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1. Introduction

In this paper, we discuss a randomized method for solving large linear inconsistent system of
equations of the form

Ax = b, (1.1)

where the matrix A ∈ Rm×n with m > n and the vector b ∈ Rm is known, while the vector x ∈ Rn is
unknown.

Many problems in science and engineering fields such as computed tomography and image
reconstruction need to solve (1.1). The algebraic reconstruction technique is one of important method
to solve large-scale linear systems of Eq (1.1).

The classical Kaczmarz method in [7] is an iterative projection method for solving the system of
Eq (1.1). The main idea of this method is to carry out a series of orthogonal projection iterations
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continuously. Each iteration projects the current point onto the hyperplane formed by the selected row.
Let x0 be the initial vector and the (k + 1)th iteration vector be given by

xk+1 := xk +
bi− < A(i), xk >∥∥∥A(i)

∥∥∥2
2

A(i), (1.2)

where A(i) represents the i-th row of the coefficient matrix A. We assume that throughout this paper
that A has no zero rows, and bi represent the i-th entry of the vector b. ∥·∥2 denotes the Euclidean
norm and < ·, · > is the Euclidean inner product. The exact solution of the system of linear equations
is gradually approached after many iterations. With the order of each row of the coefficient matrix
A, the current approximate vector is orthogonally projected onto the hyperplane of the solution, i.e.,
{x| < A(i), x >= bi} and the resulting vector is put into the next iteration.

There are several extended Kaczmarz methods having been published in recent years. In 2009,
Strohmer and Vershynin [13] proposed a randomized version of the Kaczmarz method to solve
consistent and overdetermined linear systems. The authors specified a rule for selecting the working
rows of the coefficient matrix A, and showed a convergence theorem of the randomized Kaczmarz (RK)
method, which improves the RK method with exponential convergence. The RK method can be
represented as follows:

xk+1 := xk +
br(i)− < Ar(i), xk >∥∥∥Ar(i)

∥∥∥2
2

Ar(i), (1.3)

where r(i) denotes the working row index of the coefficient matrix A, which is randomly selected from

the set {1, 2, ...,m}. The working rows are selected with the probability Pr(row = ik) =

∥∥∥Ar(i)

∥∥∥2
2

∥A∥2F
. The

RK method randomly select the rows of matrix A according the row selection probability, which is the
ratio of the Euclidean norm of each row of A and the Frobenius norm of A. In this way, the RK method
will give priority to the row vector with large norm in the process of selecting the working row of matrix
A, and does not need to use the whole matrix A, which greatly saves the calculation cost. Based on these
advantages, Liu and Wright [8] proposed an accelerated randomized Kaczmarz (ARK) algorithm. Wu
and Xiang [14] proposed a projected randomized Kaczmarz (PRK) method. The Kaczmarz algorithm
is used to solve Sylvester matrix equations in [6]. However, when A is a quantity matrix, the norm
of some row vectors is the same, and the probability of selecting each row is the same. In this case,
the RK method is similar to the classical Kaczmarz method. Let x∗ be the least-squares solution of
the overdetermined inconsistent system of linear equation (1.1), then x∗ = A†b, where A† denotes the
Moore-Penrose pseudoinverse of A. Consider the system of linear equation

Ax∗ = b − r, (1.4)

where r ∈ Rm is a nonzero vector in the null space of A, i.e., AT r = 0. Apparently, the RK method
does not converge to x∗ when it is applied to solve the linear system Ax = b. We represent b by
b = bR(A) + bR(A)⊥ , where bR(A) is the projection of b on the column space of coefficient matrix A, i.e.,
R(A) := {Ax|x ∈ Rn}. Zouzias and Freris [15] proposed the randomized extended Kaczmarz method and
is effective for obtaining the least squares solution of the system (1.1). In 2016, Petra and Popa [12]
further studied the theory of REK method. Subsequently, Dumitrescu [2] proposed a randomized
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coordinate descent method, which combines the coordinate descent method with standard Kacmarz
method and solves the least square problem of an overdetermined linear equations. Elfving [5] and
Eggermont et al. [4] presented block iterative methods to solve (1.1). In 2015, Needell and Zhao [10]
further proposed a randomized double block Kaczmarz (RDBK) method for solving the system (1.1),
which is based on the block Kaczmarz method [9] and the randomized extended Kaczmarz method.
The row block and column block are selected according to uniform distribution, which improve
the convergence speed of the RDBK algorithm. The disadvantage of the RDBK method is that
it has to calculate the pseudoinverse, which increases the calculation time, and the calculation is
very difficult when the size of A is large enough. Necoara [11] proposed the randomized block
Kaczmarz (RBK) method in 2019. The RBK algorithm partitions the rows of A and introduces weight
and relaxation parameters. In 2020, Du and Si [3] presented a randomized extended average block
Kaczmarz (REABK) method for solving (1.1). The REABK method avoids the computation of the
pseudoinverse of A. In 2019, Bai and Wu [1] improved the REK method [15] on the column selection
strategy and proposed a partially randomized extended Kaczmarz (PREK) method for overdetermined
inconsistent systems. In the k-th step of the PREK method, the working columns are selected according
to the order of the columns of A, i.e., jk = (k mod n) + 1, rather than the probability, which is the ratio
of the square of the Euclidean norm of the jth column of A to the square of the Frobenius norm of A.
This rule of column section ensures that every column is selected and the frequency distribution is
uniform, thus avoids always selecting those columns with the largest column norm in the REK method
and ignoring those columns with smaller norm. Furthermore, the cost of calculation is reduced and the
solution converges faster than the PREK method.

