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INTRODUCTION

Developing highly performing machine learning models 
for digital phenotyping of plant disease requires, to a great 
extent, large disk space for storing significant quantities of 
raw images prior to model training, or for further transmission 
if the model training site is different from the data collection 
site. As the ability to acquire more image data increases 
by the day, the need for reducing the large disc space 
required for storing this data becomes one which needs to 
be addressed.

Image compression/reconstruction has been widely adopted as 
the way to meet the afore-mentioned need. Indeed, significant 

efforts have been made by various researchers in this regard, 
and various image compression algorithms have been proposed. 
Parmar and Pancholi (2016) mentioned that the factors guiding 
the choice of a compression algorithm are image quality, amount 
of compression and speed of compression.

Despite the plethora of proposed image compression algorithms, 
limited research has been carried out on the contribution of 
Principal Component Analysis (PCA) to image compression 
as a means of enhancing plant disease digital phenotyping 
model development, even though it is widely known that PCA 
is an efficient means of dimensionality (and hence, required 
storage space) reduction. This research work aimed to address 
that limitation.
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ABSTRACT
Despite its widespread employment as a highly efficient dimensionality reduction technique, limited research has been 
carried out on the advantage of Principal Component Analysis (PCA)–based compression/reconstruction of image data 
to machine learning-based image classification performance and storage space optimization. To address this limitation, 
we designed a study in which we compared the performances of two Convolutional Neural Network-Random Forest 
Algorithm (CNN-RF) guava leaf image classification models developed using training data from a number of original 
guava leaf images contained in a predefined amount of storage space (on the one hand), and a number of PCA 
compressed/reconstructed guava leaf images contained in the same amount of storage space (on the other hand), on 
the basis of four criteria – Accuracy, F1-Score, Phi Coefficient and the Fowlkes–Mallows index. Our approach achieved a 
1:100 image compression ratio (99.00% image compression) which was comparatively much better than previous results 
achieved using other algorithms like arithmetic coding (1:1.50), wavelet transform (90.00% image compression), and 
a combination of three transform-based techniques – Discrete Fourier (DFT), Discrete Wavelet (DWT) and Discrete 
Cosine (DCT) (1:22.50). From a subjective visual quality perspective, the PCA compressed/reconstructed guava 
leaf images presented almost no loss of image detail. Finally, the CNN-RF model developed using PCA compressed/
reconstructed guava leaf images outperformed the CNN-RF model developed using original guava leaf images by 0.10% 
accuracy increase, 0.10 F1-Score increase, 0.18 Phi Coefficient increase and 0.09 Fowlkes–Mallows increase.
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Related Works on Image Compression

Lammi and Sarjakoski (1995) used the baseline JPEG image 
compression scheme to compress a scanned image. The image 
was compressed into three different levels: Excellent, High, 
and Poor, with compression ratios of about 1:7, 1:15, and 
1:66, respectively. They used Storm Technology’s PicturePress 
software with a Micron Xceed ICDP-II Picture Accelerator for 
the compression process. The visual quality of the Excellent 
image was very good. The High image was also quite good 
under visual examination although some compression effects 
were visible. The visual quality of the Poor image was poor – the 
size of the compression blocks (s by B pixels) was clearly visible, 
and all edges were heavily smoothed.

One year later, Maldjian et al. (1996) used a wavelet transform 
image compression technique. The results showed that greater 
than 90% image compression was achieved using the wavelet 
transform, with standard modem transmission times of less 
than 5 seconds per compressed image. The original image file 
size was 137 kB, and after wavelet and Gzip compression, file 
sizes were reduced to 15 kB and 8 kB, respectively. The 90% 
compressed image showed minimal loss of image detail. Even 
the 94% compressed image retained the key diagnostic features 
of the original image. However, some image blurring was evident, 
particularly at sulcal boundaries and at gray matter-white matter 
interfaces.

