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become much easier nowadays with the development of tools and equipment. 2𝑛 primes (prime 

numbers) are used in the GRSA crypto-system to provide security over the network system. This 

includes encryption, key generation, and decryption. In this method we used 2𝑛 primes which 

are not easily broken, 2𝑛 primes are not comfortably demented. This method provides greater 

performance and fidelity over the network system. 
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1. Introduction 

Modern computers and the transmission of high technology are an important part of the 

powerful economy, so it is important to have appropriate security systems and technologies to 

meet these security demands. Modern security systems and conventions have been evolved that 

are established on standards, predominantly from well-known establishments such as the Internet 

Architecture Board (IAB) and Internet Engineering Task Force (IETF). These establishments 

offer a wide range of security settlement, algorithms, and implementations that give security 
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services and converge the requirements of data privacy, uprightness, and secure transmissions. A 

significant mechanism for data conservation is utilized cryptography, which overrides many 

security tools and evolves the science of material encryption and decryption [1]. Cryptography 

delegates us to securely save secret data or communicate it to insecure networks that no one but 

the intended recipient can read (Kahn, 1967) [2,3]. Using an important mechanism such as 

encryption we have limited access to privacy, legitimacy, rectitude, and data. Cryptography 

distinguishes between private (also known as traditional intelligence) systems and public key 

cryptographic systems. The private key also called the non-public key or secret key, it has classical 

history, and is based on the use of a common non-public key encryption and decryption [4,5]. 

Nonlinear components of a block cipher over vector algebra for symmetric key cryptography are 

explained by Sajjad and Shah in [6–8]. 

Many algorithms have been proposed for public key cryptography, the most developed in 1978 

by Rivest, Shamir, and Adelman [9,10]. In RSA, security relies on the supposition that it is hard to find 

the factorization of big numbers and obtain the private key used for decryption. But there are some 

flaws in the RSA algorithm, decryption is established on ℵ, and 𝑑 the private key is uncomplicated to 

factor in [11–14]. Public key Cryptography represents a massive change in the field of 

cryptosystems. It uses two separate keys that are linked together such that the private key may be 

used to decrypt the message and the public key is used to encrypt the message. Improve security 

by modifying the RSA algorithm [15], the schema is based on four prime numbers rather than two, 

with a double encryption and decryption process. Multiple prime numbers increase the factoring 

time required to obtain the private key. 

This research article introduced a new modification of the RSA cryptosystem, which is 

generalized RSA (GRSA) based on 2𝑛 different primes. The 𝑒1, 𝑒2, 𝑒3,…𝑒𝑛 are public keys used for 

encryption, and 𝑑1, 𝑑2, 𝑑3,…𝑑𝑛 are non-public keys used for decryption. This conception is 

based on 2𝑛 different primes instead of two primes, which allows a larger encryption exponent 

from the huge product ℵ  to intensify security. Several prime numbers and large encryption 

exponents increase the factoring time compared to the RSA algorithm. 

2. RSA cryptographic algorithm using two primes 

In [11], the implementation of RSA focused on three areas: key generation, decryption, and 

encryption procedure. 

2.1. Key generation 

The private key and the public key are the two distinct varieties of RSA keys. The major steps 

in a  key generation are shown below; 

• Pick two primes ℘1, and ℘2. Let ℵ be the product of ℘1 and ℘2 as ℵ = ℘1 · ℘2 

• Find Euler Phi Function of ℵ as φ(ℵ) = φ(℘1) · φ(℘2). 

• Choose a number 𝑒 coprime to φ(ℵ). 

• Find 𝑑 is the inverse of 𝑒 as 𝑑. 𝑒 ≡ 1 (𝑚𝑜𝑑  φ(ℵ)). 
• Public key = (ℵ, 𝑒). 
• Private key= (ℵ, 𝑑). 
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2.2. Encryption algorithm 

Encryption is performed in RSA using a public key to create cipher text. The steps 

necessary to decrypt are described as  

• The recipient’s public key is received (ℵ, 𝑒). 

• Displays text as a number. 

