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1. Introduction

Decision-making (DM) is an important part of human life, referring to the process of listing all the
options as assessed by decision experts and then choosing the best option, which is common in our daily
life. In the early stages of social development, decision experts used real numbers to provide evaluative
information. As DM problems are becoming more complex, experts are unable to provide accurate real
numbers to evaluate the alternatives. The ambiguities and imprecision of human judgments exposed
the flaws of crisp set theory. Thus, in 1965, Zadeh [1] proposed fuzzy sets (FS) as an effective method
for modeling uncertain information by introducing degrees of membership (MD). A few years after
its introduction, the FS has gained a lot of attention for representing data that contains uncertainty.
Later it was analyzed that the membership degree in an FS did not cover an object’s uncertainty.
Therefore Attonossov [2] introduced the concept of intuitionistic fuzzy set (IFS) by adding the non-
membership degree (NMD) to the FS theory satisfying the condition MD + NMD ≤ 1. Since its
inception, the results of IFS and its application to DM problems have been widely studied [3–5]. But,
due to the conditions in some cases, IFS cannot account for the uncertainty of real-world problems.
Thus, Yager [6, 7] extended the condition of IFS and developed a new theory called Pythagorean
fuzzy sets (PyFS), subject to the constraint (MD)2 + (NMD) 2 ≤ 1, which confirms that the theory
has good processing potential for solving DM problems. Many researchers have considered PyFS
and successfully applied it to DM problems. As these ideas spread, users became more familiar with
the data they collected using linguistic variables, such as good, very good, bad, very bad, very very
bad, etc. Linguistic term sets (LTS) can handle complex situations efficiently and successfully. Thus
Zadeh [8] put forward the framework of computing with words (CWW) and explained its importance,
along with various extended forms of LTSs [9–11]. Later, researchers extended the framework of
LTSs to many other theories such as FS [13], IFS [12] and PyFS [14]. To model experts, views more
deeply, Guo et al., [15, 16] defined a double linguistic term set (DHLTS) to easily convey appropriate
data in complex expressions compared to single LTSs. DHLTS is the combination of two sets-namely
the first hierarchy linguistic term (FHLT) set and the second hierarchy linguistic term (SHLT) set-
allowing more flexibility to describe uncertainty and ambiguity in DM problems. Further, Li et al., [17]
introduced the Hamacher aggregation operator and applied it to the DM problem.

In today’s world, sustainable mobility and logistics service providers are one of the most
controversial concepts in the field of transportation. Sustainable transportation can be defined as any
mode of transportation that makes it possible for the movement of goods and people in ways that are
socially, economically and environmentally sustainable [18]. Thus, Awasthi et al. [19] categorized
common methods for assessing the sustainability of transportation decisions into eight categories,
one of which is the multi-criteria decision-making (MCDM) process. It is the preferred technique
for solving problems with contradictory objectives and is reliable for sustainable transportation
decisions [20]. Therefore, a variety of methods have been presented to handle a sustainable
transportation evaluation problem under uncertainty [21–24]. Despite all the efforts to model the
uncertainty of a sustainable transportation evaluation problem in MCDM methods, most of them were
based on classical FS. There are few studies in the literature concerning sustainable transportation
evaluation using an extension of classical fuzzy sets [25–30]. According to the above review, existing
methods are helpful in solving DM problems effectively, however, to our knowledge, there is no method
to calculate the weights of both experts and criteria under the hybrid study of PyFS and DHLTS. Since
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sustainable transport assessment problems contain many criteria and are full of uncertainties, it is
necessary to study more effective mathematical methods to deal with sustainable transport assessment
problems and logistics service providers with high uncertainty.

The main objectives of this work are as follows:
(a) To study the hybrid notion of DHLTSs with the Pythagorean fuzzy set and defined Pythagorean
double hierarchy linguistic term sets (PyDHLTS), allowing better application flexibility in real-world
scenarios as compared to DHLTSs, and also define a new score and accuracy functions.
(b) To define a series of averaging aggregation operators and basic operational laws for PyDHLTS to
aggregate the data from various sources to a single source in the DM process.
(c) To investigate a three-way decision-making technique for solving multi-criteria group decision-
making (MCGDM) problems with completely unknown weight information.
(d) To calculate unknown weights for experts and criteria, we propose to use entropy and distance
measures.
(e) We further investigate the theoretical and practical interpretation of the proposed tool by solving
numerical examples.

We will introduce some background and literature on three-way decision-making in the following
sections.

Related work

In literature, various traditional decision-making techniques have been developed which only
provide the ranking of the schemes, but do not provide the decision experts with specific
recommendations. Three-way decision-making (TWDs) breaks through this limitation because the
decision-making method conforms to people’s thinking patterns. To this end, Yao [31–33] designed
the TWD technique due to their excellent ability to solve DM problems. The three-way decision is a
combination of DTRS and Bayesian DM techniques [34,35], where the general set is divided into three
regions, such as a positive region, boundary region and negative region, which have been effectively
used to solve many classification problems. This method is applied by many scholars in several fields
including work resumption [36], investment decision [37] and medical treatment [38,39] because they
are associated with human decision-making patterns. He et al. [40] consider the TWD technique for
solving the hidden property evaluation of judgment debtor under the probabilistic linguistic term set.
Later, Wang et al. [41] applied the three-way decision method with a priori probability tolerance
dominance relation in fuzzy incomplete information systems. To represent the loss functions (LFs)
more accurately, many extended structures of FS are introduced in the TWDs, including FS [42] and
IFS [43]. Herbert and Yao [44] studied game theory-related LFs determination methods to construct
loss function matrices. Jia et al. [45] presented an optimization problem on the relationship between
the threshold value and loss function and then solved the optimization problem to achieve the threshold
value. In a DM, Jia et al. [46] provided a new method for computing LFs. However, in practice, the LFs
are evaluated by decision experts according to their own historical experience and knowledge and this
study adopts the same method. Many scholars have studied the calculation of conditional probability,
which is another critical component of TWDs. Ye et al. [42] initially used the entropy weight method
to calculate attribute weights and then used weighted aggregation to calculate conditional probability.
Later, researchers [48] used the maximizing deviation method to first determine attribute weights and
then use a technique called order performance by similarity to ideal solutions (TOPSIS) [47] to achieve
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conditional probability. Wang et al. [49] calculated the conditional probability using two DM methods
based on third-generation prospect theory. Liu and Yang [50] developed a decision theory rough
set (DTRS) model under a double hierarchy linguistic term set and applied it to TWDs. According
to literature, there is no implementation of TWDs under the hybrid concept of DHLTs and PyFSs.
Therefore, the motivation of this work is to investigate the above-mentioned specific goals.

From the above-mentioned goals the main contributions and factors of this work are as follows:
(a) Gou et al. [15, 16] developed DHLTSs by considering only the membership degree, but this idea
has some limitations due to the lack of non-membership degrees. Thus we generalized DHLTSs by
adding the non-membership degree and defined Pythagorean double hierarchy linguistic term sets
(PyDHLTSs). They are adaptable tools that allow decision experts to provide assessments in the form
of PyDHLTSs.
(b) Li, Xang et al. [17] defined the LFs by using Hamacher aggregation operators by considering the
DHLTSs. We extend this concept to PyDHLTSs for determining the LFs.
(c) Establish the entropy and distance measure for calculating the unknown weights vector of experts
and criteria.
(d) Further, we developed the basic operational laws and the Pythagorean double hierarchy linguistic
weighted averaging (PyDHLWA), Pythagorean double hierarchy linguistic ordered weighted averaging
(PyDHLOWA) and Pythagorean double hierarchy linguistic hybrid averaging (PyDHLHA) operators
to aggregate the LFs to an account for various decision attitudes of decision experts, which improves
the DM process.
(e) Conditional probabilities are evaluated using the GRA method, taking into account the relationship
between relatively positive and negative ideal solutions.
(f) We applied the proposed methodology to TWDs for sustainable transport investment and logistics
service provider selection to demonstrate the impact of three-way decision making.

The summary of this article is as follows: Section 2 presents the basic concepts related to IFS,
PyFS, and DHLTS. Section 3 introduces the novel notion of PyDHLTSs and score function. Section 4
includes the distance measures and aggregation operators, such as Pythagorean double hierarchy
linguistic weighted averaging (PyDHLWA) operators, Pythagorean double hierarchy linguistic order
weighted averaging (PyDHLOWA) and Pythagorean double hierarchy linguistic hybrid averaging
(PyDHLHA) operators for PyDHLTSs. Section 5 presents the algorithm for determining the
conditional probability based on the GRA method and a novel TWD model. Section 6 describes
the application of the proposed method by solving a numerical example to illustrate the feasibility
of the proposed method. In Section 7, we compare the proposed method with existing techniques to
demonstrate the applicability of our proposed method. Section 8 concludes this article.

2. Basic concepts

In this section, we will discuss the concepts of IFS, PyFS, LIFS, LPyFS and DHLTS, as well as
their basic operations, which will be used later.

Definition 1. [2] For a non-empty set Ü, the intuitionistic fuzzy set (IFS) is mathematically defined as

A =
{
u, 〈µ(u), ν(u)〉 |u ∈ Ü

}
,

where µ(u) and ν(u) represents the MD, NMD ∈ [0, 1], respectively, such that (µ(u)) + (ν(u)) ≤ 1.
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Definition 2. [6,7] For a non-empty set Ü, the Pythagorean fuzzy set (PyFS) is mathematically defined
as

A =
{
u, 〈µ(u), ν(u)〉 |u ∈ Ü

}
,

where µ(u) and ν(u) represents the MD, NMD ∈ [0, 1] respectively, such that (µ(u))2 + (ν(u))2
≤ 1.