This paper present a partially block randomized extended Kaczmarz method. In the PBREK
method, the rows of the coefficient matrix A are randomly divided into several blocks and stored in
the working area. In each iteration, the submatrix is selected to enter the iteration according to the
probability that is directly proportional to the Frobenius norm of the submatrix. Our block method
avoids pseudoinverse and avoids the repeated selection of row vectors with the same probability. The
specific algorithm is shown in Algorithm 2. The convergence is considered and several numerical
examples are given to show effectiveness of the proposed method for the overdetermined inconsistent
linear systems.

The rest of the paper is organized as follows. Section 2.1 introduces some symbols and notations,
and Section 2.2 summarizes the PREK method. We present the PBREK method and prove its
convergence in Section 3. Section 4 shows several numerical examples to illustrate the proposed
method and Section 5 draws some conclusions.

2. Preliminaries and notations

2.1. Notations

Let A( j) be the j-th column of the coefficient matrix A ∈ Rm×n and A(i) be the i-th row of A. ik

represents the ith row of matrix A in the kth iteration. A† denotes the Moore–Penrose pseudoinverse
of A. R(A) represents the column space of A, i.e., R(A) := {Ax|x ∈ Rn}. R(A)⊥ is the orthogonal
complement of R(A). bR(A) is the projection vector of b onto the column space of matrix A. b⊥R(A)

denotes the orthogonal complement of bR(A), i.e., b = bR(A) + b⊥R(A). Let κ2(A) :=
σ2

max

σ2
min

denote the
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condition number. We use ∥A∥F :=
√∑m

i=1
∑n

j=1 |ai j|
2 and ∥A∥2 := maxx,0

∥Ax∥2
∥x∥2

to denote the Frobenius
norm and Euclidean norm of matrix A. Let ⌊m⌋ denote for the largest integer that does not exceed m
and τ be the number of rows of the submatrix. In addition, we also use Ek to denote the expected value
conditional on the first k iterations, i.e.,

Ek[·] = E[·|i0, j0, i1, j1, ..., ik−1, jk−1] (2.1)

and
Ei

k[·] = E[·|i0, j0, i1, j1, ..., ik−1, jk−1, jk]. (2.2)

It holds that E[Ek[·]] = E[·] and Ek[·] = Ei
k[E

j
k[·]].

2.2. The PREK method

Algorithm 1 summarizes the PREK algorithm in [1]. The PREK algorithm consists of two parts.
The first part is a randomized version of Kaczmarz method, which selects the row vectors according to
the ratio of the norm, and the second part is an orthogonal projection method, which selects the column
vectors in order.

Algorithm 1: The PREK Algorithm
1 Input: A, b, l, x0 = 0, z0 = b.
2 Output: xl

3 for k = 0, 1, 2, ..., l − 1 do

4 Select ik ∈ {1, 2, ...,m} with probability Pr(row = ik) =
∥A(ik )∥

2
2

∥A∥2F
.

5 Set xk+1 = xk +
(b(ik )−z

(ik )
k −A(ik ) xk)

∥A(ik )∥
2
2

(A(ik))T .

6 Select jk = (k mod n) + 1.

7 Set zk+1 = zk −
AT

( jk )zk

∥A( jk )∥
2
2

A( jk).

8 end

3. The partially block randomized extended Kaczmarz algorithm

3.1. The PBREK method

In this section, we present the PBREK algorithm. For the PREK method in [1], it may repeatedly
select rows with a high probability or the same probability. We introduce the block idea to improve the
first part of the PREK algorithm.

