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Quantitative susceptibility mapping (QSM) quantifies the distribution of magnetic

susceptibility and shows great potential in assessing tissue contents such as

iron, myelin, and calcium in numerous brain diseases. The accuracy of QSM

reconstruction was challenged by an ill-posed field-to-susceptibility inversion

problem, which is related to the impaired information near the zero-frequency

response of the dipole kernel. Recently, deep learning methods demonstrated

great capability in improving the accuracy and e�ciency of QSM reconstruction.

However, the construction of neural networks in most deep learning-based QSM

methods did not take the intrinsic nature of the dipole kernel into account.

In this study, we propose a dipole kernel-adaptive multi-channel convolutional

neural network (DIAM-CNN) method for the dipole inversion problem in QSM.

DIAM-CNN first divided the original tissue field into high-fidelity and low-fidelity

components by thresholding the dipole kernel in the frequency domain, and it

then inputs the two components as additional channels into a multichannel 3D

Unet. QSMmaps from the calculation of susceptibility throughmultiple orientation

sampling (COSMOS) were used as training labels and evaluation reference. DIAM-

CNN was compared with two conventional model-based methods [morphology

enabled dipole inversion (MEDI) and improved sparse linear equation and least

squares (iLSQR) and one deep learning method (QSMnet)]. High-frequency

error norm (HFEN), peak signal-to-noise-ratio (PSNR), normalized root mean

squared error (NRMSE), and the structural similarity index (SSIM) were reported

for quantitative comparisons. Experiments on healthy volunteers demonstrated

that the DIAM-CNN results had superior image quality to those of the MEDI,

iLSQR, or QSMnet results. Experiments on data with simulated hemorrhagic

lesions demonstrated that DIAM-CNN produced fewer shadow artifacts around

the bleeding lesion than the compared methods. This study demonstrates that

the incorporation of dipole-related knowledge into the network construction has

a potential to improve deep learning-based QSM reconstruction.
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1. Introduction

Magnetic susceptibility is an intrinsic local tissue property

that describes the degree of being magnetized in an external

magnetic field B0. Quantitative susceptibility mapping (QSM)

(de Rochefort et al., 2010) generates the spatial distribution of

magnetic susceptibility from the 1B0 field created by tissue

magnetization and is measured using magnetic resonance imaging

(MRI) (Schweser et al., 2013; Wang and Liu, 2015). The 1B0 field

is generated by a magnetic dipole moment at a source location

according to Maxwell’s equations in vacuum. The contributors to

tissue magnetic susceptibility include biometals andmolecules, e.g.,

iron (Liu et al., 2010; Schweser et al., 2011; Langkammer et al.,

2012; Ghassaban et al., 2019), calcium (Chen et al., 2018; Guo et al.,

2019a,b), lipids (Dibb et al., 2017), and myelin (Lee et al., 2021).

QSM has been widely applied for the diagnosis and evaluation of

intracranial hemorrhage (Chen et al., 2014b; Sun et al., 2018), brain

aging (Bilgic et al., 2012; Zhang et al., 2018; Vinayagamani et al.,

2021), Alzheimer’s disease (Kim et al., 2017; O’Callaghan et al.,

2017; Gong et al., 2019; Tiepolt et al., 2020; Cogswell et al., 2021),

Parkinson’s disease (Acosta-Cabronero et al., 2017; He et al., 2021),

Huntington’s disease (Chen L. et al., 2019; Pagnozzi et al., 2019;

Ravanfar et al., 2021), and multiple sclerosis (Chen et al., 2014a;

Barkhof and Thomas, 2018). Moreover, a QSM image can clearly

show the anatomical structure of deep brain nuclei, and thus, it has

been used for accurate target localization in deep brain stimulation

(Wang and Liu, 2015).

Although QSM demonstrates great potential for clinical

applications, accurate QSM reconstruction is still a challenging

problem. The division by near-zero values in the k-space of the

dipole kernel in the dipole inversion step results in an amplification

of noise and artifacts (Wang et al., 2013; Haacke et al., 2015; Wang

and Liu, 2015). Multiple orientation sampling with respect to the

B0 field and reconstruction with the calculation of susceptibility

through multiple orientation sampling (COSMOS) can obtain

the accurate susceptibility map (Liu et al., 2009), serving as a

gold standard for the single-orientation QSM method. However,

multiple orientation scans increase the burden in head positioning

and extremely prolong the acquisition time, and thus, it is

impractical for clinical application (Wharton and Bowtell, 2010). A

variety of numerical stabilization methods have been developed to

regularize the susceptibility reconstruction from single-orientation

QSM data. Truncated k-space deconvolution (TKD) (Wharton

et al., 2010; Tang et al., 2013), improved sparse linear equation

and least squares (iLSQR) (Li et al., 2015), and streaking artifact

reduction for QSM (STAR-QSM) methods (Wei et al., 2015)

were proposed for the suppression of streaking artifacts in QSM

reconstruction. In addition, various regularization algorithms that

enforce certain prior information have been developed to improve

QSM reconstruction (Liu et al., 2011; Liu T. et al., 2012; Bao et al.,

2016; Chatnuntawech et al., 2017; Wen et al., 2021). For example,

the morphology-enabled dipole inversion (MEDI) constrains the

reconstructed QSM map to have similar edges as in the magnitude

image (Liu et al., 2011; Liu J. et al., 2012; Liu T. et al., 2012).

Recently, convolutional neural networks (CNN) were

introduced to QSM reconstruction and demonstrated higher

accuracy compared with the non-learning-based methods (Kyong

Hwan et al., 2017; Yoon et al., 2018; Bollmann et al., 2019; Chen

et al., 2020; Jung et al., 2020b; Zhang et al., 2020; Feng et al., 2021;

Gao et al., 2021). DeepQSM (Bollmann et al., 2019), QSMnet

(Yoon et al., 2018), and QSMnet+ (Jung et al., 2020b) adopted the

popular Unet (Ronneberger et al., 2015) to approximate the dipole

inversion from the tissue field to the susceptibility map. However,

the network construction in these methods did not consider the

intrinsic nature of dipole kernel (Jung et al., 2020a,b). Recently,

the model-driven deep learning methods, where the network was

constructed by unrolling the conventional iterative model-based

algorithms, were incorporated to solve the dipole inversion

problem in QSM. VaNDI trained a variational network to optimize

the parameters in an unrolled gradient descent algorithm for

dipole inversion (Polak et al., 2020), and MoDL-QSM combined

the physical model of susceptibility tensor imaging with CNN

(Feng et al., 2021). Physics modeling can be used to reduce

generalization errors or improve fidelity of deep learning (Zhang

et al., 2020).