• Determine the Cipher message 𝐶 = (𝑇 )𝑒(𝑚𝑜𝑑 ℵ). 

• Send encoded data. 

2.3. Decryption algorithm 

In RSA, the private key is used for decryption in order to obtain plain text. These are the 

decryption steps: 

• Calculate 𝑇 = (𝐶)𝑑(𝑚𝑜𝑑 ℵ) using a non-public key. 

• Eliminates plain text from a number 𝑇. 

2.4. Example 

Key Generation 

Let ℘1  =  89, and ℘2  =  101 be the two primes ℵ = ℘1 · ℘2 = 89.101 = 8989,  

φ(ℵ) = (℘1 − 1). (℘2 − 1) =  8800 

We choose 𝑒 = 3 less than and co-prime to φ(ℵ). 
The inverse of 3 is 3−1 𝑚𝑜𝑑 (8800)  =  5867. Hence the secret key is 𝑑 =  5867. 

Public key= (8989, 3). 

Private key= (8989, 5867). 

Encryption 

Alice sends a message 𝑇 = 8765.  

The cipher text calculated by Alice is  𝐶 = 𝑇𝑒 (𝑚𝑜𝑑 ℵ). 

𝐶 = (8765)3 (𝑚𝑜𝑑 8989) = 5815 

Decryption 

Bob can retrieve the plain text from cipher text using 𝑇 = 𝐶𝑑 (𝑚𝑜𝑑 ℵ). 

𝑇 = (5815)5867(𝑚𝑜𝑑 8989) 

Hence, 𝑇 =  8765 is a recovered plain text. 

3. RSA cryptographic algorithm using four primes 

In this article, we will discuss the RSA algorithm for four primes. The private and public key 

consists of three components [13]. Let ℵ be the product of primes ℘1, ℘2, ℘3, and ℘4. (ℵ, 𝑒1, 𝑒2) 

be the components of the public key, where 𝑒1 and 𝑒2 are chosen randomly. Since ℵ is kept as 

private and public components, given with the information of ℵ, is unable to ascertain the value of 

the four basic prime numbers, which form the basis for calculating the value of ℵ, and later 𝑒1 
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and 𝑒2. (ℵ, 𝑑1 , 𝑑2) be the components of the private key, where 𝑑1 is the inverse of 𝑒1 and 𝑑2 

is the inverse of 𝑒2. For security purposes, all four selected prime bits are the same length. 

3.1. Key generation 

The steps for generating the key are given below  

• Choose four primes ℘1, ℘2, ℘3, ℘4. And ℵ is the product of ℘1,℘2, ℘3, ℘4 as ℵ = ℘1 ·
℘2 · ℘3 · ℘4. 

• Euler phi function of ℵ is φ (ℵ) = φ(℘1) · φ(℘2) · φ(℘3) · φ(℘4). 
• Choose 𝑒1, 𝑒2 two coprime to φ(ℵ). 
• Find 𝑑1  and 𝑑2  which is inverses of 𝑒1  and 𝑒2  respectively 𝑒1𝑑1 ≡  1 (𝑚𝑜𝑑 φ(ℵ))  

and 𝑒2𝑑2  ≡ 1 (𝑚𝑜𝑑 φ(ℵ)). 

• Public key= (ℵ, 𝑒1, 𝑒2). 
• Private key= (ℵ, 𝑑1, 𝑑2). 

3.2. Encryption algorithm 

With the use of public key (ℵ, 𝑒1, 𝑒2) encryption is broken. The encryption steps are given below: 

• Receives the public key (ℵ, 𝑒1, 𝑒2). 

• Displays the plain message as a positive number. 

• Determine cipher text 𝐶 =  (𝑇𝑒1  𝑚𝑜𝑑 ℵ)𝑒2  𝑚𝑜𝑑 ℵ. 

• Send cipher message. 

3.3. Decryption algorithm 

Decrypt the cipher text into plain text with the support of a non-secret key in RSA. The 

decryption steps are given below: 

• Compute 𝐶 =  (𝑇𝑑1  𝑚𝑜𝑑 ℵ)𝑑2(𝑚𝑜𝑑 ℵ). 
• Extracts a plain text from a number representing 𝑇. 