Definition 3. [12] Let Ü be a universal set and S = {S t|S 0 ≤ S t ≤ S τ, t ∈ [0, τ]} a continuous linguistic
term set. Then linguistic intuitionistic fuzzy set (LIFS) in Ü is mathematically defined with the form

A =
{
u,

〈
S α (u) , S β (u)

〉
|u ∈ Ü

}
,

where S α (u) and S β (u) represents the membership and non-membership degree in the form of
linguistic terms such that α + β ≤ τ or α

τ
+

β

τ
≤ 1. For simplicity it is denoted by A =

(
S α, S β

)
.

Definition 4. [14] Consider Ü to be a universal set and S = {S t|S 0 ≤ S t ≤ S τ, t ∈ [0, τ]} to be a
continuous linguistic term set. Then linguistic Pythagorean fuzzy set (LPyFS) in Ü is mathematically
defined as

A =
{
u,

〈
S α (u) , S β (u)

〉
|u ∈ Ü

}
,

where S α (u) and S β (u) represents the membership and non-membership degree in the form of

linguistic terms such that (α)2+(β)2
≤ τ2 or

(
α
τ

)2
+
(
β

τ

)2
≤ 1. For simplicity it is denoted by A =

(
S α, S β

)
.

Definition 5. [14] Let A1 =
(
S α1 , S β1

)
, A2 =

(
S α2 , S β2

)
be two linguistic Pythagorean fuzzy sets. Then

algebraic operational laws for linguistic Pythagorean fuzzy set are as follows;

(1) A1 ⊕ A2 =

S
τ

√(
( α1

τ )2
+
( α2
τ

)2
−
( α1
τ

)2
.
( α2
τ

)2), S τ
((
β1
τ

)
.
(
β2
τ

))
 ,

(2) A1 ⊗ A2 =

S τ(( α1
τ ).( α1

τ )), S
τ

√((
β1
τ

)2
+

(
β2
τ

)2
−

(
β1
τ

)2
.
(
β2
τ

)2
)
 ,

(3) λA1 =

S
τ

√
1−

(
1−( α1

τ )2
)λ , S

τ
(
β1
τ

)λ
 ,

(4) (A1)λ =

S τ( α1
τ )λ , S

τ

√
1−

(
1−

(
β1
τ

)2
)λ
 .

Definition 6. [15] Let S = {S α|α = −τ, ...,−1, 0, 1, ..., τ} be the first hierarchy linguistic term (FHLT)
and O= {Ok|k = −δ, ...,−1, 0, 1, ..., δ} be the second hierarchy linguistic term (SHLT) sets, then the
structure

S o =
{
S α〈ok〉|α = −τ, ...,−1, 0, 1, ..., τ; k = −δ, ...,−1, 0, 1, ..., δ

}
is said to be double hierarchy linguistic term sets (DHLTSs), where S α is the first hierarchy and ok

represents the second hierarchy linguistic terms respectively.

3. Pythagorean double hierarchy linguistic term sets

In this section, we will develop the hybrid notion of PyFS and DHLTS to obtain the notion of
Pythagorean fuzzy double hierarchy linguistic term set (PyDHLTSs), as well as initiate the new score
functions and present its basic operations in detail.
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Definition 7. Let A=
{〈

S α, S β

〉
|α, β = 0, 1, ..., τ

}
be the first hierarchy linguistic term set and B=

{〈Ok,Ol〉 |k, l = 0, 1, ..., δ} be the second hierarchy linguistic term set, then the structure

AB =
{〈

S α〈Ok〉, S β〈Ol〉

〉
|α, β = 0, 1, ..., τ; k, l = 0, 1, ..., δ

}
is said to be Pythagorean double hierarchy linguistic term sets (PyDHLTSs) where S α, S β represents
the membership and non-membership degree of the first hierarchy linguistic term sets and Ok,Ol is
the membership and non-membership degree of the second hierarchy linguistic term sets, such that
α2 + β2 ≤ τ2 and k2 + l2 ≤ δ2 or

(
α
τ

)2
+

(
β

τ

)2
≤ 1 and

(
k
δ

)2
+

(
l
δ

)2
≤ 1. Simply, it is represented by(

S α〈Ok〉, S β〈Ol〉

)
.

Definition 8. Let AB1 =
(
S α1〈Ok1〉

, S β1〈Ol1〉

)
, AB2 =

(
S α2〈Ok2〉

, S β2〈Ol2〉

)
are two Pythagorean fuzzy

double hierarchy linguistic sets. Then algebraic operational laws for Pythagorean double hierarchy
linguistic set are as follows:

(1) AB1 ⊕ AB2 =


S

τ

√(
( α1

τ )2
+( α2

τ )2
−( α1

τ )2
.( α2

τ )2
)〈

O

δ

√( k1
δ

)2
+

( k2
δ

)2
−

( k1
δ

)2
.
( k2
δ

)2
〉 ,

S
τ
((
β1
τ

)
.
(
β2
τ

))〈
O
δ
(( l1
δ

)
.
( l2
δ

))
〉

 ;

(2) AB1 ⊗ AB2 =


S
τ(( α1

τ ).( α2
τ ))

〈
O
δ
(( k1

δ

)
.
( k2
δ

))
〉,

S
τ

√((
β1
τ

)2
+

(
β2
τ

)2
−

(
β1
τ

)2
.
(
β2
τ

)2)〈
O

δ

√( l1
δ

)2
+

( l2
δ

)2
−

( l1
δ

)2
.
( l2
δ

)2
〉

 ;

(3) λAB1 =

S τ

√
1−

(
1−( α1

τ )2
)λ〈

O
δ

√
1−

1−( k1
δ

)2λ
〉, S

τ
(
β1
τ

)λ〈
O
δ
( l1
δ

)λ
〉
 ;

(4)
(
AB1

)λ
=

S τ( α1
τ )λ

〈
O
δ
( k1
δ

)λ
〉, S

τ

√
1−

(
1−

(
β1
τ

)2
)λ〈

O
δ

√
1−

1−( l1
δ

)2λ
〉
 .

Definition 9. Let ABi =
(
S αi〈Oki〉

, S βi〈Oli〉

)
be a Pythagorean fuzzy double hierarchy linguistic set. Then

the score (S C) and accuracy (AC) fuctions of PyDHLTS are defined by

S C =

(αi

τ

)2
−

(
βi

τ

)2
+

(
ki

δ

)2

−

(
li

δ

)2 /2 ∈ [−1, 1]

AC =

((
αi

τ

)2
+

(
βi

τ

)2
+

(
ki

τ

)2
+

(
li

τ

)2
/2

)
∈ [0, 1].
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4. Pythagorean double hierarchy linguistic term averaging operators

This section develops a list of averaging aggregation operators such as PyDHLWA, PyDHLOWA
and PyDHLHA for Pythagorean double hierarchy linguistic term set (PyDHLTSs) and also describes
its basic properties as follows:

Definition 10. Let ABi =
(
S αi〈Oki〉

, S βi〈Oli〉

)
(i ∈ N) be the collection of PyFDHLVs and $ =

($1, $2, ..., $n)T represent the weight vectors of a given collection restricted to $i > 0,
n∑

i=1
$i = 1.

Then, according to definition 8, of operational laws (1) and (3), the Pythagorean double hierarchy
linguistic weighted averaging (PyDHLWA) operator is defined as:

PyDHLWA(AB1 , AB2 , ...., ABn) = $1AB1 ⊕$2AB2 , ....,⊕$nABn

=


S
τ

√
1−

n∏
i=1

(
1−( αi

τ )2
)$i

〈
O
δ

√
1−

n∏
i=1

1−( ki
δ

)2$i

〉,
S
τ

n∏
i=1

( βi
τ

)$i

〈
O
δ

n∏
i=1

( li
δ

)$i

〉
 .

Theorem 1. Let ABi =
(
S αi〈Oki〉

, S βi〈Oli〉

)
(i ∈ N) be the collection of PyFDHLVs and $ =

($1, $2, ..., $n)T represent the weight vectors of a given collection restricted to $i > 0,
n∑

i=1
$i = 1.

Then, the basic properties of PyDHLWA are as follows:
(1) (Idempotency): Suppose ABi =

(
S αi〈Oki〉

, S βi〈Oli〉

)
=

(
S α〈Ok〉, S β〈Ol〉

)
,∨i ∈ N then

PyDHLWA(AB1 , AB2 , ...., ABn) =
(
S α〈Ok〉, S β〈Ol〉

)
.

(2) (Monotonicity): Suppose CDi =

S ∗
αi

〈
O∗ki

〉, S ∗
βi

〈
O∗li

〉
 (i ∈ N) be another collection of PyFDHLVs such

that S ∗αi
≥ S αi S ∗βi

≤ S βi and O∗ki
≥ Oki ,O

∗
li
≤ Oli , then

PyDHLWA(AB1 , AB2 , ...., ABn) ≤ PyDHLWA(CD1 ,CD2 , ....,CDn).

(3) (Boundedness): Suppose A−B−i =
(
mini S αi〈mini Oki〉

,maxi S βi〈maxi Oli〉

)
and

A+
B+

i
=

(
(maxi S αi〈maxi Oki〉

,mini S βi〈mini Oli〉

)
are two collection PyFDHLVs,

then
A−B−i ≤ PyDHLWA(AB1 , AB2 , ...., ABn) ≤ A+

B+
i
.