Considering that streaking artifacts are directly related to small

values in the frequency response of the dipole kernel, we proposed

a novel dipole kernel-adaptive multi-channel CNN (DIAM-CNN)

for the dipolar inversion from single-orientationQSMdata. DIAM-

CNN divided the original tissue field into high-fidelity and low-

fidelity components based on the frequency response of dipole

kernel and inputs the two components together with the original

tissue field as three individual channels to a multi-channel Unet.

The proposed network was trained and validated on in vivo patient

data using COSMOS results as a reference.

2. Materials and methods

2.1. Datasets

2.1.1. Data of healthy volunteers
The dataset of 12 healthy volunteer scans from QSMnet (Yoon

et al., 2018) was enrolled in this study. The volunteers were scanned

with a 3D single-echo gradient-recalled sequence (at 3T; TIM

Trio MRI was used in nine datasets, and MAGNETOM Skyra

was used in three datasets. TE = 25ms, TR = 33ms, 1mm

isotropic resolution, flip angle = 15o, bandwidth = 100 Hz/pixel,

acceleration factor = 2 × 2, the total acquisition time = 5min

46 s). Each subject was scanned with five head orientations, and

the multiple orientation data were reconstructed using COSMOS

to obtain a reference susceptibility map.

2.1.2. Data of intracerebral hemorrhage
A patient with intracerebral hemorrhage (ICH) was enrolled.

The hemorrhage patient data were acquired using a 3T system

(HDx, GE Healthcare, Waukesha, WI, USA), and scan parameters

included flip angle = 15o, first TE = 5ms, 1TE = 4.6ms, number

of echoes = 6, acquisition matrix = 184 × 210 × 144, and

1mm isotropic resolution. iLSQR was performed to reconstruct a
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FIGURE 1

An overview of the proposed DIAM-CNN method. (A) Conical surface of D(k) = 0 in the frequency domain of the dipole kernel. (B) The conical

surfaces of D(k) = 0.3, −0.3, and 0, and a representative point P on the surface of D(k) = 0. (C) Three orthogonal planes of the mask for the

low-fidelity component generated with a representative threshold of 0.3 (|D(k)| ≤ 0.3). The red lines correspond to the conical surface of D(k) = 0. (D)

Network architecture of DIAM-CNN. DIAM-CNN divided the tissue field into low-fidelity and high-fidelity components using the mask in (C), and

then, it inputs the two components as additional channels into a multichannel Unet. (E) Schematic diagram of the multichannel Unet. The network

was designed with 18 convolutional layers (kernel size = 3 × 3 × 3), one convolutional layer (kernel size = 1 × 1 × 1), four max pooling layer strides

(kernel size = 2 × 2 × 2), four transposed convolution layer strides (kernel size = 3 × 3 × 3), and four feature concatenations.
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TABLE 1 Mean and standard deviation of the quantitative performance

metrics, namely, HFEN, PSNR, NRMSE, and SSIM for DIAM-CNN with

di�erent dipole thresholds.

Dipole-
threshold

HFEN
(%)

NRMSE
(%)

SSIM PSNR

±0.1 65.55± 9.66 53.29± 3.78 0.905± 0.012 42.90± 1.18

±0.2 62.35± 8.89 51.81± 3.60 0.909± 0.011 43.15± 1.20

±0.3 62.40± 8.90 51.79 ± 3.74 0.909 ± 0.011 43.15 ± 1.19

±0.4 62.18 ± 9.13 52.47± 3.87 0.908± 0.011 43.04± 1.18

±0.5 63.04± 9.23 52.65± 3.81 0.906± 0.011 43.00± 1.19

The bold part indicates the optimal value of each metric.

TABLE 2 Mean and standard deviation of the quantitative performance

metrics, namely, HFEN, PSNR, NRMSE, and SSIM for DIAM-CNN with

varying channels (1, original tissue field; 2, high-fidelity component; 3,

low-fidelity component).

Channels HFEN
(%)

NRMSE
(%)

PSNR SSIM

1 and 2 64.90± 9.12 53.07± 3.72 42.95± 1.18 0.906± 0.011

1 and 3 65.68± 9.68 53.50± 3.80 42.87± 1.18 0.905± 0.011

2 and 3 65.59± 9.07 53.68± 3.39 42.84± 1.16 0.901± 0.011

1, 2 and 3 62.40 ± 8.90 51.79 ± 3.74 43.15 ± 1.19 0.909 ± 0.011

The bold part indicates the optimal value of each metric.

susceptibility map (Li et al., 2015). IRB-approved written consent

was signed by each participant.

2.1.2.1. Simulation of QSM data with high

susceptibility region

The hemorrhage lesion was manually delineated from the

susceptibility map reconstructed by iLSQR. After that, this lesion

region with high susceptibility was overlapped with one of

the reference susceptibility maps from the multiple orientation

data. Finally, the susceptibility map was convolved with the

dipole kernel and then added with Gaussian noise to generate

the corresponding tissue field. All subjects signed IRB-approved

written consent forms.

2.2. Architecture of the DIAM-CNN network

In theory, the tissue field can be expressed as a convolution

of the susceptibility distribution with a dipole kernel in spatial

domain (Wang and Liu, 2015). This convolution corresponds to

multiplication in the frequency domain as follows:

B(k) = D(k)X(k) + N(k), (1)

where B(k), D(k), X(k), and N(k) are tissue field, dipole kernel,

magnetic susceptibility, and noise in the frequency domain,

respectively. According to Eq. (1), the tissue field can be considered

as filtering the susceptibility map by the dipole with a frequency

response of D(k). In the frequency domain, the susceptibility

multiplied by the large D(k) magnitude values is preserved with

a high fidelity, and the susceptibility multiplied by the small D(k)

magnitude values is preserved with a low fidelity. In an extreme

case, the information of X(k) was lost on positions where D(k)= 0.