3.4. Example 

Choose four distinct primes ℘1 = 2, ℘2  =  11, ℘3 =  5, ℘4 =  17. 

ℵ =  ℘1 · ℘2 · ℘3 ·  ℘4 = 2 · 11 · 5 · 17 = 1870 

Euler phi value of ℵ  is φ(ℵ)  = 640.  Choose  𝑒1 = 17  satisfying 1 < 𝑒1 < φ(ℵ)  and  

(𝑒1, φ(ℵ)) =  1. Compute 𝑑1 = 113, such that 𝑑1 𝑒1 ≡ 1( 𝑚𝑜𝑑 φ(ℵ)). Choose 𝑒2 =  21 satisfying 

1 <  𝑒2 <  φ(ℵ)  and 𝑔𝑐𝑑(𝑒2, φ(ℵ))  =  1 .Calculate 𝑑2 = 61  such that 𝑑2 𝑒2 ≡ 1 (𝑚𝑜𝑑 φ(ℵ)). 
The public key is (1870, 17, 21), and plain text =  𝑇 = 1399. 

𝐶 = [𝑇𝑒1(𝑚𝑜𝑑 1870)]𝑒2𝑚𝑜𝑑 1870 

𝐶 = [1569]𝑒2  𝑚𝑜𝑑 1870 = 1459 

The private key is (1870, 113, 61). 

𝑇 = [𝐶𝑑1 𝑚𝑜𝑑 1870]𝑑2 𝑚𝑜𝑑 1870 
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𝑇 =  [1289]61 𝑚𝑜𝑑 1870 =  1399. 

4. RSA cryptographic algorithm using six primes 

Now we discuss the RSA algorithm consists of six primes. The private and public key consists 

four of components. ℵ is a product of prime numbers ℘1, ℘2, ℘3, ℘4, ℘5, ℘6. (ℵ, 𝑒1, 𝑒2, 𝑒3) 

be the components of the public key, where 𝑒1, 𝑒2 and 𝑒3 are chosen randomly which are coprime 

to φ(ℵ). Since ℵ is kept as private and public components, with the wisdom of ℵ, the attacker 

cannot obtain the value of the six primes used to determine the value of ℵ and later 𝑒1, 𝑒2, and 

𝑒3. (ℵ, 𝑑1 , 𝑑2 , 𝑑3 ) be the components of the private key, where 𝑑1 is the inverse of 𝑒1 and 𝑑2 is 

the inverse of 𝑒2, and 𝑑3 is the inverse of 𝑒3. For security purposes, all six selected prime bits 

are the same length. 

4.1. Key generation 

The steps for generating the key are given below as; 

• Let six primes ℘1, ℘2, ℘3, ℘4, ℘5, ℘6, and ℵ be the product of ℘1, ℘2, ℘3, 

℘4, ℘5, ℘6 as ℵ = ℘1.℘2.℘3.℘4.℘5. ℘6 

• Euler phi function of ℵ is  φ(ℵ) = φ(℘1) · φ(℘2) · φ(℘3) · φ(℘4) · φ(℘5). φ(℘6). 
• Choose 𝑒1, 𝑒2, and 𝑒3 three numbers coprime to φ(ℵ). 

• Find 𝑑1, 𝑑2 and 𝑑3 which is inverses of 𝑒1, 𝑒2 and 𝑒3 respectively 

𝑒1𝑑1  ≡ 1  (𝑚𝑜𝑑 φ(ℵ)), 

 𝑒2𝑑2  ≡ 1(𝑚𝑜𝑑 φ(ℵ)), and 𝑒3𝑑3 ≡ 1 (𝑚𝑜𝑑 φ(ℵ)) 

• Public key=(ℵ, 𝑒1, 𝑒2 , 𝑒3 ). 

• Private key=(ℵ, 𝑑1, 𝑑2 , 𝑑3 ). 

4.2. Encryption algorithm 

The decryption process is finished with the use of the public key (ℵ, 𝑒1, 𝑒2, 𝑒3). The encryption 

steps are given below: 

• Receives the public key (ℵ, 𝑒1, 𝑒2, 𝑒3). 