Dutta et al. (2012) proposed a two-step process for image 
compression. In the first step, the input image was divided into 
blocks of sub-images of various sizes (2x2, 3x3, 4x4, etc.), and 
each block was replaced by its mode value. In the second step, 
arithmetic coding was applied to compress the mode values. 
Their experimental results showed that this technique achieved 
a better compression ratio than JPEG and other techniques 
while maintaining a comparable peak signal-to-noise ratio 
(PSNR) value of the decompressed image.

Nagashree et al. (2014) proposed two different approaches 
for lossless image compression. One approach used the 
combination of 2D-DWT (discrete wavelet transform) and 
FELICS algorithm for lossy to lossless image compression, 
while the other approach used a combination of prediction 
algorithm and Integer Wavelet Transform (IWT). To show 
the effectiveness of the methodology used, different image 
quality parameters were measured, and a comparison of both 
approaches was shown. Their results showed an increased 
compression ratio and higher PSNR values with the second 
approach.

Alsayyh et al. (2017) proposed a new hybrid image compression 
technique that combined three transform-based techniques: 
discrete Fourier transform (DFT), discrete wavelet transform 
(DWT), and discrete cosine transform (DCT). The authors used 
MATLAB software to implement the proposed technique and 
tested it on several standard test images. The results showed that 
the proposed technique achieved better compression ratios and 
peak signal-to-noise ratios (PSNRs) compared to other existing 

techniques, such as DWT, DCT, and DWT-DCT. Specifically, 
the proposed technique achieved an average compression ratio 
of 1:22.5 and an average PSNR of 34.5 dB for the test images.

Still, Balle et al. (2017) used an image compression technique 
based on nonlinear transform coding. The method used a 
non-linear analysis transformation, a uniform quantizer, and a 
non-linear synthesis transformation to achieve efficient image 
compression. The authors optimized the method end-to-end 
for rate-distortion performance and found that it offered 
improvements over JPEG and JPEG 2000 for most images and 
bit rates. Additionally, the compressed images produced by 
this method were much more natural in appearance than those 
compressed with linear transform coding methods. Perceptual 
quality (as estimated with the MS-SSIM index) exhibited 
substantial improvement across all test images and bit rates.

Poolakkachalil and Chandran (2019) discussed the use of 
arithmetic coding for stereoscopic image compression. The 
proposed method exploited the spatial redundancy that occurs 
among the two-image pair to achieve a greater compression 
ratio in comparison to the individual compression of each 
frame. Their results showed that the proposed method achieved 
better compression ratios than other existing methods, such 
as JPEG and JPEG2000 while maintaining good visual quality. 
Specifically, their proposed method achieved a compression 
ratio of 1:1.5 for stereoscopic images, which is higher than the 
1:1.3 ratio achieved by JPEG and the 1:1.4 ratio achieved by 
JPEG2000.

Taoufiq (2019) used DWT, specifically the Haar wavelet 
transform. DWT is a lossy compression technique that 
decomposes an image into different frequency sub-bands, 
which can be compressed with different levels of detail. The 
Haar wavelet transform is a specific type of DWT that uses a 
simple two-point wavelet function to decompose an image. The 
testing of the compressor was based on several criteria, including 
compression ratio and visual quality. The results showed that the 
Haar wavelet transform-based compressor was able to achieve 
high compression ratios while maintaining visually acceptable 
quality for various types of images. For example, for Lena and 
Baboon images, the compression ratios achieved were 1:16 and 
1:14 respectively with visually acceptable quality. However, it 
should be noted that these results may vary depending on the 
specific images and compression settings used.

