 

LSTM on subparts 3 and 4, has a similar performance as the CatBoost and LGBM in the 

cross-validation over the entire dataset (as shown in Table 15). Hence, this is a strong 

indicator that the LSTM model better deals with overfitting and performs quite well on 

new/unseen data, especially with more abnormal patterns. More precisely for subparts 3 

and 4 the LSTM has lower RMSE by -2% and -23% respectively, from the best-perform-

ing algorithm (Random Forest). This behavior to a great extent coincides with the findings 

of the literature review (e.g. [30], [31], [58]), in which the improved accuracy of LSTM 

on more complex energy load datasets is highlighted  
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5.4 Hybrid Model  

In ML, ensemble learning techniques combine several base learning algorithms to pro-

duce one predictive model with optimal performance results. Two of the most commonly 

used ensembling methods, used in regression problems are Stacking and Voting, which 

as summarized below.   

 

Stacking 

Stacking ensemble is a ML technique technology that combines conventional predictive 

algorithms to produce a more accurate prediction by using the predictions of the trained 

base algorithms as a new input [76]. A stacking model's architecture is made up of two 

or more base predictive algorithms and a meta-model that integrates the predictions of 

the base algorithms. For regression and classification applications, the stacking ensemble 

technique has been shown to out-perform traditional machine learning algorithms. The 

stacking ensemble strategy works well because it uses the capabilities of many models to 

provide a more accurate forecast [77], [78].  

 

Voting  

To forecast the final prediction based on the voting strategy, a voting ensemble approach 

aggregates the predictions of many base algorithms. The voting ensemble ap-proach, 

which in summary gathers the knowledge of each base learner, can create more accurate 

predictions than any single predictive algorithm. Furthermore, combining the predictions 

of multiple base algorithms contributes to better dealing with potential overfitting. In re-

gression-based models built with voting, the predictions of each regression base model 

are averaged to produce a final prediction. Hence, a voting regressor model is an ensemble 

meta-estimator that fits many base algorithm regressors, one at a time, on the whole da-

taset, and then averages the individual fore-casts to generate a final prediction. 

In order to improve the accuracy and overall robustness of our forecasts, taking into con-

sideration the results in the previous Sections, we conceptualized and developed an en-

semble approach. Furthermore, we looked into relevant literature, to explore similar ap-

proaches of ensembling, implemented in the field of energy/load forecasting, some nota-

ble studies are presented below: 

• Phyo et al., 2022: forecasted energy load, with an average MAPE of 4.28% 
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• Zhao et al., 2021: focused on day-ahead STLF in Australia, achieving an average 

MAPE of 1.13% 

• Moon et al., 2018: developed a hybrid STLF model for an educational building 

complex, achieving a MAPE ranging from 3-4.7% 

• Khan and Byun, 2021: implemented an ensembling approach for energy predic-

tion, with promising results 

• Massaoudi et al., 2021: implemented a stacked generalization approach for STLF 

regarding power supply industry data 

As a result, we developed a one-step ahead energy load forecasting Hybrid Model (OSA-

ELF HM) which combines the benefits of both stacking and voting methods. We use a 

two-level stacking-based approach that combines the outputs of the first-level models on 

the second level with another model. This second-level model, however, is a voting re-

gressor model. Based on the metrics produced in the previous Sections, we choose the 

three best overall performing models to synthesize our voting regressor, the CatBoost, the 

LGBM, and the Random Forest. The overall architecture of our approach is summarized 

in Figure 44. In more detail, the level-1 learners consist of all six trained base models 

while the level-2 meta-learner averages the predictions of CatBoost, Random Forest, and 

LGBM.  Our strategy is to benefit from the forecasting potential of each heterogeneous 

base model and enhance the overall stacking ensemble with the high performance of the 

meta-learner’s models. 
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Figure 44: The architecture of the OSA-ELF HM 

At the first level, the test feature dataset named X is fed to the six already trained and 

tuned base learners. The outputs of the 1st-level models form a new feature vector (ŷ1, 

ŷ2,… ŷ6). The new vector is then fed as training parameters into the second-level voting 

regressor model which outputs our target ŷ, which is one step ahead Energy load forecast. 