Proof. Straight forward. �

Definition 11. Let ABi =
(
S αi〈Oki〉

, S βi〈Oli〉

)
(i ∈ N) be the collection of PyFDHLVs and $ =

($1, $2, ..., $n)T represent the weight vectors of a given collection restricted to $i > 0,
n∑

i=1
$i = 1.
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Then, according to Definition 8, of operational laws (1) and (3), the Pythagorean double hierarchy
linguistic order weighted averaging (PyDHLOWA) operator is defined as:

PyDHLOWA(AB1 , AB2 , ...., ABn) = $1AδB1 ⊕$2AδB2 , ....,⊕$nAδBn

=



S
τ

√
1−

n∏
i=1

(
1−

(
αδi
τ

)2
)$i

〈
O

δ

√√√√√
1−

n∏
i=1

1− kδi
δ

2
$i

〉,
S
τ

n∏
i=1

(
βδi
τ

)$i

〈
O
δ

n∏
i=1

 lδi
δ

$i

〉

,

where AδBi is the largest permuation from the given collecton.
Theorem 2. Let ABi =

(
S αi〈Oki〉

, S βi〈Oli〉

)
(i ∈ N) be the collection of PyFDHLVs and $ =

($1, $2, ..., $n)T represent the weight vectors of a given collection restricted to $i > 0,
n∑

i=1
$i = 1.

Then, the basic properties of PyDHLOWA are as follows:
(1) (Idempotency): Suppose ABi =

(
S αi〈Oki〉

, S βi〈Oli〉

)
=

(
S α〈Ok〉, S β〈Ol〉

)
,∨i ∈ N then

PyDHLOWA(AB1 , AB2 , ...., ABn) =
(
S α〈Ok〉, S β〈Ol〉

)
.

(2) (Monotonicity): Suppose CDi =

S ∗
αi

〈
O∗ki

〉, S ∗
βi

〈
O∗li

〉
 (i ∈ N) be another collection of PyFDHLVs such

that S ∗αi
≥ S αi S ∗βi

≤ S βi and O∗ki
≥ Oki ,O

∗
li
≤ Oli , then

PyDHLOWA(AB1 , AB2 , ...., ABn) ≤ PyDHLOWA(CD1 ,CD2 , ....,CDn).

(3) (Boundedness): Suppose A−B−i =
(
mini S αi〈mini Oki〉

,maxi S βi〈maxi Oli〉

)
and

A+
B+

i
=

(
(maxi S αi〈maxi Oki〉

,mini S βi〈mini Oli〉

)
are two collection PyFDHLVs,

then
A−B−i ≤ PyDHLOWA(AB1 , AB2 , ...., ABn) ≤ A+

B+
i
.

Proof. Straight forward. �

Definition 12. Let ABi =
(
S αi〈Oki〉

, S βi〈Oli〉

)
(i ∈ N) be the collection of PyFDHLVs with weight vectors

ω = (ω1, ω2, ..., ωn)T such that ωi > 0,
n∑

i=1
ωi = 1, and let $ = ($1, $2, ..., $n)T represent the

associated weight vectors of a given collection restricted to $i > 0,
n∑

i=1
$i = 1. Then, according

to Definition 8, of operational laws (1) and (3), the Pythagorean double hierarchy linguistic hybrid
averaging (PyDHLHA) operator is defined as:

PFDHLHA(AB1 , AB2 , ...., ABn) = $1ÄδB1 ⊕$2ÄδB2 , ....,⊕$nÄδBn

=



S
τ

√
1−

n∏
i=1

(
1−

(
α̈δi
τ

)2)$i
〈

O
δ

√√√√√
1−

n∏
i=1

1−
 k̈δi
δ

2

$i

〉,
S
τ

n∏
i=1

(
β̈δi
τ

)$i

〈
O
δ

n∏
i=1

 l̈δi
δ

$i

〉

.
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where ÄδBi = n$iAB1 represents the largest value of permutation from the given collection and n
denotes the balancing coefficient.
Theorem 3. Let ABi =

(
S αi〈Oki〉

, S βi〈Oli〉

)
(i ∈ N) be the collection of PyFDHLVs with weight vectors

ω = (ω1, ω2, ..., ωn)T such that ωi > 0,
n∑

i=1
ωi = 1, and let $ = ($1, $2, ..., $n)T represent the associated

weight vectors of a given collection restricted to $i > 0,
n∑

i=1
$i = 1. Then, the basic properties of

PyDHLHA are as follows:
(1) (Idempotency): Suppose ABi =

(
S αi〈Oki〉

, S βi〈Oli〉

)
=

(
S α〈Ok〉, S β〈Ol〉

)
,∨i ∈ N then

PyDHLHA(AB1 , AB2 , ...., ABn) =
(
S α〈Ok〉, S β〈Ol〉

)
.

(2) (Monotonicity): Suppose CDi =

S ∗
αi

〈
O∗ki

〉, S ∗
βi

〈
O∗li

〉
 (i ∈ N) be another collection of PyFDHLVs such

that S ∗αi
≥ S αi and S ∗βi

≤ S βi , O∗ki
≥ Oki ,O

∗
li
≤ Oli , then

PyDHLHA(AB1 , AB2 , ...., ABn) ≤ PyDHLHA(CD1 ,CD2 , ....,CDn).

(3) (Boundedness): Suppose A−B−i =
(
mini S αi〈mini Oki〉

,maxi S βi〈maxi Oli〉

)
and

A+
B+

i
=

(
(maxi S αi〈maxi Oki〉

,mini S βi〈mini Oli〉

)
are two collection PyFDHLVs,

then
A−B−i ≤ PyDHLHA(AB1 , AB2 , ...., ABn) ≤ A+

B+
i
.

Proof. Straight forward. �

Definition 13. Suppose AB1 =
(
S α1〈Ok1〉

, S β1〈Ol1〉

)
, AB2 =

(
S α2〈Ok2〉

, S β2〈Ol2〉

)
are two Pythagorean

double hierarchy linguistic sets. Then, the Hamming distance between any two PyDHLTSs AB1 and
AB2 for any ∆ > 0 (∈ R) is defined as follows:

d(AB1 , AB2) =


1

4n


∣∣∣∣S ( α1

τ )2 − S ( α2
τ )2

∣∣∣∣∆ +

∣∣∣∣∣∣O(
k1
δ

)2 − O(
k2
δ

)2

∣∣∣∣∣∣∆ +∣∣∣∣∣∣S (
β1
τ

)2 − S (
β2
τ

)2

∣∣∣∣∣∣∆ +

∣∣∣∣∣∣O(
l1
δ

)2 − O(
l2
δ

)2

∣∣∣∣∣∣∆


1
∆


. (4.1)

5. Conditional probablity based on GRA method

The TWD approach depends on two main things, namely loss function (LF) and conditional
probability. To find the conditional probability first we defined PyDHLTSs and let U = {u1, u2, ...., um}

be a set of alternatives and C = {Ψ1,Ψ2, ....,Ψn} be a criteria in the form of PyDHLTSs with unknown

weights vectors ω j = (ω1, ω2, ..., ωn) subject to ωi,
n∑

j=1
ωi = 1. To provide an evaluation report for

each alternative based on criteria there exists an e number of decision experts represented by a set

Ep = {E1, E2, ..., Ee} with unknown weight vector $p = ($1, $2, ..., $e) subject to $p,
e∑

p=1
$p = 1.
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Then the expert evaluation matrix in the form of PyDHLTS is represented by Mp = [Ap
Bi j

]m×n. The DM
process is categorized into the following four phases.
Phase I.

In this phase, first construct the decision experts matrix in the form of PyDHLTSs with unknown
weights for each decision expert. Thus, when the weights of decision experts are unknown it is very
difficult to make an accurate decision. Hence it is important to evaluate the weights of each decision
expert. For this, we first construct the ideal opinion matrix, right ideal ideal opinion matrix and left
ideal opinion matrix, represented by IO, RIO and LIO respectively. Then we determine the distance
measure denoted by dIO(p)

i , dRIO(p)
i and dLIO(p)

i from decision experts matrix Mp to IO, RIO and LIO
respectively. Further, we find the closeness index and at last calculate the weights of each decision
expert.

The stepwise details are as follows:
(a) Construct decision experts matrix in the form of PyDHLTSs as follows.

Mp = [ABi j]m×n =

u1

u2
...

um



Ψ1 Ψ2 ... Ψn

Ap
B11

Ap
B12

... Ap
B1n

Ap
B21

Ap
B22

... Ap
B2n

...
...

. . .
...

Ap
Bm1

Ap
Bm2

... Ap
Bmn


where Ap

Bi j
=

S p

αi j

〈
Op

ki j

〉, S p

βi j

〈
Op

li j

〉
 , (i = 1, 2, ...m) ( j = 1, 2, ...n) (p = 1, 2, ...e) .

(b) Construct the ideal opinion matrix IO that is closer to each decision expert matrix.

IO =


IO12 IO12 ... IO1n

IO21 IO22 ... IO2n
...

...
. . .

...

IOm1 IOm2 ... IOmn


where

IOi j =

e∑
p=1

1/e

S p

αi j

〈
Op

ki j

〉, S p

βi j

〈
Op

li j

〉


=



S
τ


√

1−
e∏

p=1

(
1−

( αi j
τ

)2)1/e

〈

O
δ

√√√√
1−

e∏
p=1

1−( ki j
δ

)21/e
〉,

S
τ

e∏
ı=1

(
βi j
τ

)1/e
〈

O
δ

e∏
ı=1

( li j
δ

)1/e
〉


. (5.1)

(c) Evaluate the right ideal RIO and left ideal LIO opinion matrices by using Eqs (5.2) and (5.3) as
follows:

RIO =


RIO12 RIO12 ... RIO1n

RIO21 RIO22 ... RIO2n
...

...
. . .

...