In the first part of the PBREK method, the coefficient matrix A is divided into several submatrices.
We assume that the submatrix of A has τ rows. If the partition size can partition the number of rows
of matrix A exactly, there are

m
τ

submatrices in total. If the partition size does not accurately divide
the number of rows in matrix A, the remaining row vectors are added to the previous submatrix. For
example, let {I1, I2...Is} be a row partition. When m is divisible by s, then the partitioning is easy.
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Otherwise let c be the remainder of m divided by s, then we first arrange the number of τ in each of the
s partitions, and put the remaining c rows in the first s partitions respectively. Thus, |I j| is τ or τ + 1,
where |I j| denotes the number of elements in set I j.

After partitioning the coefficient matrix A, we can select the index of block. Step 4 selects row index
of each block according to the probability, which is equal to the ratio of the square of the Frobenius
norm of the submatrix to the square of the Frobenius norm of matrix A. We set z0 = b, so bR(A) ≈ 0.
In step 5, we update xk with the iterative method of the RK method, and update vector z. The iteration
terminates when it satisfies the iteration stop citerion RS E = ∥xk−x∗∥22

∥x∗∥22
< 10−6. In the second part of

orthogonal projection method, the column selection strategy of the PREK method is still adopted, i.e.,
jk = (k mod n) + 1. The vector zk is updated by sequential iteration according to the original column
vectors of matrix A. As the number of iterations increases, b−zk gets closer and closer to bR(A). Thus the
linear system Ax ≈ bR(A), and the RK method can be used to solve this new linear system. Algorithm 2
summarizes the PBREK algorithm.

Algorithm 2: The PBREK Algorithm
1 Input: Let {I1, I2, ..., Is} be partitions of [m], z0 ∈ R

m and x0 ∈ R
n, A, b, l, x0 = 0 and z0 = b.

2 Output: xl

3 for k = 0, 1, 2, ..., l − 1 do

4 Set i ∈ [s] with probability Pr(Ii ∈ [s]) = ∥
A(Ii ,:)∥

2
F

∥A∥2F
.

5 Set xk+1 = xk +
AT

(Ii ,:)
(bIi−zIi

k −A(Ii ,:) xk)

∥A(Ii ,:)∥
2
F

.

6 Select jk = (k mod n) + 1.

7 Set zk+1 = zk −
AT

( jk )zk

∥A( jk )∥
2
2

A( jk).

8 end

3.2. Convergence of PBREK algorithm

In this subsection we discuss the convergence of Algorithm 2. First we need the following results.

Lemma 3.1. Let {zk} be the same as that in Algorithm 2, then we have∥∥∥zk − bR(A)⊥
∥∥∥2

2
≤
∥∥∥bR(A)

∥∥∥2
2
. (3.1)

Proof. The proof of Lemma 3.1 is similar to that of Theorem 3.1 in [1] and is omitted.
It is not difficult to have the results as follows.

Lemma 3.2. Let A ∈ Rm×n be any nonzero real matrix, then for every x ∈ Rn, it holds that

∥Ax∥22 ≤ σ
2
max(A) ∥x∥22 . (3.2)

Based on Lemmas 3.1 and 3.2, we can establish the following convergence theory for the PBREK
method.
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Theorem 3.1. Suppose the system of linear equation (1.1) is the overdetermined inconsistent and
A ∈ Rm×n (m > n) is a full rank matrix. Let x∗ = A†b be the least square solution of (1.1) and xk be the
iteration sequence produced by Algorithm 2, then for any constant ρ > 0, it holds that

E∥xk − x∗∥22 ≤

(η + ρη)k + (1 +
1
ρ

)
βI

maxσ
2
max(A)

∥A∥2F

k−1∑
l=0

(1 + ρ)lηl

 ∥x∗∥22 , (3.3)

where η = 1 − (2−βI
max)

∥A∥2F
σ2

min(A), η > 0 and βI
max = maxi∈[s]

σ2
max(A(Ii ,:))

∥A(Ii ,:)∥
2
F

, βI
max ≤ 1.

Proof. Let

Xk = xk−1 −
AT

(Ii ,:)

∥A(Ii ,:)∥
2
F

(A(Ii,:))(xk−1 − x∗),

then, ∥∥∥xk − Xk
∥∥∥2

2
=

1∥∥∥A(Ii,:)

∥∥∥4
F

∥∥∥(AT
(Ii,:)(bIi − A(Ii,:)x

∗ − zIi
k−1)
∥∥∥2

2

≤
1∥∥∥A(Ii,:)

∥∥∥4
F

∥∥∥AT
(Ii,:)

∥∥∥2
2

∥∥∥bIi − A(Ii,:)x
∗ − zIi

k−1

∥∥∥2
2

≤
1∥∥∥A(Ii,:)

∥∥∥2
F

σ2
max(A(Ii,:))∥∥∥A(Ii,:)

∥∥∥2
F

∥∥∥bIi − AIi x
∗ − zIi

k−1

∥∥∥2
2

≤
βI

max∥∥∥A(Ii,:)

∥∥∥2
F

∥∥∥bIi − AIi x
∗ − zIi

k−1

∥∥∥2
2
.