Asnaoui (2020) proposed a method based on the block singular 
value decomposition (SVD) power method. The algorithm 
was developed and tested for image compression using various 
real images and simulations in MATLAB 2009a. According 
to Asnaoui (2020), the proposed algorithm showed better 
compression performance compared to existing algorithms 
such as JPEG2000, JPEG-LS, and SPIHT. Also, the algorithm 
overcome the disadvantages of MATLAB’s SVD function and 
provided a good trade-off between compression ratio and visual 
quality of the decoded image. However, it should be noted 
that the results presented in this article were based on specific 
experiments and may not generalize to all types of images or 
compression scenarios.
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Guo et al. (2020) proposed a variable rate model that introduced a 
pair of gain units into a variational auto-encoder (VAE) and applied 
content adaptive optimization to adapt the latent representation 
to the specific content. Attention mechanisms and multi-scale 
parallel context modules were also adopted to improve the 
performance of the model. An efficient rate control algorithm was 
designed to maximize PSNR/structural similarity index measure 
(MS-SSIM) under 0.15 bits per pixel (BPP) constraint. The results 
showed that the proposed method outperformed several state-
of-the-art methods in terms of both objective metrics (PSNR, 
MS-SSIM) and subjective visual quality. The method achieved a 
continuously variable rate in a single model, allowing each image 
to be compressed into any quality level through a unified codec. 
The content adaptive optimization strategy also generated better 
latent representation without architecture refinements.

Krishnan et al. (2020) proposed an image compression method 
based on compressive sampling and the Lü system. Specifically, 
the input image was sparsely represented on a transform basis, 
and compressive sampling measurements were obtained from 
these sparse transform coefficients using an incoherent sensing 
matrix. Permutation-substitution operations were performed on 
pixels based on the Lü system to upgrade security levels, and 
keys were obtained from the input image to add input sensitivity 
to the scheme. Lastly, a fast and efficient greedy algorithm was 
utilized for sparse signal reconstruction. The experimental 
results of this method showed that it achieved good compression 
and encryption performance. Extensive experimental tests were 
conducted using natural color images with pixels sized 512×512, 
and the parameters a = 35, b = 3, and c = 20 were used in the 
experiments. The input images were sparsely represented by 
employing the biorthogonal wavelet transform as the orthogonal 
transform basis (ψ), along with single-level decomposition.

Tellez et al. (2020) used a Neural Image Compression (NIC) 
technique, which is an image compression framework that 
reduces the dimensionality of gigapixel images using an encoder 
network trained in an unsupervised fashion. In this study, the 
authors extended NIC by training the encoder with a supervised 
multitasks learning approach. They trained the encoder to 
solve four classification tasks in Computational Pathology 
simultaneously and used this model to perform gigapixel image 
compression. The authors found that supervised multitask 
training was key to obtaining high performance at the image 
level, surpassing unsupervised techniques. They also found that 
increasing the number of tasks used to train the encoder was 
directly proportional to the system’s performance. The proposed 
MTL NIC obtained state-of-the-art results in predicting both 
the speed of tumour proliferation in invasive breast cancer 
(TUPAC16 Challenge) and HGP status in colorectal liver 
metastasis classification. Overall, this study demonstrated 
that extending unsupervised neural image compression with 
supervised multitask learning can improve the performance 
of convolutional neural networks trained on gigapixel images.

Helminger et al. (2021) proposed the use of normalizing flows 
as generative models in lossy image compression. By learning 
bijective transforms from image space to latent space, the 
method could cover a wide range of quality levels and effectively 

enable going from low bit-rates to near lossless quality. The 
authors compared their method with other state-of-the-art 
methods on the Kodak dataset and showed that their method 
outperformed them in terms of rate-distortion performance. 
They also showed that their method achieved better visual 
quality than JPEG at low bitrates.

Husseen et al. (2017) proposed an enhanced version of the 
Run Length Encoding (RLE) algorithm. They tested the 
algorithm on ten BMP 24-bit true color images and built an 
application using visual basic 6.0 to show the size before and 
after compression and compute the compression ratio for RLE 
and the enhanced RLE algorithm. The results showed that 
the proposed enhanced RLE algorithm decreased the size of 
compressing images, especially for color images, compared to 
the original RLE method. The compression ratio varied from 
image to image, depending on the variety between the values 
of adjacent pixels. Decreasing the variety between adjacent 
pixels yielded an increase in compression ratio, and vice versa.