• Displays the text 𝑇 as a positive number. 

• Calculate text ciphering 𝐶 =  [(𝑇𝑒1  𝑚𝑜𝑑 ℵ)𝑒2  𝑚𝑜𝑑 ℵ]𝑒3 𝑚𝑜𝑑 ℵ. 

• Send Cipher message 

4.3. Decryption algorithm 

The decryption of the cipher text into plain text with the help of a non-public key in RSA. 

The Decryption steps are given below: 

• Compute 𝑇 = [(𝐶𝑑1  𝑚𝑜𝑑 ℵ)𝑑2 𝑚𝑜𝑑 ℵ]𝑑3 𝑚𝑜𝑑 ℵ. 

• Extracts plain text from a number representing T. 

4.4. Example 

Choose six distinct primes ℘1 = 7, ℘2 =  13, ℘3 = 11, ℘4 = 2, ℘5  =  3, ℘6  =  5. 
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ℵ = ℘1 · ℘2 · ℘3 · ℘4 ·  ℘5 ·  ℘6  =  7 ·  13 ·  11 ·  2 ·  3 ·  5 =  30030. 

Euler’s phi function of ℵ is  

φ(ℵ) = φ(℘1) · φ(℘2) · φ(℘3) · φ(℘4) · φ(℘5) · φ(℘6) = 6 · 12 · 10 · 1 · 2 · 4
= 5760 

Choose 𝑒1 = 59 satisfying 1 < 𝑒1 < φ(ℵ) and 𝑔𝑐𝑑(𝑒1, φ(ℵ)) =  1. Let 𝑑1 =  4979 as 𝑑1 𝑒1 ≡
1 (𝑚𝑜𝑑 φ(ℵ)). 

Choose  𝑒2 = 13  satisfying 1 < 𝑒2 < φ(ℵ)  and 𝑔𝑐𝑑(𝑒2, φ(ℵ)) =  1.  Let  𝑑2  =  5317  as 

𝑑2 𝑒2 ≡ 1 (𝑚𝑜𝑑  φ(ℵ)). 

Choose  𝑒3 = 7  satisfying 1 < 𝑒3 < φ(ℵ),  and  𝑔𝑐𝑑(𝑒3, φ(ℵ)) =  1 . Let  𝑑3  =  823  as 𝑑3𝑒3 ≡
1 (𝑚𝑜𝑑  φ(ℵ)). 

Public key is (30030, 59, 13, 7). Plain text = 𝑇 =  1321. 

𝐶 = [((𝑇𝑒1 𝑚𝑜𝑑 ℵ)𝑒2 𝑚𝑜𝑑 ℵ)]𝑒3 𝑚𝑜𝑑 ℵ 

𝐶 =  [((132159 𝑚𝑜𝑑 30030)13 𝑚𝑜𝑑 30030)]7 𝑚𝑜𝑑 30030 

𝐶 =  [(1941)13 𝑚𝑜𝑑 30030)]7 𝑚𝑜𝑑 30030 

𝐶 =  [19141]7 (𝑚𝑜𝑑 30030) = 9901 

The private key is (30030, 4979, 5317, 823). 

𝑇 = [((𝐶𝑑1 𝑚𝑜𝑑 ℵ)𝑑2 𝑚𝑜𝑑 ℵ)]𝑑3 𝑚𝑜𝑑 ℵ 

𝑇 =  [(99014979 𝑚𝑜𝑑 30030)5317 𝑚𝑜𝑑 30030]823 (𝑚𝑜𝑑 30030) 

𝑇 =  [105615317 𝑚𝑜𝑑 30030]823 (𝑚𝑜𝑑 30030) 

𝑇 =  10561823 (𝑚𝑜𝑑 30030) = 1321. 

5. RSA cryptographic algorithm using eight primes 

We talk about the RSA algorithm, which uses eight big prime numbers. The private and public 

key contains five components. ℵ is the product of primes  ℘1, ℘2, ℘3, ℘4, ℘5,  ℘6, ℘7, ℘8 . 