The dipole kernel in the frequency domain can be expressed by

D(k) = 1/3−
kz

2

kx
2
+ ky

2
+ kz

2
, (2)

where kx, ky, and kz are k-space vectors in three orthogonal

directions. D(k) ranges from −2/3 to 1/3. Figure 1A shows

the conical surface of D(k) = 0 in the frequency domain

of the dipole kernel. The reconstruction of QSM requires the

following operation:

X̂
(

k
)

= B(k)/D(k) = X(k) + N(k)/D(k). (3)

The error in the above inversion is mainly from the noise

amplification due to the division by smallD(k) values. Thresholding

the dipole in the frequency domain can be used to divide the tissue

field into low-fidelity and high-fidelity components. Figure 1B

shows the conical surfaces of D(k) at a representative threshold of

0.3 and a representative point P on the surface where D(k) = 0.

The magnitude of D(k) is equal to or less than 0.3 in the region

between the two conical surfaces and >0.3 in the residual regions.

Figure 1C shows three orthogonal planes of the mask for the low-

fidelity component (|D(k)| ≤ 0.3). The red lines correspond to the

conical surface of D(k)= 0.

The network architecture of the DIAM-CNN is shown in

Figures 1D, E. First, three-dimensional Fourier transform was

performed to transform the tissue field to the frequency domain.

Second, the tissue field was divided into high-fidelity and low-

fidelity components using the mask shown in Figure 1C. Third, the

tissue field was converted to the spatial domain by using inverse

Fourier transform. Finally, the original tissue field, high-fidelity

component, and low-fidelity component were concatenated and

input to amulti-channel Unet network as three individual channels.

DIAM-CNN adopted a multichannel 3D Unet architecture

(Chen Y.-C. et al., 2019; Souza et al., 2020). First, there were five

blocks in the encoder component of the network. Each encoder

block involved two 3 × 3 × 3 convolutional layers. The first

layer had 32 channels, and the channel number was doubled in

each layer compared to the previous layer. Batch normalization

(Ioffe and Szegedy, 2015) and rectified linear unit (Glorot et al.,

2011) were applied after each convolutional layer. Then, a 2 × 2

× 2 max pooling layer was performed after each block. Second,

there were four blocks in the decoder component. Each decoder

block consisted of 3 × 3 × 3 transposed convolutional layers

and the corresponding feature concatenation. Each concatenation

was followed by two convolutional layers. Finally, a 1 × 1 × 1

convolutional layer was used in the last layer.

The physical model loss (model loss), voxel-based difference

(L1 loss), and edge-based difference (gradient loss) in QSMnet were

used (Yoon et al., 2018). The total loss was defined as a weighted

sum of the model, L1, and gradient losses with experientially

determined weightings of 0.5, 1, and 0.1, respectively.

The “ADAM” optimizer (Kingma and Ba, 2014) was used to

optimize the weights of the network during training. The initial

learning rate was set at 0.001 and then decayed by 0.1 time when

the improvement was not obvious. The batch size was set 8, and the

training process was stopped at 160 epochs.
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FIGURE 2

Comparison of QSM of one subject reconstructed using the non-learning-based dipole inversion algorithms (MEDI and iLSQR) and QSMnet and

DIAM-CNN. Row 1, 2, and 3: axial view, coronal view, and sagittal view. Row 4, 5, and 6: the error map in each direction. Yellow arrows indicate

regions with an obvious di�erence between QSMnet and DIAM-CNN.

2.3. Network training and testing

The DIAM-CNN network was implemented using Python 3.6

and trained using one NVIDIA TITAN X (Pascal) GPU card. To

fit into GPU memory, the patch size for the DIAM-CNN training

was cropped to 64 × 64 × 64. The patch was generated with an

overlapping scheme of 66% overlap. To improve training efficiency,

patches with less than 10% tissue region were discarded.

The 12 healthy subjects with five orientations were divided

into five for training, two for validation, and five for testing. In

addition, rotation was applied to the COSMOS susceptibility map

and the tissue field map to increase the diversity of orientation in

the training dataset. The rotation angle with −15o and 15o relative

to B0 was chosen. The trained DIAM-CNN network is available

at https://github.com/SMU-BME-MRI-LIST/DIAM-CNN.

2.4. Performance evaluation

To demonstrate that DIAM-CNN enhanced the quality of

QSM maps, the five healthy volunteer test sets were processed

using QSMnet and DIAM-CNN. In addition, MEDI and iLSQR

QSM maps were also reconstructed for comparison. In MEDI

reconstruction, lambda was set to 3,000 (Yoon et al., 2018). With

the COSMOS reconstruction as a reference, the following metrics

were calculated for quantitative evaluation of QSM algorithms:

high-frequency error norm (HFEN), peak signal-to-noise-ratio

(PSNR), normalized root mean squared error (NRMSE), and

the structure similarity index measure (SSIM) (Langkammer

et al., 2018). Overall error, high-frequency deviation, noise, and

“visual” fidelity were the objectives of RMSE, HFEN, PSNR, and

SSIM, respectively.
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FIGURE 3

An axial view of the QSM map (first row) and the corresponding di�erence maps (second row) of the subject in Figure 2. Zoomed-in view of the map

shown in the last two rows [(third row) and (fourth row)]. DIAM-CNN shows smaller errors relative to the COSMOS reference than the compared

methods. The red arrow points at the subcallosal cingulate gyrus region where the QSMnet result has obvious underestimation, while the DIAM-CNN

result is accurate.

To further demonstrate the quantitative accuracy of the DIAM-

CNN in deep gray matters, we performed a linear regression

analysis of the susceptibility values between COSMOS and deep

learning-based methods in the putamen (PUT) and globus pallidus

(GP). The linear regression line and R2 value were calculated

between the susceptibility values of COSMOS and those of QSMnet

and DIAM-CNN. In addition, for the QSM of the brain with a

simulated high-susceptibility hemorrhage region, the susceptibility

map reconstructed by iLSQR, QSMnet, and DIAM-CNN was

compared by visual inspection. For the purpose of locating and

assessing the variance between method-specific QSM results and

the reference, visual inspections were carried out. The visual

inspections and anatomical ROI evaluation in this study were

supplied by two radiologists with extensive expertise.