Karthikeyan et al. (2021) proposed a frequency-based lossless 
new encoding technique that doesn’t require any table similar 
to Huffman and Golomb Rice encoder and doesn’t take high 
computation time like an arithmetic encoder. The proposed 
encoder was tested with nearly 200 standard images, and the 
results were compared with the standard encoders. The results 
showed that the proposed encoder achieved better compression 
ratios than other standard encoders while maintaining low 
computational power and memory usage.

Finally, Rahman et al. (2022) presented the results of the 
evaluation of various lossless image compression techniques. 
The methods were compared based on four datasets: EPFL 
Light-field, UVG-TUT, Kodak Lossless True Color Image Suite, 
and LCLi1k. The evaluation was done based on bits per pixel 
(BPP) and compression ratio. They recommended different 
algorithms for different datasets based on their performance in 
the evaluation. For example, for the EPFL Light-field dataset, 
they recommended using the better portable graphics (BPG) 
algorithm as it provided the best compression ratio. For the Kodak 
Lossless True Color Image Suite dataset, they recommended 
using Free Lossless Image Format (FLIF) as it provided the 
best bits per pixel value. Overall, the authors concluded that 
learning-based methods generally outperform non-learning-based 
methods in terms of compression ratio and bits per pixel values. 
However, non-learning-based methods are still competitive and 
can be used when computational resources are limited or when 
a faster encoding/decoding process is required.

MATERIALS AND METHODS

System Specification

The scripts used for this research were written in Python 3 
with system specifications as follows: 64-bit operating system, 
x64-based processor, 8GB RAM, intel CORE i7 processor. After 
the results were obtained, the scripts were pushed to a GitHub 
repository (https://github.com/Enowtakang/PCA-Reconstruct).
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Dataset

The dataset used for this study was obtained from the image 
dataset assembled by Chouhan et al. (2019). All the guava 
leaf images were collected from the Shri Mata Vaishno Devi 
University, Katra. The process was carried out from the month 
of March to May 2019. The images were captured in a closed 
environment. The acquisition process was completely Wi-Fi 
enabled. All the images were captured using a Nikon D5300 
camera inbuilt with performance timing for shooting JPEG in 
single shot mode (seconds/frame, max resolution) = 0.58 and for 
RAW+JPEG = 0.63. The images were in JPG format captured 
with an 18-55 mm lens with sRGB color representation, 24-bit 
depth, 2 resolution unit, 1000-ISO, and no flash.

As detailed in Figure 1, all of the data was placed within a root folder. 
Two sub-folders were created within the root folder, each containing 
training and validation datasets. Each of the latter datasets was 
subdivided into healthy and diseased samples of guava leaf images.

The first subfolder contained original images from the Chouhan 
et al. (2019) collection. Its training folder contained one 
healthy and one disease subfolder holding a 1.5 MB image of 
a healthy guava leaf and a 1.5 MB image of a diseased guava 
leaf respectively. Its validation folder contained one healthy 
and one disease subfolder holding twenty 1.5 MB images of 
healthy guava leaves and twenty 1.5 MB images of diseased 
guava leaves respectively.

The second subfolder contained PCA compressed/reconstructed 
images obtained from compressing original images from the 
Chouhan et al. (2019) collection. Its training folder contained 
one healthy and one disease subfolder containing fifty (approx.) 
13 kB images of healthy guava leaves and fifty (approx.) 13 kB 
images of diseased guava leaves respectively. Its validation folder 
had exactly the same contents as those of the first subfolder.