Thus,

Ek−1

∥∥∥xk − Xk
∥∥∥2

2
= Ek−1

[
Ei

k−1

∥∥∥xk − Xk
∥∥∥2

2

]
≤ Ek−1

Ei
k−1

 βI
max∥∥∥A(Ii,:)

∥∥∥2
F

∥∥∥bIi − AIi x
∗ − zIi

k−1

∥∥∥2
2




= Ek−1

[
βI

max

∥A∥2F
∥b − Ax∗ − zk−1∥

2
2

]
.

Furthermore,

E
∥∥∥xk − Xk

∥∥∥2
2
= E
[
Ek−1

∥∥∥xk − Xk
∥∥∥2

2

]
≤ E
[
Ek−1

[
βI

max

∥A∥2F
∥b − Ax∗ − zk−1∥

2
2

]]
=
βI

max

∥A∥2F
E ∥b − Ax∗ − zk−1∥

2
2

=
βI

max

∥A∥2F
E
∥∥∥bR(A)⊥ − zk−1

∥∥∥2
2
. (3.4)
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We note that the fact that
∥∥∥bR(A)

∥∥∥2
2
≤ λmax(AT A) ∥x∗∥22. According to Lemma 3.1, we have∥∥∥zk − bR(A)⊥
∥∥∥2

2
≤
∥∥∥bR(A)

∥∥∥2
2
≤ λmax(AT A) ∥x∗∥22 . (3.5)

Substituting (3.5) into (3.4) results in

E
∥∥∥xk − Xk

∥∥∥2
2
≤
βI

max

∥A∥2F
σ2

max(A) ∥x∗∥22 . (3.6)

From Algorithm 2, we have that

xk − x∗ = xk−1 − x∗ −
1∥∥∥A(Ii,:)

∥∥∥2
F

AT
(Ii,:)(A(Ii,:)xk−1 − bIi + zIi

k−1), (3.7)

where x0 ∈ R(AT ), A†b ∈ R(AT ), AT
(Ii,:)

(A(Ii,:)xk−1 − bIi + zIi
k−1) ∈ R(AT ).

Furthermore, we have

∥∥∥Xk − x∗
∥∥∥2

2
=

∥∥∥∥∥∥∥∥(xk−1 − x∗) −
AT

(Ii,:)∥∥∥A(Ii,:)

∥∥∥2
F

A(Ii,:)(xk−1 − x∗)

∥∥∥∥∥∥∥∥
2

2

= ∥xk−1 − x∗∥22 +

∥∥∥∥∥∥∥( A(Ii,:)∥∥∥A(Ii,:)

∥∥∥
F

)T A(Ii,:)∥∥∥A(Ii,:)

∥∥∥
F

(xk−1 − x∗)

∥∥∥∥∥∥∥
2

2

− 2

∥∥∥∥∥∥∥∥(xk−1 − x∗)T
AT

(Ii,:)∥∥∥A(Ii,:)

∥∥∥2
F

A(Ii,:)(xk−1 − x∗)

∥∥∥∥∥∥∥∥
= ∥xk−1 − x∗∥22 −

2
∥∥∥A(Ii,:)(xk−1 − x∗)

∥∥∥2
2∥∥∥A(Ii,:)

∥∥∥2
F

+

∥∥∥∥∥∥∥( A(Ii,:)∥∥∥A(Ii,:)

∥∥∥
F

)T A(Ii,:)∥∥∥A(Ii,:)

∥∥∥
F

(xk−1 − x∗)

∥∥∥∥∥∥∥
2

2

≤ ∥xk−1 − x∗∥22 − (2 −
σ2

maxA(Ii,:)∥∥∥AIi:

∥∥∥2
F

)

∥∥∥A(Ii,:)(xk−1 − x∗)
∥∥∥2

2∥∥∥A(Ii,:)

∥∥∥2
F

≤ ∥xk−1 − x∗∥22 −
(2 − βI

max)
∥∥∥A(Ii,:)(xk−1 − x∗)

∥∥∥2
2∥∥∥A(Ii,:)

∥∥∥2
F

.