(ℵ, 𝑒1, 𝑒2, 𝑒3, 𝑒4) be the components of the public key, where 𝑒1, 𝑒2, 𝑒3, and  𝑎𝑟𝑒 𝑐ℎ𝑜𝑠𝑒𝑛 randomly 

which are coprime to φ(ℵ). Since ℵ is kept as private and public components, the attacker is unable 

to evaluate the value of the eight basic primes that are used to obtain the value of ℵ without knowing 

the value of ℵ, and later 𝑒1, 𝑒2, 𝑒3, and 𝑒4. (ℵ, 𝑑1 , 𝑑2 , 𝑑3 , 𝑑4 ) be the components of private key, 

where 𝑑1 is the inverse of 𝑒1 and 𝑑2 is the inverse of 𝑒2 and 𝑑3 is the inverse of 𝑒3 and 𝑑4 is the 

inverse of 𝑒4. For security purposes, all eight selected prime bits are the same length. 

5.1. Key generation 

The steps for generating the key are given below: 

• Choose eight primes ℘1, ℘2, ℘3, ℘4, ℘5, ℘6, ℘7, ℘8 𝑎𝑛𝑑  

ℵ = ℘1 · ℘2 · ℘3 · ℘4 · ℘5 · ℘6 · ℘7 · ℘8. 

• Euler phi function of ℵ is  
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φ(ℵ) = φ(℘1) · φ(℘2) · φ(℘3) · φ(℘4) · φ(℘5) · φ(℘6) · φ(℘7) · φ(℘8) 

• Choose 𝑒1, 𝑒2, 𝑒3 and 𝑒4 four numbers coprime to φ(ℵ). 
• Find 𝑑1, 𝑑2, 𝑑3 and 𝑑4 which are the inverses of 𝑒1, 𝑒2, 𝑒3 and 𝑒4 respectively 

𝑒1𝑑1  ≡ 1 (𝑚𝑜𝑑 φ(ℵ)),  𝑒2𝑑2 ≡ 1 (𝑚𝑜𝑑 φ(ℵ)), , 𝑒3𝑑3 ≡ 1 (𝑚𝑜𝑑 φ(ℵ)),  𝑒4𝑑4 ≡

1 (𝑚𝑜𝑑 φ(ℵ)). 

• (ℵ, 𝑒1 , 𝑒2 , 𝑒3 , 𝑒4 ) is the public key. 

• (ℵ, 𝑑1 , 𝑑2 , 𝑑3 , 𝑑4 ) is private key. 

5.2. Encryption algorithm 

Decrypt the cipher text into plain text with the help of a non-public key in RSA. The 

decryption steps are given below: 

• Receives the public key (ℵ, 𝑒1, 𝑒2, 𝑒3, 𝑒4). 
• Displays the message 𝑇 as a positive number. 

• Compute cipher text 𝐶 =  [((𝑇𝑒1  𝑚𝑜𝑑 ℵ)𝑒2 𝑚𝑜𝑑 ℵ)𝑒3  𝑚𝑜𝑑 ℵ]𝑒4  𝑚𝑜𝑑 ℵ. 

• Send cipher message. 

5.3. Decryption algorithm 

The decryption of the cipher text into plain text with the help of a non-public key in RSA. 

The Decryption steps are given below: 

• Compute 𝑇 =  [((𝐶𝑑1  𝑚𝑜𝑑 ℵ)𝑑2 𝑚𝑜𝑑 ℵ)𝑑3 𝑚𝑜𝑑 ℵ]𝑑4  𝑚𝑜𝑑 ℵ 

• Extracts plain text from a number representing 𝑇. 

5.4. Example 

Let eight distinct primes ℘1 = 2, ℘2 = 5, ℘3 = 3, ℘4 = 7, ℘5 = 11, ℘6 = 13, ℘7 =
17, ℘8 = 19  and ℵ = ℘1 · ℘2 · ℘3 · ℘4 · ℘5 · ℘6 · ℘7 ·  ℘8 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 =
9699690. Compute the Euler phi value of ℵ. 