Study Design

Figure 2 presents the design for this study. Two training datasets 
were prepared – the first training dataset contained a healthy and 
a diseased subset of original training images in approximately 
3.0 MB of storage space. The second training dataset contained 
a healthy and a diseased subset of PCA reconstructed/
compressed (processed) training images in approximately 3.0 
MB of storage space. Together with the same testing dataset, 
each of the two aforementioned training datasets was used 
to train a Convolutional Neural Network – Random Forest 
(CNN-RF) hybrid algorithm (feature extraction was achieved 
with the CNN and the features were further input into the RF 
for classification), resulting in two models, which were later 
evaluated on the basis of several performance metrics.

Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique. As per 
Nasiriany et al. (2019), reduction in estimation variance and 
computational load, and visualization for exploratory data 

analysis are important reasons why dimensionality reduction 
is sought after.

When the data is centered, PCA can be viewed through Singular 
Value Decomposition (SVD). The SVD can be represented as

TX U W= ∑

where X ~ Data (n x m), U ~ Left Singular Vectors (n x k), ∑ ~ 
Singular Values (k x k), and W ~ Right Singular Values (m x k).

Noteworthy is the fact that k is the number of principal 
components under consideration. In the above SVD formulation, 
W captures the principal components, U∑ render the principal 
component scores and ∑WT renders the loadings. Loadings 
provide an idea of how much each column contributes to each 
of the principal components.

∑ gives information about the variance. ∑ is always a diagonal 
matrix, such as

Figure 1: Structure of the root folder containing the dataset used for 
this study

Figure 2: Study design
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where 2σ  represents the variance.

Random Forest Algorithm (RF)

The rationale behind the random forest algorithm is that the 
combination of learning models increases the classification 
accuracy, also known as bagging. More specifically, bagging is 
the averaging of noisy and unbiased models to create a model 
with low variance. Random forest algorithm works as a large 
collection of decorrelated decision trees.

Suppose that the matrix consists of data submitted to the 
algorithm to produce a classification model:
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These subsets are then used to create multiple decision trees 
(DT) (such as, DT1, DT2 and DTm, in this case). The prediction 

with the highest incidence after taking into account the 
predictions from all DTs, is the final RF class prediction.

Convolutional Neural Networks (CNN)

A Convolutional Neural Network, or CNN, is a type of neural 
network architecture used in deep learning for computer vision 
tasks. The architecture typically consists of several convolutional 
layers, pooling layers, and fully connected layers. The 
convolutional layers use filters to extract features from the input 
data, while the pooling layers downsample the spatial dimensions 
of the feature maps to reduce computation and prevent 
overfitting. The fully connected layers perform classification or 
regression tasks based on the learned features. CNN architectures 
can vary widely, but they generally follow the principle of applying 
convolutional layers to the input, downsampling the spatial 
dimensions, and increasing the number of feature maps. Some 
classic network architectures include LeNet-5, AlexNet, and 
VGG-16, while modern architectures include Inception, ResNet, 
ResNeXt, and DenseNet. Inception uses a repeating unit called 
the “Inception cell,” which performs convolutions at different 
scales and aggregates results using 1x1 convolutions to reduce 
input channel depth. Auxiliary outputs can be added throughout 
the network to improve performance and regularize the network. 
The CNN feature extraction and classification architecture 
designed for this study is presented in Figure 3.

Model Performance Evaluation Metrics

The two machine learning models developed during this study 
were evaluated using four widely used metrics – Accuracy, 
F1-Score, Phi Coefficient and the Fowlkes–Mallows index (FM). 
In order to define them, some fundamental concepts need to 
first be defined in the context of this research.

A true positive (TP) is a model prediction that correctly 
indicates the presence of an image from a given class. A true 
negative (TN) is a model prediction that correctly indicates the 
absence of an image from a given class. A false positive (FP) is 
a model prediction that wrongly indicates that an image from a 
given class is present. A false negative (FN) is a model prediction 
that wrongly indicates that an image from a given class is absent.