This hybrid meta-ensembling approach aims to further improve the accuracy of the pre-

dictions of the already trained base models. The resulting evaluation metrics from this 

process are presented in  Table 17. 

Table 17: Evaluation metric for the OSA-ELF HM 

Evaluation  

metrics 

MAPE 

(%) 

MAE 

(kWh) 

RMSE 

(kWh) 

R-squared 

(%) 

Entire Dataset 
(Oct.2018 - Sep. 

2020) 
    

OSA-ELF HM   5.818 0.139 0.286 97.545 

 

The OSA-ELF HM improves the forecasting accuracy of our target (Energy load). All 

evaluation metrics are improved across the board compared with each individual base 

model’s performance on the entire test dataset (Table 10). The energy load forecasting 

curves of the proposed method vs. the actual historical load for a typical 72-hour window 

are shown in  
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Figure 45. 

 

Figure 45: 72h prediction of the OSA-ELF HM for our original dataset 

 

5.5 Validation of Hybrid Model  

Instead of utilizing the cross-validation approach to validate the OSA-ELF HM approach 

on our test dataset, we decided to benchmark our approach based on new and unseen data, 

that have similar properties as the ITI Smart House dataset, i.e. an office-use type of 

building, which we used for training our base models. In recent years, a lot of efforts 

focusing on building energy analytics have been made in order to create publicly available 

energy-related data measurements for providing test datasets or benchmarking modeling 

algorithms. One such prominent effort is linked with the Building Data Genome Project 

2 (BDGP2) dataset, led by an international collaboration of building energy-related aca-

demics and experts [84]. BDGP212 is an open data repository has data from 1,636 non-

residential buildings. It includes hourly whole-building data for two years, from different 

kinds of (smart) meters: electricity load, heating, cooling water, steam, energy from solar 

(PV) and other meter data; in addition, this data set integrates outdoor temperature, hu-

midity, cloud coverage, and other climatic factors that can affect energy load. Hence, it 

matches the characteristics of the ITI Smart House dataset in order to benchmark our 

OSA-ELF HM approach. From the BDGP2, we selected the 

 

12 https://doi.org/10.5281/zenodo.3887305  

https://doi.org/10.5281/zenodo.3887305
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‘Bobcat_education_Coleman’ building, which is an education/academic building located 

in the US. Two important reasons for choosing this particular building are that it has solar 

power production (i.e. from PV) and matches the usage-profile of the ITI Smart house as 

an office/academic/research type of building. The time interval extracted data range from 

01/2016 to 31/2016 while the sampling interval is 1h as our original train/test dataset. The 

detailed definitions of the data are described in Table 18. 

Table 18: The parameters used from the BDGP2 dataset 

Variables  Units Definition 

TimeStamp - Date and time in the local time zone 

Load kWh Total electric energy used over 1h 

AirTemperature °C The temperature of the air in degrees Celsius 

Solar kWh Total energy produced by PV over 1h 

 

We applied the same outlier detection strategy as our original dataset (see Section 4.1.2) 

in the new dataset and removed extreme anomalies. The final dataset to validate our ap-

proach is depicted Figure 46. 

 

Figure 46: BDGP2 (Coleman Building) all hourly time series data  

It is necessary to highlight that this is a significantly larger building than the ITI Smart House, 

covering a total area of 10552 square meters, as a result, the range of the Energy load values is 

significantly higher than our original dataset, as the energy needs are higher (heating, electricity, 
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cooling). More precisely the mean value for Energy load is around 125 kWh (per hour) while for 

the ITI Smart House dataset it is around 2.7 kWh, the rest of parameters’ statistics from the two 

datasets are summarized in Table 19. 