RIOm1 RIOm2 ... RIOmn
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and

LIO =


LIO12 LO12 ... LIO1n

LIO21 LO22 ... LIO2n
...

...
. . .

...

LIOm1 LIOm2 ... LIOmn


whereas

RIOi j =

max
p

S c

S p

αi j

〈
Op

ki j

〉, S p

βi j

〈
Op

li j

〉

 , (5.2)

and

LIOi j =

min
p

S c

S p

αi j

〈
Op

ki j

〉, S p

βi j

〈
Op

li j

〉

 . (5.3)

(d) Calculate the distance measure dIO(p)
i , dRIO(p)

i and dLIO(p)
i from decision experts matrix Mp from

IO, RIO and LIO by Eq (4.1).
(e) Find the closeness index CIp by using the [59].

CIp =

∑m
i=1 dRIO(p)

i +
∑m

i=1 dLIO(p)
i∑m

i=1 dIO(p)
i +

∑m
i=1 dRIO(p)

i +
∑m

i=1 dLIO(p)
i

. (5.4)

(f) Evaluate the experts’ weight as follows:

$p =
CIp∑e

p=1 CIp
(5.5)

Phase II.
(a) Aggregate all the expert matrices Mp to single matrix M by applying Pythagorean double hierarchy
linguistic weighted averaging operators.

M = [ABi j]m×n =

u1

u2
...

um



Ψ1 Ψ2 ... Ψn

AB11 AB12 ... AB1n

AB21 AB22 ... AB2n
...

...
. . .

...

ABm1 ABm2 ... ABmn


where i = 1, 2, ...,m and j = 1, 2, ..., n.
(b) To find the criteria weights ω j first we evaluate the score of aggregated matrix then apply Renyi
entropy (E j) [51] to find the entropy measure as follows:

E j =
1

1 − ϕ
log

m∑
i=1

S c
〈
ABi j

〉ϕ
. (5.6)

The criteria weights are evaluated as.

ω j =

(
1 − E j

)
m∑

j=1

(
1 − E j

) . (5.7)
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Phase III.
CONDITIONAL PROBABILITY:
(a) Calculate the positive ideal solution (PIS ) and negative ideal solution (NIS ) of PyDHLTSs, i.e.
U+ = ( u+

1 , u
+
2 , ..., u

+
n ) and U− = ( u−1 , u

−
2 , ..., u

−
n ) by Eqs (5.8) and (5.9).

u+
j = max

i
S c

(
S αi j

〈
Oki j

〉, S βi j
〈
Oli j

〉) , (5.8)

and
u−j = min

i
S c

(
S αi j

〈
Oki j

〉, S βi j
〈
Oli j

〉) (5.9)

where ( j = 1, ..., n) . If the TWDs, PIS and NIS are added together, they are equal to the set of states,
A and Ac.
(b) Calculate the grey relational coefficient (GRC) on the jth criterion among ui and the PIS U+, PIS U−

by Eqs (5.10)–(5.14) are as follows:

g+
i j =

min
i

(
min

j

)
d+

i j + ϑmax
i

(
max

j

)
d+

i j

d+
i j + ϑmax

i

(
max

j

)
d+

i j

(5.10)

and

G+
i =

m∑
j=1

ω jg+
i j. (5.11)

Similarly

g−i j =

min
i

(
min

j

)
d−i j + ϑmax

i

(
max

j

)
d−i j

d−i j + ϑmax
i

(
max

j

)
d−i j

(5.12)

and

G−i =

m∑
j=1

ω jg−i j (5.13)

where d+
i j = d

(
ui j, u+

j

)
, d−i j = d

(
ui j, u−j

)
and ϑ = 0.5 (i = 1, 2, ...,m) ( j = 1, 2, ..., n) .

(c) The relative rational degree (RRD) is denoted by zi.

zi =
G+

i

G+
i + G−i

. (5.14)

(d) Where zi is considered to be the conditional probability of an object lies in state A, that is

Pr (A/xi) = zi (5.15)

such that 0 ≤ Pr (A/xi) ≤ 1.
Phase IV.
DECISION MAKING based on DHLDTRS Model with Pythagorean fuzzy set:
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As from the definition of PyDHLTS, it is a combination of a two sets, such as the first hierarchy and
second hierarchy linguistic term sets, which can describe uncertainty and ambiguity more flexibly than
a single term set. Here, we address the loss functions in TWDs by using Pythagorean double hierarchy
linguistic numbers (PyDHLTNs) as well as how to build a new DTRS model for PyDHLTNs. This
model consists of two states {A, Ac} which express whether an element belongs to A or not, with regard
to three actions like

{
ap, ab, an

}
. Where ap, ab and an shows the action which is applied for determining

the objects ui, that is, ap indicates ui belong to positive region POS (A), ab indicates ui belong to
boundary region BND(A) and an shows ui is in negative region NEG(A) respectively. The overall
situation of an object is classified by the states of a set, while the judgment is represented by the action.
Here we determined the loss function for PyDHLTSs, which are given in Table 1.

Table 1. Loss function.

U A (P) Ac (N)
ap }ρpp =

〈
S αpp〈Okpp〉

, S βpp〈Oıpp〉

〉
}ρpn =

〈
S αpn〈Okpn〉

, S βpn〈Oıpn〉

〉
ab }ρbp =

〈
S αbp

〈
Okbp

〉, S βbp
〈
Oıbp

〉〉 }ρbn =
〈
S αbn〈Okbn〉

, S βbn〈Oıbn〉

〉
an }ρnp =

〈
S αnp〈Oknp〉

, S βnp〈Oınp〉

〉
}ρnn =

〈
S αnn〈Oknn〉

, S βnn〈Oınn〉

〉

From Table 1, we see that the determined LF are in the form PyDHTN, and }ρpp , }ρbp and }ρnp

are the loss degrees generated by taking actions of ap, ab and an for u given state A, with PyDHTN
settings. Similarly, }ρpn , }ρbn and }ρnn reflect the loss degrees generated by conducting the same actions
on u specific to state Ac. Hence, here }ρ is non empty. According to the definition of PyDHTN and
DTRSs [43, 52] the acceptable relation are as follows:

}ρpp ≤ }ρbp < }ρnp , (5.16)

}ρnn ≤ }ρbn < }ρpn . (5.17)

That is, the loss degrees of incorrect decision are larger than the loss degrees of delayed decision,
and both of these loss degrees are larger than the loss degrees of correct judgment.

Conditional probabilities are an important part of the Bayesian decision-making methods [34, 35].
Pr (A/ui),Pr (Ac/ui) indicates the conditional probablity belonging to A and Ac respectively, subject

to Pr (A/ui) + Pr (Ac/ui) = 1. The expected loss for the corresponding action Rr (a5/ui) where
(5 = a, b, n) can be computed for a given object ui as follows:

Rr

(
ap/ui

)
= Pr (A/ui) � }ρpp ⊕ Pr (Ac/ui) � }ρpn , (5.18)

Rr (ab/ui) = Pr (A/ui) � }ρbp ⊕ Pr (Ac/ui) � }ρbn , (5.19)

Rr (an/ui) = Pr (A/ui) � }ρnp ⊕ Pr (Ac/ui) � }ρnn . (5.20)

The minimum loss decision laws can be derived by using the result given [31–33], which are as follows;
(1) Decide ui belong to POS (A), indicate that the action are acceptable if

S c
(
Rr

(
ap/ui

))
< S c (Rr (ab/ui)) < S c (Rr (an/ui)) . (5.21)
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(2) Decide ui belong to BND(A), shows the action are delayed if

S c (Rr (ab/ui)) < S c
(
Rr

(
ap/ui

))
< S c (Rr (an/ui)) . (5.22)

(3) Decide ui belong to NEG(A), represents the action is rejected if

S c (Rr (an/ui)) < S c
(
Rr

(
ap/ui

))
< S c (Rr (ab/ui)) . (5.23)

The graphical framework of the proposed method is given in Figure 1.

Figure 1. Graphical framework of proposed method.

6. Application of proposed method for selecting sustainable transportation

A practical DM problem concerning the selection of sustainable transportation is considered as an
example in this section to validate the applicability and practicality of the developed methodology.

6.1. Case study

In this section, we apply the proposed techniques the real-world transportation problems [28]
to demonstrate their effectiveness in solving the problem of sustainable transportation investment
decision-making based on TWDs in the form of PyDHLTS. To address the problem, let there be three
experts represented by a set {E1, E2, E3} to assess four transport investments considered as alternatives
denoted by a set U = {u1, u2, u3, u4} for detail description [58] based on four criteria represented by a
set C = {Ψ1,Ψ2,Ψ3,Ψ4}.

The criteria used for evaluation are based on a comprehensive review of some of the recent studies
on this subject [58] which are given in Table 2.
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Table 2. Criteria evaluation of three factors in sustainability.

Economic Ψ1= Reduction in costs

Social
Ψ2= Basic accessibility
Ψ3= Safety

Environmental Ψ4= Efficiency resources

Due to the confidentiality of the information, only limited project details are presented. Assuming
that the experts’ weight vectors $p and the criteria weights ω j are totally unknown, the evaluated
value of candidates while considering criteria are directly provided by judgments of decision experts.
Now we apply the above problem to TWDs based on PyDHLTSS setting. The stepwise details are as
follows.
Phase I.
(a) Construct the experts evaluation matrix in the form of double hierarchy Pythagorean linguistic term
sets, so the linguistic term set is denoted by S = {s0 = medium, s1 = low, s2 = sightly low, s3 = very
low, s4 = high , s5 = slightly high, s6 = very high} and O = {o0 = right, o1 = only right, o2 =

much, o3 = very much, o4 = little, o5 = just little, o6 = extermely little} are defined based on the
following set as follows in Tables 3–5.