φ(ℵ) = φ(℘1) · φ(℘2) · φ(℘3) · φ(℘4) · φ(℘5) · φ(℘6) · φ(℘7) · φ(℘8)

= 1 · 2 · 4 · 6 · 10 · 12 · 16 · 18 = 1658880. 

Choose 𝑒1 = 1001 satisfying 1 < 𝑒1 < φ(ℵ) and 𝑔𝑐𝑑(𝑒1, φ(ℵ)) =  1. Find 𝑑1 = 1324221 such 

that 𝑑1 𝑒1 ≡ 1 (𝑚𝑜𝑑 φ(ℵ)). 
Choose 𝑒2 = 2003 satisfying 1 < 𝑒2 < φ(ℵ), and 𝑔𝑐𝑑(𝑒2, φ(ℵ)) =  1. Find 𝑑2 = 649307 such 

that 𝑑2𝑒2 ≡ 1 (𝑚𝑜𝑑 φ(ℵ)). 

Choose  𝑒3 = 50003  satisfying 1 < 𝑒3 < φ(ℵ)  and gcd(𝑒3, φ(ℵ)) = 1. Fin 𝑑3 = 555227  such 

that 𝑑3𝑒3 ≡ 1 (𝑚𝑜𝑑 φ(ℵ)). 

Choose  𝑒4 = 500011  satisfying 1 < 𝑒4 < φ(ℵ)  and 𝑔𝑐𝑑(𝑒4, φ(ℵ)) =  1. Find  𝑑4 = 247171 

such that 𝑑4𝑒4 ≡ 1 (𝑚𝑜𝑑 φ(ℵ)). 

The public key is (9699690, 1001, 2003, 50003, 500011). Plain text= 𝑇 = 1321. 

𝐶 =  [((𝑇𝑒1  𝑚𝑜𝑑 ℵ)𝑒2  𝑚𝑜𝑑 ℵ)𝑒3 𝑚𝑜𝑑 ℵ]𝑒4(𝑚𝑜𝑑 ℵ). 

= [((13211001(𝑚𝑜𝑑 9699690))
2003

(𝑚𝑜𝑑 9699690))
50003

(𝑚𝑜𝑑 9699690)]

500011

(𝑚𝑜𝑑 9699690). 
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= [(47246112003(𝑚𝑜𝑑 9699690))50003(𝑚𝑜𝑑 9699690)]500011(𝑚𝑜𝑑 9699690). 

= [193228150003 (𝑚𝑜𝑑 9699690)]500011 (𝑚𝑜𝑑 9699690). 

= 6856741500011 (𝑚𝑜𝑑 9699690) = 2661781 

The private key is (9699690, 1324121, 649307, 555227, 247171) 

𝑇 =  [((𝐶𝑑1  𝑚𝑜𝑑 ℵ)𝑑2 𝑚𝑜𝑑 ℵ)𝑑3  𝑚𝑜𝑑 ℵ]𝑑4  𝑚𝑜𝑑 ℵ 

= [((26617811324121𝑚𝑜𝑑 9699690)649307𝑚𝑜𝑑 9699690))555227 𝑚𝑜𝑑 9699690]247171 𝑚𝑜𝑑 9699690. 

𝑇 =  [(8779321649307 𝑚𝑜𝑑 9699690)555227𝑚𝑜𝑑 9699690]247171(𝑚𝑜𝑑 9699690) 

𝑇 =  [730621555227 (𝑚𝑜𝑑 9699690)]247171 (𝑚𝑜𝑑 9699690). 

𝑇 =  9079621247171 (𝑚𝑜𝑑 9699690) =  1321. 

Continuously this process for up to 2n primes in the following section. 