Table 19: Statistics comparison between the original and the validation datasets (after outlier de-

tection)  

Parameters mean std min max 

ITI Smart House Dataset     

Energy_Consumption (kWh) 2.66 1.85 0.00 8.85 

Energy_Generation (kWh) 1.62 2.52 0.00 9.54 

Temperature_v1 (°C) 17.21 8.42 -3.90 38.05 

BDGP2 Dataset      

Consumption (kWh) 125.45 42.78 53.00 222.25 

Generation (kWh) 3.00 4.75 0.00 16.20 

Temperature (°C) 11.23 11.07 -16.70 37.20 

 

Table 20: Evaluation metric for the OSA-ELF HM on the BDGP2 data 

Evaluation  

metrics 

MAPE 

(%) 

MAE 

(kWh) 

RMSE 

(kWh) 

R-squared 

(%) 

Entire Dataset (Jan.2016 - Dec. 2016)     

OSA-ELF HM 5.544 6.652 10.354 94.17 

 

We note that our OSA-ELF HM has a similar performance on the new unseen data, based 

on the evaluation metrics depicted in Table 20. The focus is more on MAPE and R-

squared, since they are directly comparable with the metrics produced by applying our 

OSA-ELF HM on our original dataset. This is due to the fact that as already discussed the 

BDGP2 dataset derives from a larger building, hence the mean value of the target variable 

(Energy load) is much higher, as a result, this raises the MAE and the RMSE accordingly, 

making them unsuitable for direct comparisons between the two validation datasets. The 

MAPE is improved by -5% compared with the original dataset. The energy load forecast-

ing curves of the proposed method vs. the actual historical load for a typical 72-hour 

window are shown in Figure 47. 
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Figure 47: 72h prediction of the OSA-ELF HM for unseen data (BDGP2 dataset) 
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6 Discussion 

6.1 Results evaluation 

This work aimed to review relevant literature and analyze the factors affecting building 

energy load patterns, the state-of-the-art preprocessing techniques and ML forecasting 

algorithms. It also aimed to develop a customized framework of forecasting models, tak-

ing into account the unique characteristics of the utilized dataset and validating it on new 

unseen data.  

Overall, 6 different base ML models were developed and tuned for energy load predic-

tion, each with its own strengths and weaknesses. Moreover, extensive feature selection, 

synthesis, and transformation took place in order to maximize the performance of the 

models. Overall, tree-based ensemble algorithms had the best forecasting performance, 

even without choosing the best hyperparameters. More specifically, CATBoost and 

LGBM produced particularly good results, with minimal execution times.  

The most important takeaways from this work are briefly listed below: 

• All deployed models benefited in terms of performance, from hyper parameter tuning. 

That said, there was a larger benefit for the ANNs rather than the tree-based models, 

which saw smaller improvements compared to their unoptimized forecasting results.  

• The average results from the cross-validation performed on the entire test dataset, 

are slightly worse than the single model runs, but still, Catboost remains the best-

performing model. This may indicate some extent of overfitting to the training 

dataset, possibly also related to the hyperparameter optimization process.  

• The developed and trained base models were benchmarked with different subparts 

of the dataset. The accuracy of the models increases when the energy load follows 

more standardized patterns. That said, the Random Forest algorithm performed 

well on all subparts, indicating that it better deals with overfitting. This is most 

likely related to the element of randomness i.e. each tree draws a random sample 

of data from the training dataset when generating its splits 
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• Further, in the cross-validation exercise of the dataset subparts, the LSTM in-

creased its performance significantly in terms of evaluation metrics. This indicates 

that the LSTM is less susceptible to overfitting and is better equipped to provide 

predictions on unseen data or more complex energy load patterns. 

• The most important feature/predictor unanimously for the decision tree-based 

models, was the previous hour energy load value (T-1) to make their forecasts. 

Overall, proper feature selection seems to be more important than the selection of 

base algorithms or the evaluation techniques (i.e. cross-validation)  

• The ANNs developed (MLP, LSTM) require longer training/execution times 

since they incorporate more computationally expensive computations. 

• The developed Hybrid Model (OSA-ELF HM) significantly increased the fore-

casting accuracy on the ITI Smart House test dataset, achieving a MAPE of 

5.818% and an R-squared of 97.545%. This translates to a 45% reduction in 

MAPE from the best-performing single base forecasting algorithm.  