3. Results

We evaluated the performance of DIAM-CNN with varying

dipole thresholds. As shown in Table 1, the highest PSNR (PSNR

= 43.15 ± 1.19), the smallest NRMSE (NRMSE = 51.79 ± 3.74),

and the highest SSIM (SSIM = 0.909 ± 0.011) were approximately

achieved at a threshold of 0.3. HFEN approximately reached the

minimum at a threshold of 0.4 (HFEN = 62.13 ± 8.93). Thus,

the threshold of 0.3 was used in all the following implementations

of DIAM-CNN. We also evaluated the performance of DIAM-

CNN with two input channels by selecting any two out of the

three channels. As shown in Table 2, the three-channel DIAM-

CNN outperformed all the two-channel DIAM-CNN in terms of

HFEN, NRMSE, PSNR, and SSIM.

The QSM maps and the corresponding error maps from a

representative test dataset reconstructed by different methods are

displayed in Figure 2. Starting from the first column, the method

for QSM reconstruction is COSMOS. As against the non-learning-

based QSM dipole inversion algorithms (MEDI and iLSQR) in the

second and third columns, the visual comparison of the results

of QSMnet and DIAM-CNN was shown in columns 4 and 5.

DIAM-CNN yielded fewer streaking artifacts compared to the non-

learning-based methods. As shown by the yellow arrows, DIAM-

CNN produced a more accurate susceptibility map compared

to the QSMnet baseline. Zoomed-in views of the axial plane of

Figure 2 are displayed in Figure 3. The DIAM-CNN map was less
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FIGURE 4

Comparison of QSM of another subject reconstructed using the non-learning-based dipole inversion algorithms (MEDI and iLSQR) and QSMnet and

DIAM-CNN. Row 1, 2, and 3: axial view, coronal view, and sagittal view. Row 4, 5, and 6: the error map in each direction. Yellow arrows indicate

regions with an obvious di�erence between QSMnet and DIAM-CNN.

noisy than those of MEDI and iLSQR. As the last row shows,

in comparison to QSMnet, DIAM-CNN yielded lower residuals

in certain brain regions, including the nucleus accumbens septi,

gyrus rectus, caudate nucleus, putamen (PUT), and globus pallidus

(GP). In the subcallosal cingulate gyrus region, as pointed out by

the red arrow, QSMnet yielded obvious underestimation, while

DIAM-CNN revealed almost identical results to that of COSMOS.

Figure 4 shows QSM slices from another test subject generated

from our DIAM-CNN compared withMEDI, iLSQR, and QSMnet.

Zoomed-in views of the axial plane of Figure 4 are displayed

in Figure 5. Compared to QSMnet, DIAM-CNN produced fewer

errors in regions including the caudate nucleus, the putamen, and

the telencephalic white matter.

The quantitative HFEN, PSNR, NRMSE, and SSIM metrics

calculated using the five test subjects was presented in Table 3.

Compared to MEDI and iLSQR, learning-based dipole inversion

algorithms including QSMnet and DIAM-CNN achieved higher

PSNR (the higher the better) and lower NRMSE (the lower the

better), while iLSQR obtained the best HFEN among these methods

and MEDI achieved the best SSIM. DIAM-CNN outperformed

QSMnet in all four criteria.

Linear correlation diagrams with the COSMOS result as the

transverse axis and the predicted susceptibility as the longitudinal

axis are displayed in Figure 6 to make a quantitative comparison

of the magnetic sensitivity accuracy between QSMnet and

DIAM-CNN in deep nuclei. Two typical regions of interest,

including GP (blue region in Figure 6A) and PUT (red region

in Figure 6B), were selected. As shown in Figure 6A, regression

slope in GP for DIAM-CNN (slope = 0.961, R2 = 0.72)

was closer to unity than that for QSMnet (slope = 0.94,

R2 = 0.62). Similarly, the regression slope for DIAM-CNN

(slope = 0.842, R2 = 0.73) was closer to unity than that for

QSMnet (slope = 0.804, R2 = 0.65) in PUT, as shown in

Figure 6B.
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FIGURE 5

An axial view of the QSM map (first row) and the corresponding di�erence maps (second row) of the subject in Figure 4. Zoomed-in view of the map

shown in the last two rows [(third row) and (fourth row)]. DIAM-CNN shows smaller errors relative to the COSMOS reference than the compared

methods.

The results of the brain with a simulated high-susceptibility

ICH lesion reconstructed by iLSQR, QSMnet, and DIAM-CNN

are displayed in Figure 7, with the simulated susceptibility map as

the ground truth. In the non-bleeding regions, susceptibility maps

reconstructed by iLSQR, QSMnet, and DIAM-CNN showed clear

structures. Near the bleeding region, the iLSQR result suffered from

severe streaking artifacts, and the QSMnet result showed obvious

shadow artifacts, as indicated by the red arrows. In contrast, these

artifacts are effectively suppressed in the DIAM-CNN result.

4. Discussion

In this study, we proposed a deep learning-based DIAM-

CNN method for solving the dipole inversion problem of

QSM reconstruction. DIAM-CNN divided the tissue field into

high-fidelity and low-fidelity components by thresholding the

dipole kernel in the frequency domain and inputs the two

components and the original tissue map as individual channels

to a multichannel Unet. The results showed that the DIAM-

CNN method outperformed QSMnet in terms of quantitative

accuracy metrics, including HFEN, NRMSE, PSNR, and SSIM

in healthy volunteers. In addition, DIAM-CNN produced fewer

TABLE 3 Mean and standard deviation of the quantitative performance

metrics, namely, HFEN, PSNR, NRMSE, and SSIM for the four

reconstruction methods (MEDI, iLSQR, QSMnet, and DIAM-CNN).

Methods HFEN
(%)

NRMSE
(%)

PSNR SSIM

MEDI 68.68± 4.37 92.85± 7.70 38.10± 1.04 0.956 ± 0.017

iLSQR 61.31 ± 5.71 72.08± 6.17 40.29± 0.99 0.883± 0.033

QSMnet 63.73± 9.81 53.07± 3.92 42.94± 1.19 0.906± 0.012

DIAM-

CNN

62.40± 8.90 51.79 ± 3.74 43.15 ± 1.19 0.909± 0.011

The bold part indicates the optimal value of each metric.

artifacts around the high-susceptibility bleeding lesions than the

compared methods.