Accuracy (ACC) measures how close model predictions are to 
their true values. It is computed with the formula

TP TN
ACC

TP TN FP FN
+

=
+ + +

F1-Score (F1) is the harmonic mean of precision and recall. 
Precision is the number of true positives divided by the total 
number of positives. Recall is the number of true positives 
divided by the number of samples which should be identified 
as positive. It is computed with the formula

1
2

2
TP

F
TP FP FN

=
+ +
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Figure 3: CNN architecture used in this study

Phi Coefficient ( rϕ ) is a measure of the quality of binary 
classifications. It is a correlation between the observed and 
predicted binary classifications and is a balanced measure 
(meaning it can be used even in cases of class imbalance). It is 
computed with the formula

( )( )( )( )
* *TP TN FP FN

r
TP FP TP FN TN FP TN FN

ϕ
−

=
+ + + +

Lastly, the Fowlkes–Mallows index (FM) is a measure of 
similarity between the actual data groups and benchmark 
classifications performed by the model. It is directly proportional 
to the number of true positives. It is computed with the formula

*
TP TP

FM
TP FP TP FN

=
+ +

RESULTS

Image Compression/Reconstruction

The average data compression ratio (the ratio between the 
uncompressed image size and the compressed image size) after 
PCA compression/reconstruction was 1:100.

Figure 4 presents results from image compression/reconstruction 
of healthy guava leaf samples and diseased guava leaf samples. 

It can be observed (from Figure 4) that the subjective visual 
quality after image compression/reconstruction is very high. 
Also, there is almost no loss of image detail. Most importantly, 
the compressed/reconstructed images (H-Recon and D-Recon) 
retain the key diagnostic features of their respective original 
images.

Validation Accuracy and Loss on the CNN Model

As Figures 5 and 6 shows, the model developed with the compressed/
reconstructed images had comparatively better validation accuracy 
and loss performance than the model developed with the original 
images, especially between epochs 29 and 32.

Model Evaluation

Figure 7 and Table 1 both present the results of the evaluation 
of both models. Let Model A represent the model developed 
using the original images, and Model B represent the model 
developed using the compressed/reconstructed images. As 
shown in Figure 7, the total true positives, true negatives, false 
positives and false negatives for Model A were 20, 16, 0 and 
4, respectively. Also, the total true positives, true negatives, 
false positives and false negatives for Model B were 20, 20, 0 
and 0, respectively. As shown in Table 1, Model B obtained 
perfect results on all evaluation metrics, outperforming Model 
A by 0.10% accuracy increase, 0.10 F1-Score increase, 0.18 Phi 
Coefficient increase and 0.09 Fowlkes–Mallows increase.
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DISCUSSION

This work produced excellent quality images after PCA-based 
compression at a compression ratio of 1:100. This result is 
significant, given that previous works using different image 
compression algorithms have produced excellent quality images 

with comparatively higher compression ratios. For example, Lammi 
and Sarjakoski (1995) achieved excellent image quality at a 1:7 
compression ratio after using Storm Technology’s PicturePress 
software with a Micron Xceed ICDP-II Picture Accelerator for 
the compression process. Also, after using the arithmetic coding 
algorithm, Poolakkachalil and Chandran (2019) achieved a 
compression ratio of 1:1.5. Furthermore, after applying the wavelet 
transform algorithm, Maldjian et al. (1996) achieved 90% image 
compression. In like-wise comparison, this work achieved 99% image 
compression. After combining three transform-based techniques – 
Discrete Fourier (DWT), Discrete Wavelet (DWT) and Discrete 
Cosine (DCT) – into a single image compression algorithm, Alsayyh 
et al. (2017) achieved an average compression ratio of 1:22.5.

Given that the model developed with the compressed/
reconstructed images had comparatively better validation 
accuracy and loss performance than the model developed with 
the original images, especially between epochs 29 and 32, we 
conclude that the result suggests that early stopping of model 
training at any epoch in the aforementioned range would yield 
an even better performing model. We also propose that the 
reason for the better performance of the model developed 
with the compressed/reconstructed images is due to the fact 
that more, excellent quality image data was used for the 
same amount of storage space. This gives credibility to the 
performance of our compression approach.