Table 3. Expert matrix E1.

U Ψ1 Ψ2 Ψ3 Ψ4

u1
〈
S 1〈O2〉, S 4〈O3〉

〉 〈
S 4〈O2〉, S 0〈O3〉

〉 〈
S 6〈O2〉, S 0〈O2〉

〉 〈
S 1〈O5〉, S 4〈O0〉

〉
u2

〈
S 2〈O3〉, S 4〈O2〉

〉 〈
S 5〈O3〉, S 1〈O2〉

〉 〈
S 2〈O4〉, S 3〈O1〉

〉 〈
S 3〈O1〉, S 3〈O2〉

〉
u3

〈
S 4〈O2〉, S 1〈O3〉

〉 〈
S 2〈O4〉, S 2〈O1〉

〉 〈
S 3〈O2〉, S 1〈O4〉

〉 〈
S 4〈O2〉, S 1〈O0〉

〉
u4

〈
S 6〈O4〉, S 0〈O1〉

〉 〈
S 4〈O5〉, S 1〈O0〉

〉 〈
S 5〈O2〉, S 1〈O3〉

〉 〈
S 0〈O3〉, S 4〈O2〉

〉

Table 4. Expert matrix E2.

U Ψ1 Ψ2 Ψ3 Ψ4

u1
〈
S 0〈O3〉, S 2〈O2〉

〉 〈
S 1〈O3〉, S 0〈O2〉

〉 〈
S 2〈O2〉, S 0〈O3〉

〉 〈
S 1〈O4〉, S 3〈O0〉

〉
u2

〈
S 0〈O1〉, S 2〈O2〉

〉 〈
S 1〈O2〉, S 4〈O3〉

〉 〈
S 1〈O2〉, S 1〈O3〉

〉 〈
S 2〈O1〉, S 2〈O4〉

〉
u3

〈
S 3〈O1〉, S 2〈O4〉

〉 〈
S 2〈O3〉, S 2〈O2〉

〉 〈
S 1〈O3〉, S 2〈O1〉

〉 〈
S 0〈O1〉, S 6〈O1〉

〉
u4

〈
S 5〈O1〉, S 0〈O4〉

〉 〈
S 1〈O2〉, S 2〈O4〉

〉 〈
S 2〈O3〉, S 1〈O3〉

〉 〈
S 1〈O3〉, S 2〈O1〉

〉
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Table 5. Expert matrix E3.

U Ψ1 Ψ2 Ψ3 Ψ4

u1
〈
S 2〈O1〉, S 2〈O3〉

〉 〈
S 0〈o1〉, S 2〈O1〉

〉 〈
S 1〈o2〉, S 3〈O2〉

〉 〈
S 0〈o3〉, S 2〈O2〉

〉
u2

〈
S 3〈O4〉, S 3〈O2〉

〉 〈
S 2〈O3〉, S 1〈O2〉

〉 〈
S 3〈O4〉, S 2〈O1〉

〉 〈
S 3〈O4〉, S 1〈O0〉

〉
u3

〈
S 2〈O3〉, S 2〈O1〉

〉 〈
S 3〈O2〉, S 3〈O2〉

〉 〈
S 2〈O3〉, S 2〈O0〉

〉 〈
S 2〈O6〉, S 2〈O0〉

〉
u4

〈
S 1〈O3〉, S 1〈O2〉

〉 〈
S 3〈O4〉, S 1〈O2〉

〉 〈
S 4〈O2〉, S 1〈O0〉

〉 〈
S 3〈O4〉, S 3〈O1〉

〉
(b) Calculate the ideal opinion matrix IO by Eq (5.1) as shown in Table 6.

Table 6. Ideal opinion matrix.

U Ψ1 Ψ2 Ψ3 Ψ4

u1

〈
S 1.31.〈O2.20〉,

S 2.52〈O2.62〉

〉 〈
S 2.58〈O2.20〉,

S 0.00〈O1.82〉

〉 〈
S 6.00〈O1.99〉,

S 0.00〈O2.29〉

〉 〈
S 0.82〈O4.23〉,

S 2.89〈O0.00〉

〉
u2

〈
S 2.13〈O3.06〉,

S 2.89〈O2.00〉

〉 〈
S 3.59〈O2.72〉,

S 1.59〈O2.29〉

〉 〈
S 2.20〈O3.55〉,

S 1.82〈O1.44〉

〉 〈
S 2.72〈O2.64〉,

S 1.82〈O0.00〉

〉
u3

〈
S 3.18〈O2.20〉,

S 1.59〈O2.29〉

〉 〈
S 2.40〈O3.18〉,

S 2.29〈O1.59〉

〉 〈
S 2.20〈O2.72〉,

S 1.59〈O0.00〉

〉 〈
S 2.75〈O6.00〉,

S 2.29〈O0.00〉

〉
u4

〈
S 6.00〈O3.06〉,

S 0.00〈O2.00〉

〉 〈
S 3.06〈O4.10〉,

S 1.26〈O0.00〉

〉 〈
S 4.10〈O2.40〉,

S 1.00〈O0.00〉

〉 〈
S 1.90〈O3.40〉,

S 2.89〈O1.26〉

〉

(c) By Eqs (5.2) and (5.3) the right and left ideal opinion matrixs RIO, LIO are evaluated in Tables 7
and 8 as follows:

Table 7. Right ideal matrix.

U Ψ1 Ψ2 Ψ3 Ψ4

u1
〈
S 0〈O3〉, S 2〈O2〉

〉 〈
S 4〈O2〉, S 0〈O3〉

〉 〈
S 6〈O2〉, S 0〈O2〉

〉 〈
S 1〈O5〉, S 4〈O0〉

〉
u2

〈
S 3〈O4〉, S 3〈O2〉

〉 〈
S 5〈O3〉, S 1〈O2〉

〉 〈
S 3〈O4〉, S 2〈O1〉

〉 〈
S 3〈O4〉, S 1〈O0〉

〉
u3

〈
S 4〈O2〉, S 1〈O3〉

〉 〈
S 2〈O4〉, S 2〈O1〉

〉 〈
S 2〈O3〉, S 2〈O0〉

〉 〈
S 2〈O6〉, S 2〈O0〉

〉
u4

〈
S 6〈O4〉, S 0〈O1〉

〉 〈
S 4〈O5〉, S 1〈O0〉

〉 〈
S 5〈O2〉, S 1〈O3〉

〉 〈
S 3〈O4〉, S 3〈O1〉

〉
Table 8. Left ideal matrix.

U Ψ1 Ψ2 Ψ3 Ψ4

u1
〈
S 1〈O2〉, S 4〈O3〉

〉 〈
S 0〈O1〉, S 2〈O1〉

〉 〈
S 1〈O2〉, S 3〈O2〉

〉 〈
S 0〈O3〉, S 2〈O2〉

〉
u2

〈
S 0〈O1〉, S 2〈O2〉

〉 〈
S 1〈O2〉, S 4〈O3〉

〉 〈
S 1〈O2〉, S 1〈O3〉

〉 〈
S 2〈O1〉, S 2〈O4〉

〉
u3

〈
S 3〈O1〉, S 2〈O4〉

〉 〈
S 3〈O2〉, S 3〈O2〉

〉 〈
S 3〈O2〉, S 1〈O4〉

〉 〈
S 0〈O1〉, S 6〈O1〉

〉
u4

〈
S 1〈O3〉, S 1〈O2〉

〉 〈
S 1〈O2〉, S 2〈O4〉

〉 〈
S 2〈O3〉, S 1〈O3〉

〉 〈
S 0〈O3〉, S 4〈O2〉

〉
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(d–f) Based on Eq (4.1) we determine the distance measure denoted by dIO(p)
i , dRIO(p)

i and dLIO(p)
i

and, using Eq (5.4) , we find the closeness index CIp. Then by using (5.5) , the weights of experts are
computed as follows:

$1 = .34, $2 = .31, $3 = .35.

Phase II.
(a) Aggregate all the expert matrices MP to single matrix M by using PyDHLTWA operators as follows
in Table 9.

Table 9. Aggregated matrix M.

U Ψ1 Ψ2 Ψ3 Ψ4

u1

〈
S 1.34〈O2.16〉,

S 2.53〈O2.65〉

〉 〈
S 2.60〈O2.16〉,

S 0.00〈O1.80〉

〉 〈
S 6.00〈O2.00〉,

S 0.00〈O2.27〉

〉 〈
S 0.81〈O4.23〉,

S 2.87〈O0.00〉

〉
u2

〈
S 2.17〈O3.11〉,

S 2.92〈O2.00〉

〉 〈
S 3.62〈O2.75〉,

S 1.54〈O2.27〉

〉 〈
S 2.24〈O3.59〉,

S 1.85〈O1.41〉

〉 〈
S 2.75〈O2.69〉,

S 1.80〈O0.00〉

〉
u3

〈
S 3.18〈O2.24〉,

S 1.58〈O2.23〉

〉 〈
S 2.42〈O3.18〉,

S 2.30〈O1.58〉

〉 〈
S 2.22〈O2.72〉,

S 1.58〈O0.00〉

〉 〈
S 2.78〈O6.00〉,

S 2.22〈O0.00〉

〉
u4

〈
S 6.00〈O3.09〉,

S 0.00〈O1.96〉

〉 〈
S 3.09〈O4.14〉,

S 1.24〈O0.00〉

〉 〈
S 4.14〈O2.38〉,

S 1.00〈O0.00〉

〉 〈
S 1.93〈O3.42〉,

S 2.92〈O1.27〉

〉

(b) Calculate the score function of the aggregated matrix M, and then apply Eq (5.6) to determine
entropy measure and calculate criteria weights by using Eq (5.7) as follows:

ω1 = .29, ω2 = .17, ω3 = .26, ω4 = .28.