• This was further validated by applying the OSA-ELF HM to a dataset with similar 

properties, when it achieved similar accuracy (MAPE: 5.54%). Moreover, as a 

direct comparative basis, a very relevant scientific paper [21] utilizing the same 

dataset produced a forecasting model that achieved a MAPE of around 13%, with-

out however the presence of exogenous parameters. Also, most of the relevant 

scientific papers identified in the literature review demonstrated a MAPE in the 

range of 5-15%. Hence, the developed model falls closer to the higher end of this 

performance margin. 

 

6.2 Threats to validity 

 

Often scientific works are constrained by time limitations and computational resources 

availability to reach conclusions that are subjected to further analysis. Therefore, the work 

presented here may be subject to certain threats that might affect the validity of the results. 

The cause of such potential threats could be attributed to the nature of the data and its 

quality/granularity, as well as the selection of specific preprocessing methods or predic-

tive algorithms.  
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A. The first potential threat is related to the training dataset itself. As mentioned in 

the preprocessing steps, the initial raw dataset contained many missing or non-

valid values. These values were partly filled out via interpolation and aggregation 

to 1h resolution, which however meant that it limited the size of the training data. 

This is especially relevant to the performance of deep learning models (such as 

the LSTM), which, as the literature suggests, typically require large amounts of 

data to achieve higher levels of accuracy. Perhaps a larger training dataset could 

further improve their performance.  

B. Another potential threat is related to the exogenous parameters required by our 

developed model. More specifically the model requires ambient temperature 

measurements and energy generation from PV. Particularly the second attribute 

may be more rarely available when one wants to test our model, especially for a 

non-smart or nZEB building. However, we consider that the accuracy loss of re-

moving this feature would be minimal, based on its score on the feature important 

graphs. 

C. Based on their high usability in the research community MAPE, MAE, RMSE, 

and R-squared are often used metrics for measuring overall forecasting perfor-

mance. However, other relevant metrics exist, such as notably SMAPE and 

CVRMSE that are often utilized for regression-based forecasting, as well that may 

be integrated, potentially mitigating any unexplained discrepancies with the final 

evaluation of data. 

D. This thesis recognizes the existence of various ensemble techniques, prediction 

algorithms, and time series forecasting methodologies. However, the selection and 

development of the models and combination thereof, presented are considered up-

to-date popular methods with several applications to time series forecasting. In 

the case of prediction model possibilities, for example, state-of-the-art ANNs, 

MLP, and LSTM are given, as well as traditional ML models (e.g. XGBoost, Ran-

dom Forest and LGBM). 
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7 Conclusions and future work 

In this section, we attempt to critically review and provide a synopsis of the results and 

ideas for future work.  

7.1 Conclusions 

ELF, particularly in the build environment, has attracted increased research interest in recent 

years and remains a complex problem. Accurate and robust building ELF requires a meticu-

lous development and a deep understanding of the algorithmic approaches implemented in 

this domain. The goal of this thesis was to provide the best possible forecast on a smart build-

ing’s energy load, while accounting exogenous factors such as ambient temperature. To 

achieve this, we focused on examining some of the best known regression models and the 

eventual deployment of non-complex, interpretable, and state-of-the-art base models, as 

well as the evaluation of their performance in energy load prediction. Experimenting with 

selected single base algorithms, including hyper-parameter tweaking and cross-validation 

exercises, demonstrated that decision tree-based algorithms have the potential for im-

proved performance. That said, to improve the forecasting ability, tackle over-fitting ef-

fects and augment overall robustness, a new one-step ahead hybrid model (OSA-ELF HM) 

was developed, using meta-ensembling approaches.  