Thus,

Ek−1

∥∥∥Xk − x∗
∥∥∥2

2
≤ ∥xk−1 − x∗∥22 −

(2 − βI
max)

∥A∥2F
∥A(xk−1 − x∗)∥22

≤ ∥xk−1 − x∗∥22 −
(2 − βI

max)

∥A∥2F
σ2

min(A) ∥xk−1 − x∗∥22

=

[
1 −

(2 − βI
max)

∥A∥2F
σ2

min(A)
]
∥xk−1 − x∗∥22

= η∥xk−1 − x∗∥22.
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From the above derivation results we know that

Ek−1

∥∥∥Xk − x∗
∥∥∥2

2
≤ η∥xk−1 − x∗∥22, (3.8)

where Ek−1 ≥ 0 and ∥xk−1 − x∗∥22 ≥ 0, thus η ≥ 0. It follows that

E
∥∥∥Xk − x∗

∥∥∥2
2
= E
[
Ek−1

∥∥∥Xk − x∗
∥∥∥2

2

]
≤ ηE ∥xk−1 − x∗∥22 . (3.9)

For any ρ > 0, we have

∥xk − x∗∥22 =
∥∥∥(Xk − x∗) + (xk − Xk)

∥∥∥2
2

≤ (
∥∥∥Xk − x∗

∥∥∥
2
+
∥∥∥xk − Xk

∥∥∥
2
))2

≤
∥∥∥xk − Xk

∥∥∥2
2
+
∥∥∥Xk − x∗

∥∥∥2
2
+ 2
∥∥∥xk − Xk

∥∥∥
2

∥∥∥Xk − x∗
∥∥∥

2

≤ (1 +
1
ρ

)
∥∥∥xk − Xk

∥∥∥2
2
+ (1 + ρ)

∥∥∥Xk − x∗
∥∥∥2

2
.

Thus, we can get

E ∥xk − x∗∥22 ≤ (1 +
1
ρ

)E
∥∥∥xk − Xk

∥∥∥2
2
+ (1 + ρ)E

∥∥∥Xk − x∗
∥∥∥2

2
. (3.10)

Now we do induction on the pth transformation. Assume that

E ∥xk − x∗∥22 ≤ (1 +
1
ρ

)
βI

max

∥A∥2F
σ2

max(A) ∥x∗∥22

p−1∑
l=0

(1 + ρ)lηl + (η + ρη)pE
[∥∥∥xk−p − x∗

∥∥∥2
2

]
. (3.11)

When p = 1, obviously (3.11) is true,

E ∥xk − x∗∥22 ≤ (1 +
1
ρ

)
βI

max

∥A∥2F
σ2

max(A) ∥x∗∥22 + (1 + ρ)ηE ∥xk−1 − x∗∥22 . (3.12)

Assume that when p = k − 1, (3.11) still holds,

E ∥xk − x∗∥22 ≤ (1 +
1
ρ

)
βI

max

∥A∥2F
σ2

max(A) ∥x∗∥22
k−2∑
l=0

(1 + ρ)lηl + (η + ρη)k−1E ∥x1 − x∗∥22 . (3.13)

Now we prove that p = k, (3.11) still holds. From (3.13), we can get

E ∥xk − x∗∥22 ≤ (1 +
1
ρ

)
βI

max

∥A∥2F
σ2

max(A) ∥x∗∥22
k−2∑
l=0

(1 + ρ)lηl

+ (η + ρη)k−1
[
(1 +

1
ρ

)
βI

max

∥A∥2F
σ2

max(A) ∥x∗∥22 + (1 + ρ)ηE ∥x0 − x∗∥22

]
= (1 +

1
ρ

)
βI

max

∥A∥2F
σ2

max(A) ∥x∗∥22
k−1∑
l=0

(1 + ρ)lηl + (η + ρη)kE
[
∥x0 − x∗∥22

]
. (3.14)

Obviously, (3.14) satisfies (3.11), therefore, the assumption is true.
This completes the proof.
When the number of blocks is the number of rows of A, Theorem 3.1 reduces to the following

results.
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Corollary 3.1. For the overdetermined inconsistent system (1.1), when τ = 1, i.e., the number of blocks
equals the number of rows of the coefficient matrix A, then the upper bound in (3.3) becomes

E∥xk − x∗∥22 ≤
[
ηk +

κ2(A)
1 − η

]
∥x∗∥22 ,

where η = 1 − σ
2
min(A)
∥A∥2F

(0 ≤ η < 1).