Phase III.
(a) By applying Eqs (5.8) and (5.9) , the PIS and NIS solutions are calculated in Table 10.

Table 10. Positive and negative ideal solution.

Ψ1 Ψ2 Ψ3 Ψ4

U+

〈
S 6.00〈O3.09〉,

S 0.00〈O1.96〉

〉 〈
S 3.62〈O2.75〉,

S 0.00〈O1.80〉

〉 〈
S 6.00〈O2.00〉,

S 0.00〈O2.27〉

〉 〈
S 2.78〈O6.00〉,

S 1.80〈O0.00〉

〉
U−

〈
S 1.34〈O2.16〉,

S 2.30〈O1.58〉

〉 〈
S 2.42〈O3.18〉,

S 0.00〈O1.80〉

〉 〈
S 2.22〈O2.72〉,

S 1.85〈O1.41〉

〉 〈
S 0.81〈O4.23〉,

S 2.92〈O1.27〉

〉

(b–d) Combined, the TWDs, PIS and NIS are equivalent to state sets, i.e., A and Ac. The relative
rational degree RRD of ui, the PIS and NIS represented by zi and conditional probability Pr (A/ui)
based on GRA that the object belong to the state A, are computed by the Eqs (5.10)–(5.15) in Table 11.
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Table 11. GRC and RRD and its Conditional probablity.

G+
i .579 .418 .596 .702

G−i .690 .659 .729 .636
zi .456 .388 .450 .525
Pr (A/ui) .456 .388 .450 .525

Phase IV.
(a) We constructed the loss functions matrix in the form of PyDHLTNs, given in Table 12 as follows:

Table 12. Loss function.

A (P) Ac (N)
ap

〈
S 1.34〈O2.16〉, S 2.53〈O2.65〉

〉 〈
S 2.53〈O2.65〉, S 1.34〈O2.16〉

〉
ab

〈
S 1.93〈O3.42〉, S 2.92〈O1.27〉

〉 〈
S 2.92〈O1.27〉, S 1.93〈O3.42〉

〉
an

〈
S 2.17〈O3.11〉, S 2.92〈O2.00〉

〉 〈
S 2.92〈O2.00〉, S 2.17〈O3.11〉

〉
(b) Based on PyDHLTA operational laws, we derived the expected loss of each action by applying
Eqs (5.18)–(5.20) as follows in Table 13.

Table 13. Expected losses.

U u1 u2 u3 u4

S c
(
Rr

(
ap/ui

))
.0423 .0669 .0447 .0166

S c (Rr (ab/ui)) .0808 .0596 .0789 .0987
S c (Rr (an/ui)) .0342 .0258 .0334 .0411

(c) Determine the decision result for each object further using the decision rules (1)–(3) based on the
minimum loss principle. Thus according to rules (1)–(3), the final result of each object’s decision
is determined as POS (A) = {u4}, NEG(A) = {u1, u2, u3} and BND(A) = φ. From the above result we
analyze that u4 are considered to be selected and u1, u2 and u3 are assumed to be rejected. The graphical
representation of the expected loss function is given in Figure 2.

Figure 2. Graphical representation of the expected loss function.
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6.2. Selection of third party logistic provider based on proposed method

Here, we provide a real-world problem on selecting a third-party logistics provider to verify the
applicability and practicality of the developed method. Logistics management is essential to any
business sector as it is an integral part of the supply chain. It is the process of organizing, implementing
and supervising the smooth and efficient flow of goods, services and related information from the point
of origin to the point of consumption, with the aim of satisfying the needs of consumers [60]. Logistics
activities consist of many activities, most of which focus on transportation and storage. Transportation
is moving resources from one location to another location. The role of transport in the supply chain
is to focus on the movement of product from the seller to the consumer, which must be satisfied with
the right time and the quality of the goods. The storage is managing the area and resources related to
keeping the product and material in perfect condition before delivery to the customer with the lowest
cost. Many organizations usually choose an outsourcing company to manage their logistics activities.
Here, we consider a case company that offers logistics services. The case company, which was founded
in 1988 and is located in Hangzhou, is one of China’s top 3 producers of medical equipment and
devices [61]. The company has been working to help those with hearing loss for more than 30 years,
and it mostly concentrates on hearing industry devices. They outsource logistics service providers, and
their shipping goods include devices, equipment, accessories, and marketing items, among other things.
For this, three experts have been invited by the company to give an evaluation report for four different
third party logistic providers (3PLPs) as alternatives, each with its own desired characteristics, such as
u1 =

(
delivery reliability

)
, u2 =

(
transportation cost

)
, u3 =

(
Rethinking risk

)
and u4 =

(
damage rate

)
.

When choosing logistics partners, since the company’s major products are expensive, fragile and small
in size, it is understandable that the following criteria should be considered.

(1) Ψ1 = Cost/price,

(2) Ψ2 = Performance ,

(3) Ψ3 = Quality,

(4) Ψ4 = Service capacity.

To select the best alternative we used the proposed method to make the decision easier.
The stepwise details are as follows.

Phase I.

(a) Construct experts evaluation matrix in the form of double hierarchy Pythagorean linguistic term
sets, as given in Tables 14–16.

Table 14. Expert matrix E1.

U Ψ1 Ψ2 Ψ3 Ψ4

u1
〈
S 1〈O5〉, S 4〈O0〉

〉 〈
S 1〈O2〉, S 4〈O3〉

〉 〈
S 6〈O2〉, S 0〈O2〉

〉 〈
S 4〈O2〉, S 0〈O3〉

〉
u2

〈
S 3〈O1〉, S 3〈O2〉

〉 〈
S 2〈O3〉, S 4〈O2〉

〉 〈
S 2〈O4〉, S 3〈O1〉

〉 〈
S 5〈O3〉, S 1〈O2〉

〉
u3

〈
S 4〈O2〉, S 1〈O0〉

〉 〈
S 4〈O2〉, S 1〈O3〉

〉 〈
S 3〈O2〉, S 1〈O4〉

〉 〈
S 2〈O4〉, S 2〈O1〉

〉
u4

〈
S 0〈O3〉, S 4〈O2〉

〉 〈
S 6〈O4〉, S 0〈O1〉

〉 〈
S 5〈O2〉, S 1〈O3〉

〉 〈
S 4〈O5〉, S 1〈O0〉

〉
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Table 15. Expert matrix E2.

U Ψ1 Ψ2 Ψ3 Ψ4

u1
〈
S 1〈O4〉, S 3〈O0〉

〉 〈
S 0〈O3〉, S 2〈O2〉

〉 〈
S 2〈O2〉, S 0〈O3〉

〉 〈
S 1〈O3〉, S 0〈O2〉

〉
u2

〈
S 2〈O1〉, S 2〈O4〉

〉 〈
S 0〈O1〉, S 2〈O2〉

〉 〈
S 1〈O2〉, S 1〈O3〉

〉 〈
S 1〈O2〉, S 4〈O3〉

〉
u3

〈
S 0〈O1〉, S 6〈O1〉

〉 〈
S 3〈O1〉, S 2〈O4〉

〉 〈
S 1〈O3〉, S 2〈O1〉

〉 〈
S 2〈O3〉, S 2〈O2〉

〉
u4

〈
S 1〈O3〉, S 2〈O1〉

〉 〈
S 5〈O1〉, S 0〈O4〉

〉 〈
S 2〈O3〉, S 1〈O3〉

〉 〈
S 1〈O2〉, S 2〈O4〉

〉

Table 16. Expert matrix E3.

U Ψ1 Ψ2 Ψ3 Ψ4

u1
〈
S 2〈O1〉, S 2〈O3〉

〉 〈
S 0〈o1〉, S 2〈O1〉

〉 〈
S 1〈o2〉, S 3〈O2〉

〉 〈
S 0〈o3〉, S 2〈O2〉

〉
u2

〈
S 3〈O4〉, S 3〈O2〉

〉 〈
S 2〈O3〉, S 1〈O2〉

〉 〈
S 3〈O4〉, S 2〈O1〉

〉 〈
S 3〈O4〉, S 1〈O0〉

〉
u3

〈
S 2〈O3〉, S 2〈O1〉

〉 〈
S 3〈O2〉, S 3〈O2〉

〉 〈
S 2〈O3〉, S 2〈O0〉

〉 〈
S 2〈O6〉, S 2〈O0〉

〉
u4

〈
S 1〈O3〉, S 1〈O2〉

〉 〈
S 3〈O4〉, S 1〈O2〉

〉 〈
S 4〈O2〉, S 1〈O0〉

〉 〈
S 3〈O4〉, S 3〈O1〉

〉
Phase II.
(a) By applying the proposed PyDHLTWA aggregation operator and considering the same expert and
criteria weight as we calculated in above example like$ = (.34, .31, .35)T aggregatate all the individual
decision experts matrix as given in Table 17.

Table 17. Aggregated matrix.