6. GRSA algorithm with 𝟐𝒏 primes 

Now we’ll look at the RSA Algorithm, which is made up of 2𝑛 large primes. The private and 

public keys are made up of  𝑛 + 1  components. ℵ is a product of primes ℘1, ℘2, ℘3, ℘4, ℘5,
℘6, · · ·, ℘2𝑛−1, ℘2𝑛.  (ℵ, 𝑒1, 𝑒2, 𝑒3,· · · , 𝑒𝑛) are the components of public key, where 𝑒1, 𝑒2, 𝑒3, … 𝑒𝑛 

are choose randomly which are coprime to φ(ℵ). If an attacker has access to the ℵ key, he or she will 

be unable to deduce the value of the 2𝑛  fundamental primes, which serve as the foundation for 

calculating  ℵ , and later  𝑒1, 𝑒2, 𝑒3,· · ·, 𝑒𝑛 . (ℵ, 𝑑1, 𝑑2, 𝑑3,· · ·, 𝑑𝑛 )  be the components of private key, 

where 𝑑1 is the inverse of 𝑒1 and 𝑑2 is the inverse of 𝑒2 and 𝑑3 is the inverse of 𝑑3 similarly 𝑑𝑛 

is the inverse of 𝑒𝑛. For security purposes, all 2𝑛 selected prime bits are of the same length. 

6.1. Key generation 

There are the following steps for  generating the key; 

• Let ℘1, ℘2, ℘3, ℘4, ℘5, ℘6,· · ·, ℘2𝑛−1, ℘2𝑛be the 2𝑛 distinct primes and ℵ is a product 
of ℘1, ℘2, ℘3, ℘4, ℘5, ℘6,· · ·, ℘2𝑛−1, ℘2𝑛 as ℵ = ℘1. ℘2. ℘3. ℘4. ℘5. ℘6 … ℘2𝑛−1. ℘2𝑛. 

• Find the Euler phi function of ℵ as 

φ(ℵ) = φ(℘1). φ(℘2). φ(℘3). φ(℘4) · φ(℘5). φ(℘6) … , φ(℘2𝑛−1)
· φ(℘2𝑛). 

• Let 𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛 be the 𝑛 non-negative numbers co-prime to φ(ℵ). 
• Let 𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛  be t he  inverses of  𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛  such that 𝑒1𝑑1 ≡

1 𝑚𝑜𝑑 φ(ℵ),𝑒2𝑑2 ≡ 1 𝑚𝑜𝑑 φ(ℵ),𝑒3𝑑3 ≡ 1 𝑚𝑜𝑑  φ(ℵ),· · · , 𝑒𝑛𝑑𝑛 ≡ 1 𝑚𝑜𝑑  φ(ℵ). 

• Public key= (ℵ, 𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛). 

• Private key= (ℵ, 𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛). 

6.2. Encryption algorithm 

Its use of public keys (ℵ, 𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛) puts an end to the encryption process. The encryption 

steps are given below; 

• Receives the public key (ℵ, 𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑛). 
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• Displays text 𝑇 as a positive number. 

• Find Cipher text 𝐶 = [((𝑇𝑒1(𝑚𝑜𝑑 ℵ))
𝑒2(𝑚𝑜𝑑 ℵ))

𝑒3
(𝑚𝑜𝑑 ℵ) · · · ]

𝑒𝑛

(𝑚𝑜𝑑 ℵ).  

• Send a Cipher message. 

6.3. Decryption algorithm 

The decryption of the cipher text into plain text with the private key in GRSA. The 

decryption steps are given below; 

• Compute 𝑇 = [((𝐶𝑑1(𝑚𝑜𝑑 ℵ))
𝑑2

(𝑚𝑜𝑑 ℵ))

𝑑3

(𝑚𝑜𝑑 ℵ) · · ·]

𝑑𝑛

(𝑚𝑜𝑑 ℵ). 

Extracts plain text from a number representing T. 

7. Comparison 

The proposed GRSA algorithm is executed using MATLAB manifesto using Laptop (Del, Core 

i7, 7th generation). Comparison of the key generation time, encryption time, and decryption time for 

two primes, four primes, six primes, and eight primes. During the counterfeit, 5  different 

combinations of arbitrary primes are chosen. There are the following results. The key generation (K.G), 

encryption (E), and decryption (D) time for producing public and private keys by two primes, four 

primes’, six primes, and eight primes with magnitudes are given in Tables 1–4. 

Table 1. Key generation, encryption, and decryption time for two primes. 

