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Voluntary wheel running (VWR) is widely used to study how exercise impacts a
variety of physiologies and pathologies in rodents. The primary activity readout of
VWR is aggregated wheel turns over a given time interval (most often, days). Given
the typical running frequency of mice (~4 Hz) and the intermittency of voluntary
running, aggregate wheel turn counts, therefore, provide minimal insight into the
heterogeneity of voluntary activity. To overcome this limitation, we developed a
six-layer convolutional neural network (CNN) to determine the hindlimb foot
strike frequency of mice exposed to VWR. Aged female C57BL/6mice (22 months,
n = 6) were first exposed towireless angled runningwheels for 2 h/d, 5 days/wk for
3 weeks with all VWR activities recorded at 30 frames/s. To validate the CNN, we
manually classified foot strikes within 4800 1-s videos (800 randomly chosen for
each mouse) and converted those values to frequency. Upon iterative
optimization of model architecture and training on a subset of classified videos
(4400), the CNN model achieved an overall training set accuracy of 94%. Once
trained, the CNN was validated on the remaining 400 videos (accuracy: 81%). We
then applied transfer learning to the CNN to predict the foot strike frequency of
young adult female C57BL6mice (4 months, n = 6) whose activity and gait differed
from old mice during VWR (accuracy: 68%). In summary, we have developed a
novel quantitative tool that non-invasively characterizes VWR activity at a much
greater resolution than was previously accessible. This enhanced resolution holds
potential to overcome a primary barrier to relating intermittent and
heterogeneous VWR activity to induced physiological responses.
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Introduction

Voluntary wheel running (VWR) provides a low stress means of exploring how activity
influences rodent physiological systems (Manzanares et al., 2018; Guo et al., 2020). Although
VWR avoids the distress associated with enforced activity such as treadmill running, the
intermittency and heterogeneity of uncontrolled voluntary activity hold potential to
confound interpretation of data. For example, young mice exposed to 24 h VWR
demonstrate weekly mean running distances that vary profoundly across time, age, and
sex (Bartling et al., 2017). Not surprisingly, efforts to correlate activity levels (e.g., wheel
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turns) with exercise-induced adaptation (particularly where the
observed response is modest, such as bone morphology) have not
been successful (Schlecht et al., 2018).

Our interest in the VWR model arose from a desire to more
accurately model the modest ability of exercise to increase bonemass
in humans as compared to the robust bone adaptation observed in
direct external bone loading models (Sun et al., 2017; Sato et al.,
2020). In controlled skeletal loading models, high-resolution
information describing the applied stimulus can be directly
related to the adaptive response. From these studies, parameters
such as peak strain and rest intervals have been associated with
enhanced bone formation (Rubin and Lanyon, 1985; Gross et al.,
1997). This approach is not viable for VWR, given the limited
resolution of activity-related outcome measures.

VWR activity is typically quantified as wheel turns or distance
run (derived from the wheel radius) in discrete time interval bins
(usually 1 min or more) subsequently averaged across days or weeks
(De Bono et al., 2006). Custom instrumented wheels have enabled
high-resolution characterization of wheel running-induced gait
kinematics and mechanical stimuli (Kitsukawa et al., 2011;
Alvarez et al., 2012). However, these solutions require specialized
equipment and instrumentation that are not commercially available
and are only able to quantify a subset of activity within a study. We,
therefore, drew inspiration from recent applications of machine
learning and neural networks to biological problems and,
specifically, efforts to quantify open-field behavior in mice
(Sturman et al., 2020; Greener et al., 2022; Sheppard et al., 2022).
Here, we describe a novel convolutional neural network (CNN) that
enables classification of hindlimb foot strikes occurring within each
1-s interval throughout a VWR exposure.

Methods

In vivo voluntary wheel running

Aged female C57BL/6 mice (20 Mo, n = 6) were housed as a
group per standard of care at the University of Washington. To
familiarize mice with the wheel running apparatus (Goh and
Ladiges, 2015), individual mice were placed in single cages each
with one manually locked low-profile wireless running wheel
contained within a light, sound-attenuated cabinet (Med
Associates, Inc.) for 2 h/d beginning at 8 AM for three
consecutive days (W–F). On the subsequent Monday, each mouse
was exposed to its own unlocked running wheel for 2 h/d, 5 days/wk,
for 3 weeks. All animals were euthanized without running on day 19
(i.e., Friday of wk 3; after 14 VWR exposures for each mouse). Upon
completion of each wheel exposure, mice were returned to their
group cages (at either 10 AM or 12 PM). Wheel turn counts (1 min
bins) were recorded via wireless wheel software, and activity was
recorded throughout each mouse’s 14 running wheel exposures
using a near-IR video camera mounted on the cabinet’s interior
roof (30 frames/s; 216,000 frames/mouse/VWR exposure to running
wheels; Med Associates, Inc.).