U Ψ1 Ψ2 Ψ3 Ψ4

u1

〈
S 1.44〈O4.01〉,

S 2.87〈O0〉

〉 〈
S 0.58〈O2.16〉,

S 2.53〈O1.80〉

〉 〈
S 6.00〈O2.00〉,

S 0.00〈O2.27〉

〉 〈
S 2.60〈O2.71〉,

S 0.00〈O2.29〉

〉
u2

〈
S 2.74〈O2.68〉,

S 2.64〈O2.47〉

〉 〈
S 1.67〈O2.59〉,

S 1.98〈O2.00〉

〉 〈
S 2.23〈O3.58〉,

S 1.85〈O1.40〉

〉 〈
S 3.79〈O3.22〉,

S 1.53〈O0.00〉

〉
u3

〈
S 2.77〈O2.23〉,

S 2.22〈O0〉

〉 〈
S 3.40〈O1.76〉,

S 1.82〈O2.84〉

〉 〈
S 2.22〈O2.71〉,

S 1.58〈O0.00〉

〉 〈
S 2.00〈O6.00〉,

S 2.00〈O0.00〉

〉
u4

〈
S 0.81〈O3.00〉,

S 1.98〈O1.61〉

〉 〈
S 6.00〈O3.49〉,

S 0.00〈O1.95〉

〉 〈
S 4.13〈O2.37〉,

S 1.00〈O0.00〉

〉 〈
S 3.09〈O4.13〉,

S 1.82〈O0.00〉

〉

Phase III.
(a) Utilizing Eqs (5.8) and (5.9) to calculate PIS and NIS solutions as shown in Table 18.
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Table 18. Positive and negative ideal solution.

Ψ1 Ψ2 Ψ3 Ψ4

U+

〈
S 1.44〈O4.01〉,

S 2.87〈O0〉

〉 〈
S 6.00〈O3.49〉,

S 0.00〈O1.95〉

〉 〈
S 6.00〈O2.00〉,

S 0.00〈O2.27〉

〉 〈
S 2.00〈O6.00〉,

S 2.00〈O0.00〉

〉
U−

〈
S 2.74〈O2.68〉,

S 2.64〈O2.47〉

〉 〈
S 0.58〈O2.16〉,

S 2.53〈O1.80〉

〉 〈
S 2.22〈O2.71〉,

S 1.58〈O0.00〉

〉 〈
S 2.60〈O2.71〉,

S 0.00〈O2.29〉

〉

(c–d) According to the Eqs (5.10)–(5.15) and criteria weights ω = (.29, .17, .26, .28)T determined
relative rational degree RRD of ui, the PIS and NIS represented by zi and determined conditional
probability Pr (A/ui) by GRA that the object belong to the state A, as shown in Table 19.

Table 19. GRC and RRD and its Conditional probablity.

G+
i .713 .421 .602 .615

G−i .702 .776 .663 .550
zi .503 .351 .475 .528
Pr (A/ui) .503 .351 .475 .528

Phase IV.
(a) The loss functions matrix in the form of PyDHLTNs is calculated in Table 20.

Table 20. Loss function.

A (P) Ac (N)
ap

〈
S 1.44〈O4.01〉, S 2.87〈O3.00〉

〉 〈
S 2.53〈O2.65〉, S 1.34〈O2.16〉

〉
ab

〈
S 1.93〈O4.50〉, S 2.92〈O1.00〉

〉 〈
S 2.92〈O1.27〉, S 1.93〈O3.42〉

〉
an

〈
S 2.17〈O3.00〉, S 2.92〈O2.90〉

〉 〈
S 2.92〈O3.00〉, S 2.17〈O2.00〉

〉
(b) Based on PyDHLTA operational laws, we derived the expected loss of each action by applying
Eqs (5.18)–(5.20) as follows in Table 21.

Table 21. Expected losses.

U u1 u2 u3 u4

S c
(
Rr

(
ap/ui

))
.1662 .1842 .1702 .1070

S c (Rr (ab/ui)) .2767 .1913 .2631 .2877
S c (Rr (an/ui)) .1151 .1620 .1242 .1624

(c) According to the minimum loss principles (1)–(3), the final result of each object is POS (A) = {u4},
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NEG(A) = {u1, u2, u3} , and BND(A) = φ. Hence, u4 are considered to be selected and u1, u2 and u3 are
assumed to be rejected.

7. Comparision section

In this section, we discussed the advantages and implementation of the proposed method by
comparing it with the TOPSIS method and TODIM method.

7.1. Comparision with TOPSIS method

Here, we apply TOPSIS method proposed by Liang et al. [47] to determine the conditional
probability. Hence, this comparison is made by considering the same weights for PIS and NIS we
calculated in our proposed method. Then, we used the TOPSIS method to find out the conditional
probability as shown in Table 22.

Table 22. Condinatioal probablity with topsis method.

d(ui, u+) .177 .247 .165 .112
d(ui, u−) .112 .090 .094 .146
z(ui) .388 .265 .365 .563
Pr (A/ui) .388 .265 .365 .563

Next, we consider the same LF as obtained in Table 20, and the expected loss are calculated in
Table 23.

Table 23. Score of expected losses.

U u1 u2 u3 u4

S c
(
Rr

(
ap/ui

))
.067 .109 .075 .001

S c (Rr (ab/ui)) .059 .011 .051 .107
S c (Rr (an/ui)) .025 .006 .022 .004

Hence, the final result of each object’s decision can be determined according to the minimum loss
principle, (1)–(3), that is POS (A) = {u4}, NEG(A) {u1, u2, u3} and BND(A) = φ, which is same as those
of our proposed method. From Table 23 it is clear that if we apply our proposed method to any other
approach like TOPSIS, the result will be the same. Hence it is analyzed that our proposed method is
efficient and practical to solve the ambiguity and uncertainty in DM problems.

7.2. Comparision with TODIM method

In this section, to demonstrate the effectiveness of the developed decision-making technique,
we compare it with the existing TODIM [54] technique. Therefore, this comparison is made by
considering the same weights and evaluation matrices of the decision experts as we have calculated
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in our proposed method. The detailed steps of the TODIM method are as follows.
Step 1. Determine the relative weight ω jr of the criteria Ψ j to Ψr by the given formula.

ω jr =
ω j

ωr
, where ωr = max

{
ω j, j = 1, 2, ..., j

}
.

Step 2. Calculate the dominance degree of the alternative ui over each alternative according to each
criterion as follows.

φ
p
j (ui, ut) =



√
ω jrd

(
Ap

Bi j
−Ap

Bt j

)
∑n

j=1 ω jr
i f Ap

Bi j
> Ap

Bt j

0 i f Ap
Bi j

= Ap
Bt j

−1
θ

√∑n
j=1 ω jrd

(
Ap

Bi j
−Ap

Bt j

)
ω jr

i f Ap
Bi j
< Ap

Bt j

.

Step 3. The overall dominance degree of the alternative ui over each alternative ut according to the
decision experts matrix is evaluated by the given formula.

δp (ui, ut) =

n∑
j=1

φ
p
j (ui, ut)

where (i, t = 1, 2, ..,m; p = 1, 2, 3.., e) .
Step 4. According to decision experts weights evaluate the collective overall dominance degree of the
alternative ui of each ut as follows.

δ (ui, ut) =

n∑
j=1

δp (ui, ut) .

Step 5. Evaluate the overall value of the alternative ui by the given equation as follows.

δ (ui) =

∑m
t=1 δ (ui, ut) −min

i

{∑m
t=1 δ (ui, ut)

}
max

i

{∑m
t=1 δ (ui, ut)

}
−min

i

{∑m
t=1 δ (ui, ut)

} .
Step 6. Rank all the alternatives by the overall values of δ (ui). The bigger δ (ui) is, the better the
alternative.

The evaluation steps are as follows.
Step 1. The weights of critria are ω j = (.29, .17, .26, .28)T as we calculated in phase II. The relative
weight ω jr of the criteria C j to Cr are determined as.

ωr = max {.29, .17, .26, .28} = .29
ω jr = (1.000, .586, .897, .966)T .

Step 2–3. Calculate the dominance degree of the alternative ui over each alternative ut with respect
to Mp under the criteria C j, θ = 2.4 , and the overall dominance degree of the alternative over each
alternative is determined as.

δ1 (ui, ut) =


0 −.0019 −.4418 .5029

−.6349 0 −.8815 −1.205
−1.058 −.2593 0 .2480
−.0119 −.6027 .3363 0
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δ2 (ui, ut) =


0 .6625 −.4222 .7822

−.3016 0 −.3958 −1.307
.3206 −.1728 0 −.1483
.1912 −1.157 .8152 0


δ3 (ui, ut) =


0 −1.385 −.6578 −.7135

−1.417 0 −.3009 .2596
−1.303 .1525 0 −.2150
.8207 .8279 .7693 0


Step 4. The collective overall dominance degree of the alternative ui over each alternative ut are
computed as follows.

δ (ui, ut) =


0 −.2801 −.5113 .1637

−.8055 0 −.5277 −.7241
−.7166 −.0884 0 −.0369
.3424 −.2740 .1309 0

 .
Step 5. The overall value of the alternative ui is evaluated as

δ (u1) = .6334, δ (u2) = 0, δ (u3) = .5386, δ (u4) = 1.000.

Hence from the overall value of the alternative δ (u4) > δ (u1) > δ (u3) > δ (u2), it is clear that the
best alternative based on the TODIM method is u4 which are identical to that of the proposed method.
Hence it is analyzed that our proposed method is efficient and practical to solve the ambiguity and
uncertainty in the DM problems. The graphical ranking alternative based on TOPSIS and TODIM is
shown in Figure 3.

Figure 3. Graphical ranking alternative based on TOPSIS and TODIM.

There are more results, rankings and conditional probabilities we calculated based on different
methods and aggregation operators and as a result, u4 is our best result as shown in Tables 24 and 25.
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Table 24. Conditional probablities of existence methods.

U Pr (A/u1) Pr (A/u2) Pr (A/u3) Pr (A/u4)
Topsis method [47] .388 .265 .365 .563

Weighted aggregations
method [42]

.387 .264 .364 .565

BP techinque [53, 55] .479 .452 .482 .506
Suggested method .456 .388 .450 .525

Table 25. Conditional probablities wise rankings.