Figure 4: Compression/reconstruction of a healthy guava image 
sample (H: original healthy image, H-Recon: reconstructed healthy 
image) and a diseased guava image sample (D: original diseased 
image, D-Recon: reconstructed diseased image)

Figure 6: CNN model validation losses. a: model from training dataset containing original images. b: model from training dataset containing 
compressed/reconstructed images

ba

Figure 5: CNN model validation accuracies. a: model from training dataset containing original images. b: model from training dataset containing 
compressed/reconstructed images

ba
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Preceding works have made key contributions in the context 
of image compression and image classification. For example, 
Nesteruk et al. (2021) made several key contributions to the 
field of Controlled-Environment Agriculture (CEA) and 
machine learning. Firstly, they proposed a novel approach 
to solving the plant classification problem in CEA using 
Convolutional Variational AutoEncoders (VAE) and Support 
Vector Machine (SVM) or XGBoost algorithms. The proposed 
approach achieved 92.6% accuracy on an 18-classes unbalanced 
dataset using images collected from the EDEN ISS facility 
located in the Antarctic. Secondly, they addressed the problem 
of limited communication bandwidth in transmitting images 
from the South Pole to Europe continuously. To address this 
problem, they proposed an image compression method that 
helps compress the images with a ratio of 1:7.2 (higher than our 
achieved results), allowing for more images to be transmitted per 
day. Thirdly, they demonstrated the practical feasibility of the 
developed methods in real settings, specifically in the context 
of the EDEN ISS experimental facility located at the Neumayer 
Station III site in the Antarctic. The EDEN ISS facility includes 
the Mobile Test Greenhouse, which is devoted to autonomous 
cultivation for more than thirty higher plant species. The 
proposed approach based on image compression and their 
transmission from the Antarctic to Europe helps to solve a 
number of critical agriculture-related problems, including the 
CEA, e.g., classification, identification of plant diseases, and 
deviation of plant phenology.

Yang et al. (2021) challenged the conventional understanding 
that JPEG compression generally degrades the classification 
performance of deep neural networks (DNNs). They showed 
that if JPEG compression is used in the right manner, it can 
actually improve the classification accuracy of DNNs. They 

proposed a selector called the Highest Rank Selector (HRS) 
to select a compressed version of an image as an input to the 
DNN. HRS works by determining the rank of the ground truth 
label of an image in the sorted prediction vector of the DNN in 
response to the input image. HRS selects the compressed version 
of the image that results in the highest rank of the ground truth 
label in the sorted prediction vector. Also, they showed that the 
classification accuracy of a DNN can be significantly improved 
when a suitable version of a JPEG compressed image is selected 
as input to the DNN using HRS. The size in bits of the selected 
input was also reduced dramatically in comparison with the 
original image. Finally, they suggested that the current CNN 
classifiers are not smart enough and behave as a short-sighted 
person. If the main features of an object are relatively enhanced 
and the disturbing features surrounding the object are removed, 
all through compression, then the CNN classifiers can see the 
object better. The authors suggested that it would be interesting 
to investigate whether this could be theorized to any Turing 
classifier (i.e., a computable classifier).