Streaking artifacts in QSM were mainly caused by the noise

amplification effect from the division ofD(k) values close to 0 in the

dipole deconvolution. Previous studies have shown that streaking

artifacts in QSM can be alleviated by particularly processing

the low-fidelity component corresponding to small D(k) values

(Wharton et al., 2010). This idea was incorporated by the proposed

DIAM-CNN method to construct the neural networks for dipolar
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FIGURE 6

Linear regression of the susceptibility values in the globus pallidus (A) and the putamen (B) between COSMOS and deep learning-based methods

(QSMnet and DIAM-CNN).

inversion, and this may explain the outperformance of DIAM-

CNN over QSMnet. The results imply that the characteristics

of the problem of QSM reconstruction could be taken into

account during the design of the deep-learning QSM method for

performance improvement.

The performance of DIAM-CNN depends on the threshold

that divides the tissue field into low-fidelity and high-fidelity

components. A larger threshold results in more content in the low-

fidelity component and less content in the high-fidelity component.

A determination of the optimal threshold is time consuming,

given the intensive computational burden of network training. In

this study, we determined the threshold by a preliminary manual

search from 0.1 to 0.5 with an increment of 0.1. The results under

varying thresholds showed that a threshold of 0.3 yielded nearly

optimal performance for the three-channel DIAN-CNN method.

In practice, the optimal threshold may vary with noise levels,

and an automatic determination of the optimal threshold can be

investigated in future studies.

The proposed DIAM-CNNmethod has some limitations. First,

although DIAM-CNN incorporated the dipolar characteristic of

QSM reconstruction only at the stage of input, the design of

networks still lacks physical interpretability. The structure of

networks and training parameters needs to be tuned empirically.

Second, only two components were separated from the tissue

field in the current implementation of DIAM-CNN. The tissue

field can be separated into more frequency components as more

input channels to the network, but computational complexity and

GPU memory requirement would significantly increase with the

channel number. In addition, determining the optimal choice for

multiple thresholds requires a huge computational resource. Third,

we experientially set the patch size to 64 × 64 × 64 in the

current implementation. Using a larger patch size has the advantage

of capturing more global information for QSM reconstruction

but with substantially increased computational complexity and

GPU memory requirement. Finally, we only combined the dipole-

adaptive multiple inputs with the Unet structure. Moreover, the
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FIGURE 7

QSM results in the presence of a simulated high-susceptibility ICH lesion. From left to right: QSM maps reconstructed by COSMOS, iLSQR, QSMnet,

and DIAM-CNN, respectively. DIAM-CNN outperforms QSMnet in the suppression of shadow artifacts around the lesion, as pointed by the red arrows.

strategy of channel division with dipole-adaptive multi-frequency

inputs may be extended to other networks that have shown

promising performance in QSM.We will investigate this possibility

in future studies.

5. Conclusion

This study proposed a deep learning-based method for the

dipole inversion in QSM, DIAM-CNN, which adopted a neural

network with multiple input channels: the original tissue map,

the low-fidelity component, and the high-fidelity component

generated by thresholding the dipole in the frequency domain.

The experimental results showed that the DIAM-CNN method

yielded QSM images with improved accuracy and fewer artifacts

than the state-of-the-art methods in both healthy volunteers

and hemorrhagic patients. The incorporation of QSM-specific

knowledge into the network construction has the potential to

improve deep learning-based QSM reconstruction.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Ethics statement

Written informed consent was obtained from the individual(s)

for the publication of any potentially identifiable images or data

included in this article.

Author contributions

WS: methodology, software, validation, and writing. YG:

methodology, investigation, data curation, and writing. QZ and JZ:

validation. YW: resources and supervision. YF: conceptualization,

investigation, resources, writing, supervision, and funding

acquisition. All authors contributed to the article and approved the

submitted version.

Funding

This study was supported by the National Natural

Science Foundation of China under Grant U21A6005, the

National Natural Science Foundation of China (81871349 and

61671228), and the Key-Area Research and Development

Program of Guangdong Province (2018B030340001

and 2018B030333001).

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1165446
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Si et al. 10.3389/fnins.2023.1165446

Acknowledgments

We thank Professor Jongho Lee for providing the QSMnet

datasets. We would like to express our gratitude to the radiologists

Cuiling Zhu and YG for the contributions that they made to our

study on visual inspections.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Acosta-Cabronero, J., Cardenas-Blanco, A., Betts, M. J., Butryn, M., Valdes-Herrera,
J. P., Galazky, I., et al. (2017). The whole-brain pattern of magnetic susceptibility
perturbations in Parkinson’s disease. Brain 140, 118–131. doi: 10.1093/brain/aww278

Bao, L., Li, X., Cai, C., Chen, Z., and van Zijl, P. C. (2016). Quantitative
susceptibility mapping using structural feature based collaborative reconstruction
(SFCR) in the human brain. IEEE Trans. Med. Imaging 35, 2040–2050.
doi: 10.1109/TMI.2016.2544958

Barkhof, F., and Thomas, D. L. (2018). Mapping deep gray matter iron in multiple
sclerosis by using quantitative magnetic susceptibility. Radiology 289, 497–498.
doi: 10.1148/radiol.2018181274

Bilgic, B., Pfefferbaum, A., Rohlfing, T., Sullivan, E. V., and Adalsteinsson,
E. (2012). MRI estimates of brain iron concentration in normal aging
using quantitative susceptibility mapping. Neuroimage 59, 2625–2635.
doi: 10.1016/j.neuroimage.2011.08.077

Bollmann, S., Rasmussen, K. G. B., Kristensen, M., Blendal, R. G., Østergaard,
L. R., Plocharski, M., et al. (2019). DeepQSM - using deep learning to solve the
dipole inversion for quantitative susceptibility mapping. Neuroimage 195, 373–383.
doi: 10.1016/j.neuroimage.2019.03.060

Chatnuntawech, I., McDaniel, P., Cauley, S. F., Gagoski, B. A., Langkammer,
C., Martin, A., et al. Single-step quantitative susceptibility mapping with variational
penalties. NMR Biomed. (2017) 30, e3570. doi: 10.1002/nbm.3570

Chen, L., Hua, J., Ross, C. A., Cai, S., van Zijl, P. C. M., Li, X., et al. (2019).
Altered brain iron content and deposition rate in Huntington’s disease as indicated by
quantitative susceptibility MRI. J. Neurosci. Res. 97, 467–479. doi: 10.1002/jnr.24358