Approaches Ranking
Topsis method [47] u4 > u1 > u3 > u2

Weighted aggregations [42] u4 > u1 > u3 > u2

BP techinque [53, 55] u4 > u3 > u1 > u2

Suggested method u4 > u1 > u3 > u2

7.3. Conditional probability calculation using existing techniques

As a key component of TWD, conditional probabilities can also be used in ranking schemes.
Conditional probabilities are computed using the weighted aggregation method in the TWDs model
proposed by Yao et al. [43]. Bidirectional projective (BP) [53, 55] technique discusses the connection
between the scheme and the ideal solution, improving the objectivity of conditional probability
measurement. Considering the same weights of attributes, the conditional probability is obtained
in Table 24, based on several existing methods. Table 25 shows the ordering of alternatives based
on conditional probability. Hence, from Tables 24 and 25 we determined that the best result is u4

obtained from other existing methods which are similar to that of the proposed method, which shows
the practicability of the proposed methods.

7.4. Discussion

The loss produced by the actions in different states can be displayed by the DTRS model, one of the
TWD elements, and the action with the minimum loss principle is chosen. The other elements of the
TWD method is conditional probability. In most existing TWD models, the conditional probabilities
are given directly by the DM [56, 57], making the decision outcome seem less difficult. We use the
Renyi entropy to calculate the weight of each attribute, using the RRD of the object determined by
the GRA method as the conditional probability. The linguistic terms used to describe the qualitative
problem more closely follow human expression habits. In the case of single linguistic term sets,
PyDHLTS provides a more flexible ability to express qualitative data. A new method of conveying
evaluation data in TWDs has been made possible by the appearance of PyDHLTSs. When DM
evaluates project attribute data, it can provide DHLTS with evaluation values more intuitively, which
greatly reduces decision-making time. In the DHLT environment, our proposed model is constructed.
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A new research direction is the TWD model based on PyDHLT information system. As a result, it has
a relatively high research value. In this paper, some desirable properties of the PyDHLHWA operator
are demonstrated, making decision-making problems more practical.

The following are the main advantages of the proposed method:

(1) The PyDHLN, which consists of the FHLT and SHLT, can express the evaluation of DMs more
flexibly in the TWD process. Therefore, for dealing with decision-making problems, the DHLE-based
TWD method is a useful tool.

(2) The GRA method is used to calculate the conditional probability, which replaces hamming
distance with a weighted grey relational degree as a distance measure to improve the TOPSIS model.
Furthermore, the PyDHL operator takes into account the different decision-making attitudes of DMs
when aggregating LFs. They make the decision-making process more rational.

8. Conclusions

In DM problems, factual knowledge about a given fact is usually unknown, which makes the
decision-making process more difficult and complex. PyFSs and DHLTS are general mathematical
tools that can easily handle uncertain and imprecise knowledge. TWDs are consistent with people’s
thinking and have an important role in decision-making problems, especially when more conflict
criteria exist in DM problems. In this paper, we examined the novel concept of PyDHLTSs by
extending the concept of DHLTSs to handle the uncertainty in the DM problem. In addition, we
put forward the concept of PyDHLWA, PyDHLOWA and PyDHLHA aggregation operators. The basic
desirable characteristics of the investigated operator were given in detail. The Renyi entropy measure
was considered to find the weights of criteria. A GRA method was used to calculate the conditional
probability based on RRC, which replaces the hamming distance with the weighted GRC as a distance
measure to improve the TOPSIS model. The aggregation of loss functions, by the aggregation
operators, takes into account different decision attitudes of DMs. They make the process of TWDs
more reasonable. A step-by-step description of TWDs was given under the PyFDHLT environment by
considering evaluation values and loss functions. Finally, to show the practicability and effectiveness
of the proposed methodology we compared and applied it to real-world problems for selecting the best
optimal results.

Further research work will focus specifically on (a) Dombi aggregation operators, (b) Hamacher
aggregation operators, (c) Fermetean double hierachy lingusitic term sets, (d) q-Rung Orthopair Fuzzy
double hierachy lingusitic term sets. It will also focus on incomplete information processing in
decision-making application fields such as online project recommendation, resumption of work and
production, investment decision-making, online medical selection, disease prediction, etc.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 8, Issue 8, 18665–18695.



18691

Acknowledgements

This project was funded by Deanship of Scientific Research (DSR), King Abdulaziz University,
under grant No. (DF-354-980-1441). The authors therefore gratefully acknowledge DSR technical
and financial support.

Conflict of interest

The authors declared that there is no conflict of interest regarding the publication of this paper.

References

1. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-
9958(65)90241-X

2. K. T. Atanassov, Intuitionistic fuzzy sets, Springer-Verlag, Berlin, Heidelberg, 35 (1999), 1–137.
https://doi.org/10.1007/978-3-7908-1870-3 1

3. G. F. Yu, D. F. Li, D. C. Liang, G. X. Li, An intuitionistic fuzzy multi-objective goal programming
approach to portfolio selection, Int. J. Inform. Technol. Decis. Mak., 20 (2021), 1477–1497.
https://doi.org/10.1142/S0219622021500395

4. G. F. Yu, D. F. Li, A novel intuitionistic fuzzy goal programming method for heterogeneous
MADM with application to regional green manufacturing level evaluation under multi-source
information, Comput. Ind. Eng., 174 (2022), 108796. https://doi.org/10.1016/j.cie.2022.108796

5. G. F. Yu, W. Fei, D. F. Li, A compromise-typed variable weight decision method
for hybrid multiattribute decision making, IEEE T. Fuzzy Syst., 27 (2018), 861–872.
https://doi.org/10.1109/TFUZZ.2018.2880705

6. R. R. Yager, Pythagorean fuzzy subsets, In: Joint IFSA World Congress and NAFIPS Annual
Meeting, Edmonton, Canada, 2013. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

7. R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst.,
22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989

8. L. A. Zadeh, What is computing with words (CWW), Stud. Fuzz. Soft Comput., 277 (2013), 3–37.
https://doi.org/10.1007/978-3-642-27473-2 1

9. Z. Xu, H. Wang, On the syntax and semantics of virtual linguistic terms for information fusion in
decision making, Inform. Fusion., 34 (2017), 43–48. https://doi.org/10.1016/j.inffus.2016.06.002

10. F. Herrera, L. Martinez, A 2-tuple fuzzy linguistic representation model for computing with words,
IEEE T. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332

11. Z. Xu, A method based on linguistic aggregation operators for group decision
making with linguistic preference relations, Inform. Sci., 166 (2004), 19–30.
https://doi.org/10.1016/j.ins.2003.10.006

12. H. Zhang, Linguistic intuitionistic fuzzy sets and application in MAGDM, J. Appl. Math., 2014,
1–11. https://doi.org/10.1155/2014/432092

AIMS Mathematics Volume 8, Issue 8, 18665–18695.

http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/https://doi.org/10.1007/978-3-7908-1870-3_1
http://dx.doi.org/https://doi.org/10.1142/S0219622021500395
http://dx.doi.org/https://doi.org/10.1016/j.cie.2022.108796
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2018.2880705
http://dx.doi.org/https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2013.2278989
http://dx.doi.org/https://doi.org/10.1007/978-3-642-27473-2_1
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2016.06.002
http://dx.doi.org/https://doi.org/10.1109/91.890332
http://dx.doi.org/https://doi.org/10.1016/j.ins.2003.10.006
http://dx.doi.org/https://doi.org/10.1155/2014/432092


18692

13. F. Herrera, L. Martı́nez, A model based on linguistic 2-tuples for dealing with multigranular
hierarchical linguistic contexts in multi-expert decision-making, IEEE T. Syst. Man Cy.-B, 31
(2001), 227–234. https://doi.org/10.1109/3477.915345

14. H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making
process, Int. J. Intell. Syst., 33 (2018), 1234–1263. https://doi.org/10.1002/int.21979

15. X. Gou, H. Liao, Z. Xu, F. Herrera, Double hierarchy hesitant fuzzy linguistic term set and
MULTIMOORA method: A case of study to evaluate the implementation status of haze controlling
measures, Inform. Fusion, 38 (2017), 22–34. https://doi.org/10.1016/j.inffus.2017.02.008

16. X. Gou, H. Liao, Z. Xu, F. Herrera, Multiple criteria decision making based on distance and
similarity measures under double hierarchy hesitant fuzzy linguistic environment, Comput. Ind.
Eng., 126 (2018), 516–530. https://doi.org/10.1016/j.cie.2018.10.020

17. X. Li, Z. Xu, H. Wang, Three-way decisions based on some Hamacher aggregation operators
under double hierarchy linguistic environment, Int. J. Intell. Syst., 36 (2021), 7731–7753.
https://doi.org/10.1002/int.22605

18. A. A. Rassa, M. Vaziri, Sustainable transport indicators: Definition and integration, Int. J. Environ.
Sci. Technol., 2 (2005), 83–96. https://doi.org/10.1007/BF03325861

19. A. Awasthi, S. S. Chauhan, H. Omrani, Application of fuzzy TOPSIS in evaluating
sustainable transportation systems, Expert Syst. Appl., 38 (2011), 12270–12280.
https://doi.org/10.1016/j.eswa.2011.04.005

20. T. A. Shiau, Evaluating transport infrastructure decisions under uncertainty, Transport. Plan.
Techn., 37 (2014), 525–538. https://doi.org/10.1080/03081060.2014.921405

21. M. Gul, A. F. Guneri, S. M. Nasirli, A fuzzy-based model for risk assessment of routes in oil
transportation, Int. J. Environ. Sci. Te., 16 (2019), 4671–4686. https://doi.org/10.1007/s13762-018-
2078-z
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