The publicly available utilized dataset contains real-world entries (metered data from a 

smart house infrastructure) associated with energy load values. A benchmarking public 

data set was utilized with the aim to validate the performance of the developed hybrid 

model. The model creates a heterogeneous feature matrix using automatically picked 

lagged values from the load time series and manually derived temporal parameters. Fur-

thermore, it was explored how targeted hyperparameter tuning affects model accuracy 

and how certain building aspects used as features may increase accuracy. Three key find-

ings of this study should be highlighted: 
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• The synthesis of a customized, heterogeneous yet reproducible in smart building 

case studies feature set significantly increased the forecasting accuracy of the de-

veloped model, even more so than the hyper parameter tuning exercise. 

• The OSA-ELF HM model is superior to single ML models, as it improves forecasting 

accuracy and better tackles potential overfitting.  

• The OSA-ELF HM model was tested on unseen data, and performed quite well, 

indicating that it has the potential to address in a uniform manner any given smart 

building energy load prediction task, regardless the ELF horizon (i.e. VSTLF, 

STLF, MTLF and LTLF) 

7.2 Future research directions 

This work focuses on a challenging problem that necessitated substantial re-search and 

testing with several regression-based forecasting techniques. Given the limited time and 

resources, this dissertation aimed to cover as many topics as possible in the context of 

energy load timeseries forecasting. Most research studies, however, have space for im-

provement and new components to be examined. We highlight here possible improve-

ment paths for the proposed approach and future work: 

A. It is obvious that bigger datasets with real-world energy load data entries always 

tend to lead to more accurate and reliable results.  In our work, the buildings ex-

amined are used as office spaces, hence data from other buildings (e.g. residential 

or industrial) with PV installations and ideally weather information would provide 

a more comprehensive view on how to increase the forecasting accuracy and lim-

itations on its applicability/scalability.  

B. Regarding ANNs implementation, bigger training datasets and a more thorough 

selection of hyperparameters are needed to better assess the potential in energy 

load forecasting. Future work should also expand towards testing additional deep 

learning architectures, especially in the meta-learning stage, and supplementing 

the data representation possibly creating other alternative features to further en-

hance the model accuracy. 

C. Another research direction is to expand the proposed single-step approach to a 

multi-step forecasting approach, focusing more on the STLF horizon. In a multi-

step approach, forecasts are utilized as input values in future predictions; mean-
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ing that it is a repeated one-step prediction process, with the actual prediction used 

to predict the following value.  
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Abbreviations  

AI Artificial Intelligence  

ANN Artificial Neural Network 

B-LSTM Bidirectional LSTM 

CERTH Centre for Research & Technology 

CV Cross-validation 

ET Elapsed Time  

GBDT Gradient Boosted Decision Trees 

GDP Gross domestic product 

GHG Greenhouse Gas Emissions 

GSCV Grid search cross-validation 

ICT Information and communications technologies 

ITI Informatics and Telematics Institute 

LTLF Long-term load forecasting  

ML Machine Learning 

MTLF Medium-term load forecasting 

nZEB near Zero Energy Building 

OSA-ELF One-step ahead Energy Load Forecasting 

OSA-ELF HM One-step ahead Energy Load Forecasting Hybrid Model 

PV Photovoltaics 

RNN Recurrent Neural Network 

STLF Short-term load forecasting 

VSTLF Very short-term load forecasting 

ZEB Zero Energy Building 
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Appendices 

Appendix A: Dataset Samples 

ΙΤΙ Smart House: Instance of raw weather-related data set  

 

ΙΤΙ Smart House: Instance of Energy load and Energy generation from PV dataset 
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ITI Smart House all hourly time series data (Oct. 2018-Sep. 2020) 
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BDGP2 (Coleman Building): Instance of Energy load, PV generation and Temperature da-

taset  
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Appendix B: Scripts for modeling 

The Python scripts developed for this thesis are archived in the author’s GitHub page: 

https://github.com/nikotsal/One-step-ahead-energy-load-forecasting-hybrid-approach-

using-meta-ensembling.git  

https://github.com/nikotsal/One-step-ahead-energy-load-forecasting-hybrid-approach-using-meta-ensembling.git
https://github.com/nikotsal/One-step-ahead-energy-load-forecasting-hybrid-approach-using-meta-ensembling.git