Chen, W., Gauthier, S. A., Gupta, A., Comunale, J., Liu, T., Wang, S., et al.
(2014a). Quantitative susceptibility mapping of multiple sclerosis lesions at various
ages. Radiology 271, 183–192. doi: 10.1148/radiol.13130353

Chen, W., Zhu, W., Kovanlikaya, I., Kovanlikaya, A., Liu, T., Wang, S.,
et al. (2014b). Intracranial calcifications and hemorrhages: characterization with
quantitative susceptibility mapping. Radiology 270, 496. doi: 10.1148/radiol.13122640

Chen, Y., Guo, Y., Zhang, X., Mei, Y., Feng, Y., Zhang, X., et al. (2018).
Bone susceptibility mapping with MRI is an alternative and reliable biomarker
of osteoporosis in postmenopausal women. Eur. Radiol. 28, 5027–5034.
doi: 10.1007/s00330-018-5419-x

Chen, Y., Jakary, A., Avadiappan, S., Hess, C. P., and Lupo, J. M. (2020).
QSMGAN: improved quantitative susceptibility mapping using 3D generative
adversarial networks with increased receptive field. Neuroimage 207, 116389.
doi: 10.1016/j.neuroimage.2019.116389

Chen, Y. C., Lin, Y. C., Wang, C. P., Lee, C. Y., Lee, W. J., Wang, T. D., et al. (2019).
Coronary artery segmentation in cardiac CT angiography using 3D multi-channel
U-net. arXiv preprint arXiv:1907.12246.

Cogswell, P. M., Wiste, H. J., Senjem, M. L., Gunter, J. L., Weigand, S. D.,
Schwarz, C. G., et al. (2021). Associations of quantitative susceptibility mapping
with Alzheimer’s disease clinical and imaging markers. Neuroimage 224, 117433.
doi: 10.1016/j.neuroimage.2020.117433

de Rochefort, L., Liu, T., Kressler, B., Liu, J., Spincemaille, P., Lebon,
V., et al. (2010). Quantitative susceptibility map reconstruction from
MR phase data using bayesian regularization: validation and application
to brain imaging. Magn. Reson. Med. 63, 194–206. doi: 10.1002/mrm.
22187

Dibb, R., Xie, L., Wei, H., and Liu, C. (2017). Magnetic susceptibility anisotropy
outside the central nervous system. NMR Biomed. 30, e3544. doi: 10.1002/nbm.3544

Feng, R., Zhao, J., Wang, H., Yang, B., Feng, J., Shi, Y., et al. (2021). MoDL-QSM:
Model-based deep learning for quantitative susceptibility mapping. Neuroimage 240,
118376. doi: 10.1016/j.neuroimage.2021.118376

Gao, Y., Zhu, X., Moffat, B. A., Glarin, R., Wilman, A. H., Pike, G. B., et al.
(2021). xQSM: quantitative susceptibility mapping with octave convolutional and
noise-regularized neural networks. NMR Biomed. 34, e4461. doi: 10.1002/nbm.4461

Ghassaban, K., Liu, S., Jiang, C., and Haacke, E. M. (2019). Quantifying
iron content in magnetic resonance imaging. Neuroimage 187, 77–92.
doi: 10.1016/j.neuroimage.2018.04.047

Glorot, X., Bordes, A., and Bengio, Y. (2011). “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (JMLRWorkshop and Conference Proceedings), 315–323.

Gong, N. J., Dibb, R., Bulk, M., van der Weerd, L., and Liu, C. (2019).
Imaging beta amyloid aggregation and iron accumulation in Alzheimer’s disease
using quantitative susceptibility mapping MRI. Neuroimage 191, 176–185.
doi: 10.1016/j.neuroimage.2019.02.019

Guo, Y., Chen, Y., Zhang, X., Mei, Y., Yi, P., Wang, Y., et al. (2019a).
Magnetic susceptibility and fat content in the lumbar spine of postmenopausal
women with varying bone mineral density. J. Magn. Reson. Imaging. 49, 1020–1028.
doi: 10.1002/jmri.26279

Guo, Y., Liu, Z., Wen, Y., Spincemaille, P., Zhang, H., Jafari, R., et al. (2019b).
Quantitative susceptibility mapping of the spine using in-phase echoes to initialize
inhomogeneous field and R2∗ for the nonconvex optimization problem of fat-water
separation. NMR Biomed. 32, e4156. doi: 10.1002/nbm.4156

Haacke, E. M., Liu, S., Buch, S., Zheng,W., Wu, D., Ye, Y., et al. (2015). Quantitative
susceptibility mapping: current status and future directions.Magn. Reson. Imaging. 33,
1–25. doi: 10.1016/j.mri.2014.09.004

He, N., Ghassaban, K., Huang, P., Jokar, M., Wang, Y., Cheng, Z., et al. (2021).
Imaging iron and neuromelanin simultaneously using a single 3D gradient echo
magnetization transfer sequence: combining neuromelanin, iron and the nigrosome-
1 sign as complementary imaging biomarkers in early stage Parkinson’s disease.
Neuroimage 230, 117810. doi: 10.1016/j.neuroimage.2021.117810

Ioffe, S., and Szegedy, C. (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference on Machine
Learning (pmlr), 448–456.

Jung, W., Bollmann, S., and Lee, J. (2020a). Overview of quantitative susceptibility
mapping using deep learning: current status, challenges and opportunities. NMR
Biomed. 35, e4292. doi: 10.1002/nbm.4292

Jung, W., Yoon, J., Ji, S., Choi, J. Y., Kim, J. M., Nam, Y., et al. (2020b). Exploring
linearity of deep neural network trained QSM: QSMnet(). Neuroimage 211, 116619.
doi: 10.1016/j.neuroimage.2020.116619

Kim, H.-G., Park, S., Rhee, H. Y., Lee, K. M., Ryu, C.-W., Rhee, S. J., et al. (2017).
Quantitative susceptibility mapping to evaluate the early stage of Alzheimer’s disease.
Neuroimage Clin. 16, 429–438. doi: 10.1016/j.nicl.2017.08.019

Kingma, D. P., and Ba, J. (2014). Adam: Amethod for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kyong Hwan, J., McCann, M. T., Froustey, E., and Unser, M. (2017). Deep
convolutional neural network for inverse problems in imaging. IEEE Trans. Image
Process. 26, 4509–4522. doi: 10.1109/TIP.2017.2713099