℘1 ℘2 E K.G. (sec) E.(sec) D.(sec) 

19 23 7 0.005716 0.376943 0.005716 

17 29 3 0.004420 0.375985 0.007462 

13 31 7 0.006389 0.379625 0.008168 

31 11 3 0.007449 0.378423 0.007617 

11 29 3 0.007284 0.376564 0.008133 

Table 2. Key generation, encryption, and decryption time for four primes. 

℘1  ℘2 ℘3 ℘4 e1 e2 K.G.(sec) E.(sec) D.(sec) 

19 17 29 3 5 11 0.008708 0.386488 0.012452 

13 29 23 5 5 13 0.008452 0.398772 0.012664 

7 23 31 11 7 13 0.008019 0.382741 0.014080 

11 29 23 7 13 17 0.008071 0.380112 0.013811 

13 23 19 11 13 17 0.008975 0.379947 0.015377 
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Table 3. Key generation, encryption, and decryption time for six primes. 

℘1 ℘2 ℘3 ℘4 ℘5 ℘6 𝑒1 𝑒2 𝑒3 K.G.(sec) E.(sec) D.(sec) 

3 13 37 7 23 11 7 13 19 0.009489 0.393181 0.653823 

37 13 3 5 29 7 5 11 13 0.012368 0.385374 0.347764 

3 17 13 31 23 7 7 13 17 0.010318 0.384243 0.788194 

5 31 19 13 2 7 7 11 13 0.013297 0.380655 0.93392 

5 13 41 7 23 11 7 13 19 0.012737 0.383298 0.843879 

Table 4. Key generation, encryption, and decryption time for eight primes. 

℘1 ℘2 ℘3 ℘4 ℘5 ℘6 ℘7 ℘8 e1 e2 e3 e4 K.G.(sec) E.(sec) D.(sec) 

13 3 17 7 31 19 2 23 7 13 17 23 0.017519 0.392799 42.830815 

31 2 7 17 23 29 3 11 13 17 19 23 0.012287 0.390375 37.090092 

3 7 13 11 19 23 29 5 13 17 19 23 0.010551 0.390682 40.103547 

37 2 13 7 3 29 23 11 13 17 19 23 0.013907 0.390470 32.524731 

17 7 13 11 19 31 3 5 11 13 19 23 0.015120 0.392092 62.955846 

Comparison of the key generation, encryption, and decryption time of two primes, four primes, 

six primes, and eight primes with magnitudes are given in Figures 1–6. 

 

Figure 1. Key generation time vs different primes. 

 

Figure 2. Decryption time vs different primes. 



18843 

AIMS Mathematics  Volume 8, Issue 8, 18833–18845. 

 

 

Figure 3. Encryption time vs different primes. 

Comparison of the key generation, encryption and decryption time of two primes, four primes, 

six primes, and eight primes with the help of bar the given graphs. 

 

Figure 4. Key generation for different primes. 

 

 

Figure 5. Encryption time for different primes. 
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Figure 6. Decryption time for different primes. 

8. Conclusions 

RSA and GRSA have different important parameters that affect their level of security and speed. 

Increasing the length of the modulus gives rise to the complexity of decomposing it into factors. Thus, 

the length of the private key increased and the key is harder to trace. RSA and GRSA parameter 

changes are time-dependent and constant to study other relevant stresses. We concluded that the key 

generation time of GRSA is higher than that of RSA due to an increase in the number of primes. The 

higher key generation time of GRSA can be seen as an advantage of the fact that the time to crack the 

system is longer due to the added complexity. Encryption time shows the same amount of time used 

by RSA and GRSA for the lower bit lengths of primes (two and four primes). As the number of primes 

and magnitude of primes increase, then the time will be increased. Decryption time shows the same 

amount of time used by RSA and GRSA for the lower bit lengths of primes (two and four primes). As 

the number of primes increased, the difference between the curves becomes steeper. From the above 

discussion, we concluded that the encryption and decryption time of GRSA is higher than the RSA. 

The increase in time would be acceptable if it substantially would increase the security of the proposed 

GRSA method. 
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