Du et al. (2022) proposed a collaborative image compression and 
classification framework for Visual Internet of Things (V-IoT) 
applications. The key contributions of their work are as follows: 
1.) Multi-task GANs: They proposed a multi-task Generative 
Adversarial Network (GAN) that included an encoder, quantizer, 
generator, discriminator, and classifier to achieve collaborative 
image compression and classification. The multi-task GAN 
shared the same features, which could reduce considerable 
computing resources. 2.) Quantized latent representation: They 
proposed a quantized latent representation used for compression 
and classification. The proposed framework achieved low bitrate 
compression and reduced the amount of data transmitted 
while preserving fidelity at the pixel and semantic levels. 3.) 
Novel optimization target: They proposed a novel optimization 
target that minimized the combination of Mean Square Error 
(MSE) loss and perceptual loss to preserve the fidelity at the 
pixel and semantic level. 4.) End-to-end learning: The proposed 
framework could be implemented by end-to-end learning, which 
greatly reduced the computing resources. Overall, the proposed 
framework combined image compression with semantic 
inference by using multi-task learning.

Table 1: Numerical summary of the evaluation results for Model 
A and Model B
Model evaluation metric Model A Model B

Accuracy (%) 90.00 100.00
F1-Score 0.90 1.0
Phi Coefficient 0.82 1.0
Fowlkes–Mallows 0.91 1.0

Figure 7: Random Forest confusion matrix showing the performances of Model A (a) and Model B (b). 
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Mohsen and Tiwari (2021) focused on quantum image 
processing. They made the following contributions: 1) A novel 
construction to compress images and encode them in their 
FRQI (Fixed-Reference Quantum Image) states using only 
2-qubit gates. This encoding mechanism embeds images in 
quantum states while requiring fewer qubits than in prior work. 
The input images can have a resolution of up to 16 x 16, and the 
quantum encoding only requires 8 qubits. This approach enables 
quantum machine learning and classification on classical 
datasets of dimensions that were previously intractable by 
physically realizable quantum computers or classical simulation. 
2) New QNN layers, CRADL and CRAML, which are used in a 
model trained with the images’ FRQI states as input. The QNN 
is a sequence of unitary operations parametrized by angles, and 
the input to the QNN is an n x n-pixel image that is encoded 
in a d log2n e + 1 dimensional Hilbert space by an encoding 
function. They proposed a novel encoding mechanism that 
embeds images in quantum states while necessitating fewer 
qubits than in prior work. 3) They showed that their trained 
QNN achieves accuracy comparable to classical models with 
the same number of parameters. They trained their QNN on 
the MNIST dataset of handwritten digits and compared its 
performance to classical neural networks with the same number 
of learnable parameters. The QNN was able to classify larger, 
more realistic images than previously possible, up to 16 x 16 for 
the MNIST dataset on a personal laptop. 4) They proposed a 
novel technique to further compress black and white images, 
and study the scaling behavior of their model with the extent 
of image compression. They found that their QNN was able 
to achieve accuracy comparable to classical models even with 
compressed images. Overall, the authors’ proposed QNN 
approach for image classification using quantum states shows 
promise for achieving comparable performance to classical 
models with the same number of parameters, while also enabling 
the classification of larger, more realistic images.

Finally, Fu and Guimaraes (2016) proposed a novel approach 
to speed up image classification in artificial neural networks by 
compressing image data with an algorithm based on the discrete 
cosine transform (DCT) before feeding it to the networks. This 
approach is different from traditional methods that focus on 
improving the accuracy of algorithms, with no regard to training 
time. They demonstrated that their approach could achieve 
significant speedups in training time ranging from 2 times to 
10 times, depending on the dataset, with only minor effects 
on algorithm accuracy. This was achieved by reducing the 
dimensionality of feature vectors using DCT-based compression, 
which decreases redundancy in the original vectors and thus 
speeds up training. Overall, their work proposed a new way to 
speed up image classification in artificial neural networks that 
can be applied to various datasets and has potential applications 
in real-world scenarios where fast training times are critical.

CONCLUSION

The constraint of limited memory for training data storage 
which is often experienced in data-intensive projects can be 
addressed in two ways: (1) more memory chips can be produced, 

and (2) the data can be compressed to an appreciable level at 
which little to no relevant quality is lost. With respect to the 
latter approach, the former approach requires more investments 
in time, skilled-labor and finances. We recommend the latter 
approach.
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