The VWR experiment was then replicated in young adult female
C57BL/6 mice (4 months, n = 6), with one exception (due to a
calendar oversight, the mice received a total of 13, 2-h running wheel
exposures).

Human labeling of mouse hindlimb foot
strikes

To manually classify foot strikes during VWR, we developed
semi-automated software (MATLAB) to count the number of
hindlimb foot strikes that occur every 1 s during mouse wheel
running activity. For each of the six aged C57BL/6 mice, we
randomly sampled 800, 1-s videos from within 2 h x 14 bouts of
total VWR exposure (generating 4,800 1 s videos). Using slow-
motion playback, we counted the number of hindlimb foot
strikes within each 1-s video and converted that value to
frequency. As there was no requirement for the mouse to be on
a wheel, portions of the sampled videos also included periods where
the mouse was not physically on the wheel or was on the wheel but
not moving. The foot strike frequency for these conditions was
classified as 0 Hz. Foot strikes were identically quantified for the
young adult C57BL/6 mice (except that only 1000 1-s videos were
sampled and classified). To establish a standard measure to contrast
against the CNN model’s performance, we estimated human
labeling accuracy. As no ground-truth exists for this dataset
(used to assess machine learning accuracy vs. the real world
(Shpilman et al., 2017)), we assessed how trained experienced
and untrained users classified foot strike frequency. Experienced
users were co-authors who contributed to developing foot strike
count software development associated with the project. Untrained
users were co-authors who had no prior experience estimating foot
strikes from activity videos. Both experienced (n = 2; PH, SS) and
untrained users (n = 2; EMG, BJA) viewed the same novel set of 100,
1-s videos randomly sampled from the overall aged female mouse
video dataset (2 h × 14 days of activity x 6 mice) and used the semi-
automated MATLAB program to classify foot strike during wheel
running.

A CNN to predict the foot strike frequency in
aged (22months) female C57BL/6 mice

We framed the determination of foot strike frequencies via CNN
as a multi-class (>three possible foot strike frequencies) supervised
learning problem (human-labeled training data). To classify foot
strike frequencies from mouse activity videos, we developed a CNN
(Figure 1) using Python (v 3.6) and TensorFlow (v 1.14; CNN
software is shared in a GitHub repository: https://github.com/osl-
uw/cnn-foot-strike-frequency). The model incorporates three, 2-D
convolutional layers (with leaky ReLU activations and max pooling
layers), followed by three fully connected layers (with leaky ReLU
activations (Maas et al., 2013)). The activations of the last of the fully
connected layers are used to predict the foot strike frequency (in
Hz), given a sequence of 30 image frames (240 × 320 pixels/frame)
representing 1-s of VWR activity. For context, mouse foot strikes
occur between 2.5 and 10 Hz during normal locomotion (Bellardita
and Kiehn, 2015).

As the human classified data were not uniformly distributed
across the foot strike frequency (Table 1, p < 0.001), stratified
random sampling was implemented to split the data into training
(90%) and test sets (10%). To train the model (and its parameters),
the cross-entropy multi-class loss was minimized via a mini-batch
gradient descent (Kingma and Ba, 2014). For this, the activations of
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the final layer were transformed via a softmax function and
subsequently used to compute the multi-class cross-entropy loss.
A stair-step learning rate decay (updated at the end of each training
epoch) was also implemented for the training task. Initially, we
augmented the training dataset (with 90% of 4800 resulting in
4320 1-s videos) via flipping (i.e., original, horizontal, vertical,
and horizontal–vertical) without/with the addition of Gaussian
noise (i.e., 4320 × 4 × 2) prior to testing against the remaining
10% of raw labeled data (480 1-s videos (Krizhevsky et al., 2012; Xu
et al., 2017)). To assess whether augmentation was necessary, given
that mice are primarily fixed in space during wheel running, an
alternate model was trained on a separate non-augmented dataset
(n = 4320, 1-s videos) and tested against separate raw labeled data
(n = 480, 1-s videos).

CNN models were separately trained on augmented and non-
augmented datasets over 50 epochs (where each epoch involves
traversing once over the entire training data set). Post-training,
model accuracy was assessed via evaluation of the test dataset
(i.e., naïve data not involved in training). As test accuracy was
similar, regardless of augmentation, we used the less

computationally intensive non-augmented trained model to
predict the foot strike frequency within the 2 h/d x 14 days of
activity videos for each aged mouse.