Proof. When s = m, it holds that βI
max = 1. According to the assumption in Theorem 3.1, we have that

∥∥∥xk − Xk
∥∥∥2

2
=

∥∥∥∥∥∥∥∥ AT
i,:∥∥∥Ai,:

∥∥∥2
2

(bi − zi
k−1 − Ai,:x∗)

∥∥∥∥∥∥∥∥
2

2

≤
1∥∥∥Ai,:

∥∥∥2
2

∥∥∥∥bi
R(A)⊥ − zi

k−1

∥∥∥∥2
2
.

Therefore, it holds that

E
∥∥∥xk − Xk

∥∥∥2
2
= E
[
Ek−1

∥∥∥xk − Xk
∥∥∥2

2

]
≤
σ2

max(A)
∥A∥2F

∥x∗∥22,

and ∥∥∥Xk − x∗
∥∥∥2

2
=

∥∥∥∥∥∥∥∥(I − AT
(i,:)A(i,:)∥∥∥A(i,:)

∥∥∥2
2

)(xk−1 − x∗)

∥∥∥∥∥∥∥∥
2

2

≤ ∥xk−1 − x∗∥22 −

∥∥∥A(i,:)(xk−1 − x∗)
∥∥∥2

2

∥A∥2F
,

E
∥∥∥Xk − x∗

∥∥∥2
2
= E
[
Ek−1

∥∥∥Xk − x∗
∥∥∥2

2

]
≤ E

∥xk−1 − x∗∥22 −
σ2

min(A) ∥xk−1 − x∗∥22
∥A∥2F


= E

(1 − σ2
min(A)

∥A∥2F
) ∥xk−1 − x∗∥22


= ηE ∥xk−1 − x∗∥22 .

According to the equation

(Xk − x∗)T (xk − Xk) =

(I − AT
(i,:)A(i,:)∥∥∥A(i,:)

∥∥∥2
2

)(xk−1 − x∗)


T  AT

i,:∥∥∥Ai,:

∥∥∥2
2

(bi − zi
k−1 − Ai,:x∗)

 = 0,

we have
∥xk − x∗∥22 =

∥∥∥xk − Xk
∥∥∥2

2
+
∥∥∥Xk − x∗

∥∥∥2
2
.
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Therefore,
E ∥xk − x∗∥22 = E

∥∥∥xk − Xk
∥∥∥2

2
+ E
∥∥∥Xk − x∗

∥∥∥2
2

≤
σ2

max(A)

∥A∥2F
∥x∗∥22 + ηE ∥xk−1 − x∗∥22

≤

k−1∑
l=0

ηlσ
2
max(A)

∥A∥2F
∥x∗∥22 + η

kE ∥x∗∥22

≤

∞∑
l=0

ηlσ
2
max(A)
σ2

min(A)
∥x∗∥22 + η

k ∥x∗∥22

=

[
ηk +

κ2(A)
1 − η

]
∥x∗∥22 .

This completes the proof.
From Corollary 3.1 we can see when τ = 1 the algorithm PBREK reduces to the algorithm PREK,

and the upper bound of the error in Theorem 3.1 reduces to Theorem 3.1 in [1].

4. Numerical examples

This section shows the application of Algorithm 2 compared with Algorithm 1 and the REK
method [15] in solving the overdetermined inconsistent system (1.1) with a dense or sparse coefficient
matrix A ∈ Rm×n. Different sizes of A with m = 5000, 6000, 7000, 8000, 9000 and n = 500 are
considered. The random dense coefficient matrices are generated by MATLAB function randn, and
the sparse matrix is collected from the SuiteSparse matrix set. All experiments in this section are
repeated 50 times to obtain an average value. All calculations are performed in MATLAB R2020a on
a computer with Intel Core i7 and 16GB Ram.

Define the relative error by

RS E =
∥xk − x∗∥22
∥x∗∥22

, (4.1)

where x∗ is the least-squares solution of (1.1). When RS E < 10−6, the iteration is stopped. We compare
the CPU time and the number of iterations (IT) for the PBREK and PREK method. We also list the
speed up defined as follows:

speed up =
CPU o f PREK

CPU o f PBREK
. (4.2)

For all examples below, we assume that the residual vector r = b− Ax is the null space of matrix A,
i.e., r ∈ Null(AT), then ATAx = ATb + ATr = ATb. With this assumption the solution obtained by the
PBREK method will be very close to the exact solution, and the relative error will be very close to 0.
Define

δ =
∥r∥2
∥Ax∗∥2

. (4.3)

We will consider two cases for all examples. One satisfies ∥r∥2 = 1 and the other is δ = 1.
We will employ the rule of the partitioning strategy of blocks for the PBREK method, which is

similar to that in [9]. We choose the size of row blocks as τ = 5, 10, 20 to compare the quality
of all method for both dense and sparse coefficient matrices. Figure 1 shows the CPU-time used to
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satisfy (4.1) versus τ the PBREK method with different sizes of A with m = 5000, 7000, 9000 and
n = 500.