Langkammer, C., Schweser, F., Krebs, N., Deistung, A., Goessler, W., Scheurer,
E., et al. (2012). Quantitative susceptibility mapping (QSM) as a means to

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1165446
https://doi.org/10.1093/brain/aww278
https://doi.org/10.1109/TMI.2016.2544958
https://doi.org/10.1148/radiol.2018181274
https://doi.org/10.1016/j.neuroimage.2011.08.077
https://doi.org/10.1016/j.neuroimage.2019.03.060
https://doi.org/10.1002/nbm.3570
https://doi.org/10.1002/jnr.24358
https://doi.org/10.1148/radiol.13130353
https://doi.org/10.1148/radiol.13122640
https://doi.org/10.1007/s00330-018-5419-x
https://doi.org/10.1016/j.neuroimage.2019.116389
https://doi.org/10.1016/j.neuroimage.2020.117433
https://doi.org/10.1002/mrm.22187
https://doi.org/10.1002/nbm.3544
https://doi.org/10.1016/j.neuroimage.2021.118376
https://doi.org/10.1002/nbm.4461
https://doi.org/10.1016/j.neuroimage.2018.04.047
https://doi.org/10.1016/j.neuroimage.2019.02.019
https://doi.org/10.1002/jmri.26279
https://doi.org/10.1002/nbm.4156
https://doi.org/10.1016/j.mri.2014.09.004
https://doi.org/10.1016/j.neuroimage.2021.117810
https://doi.org/10.1002/nbm.4292
https://doi.org/10.1016/j.neuroimage.2020.116619
https://doi.org/10.1016/j.nicl.2017.08.019
https://doi.org/10.1109/TIP.2017.2713099
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Si et al. 10.3389/fnins.2023.1165446

measure brain iron? A post mortem validation study. Neuroimage 62, 1593–1599.
doi: 10.1016/j.neuroimage.2012.05.049

Langkammer, C., Schweser, F., Shmueli, K., Kames, C., Li, X., Guo, L., et al. (2018).
Quantitative susceptibility mapping: report from the 2016 reconstruction challenge.
Magn. Reson. Med. 79, 1661–1673. doi: 10.1002/mrm.26830

Lee, H., Cho, H., Lee, M. J., Kim, T. H., Roh, J., Lee, J. H., et al. (2021). Differential
effect of iron and myelin on susceptibility MRI in the substantia nigra. Radiology 301,
682–691. doi: 10.1148/radiol.2021210116

Li, W., Wang, N., Yu, F., Han, H., Cao, W., Romero, R., et al. (2015). A method
for estimating and removing streaking artifacts in quantitative susceptibility mapping.
Neuroimage 108, 111–122. doi: 10.1016/j.neuroimage.2014.12.043

Liu, J., Liu, T., de Rochefort, L., Ledoux, J., Khalidov, I., Chen, W., et al. (2012).
Morphology enabled dipole inversion for quantitative susceptibility mapping using
structural consistency between the magnitude image and the susceptibility map.
Neuroimage 59, 2560–2568. doi: 10.1016/j.neuroimage.2011.08.082

Liu, T., Liu, J., de Rochefort, L., Spincemaille, P., Khalidov, I., Ledoux, J. R., et al.
(2011). Morphology enabled dipole inversion (MEDI) from a single-angle acquisition:
comparison with COSMOS in human brain imaging.Magn. Reson. Med. 66, 777–783.
doi: 10.1002/mrm.22816

Liu, T., Spincemaille, P., de Rochefort, L., Kressler, B., and Wang, Y. (2009).
Calculation of susceptibility through multiple orientation sampling (COSMOS):
a method for conditioning the inverse problem from measured magnetic field
map to susceptibility source image in MRI. Magn. Reson. Med. 61, 196–204.
doi: 10.1002/mrm.21828

Liu, T., Spincemaille, P., de Rochefort, L., Wong, R., Prince, M., Wang, Y., et al.
(2010). Unambiguous identification of superparamagnetic iron oxide particles through
quantitative susceptibility mapping of the nonlinear response to magnetic fields.Magn.
Reson. Imaging 28, 1383–1389. doi: 10.1016/j.mri.2010.06.011

Liu, T., Xu, W., Spincemaille, P., Avestimehr, A. S., and Wang, Y. (2012).
Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for
quantitative susceptibility mapping in MRI. IEEE Trans. Med. Imaging 31, 816–824.
doi: 10.1109/TMI.2011.2182523

O’Callaghan, J., Holmes, H., Powell, N., Wells, J. A., Ismail, O., Harrison, I. F.,
et al. (2017). Tissue magnetic susceptibility mapping as a marker of tau pathology in
Alzheimer’s disease. Neuroimage 159, 334–345. doi: 10.1016/j.neuroimage.2017.08.003

Pagnozzi, A. M., Fripp, J., and Rose, S. E. (2019). Quantifying deep grey matter
atrophy using automated segmentation approaches: a systematic review of structural
MRI studies. Neuroimage 201, 116018. doi: 10.1016/j.neuroimage.2019.116018

Polak, D., Chatnuntawech, I., Yoon, J., Iyer, S. S., Milovic, C., Lee, J., et al. (2020).
Nonlinear dipole inversion (NDI) enables robust quantitative susceptibility mapping
(QSM). NMR Biomed. 33, e4271. doi: 10.1002/nbm.4271

Ravanfar, P., Loi, S. M., Syeda, W. T., Van Rheenen, T. E., Bush, A. I., Desmond,
P., et al. (2021). Systematic review: quantitative susceptibility mapping (QSM)
of brain iron profile in neurodegenerative diseases. Front. Neurosci. 15, 618435.
doi: 10.3389/fnins.2021.618435

Ronneberger, O., Fischer, P., and Brox, T. (2015).U-Net: Convolutional Networks for
Biomedical Image Segmentation. Cham: Springer. doi: 10.1007/978-3-319-24574-4_28

Schweser, F., Deistung, A., Lehr, B. W., and Reichenbach, J. R. (2011).
Quantitative imaging of intrinsic magnetic tissue properties using MRI signal
phase: an approach to in vivo brain iron metabolism? Neuroimage 54, 2789–2807.
doi: 10.1016/j.neuroimage.2010.10.070