(a) 5000 × 500 (b) 7000 × 500 (c) 9000 × 500

Figure 1. Plot of CPU versus the number of block sizes τ for the PBREK algorithm with
different sizes of coefficient matrix.

Example 4.1 In this example, we consider the overdetermined inconsistent system (1.1) with A being
a random matrix. We compare the quality of the PBREK method and compare it with that of the REK,
PREK methods with different partitioning strategies. Table 1 lists the IT and CPU of the PBREK
algorithm compared with that of the REK and PREK methods for solving (1.1) with different sizes of
A when ∥r∥2 = 1. The case when δ = 1 is shown in Table 2. From Tables 1 and 2 we can see that when
∥r∥2 = 1, τ = 20 is the most effective among all cases and when δ = 1, τ = 10 is the most effective.
Thus, we take the CPU of PBREK-20 and PBREK-10 to calculate the speed up in Tables 1 and 2,
respectively. The results in Tables 1 and 2 show that the PBREK algorithm needs least CPU time and
IT among all methods. Moreover, with the increase of the number of rows, the advantages of PBREK
on CPU become more obvious.

Table 1. Example 4.1: Comparison of IT and CPU of the PBREK method compared with
those of the REK and PREK algorithms for solving (1.1) with different sizes of A when
∥r∥2 = 1.

Method 5000×500 6000×500 7000×500 8000×500 9000×500
δ 0.0007 0.0006 0.0005 0.0005 0.0005
REK IT 9025 9166 8585 8857 8497

CPU 7.485 8.782 9.401 10.66 11.68
PREK IT 8064 8024 7711 7821 7757

CPU 6.705 7.809 8.432 9.734 10.65
PBREK-10 IT 5971 5558 5306 5166 5098

CPU 4.211 5.415 5.381 5.714 6.326
PBREK-5 IT 5797 5649 5362 5273 5244

CPU 4.212 5.151 5.425 6.028 6.569
PBREK-20 IT 5971 5570 5348 5128 5050

CPU 4.2 5.276 5.297 5.669 6.303
speed up 1.5964 1.48 1.5918 1.7171 1.690
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Table 2. Example 4.1: Comparison of IT and CPU of the PBREK method compared with
those of the REK and PREK algorithms for solving (1.1) with different sizes of A when δ = 1.

Method 5000×500 6000×500 7000×500 8000×500 9000×500
REK IT 9256 5621 9104 8534 8699

CPU 7.651 8.259 9.678 10.42 11.53
PREK IT 7884 7902 7780 7668 7631

CPU 7.003 7.669 8.616 9.475 10.57
PBREK-10 IT 5938 5621 5214 5078 5076

CPU 4.353 4.859 5.223 5.787 6.257
PBREK-5 IT 5918 5621 5270 5290 5111

CPU 4.368 5.194 5.487 6.043 6.567
PBREK-20 IT 5857 5621 5156 5077 4980

CPU 4.429 4.877 5.346 5.843 6.323
speed up 1.6088 1.5783 1.65 1.6373 1.69

Figure 2 shows the plot of (a) log10(RSE) versus CPU and (b) log10(RSE) versus IT for the
PBREK, PREK and REK methods for A with m = 9000, n = 500 when ∥r∥2 = 1. The similar case is
shown in Figure 3 when δ = 1. We can see from Figures 2 and 3 that REK algorithm needs the most
CPU and IT, and the PBREK algorithm is faster than the PREK algorithm. The PBREK algorithm
makes no obvious difference between τ = 20 and τ = 10. When τ = 1, the PBREK algorithm is very
close to the PREK algorithm. The PBREK algorithm with τ = 20 converges the fastest among all
methods.

We compare the PBREK algorithm with the REABK method in [3] and the RDBK method in [10]
for solving the overdetermined inconsistent linear systems (1.1). We set τ = 20 for all methods.
Different number of rows of matrix A with 1000, 2000, 3000 is considered. We take τ = 20 and
α ≈ 17 for the REABK algorithm. Figure 4 shows plots of log10(RSE) versus CPU for the PBREK-20
algorithm compared with that of the PREK, RDBK and REABK methods with different sizes of A.
From Figure 4 we can see the PBREK algorithm outperforms the REABK algorithm and the RDBK
algorithm for different sizes of A.

(a) (b)

Figure 2. Example 4.1: Plots of (a) log10(RSE) versus CPU and (b) log10(RSE) versus IT
for the PBREK, PREK and REK methods for A with m = 9000, n = 500 when ∥r∥2 = 1.
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(a) (b)

Figure 3. Example 4.1: Plots of (a) log10(RSE) versus CPU and (b) log10(RSE) versus IT
for the PBREK, PREK and REK method for A with m = 9000, n = 500 when δ = 1.

(a) 1000 × 500 (b) 2000 × 500 (c) 3000 × 500

Figure 4. Example 4.1: Plots of log10(RSE) versus CPU for the PREK, RDBK, REABK,
PBREK-20 algorithm with different sizes of A.

Example 4.2 We discuss linear systems (1.1) with a sparse matrix A. Let’s consider four sparse
matrices, i.e., ash608, ash958, divorce and ash219, which comes from the SuiteSparse matrix set.
We also discuss two cases when ∥r∥2 = 1 and δ = 1, respectively. The relevant properties of four
sparse matrices are shown in Table 3, where the density of a matrix is defined as follows:

density =
number o f nonzeros o f an m − by − n matrix

mn
. (4.4)

Table 3. Example 4.2: Properties of sparse matrices.

name ash608 ash958 divorce ash219
m × n 608 × 188 958 × 292 50 × 9 219 × 85
rank 188 292 9 85
density 1.06% 0.68% 50.0% 2.35%

Table 4 lists the IT and CPU of the PBREK algorithm compared with that of the REK and PREK
methods for solving (1.1) with different sparse matrice A when ∥r∥2 = 1. The case when δ = 1 is shown
in Table 5.
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Table 4. Example 4.2: Comparison of IT and CPU of the PREK and PBREK algorithms for
solving (1.1) with different sizes of A when ∥r∥2 = 1.

Method ash958 ash219 divorce ash608
REK IT 8696 2486 3743 5958

CPU 1.154 0.1633 0.113 0.55
PREK IT 5827 2284 2974 3604

CPU 0.7266 0.1433 0.0768 0.2805
PBREK-10 IT 4333 1861 2632 3142

CPU 0.5006 0.1107 0.0532 0.2203
PBREK-20 IT 4436 1567 2656 3146

CPU 0.482 0.0714 0.0543 0.2748
PBREK-5 IT 4833 1770 2618 3158

CPU 0.5097 0.092 0.0526 0.2306
speed up 1.5074 2.007 1.46 1.2732

Table 5. Example 4.2: Comparison of IT and CPU of the PREK and PBREK algorithms for
solving (1.1) with different sizes of A when δ = 1.

Method ash958 ash219 divorce ash608
REK IT 7721 2167 2546 5056

CPU 1.09 0.1178 0.0832 0.4931
PREK IT 5183 1646 2487 3751

CPU 0.6884 0.0829 0.0677 0.339
PBREK-10 IT 4272 1436 1885 3604

CPU 0.4697 0.044 0.0404 0.2562
PBREK-20 IT 4598 1643 2100 3445

CPU 0.5033 0.0516 0.0467 0.2777
PBREK-5 IT 4434 1525 1955 3226

CPU 0.4911 0.0474 0.0424 0.2696
speed up 1.4656 1.884 1.6757 1.3231

From Tables 4 and 5 we have the similar results as that in Tables 1 and 2, respectively.
Figures 5 and 6 display the plots of RSE versus CPU and RSE versus IT for the PREK, REK,

PBREK algorithms on ash958 with δ = 1 and ∥r∥2 = 1, respectively. We take τ = 1, 5, 10, 20 as an
example. When τ = 1, the PBREK algorithm is very close to the PREK algorithm. Altogether for both
Figures 5 and 6, the PBREK algorithm converges faster than the PREK method, while there are slight
difference for different partitioning strategies with τ = 5, 10, 20.

5. Conclusions

In this paper, we present the PBREK algorithm for an overdetermined inconsistent linear system of
equations. The convergence is provided. Several examples with random coefficient matrix and sparse
coefficient matrices are given to illustrate the efficiency of the proposed PBREK algorithm.
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(a) (b)

Figure 5. Example 4.2: Plot of (a) RSE versus CPU and (b) RSE versus IT for the PREK,
REK, PBREK algorithms with δ = 1 on ash958.

(a) (b)

Figure 6. Example 4.2: Plot of (a) RSE versus CPU and (b) RSE versus IT for the PREK,
REK, PBREK algorithms with ∥r∥2 = 1 on ash958.
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