Schweser, F., Deistung, A., Sommer, K., and Reichenbach, J. R. (2013). Toward
online reconstruction of quantitative susceptibility maps: superfast dipole inversion.
Magn. Reson. Med. 69, 1582–1594. doi: 10.1002/mrm.24405

Souza, R., Bento, M., Nogovitsyn, N., Chung, K. J., Loos, W., Lebel, R. M.,
et al. (2020). Dual-domain cascade of U-nets for multi-channel magnetic resonance
image reconstruction. Magn. Reson. Imaging 71, 140–153. doi: 10.1016/j.mri.2020.
06.002

Sun, H., Klahr, A. C., Kate, M., Gioia, L. C., Emery, D. J., Butcher, K. S., et al. (2018).
Quantitative susceptibility mapping for following intracranial hemorrhage. Radiology
288, 830–839. doi: 10.1148/radiol.2018171918

Tang, J., Liu, S., Neelavalli, J., Cheng, Y. C., Buch, S., Haacke, E. M., et al.
(2013). Improving susceptibility mapping using a threshold-based K-space/image
domain iterative reconstruction approach. Magn. Reson. Med. 69, 1396–1407.
doi: 10.1002/mrm.24384

Tiepolt, S., Rullmann, M., Jochimsen, T. H., Gertz, H.-J., Schroeter, M. L., Patt,
M., et al. (2020). Quantitative susceptibility mapping in beta-Amyloid PET-stratified
patients with dementia and healthy controls - a hybrid PET/MRI study. Eur. J. Radiol.
131, 109243. doi: 10.1016/j.ejrad.2020.109243

Vinayagamani, S., Sheelakumari, R., Sabarish, S., Senthilvelan, S., Ros, R., Thomas,
B., et al. (2021). Quantitative susceptibility mapping: technical considerations
and clinical applications in neuroimaging. J. Magn. Reson. Imaging 53, 23–37.
doi: 10.1002/jmri.27058

Wang, S., Liu, T., Chen, W., Spincemaille, P., Wisnieff, C., Tsiouris, A. J., et al.
(2013). Noise effects in various quantitative susceptibility mapping methods. IEEE
Trans. Biomed. Eng. 60, 3441–3448. doi: 10.1109/TBME.2013.2266795

Wang, Y., and Liu, T. (2015). Quantitative susceptibility mapping (QSM):
Decoding MRI data for a tissue magnetic biomarker. Magn. Reson. Med. 73, 82–101.
doi: 10.1002/mrm.25358

Wei, H., Dibb, R., Zhou, Y., Sun, Y., Xu, J., Wang, N., et al. (2015). Streaking artifact
reduction for quantitative susceptibility mapping of sources with large dynamic range.
NMR Biomed. 28, 1294–1303. doi: 10.1002/nbm.3383

Wen, Y., Spincemaille, P., Nguyen, T., Cho, J., Kovanlikaya, I., Anderson, J., et al.
(2021). Multiecho complex total field inversion method (mcTFI) for improved signal
modeling in quantitative susceptibility mapping. Magn. Reson. Med. 86, 2165–2178.
doi: 10.1002/mrm.28814

Wharton, S., and Bowtell, R. (2010). Whole-brain susceptibility mapping at high
field: a comparison of multiple- and single-orientation methods. Neuroimage 53,
515–525. doi: 10.1016/j.neuroimage.2010.06.070

Wharton, S., Schäfer, A., and Bowtell, R. (2010). Susceptibility mapping in
the human brain using threshold-based k-space division. Magn. Reson. Med. 63,
1292–1304. doi: 10.1002/mrm.22334

Yoon, J., Gong, E., Chatnuntawech, I., Bilgic, B., Lee, J., Jung, W., et al. (2018).
Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage
179, 199–206. doi: 10.1016/j.neuroimage.2018.06.030

Zhang, J., Liu, Z., Zhang, S., Zhang, H., Spincemaille, P., Nguyen, T.
D., et al. (2020). Fidelity imposed network edit (FINE) for solving ill-posed
image reconstruction. Neuroimage 211, 116579. doi: 10.1016/j.neuroimage.2020.
116579

Zhang, Y., Wei, H., Cronin, M. J., He, N., Yan, F., Liu, C., et al. (2018).
Longitudinal atlas for normative human brain development and aging over
the lifespan using quantitative susceptibility mapping. Neuroimage 171, 176–189.
doi: 10.1016/j.neuroimage.2018.01.008

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1165446
https://doi.org/10.1016/j.neuroimage.2012.05.049
https://doi.org/10.1002/mrm.26830
https://doi.org/10.1148/radiol.2021210116
https://doi.org/10.1016/j.neuroimage.2014.12.043
https://doi.org/10.1016/j.neuroimage.2011.08.082
https://doi.org/10.1002/mrm.22816
https://doi.org/10.1002/mrm.21828
https://doi.org/10.1016/j.mri.2010.06.011
https://doi.org/10.1109/TMI.2011.2182523
https://doi.org/10.1016/j.neuroimage.2017.08.003
https://doi.org/10.1016/j.neuroimage.2019.116018
https://doi.org/10.1002/nbm.4271
https://doi.org/10.3389/fnins.2021.618435
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.neuroimage.2010.10.070
https://doi.org/10.1002/mrm.24405
https://doi.org/10.1016/j.mri.2020.06.002
https://doi.org/10.1148/radiol.2018171918
https://doi.org/10.1002/mrm.24384
https://doi.org/10.1016/j.ejrad.2020.109243
https://doi.org/10.1002/jmri.27058
https://doi.org/10.1109/TBME.2013.2266795
https://doi.org/10.1002/mrm.25358
https://doi.org/10.1002/nbm.3383
https://doi.org/10.1002/mrm.28814
https://doi.org/10.1016/j.neuroimage.2010.06.070
https://doi.org/10.1002/mrm.22334
https://doi.org/10.1016/j.neuroimage.2018.06.030
https://doi.org/10.1016/j.neuroimage.2020.116579
https://doi.org/10.1016/j.neuroimage.2018.01.008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs
	1. Introduction
	2. Materials and methods
	2.1. Datasets 
	2.1.1. Data of healthy volunteers 
	2.1.2. Data of intracerebral hemorrhage
	2.1.2.1. Simulation of QSM data with high susceptibility region


	2.2. Architecture of the DIAM-CNN network
	2.3. Network training and testing
	2.4. Performance evaluation

	3. Results
	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