Transfer learning to predict the foot strike
frequency in young adult female C57BL/
6 mice

Consistent with the literature, young adult mice qualitatively
displayed differing gaits and speeds while running vs. the old mice
(Tarantini et al., 2019). Preliminary analyses, not surprisingly,
indicated that the CNN model trained upon old C57BL/6 mice
activity data did not accurately predict the foot strike frequencies in
young adult C57BL/6 mice (53% accuracy). To overcome this
limitation, we used transfer learning to ‘transform’ the CNN
model previously trained to the data distribution, representative
of aged mice to that observed for young mice (Chan et al., 2020). As
transfer learning re-used the pretrained CNNmodel, we were able to
implement a minimal dataset compared to initial CNN model

FIGURE 1
Schematic representation of the CNNmodel used to predict foot strike frequencies (vout), given a series of 30 image frames representing 1-s of VWR.
Model training was performed via a mini-batch (‘m’ videos) gradient descent. The CNNmodel implemented three Conv2D layers, each followed by max
pooling where the same padding was used at each stage, with stride alternating between 1, 1 and 2, 2. Conv2D implemented a filter size of x, y, and z of n
filters (beginning with 4, 4, 30, and 30). The final max pooling layer was flattened and fed a series of fully connected layers (number of neurons
indicated) with the number of neurons in the final output layer (N_freq) specified as 8 for old mice and 11 for young adult mice (due to faster gait).

TABLE 1 Foot strike frequency fractions in the human-labeled dataset for aged (n = 4,800 videos) and young (n = 1000 videos) female C57BL/6 mice. The data were
not uniformly distributed across foot strike frequency (p < 0.001). Neural network hyperparameter settings: learning rate = 0.0001, decay rate = 0.95, and batch
size = 36.

0 Hz 1 Hz 2 Hz 3 Hz 4 Hz 5 Hz 6 Hz 7 Hz 8 Hz

Aged 68.6 1.7 3.7 5.6 8.3 8.6 3.4 0.1 0.0

Young 49.2 2.0 3.1 2.2 3.8 5.7 15.4 16.8 1.8

Frontiers in Bioengineering and Biotechnology frontiersin.org03

Huber et al. 10.3389/fbioe.2023.1206008

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1206008


development (i.e., 1000 vs. 4800 videos). The labeled 1000 1-s videos
obtained from youngmice were split into train (n = 900) and test sets
(n = 100) via stratified sampling. Using the same architecture
(i.e., Figure 1), the CNN model’s parameters for all layers were
first initialized to those of the model successfully trained against data
from aged mice. Additional parameter training (100 epochs) was
then initiated using data from young mice. Post-training, model
accuracy was determined via prediction of the labeled raw test data.

Statistical analysis

Contrasts of the labeled foot strike frequencies quantified for
aged vs. young adult mice were performed via the Pearson’s chi-
squared test of independence. The accuracy of the CNNmodel was
evaluated via the assessment of predictions against labeled test data
sets. Linear regression was implemented to examine the
relationship between aggregate foot strikes predicted by the
CNN model versus wheel turn counts aggregated over each 2-h
running wheel exposure.

Results

We first explored the reproducibility of the hindlimb foot strike
frequency, as labeled by both experienced and untrained human
users. Manual classification was performed at an average of
~3 videos/min. For the classification dataset, the accuracy of
classification between experienced users was 82.5% and the
accuracy between untrained users was 75.1%.

When the CNN model was trained against data from aged
C57BL/6 mice, model accuracy in classifying the training dataset
was 100% for the augmented dataset and 94% for the non-
augmented dataset. When evaluated against the test set, the
model accuracy for the augmented dataset was 79% vs. 81% for
the non-augmented data set. The non-augmented model was then
used to predict foot strikes throughout each 2-h wheel running
exposure. For a given wheel exposure, predicted foot strikes had a
high level of temporal correspondence with wheel turn counts
(Figure 2A). Across all mice and all wheel exposures, we found
that predicted foot strikes were significantly correlated with
aggregated wheel turn counts (r2 = 0.82, p < 0.001; Figure 2B).

FIGURE 2
Representative plots of CNN predicted foot strikes and wheel
turn counts for two representative aged mouse wheel exposures (A),
(discretized in 1 min bins). Across all aged mouse wheel exposures
(14 bouts x 6 mice), cumulative predicted foot strikes per bout
were highly correlated with cumulative wheel turn counts for that
bout (B), (r2 = 0.82). The 2-h wheel exposures illustrated in (A) are
highlighted in (B) (green).

FIGURE 3
Representative plots of CNN predicted foot strikes and wheel
turn counts for two representative young mouse wheel exposures (A),
(discretized in 1 min bins). Across all young adult mouse wheel
exposures (13 bouts x 6 mice), cumulative predicted foot strikes
per bout were highly correlated with cumulative wheel turn counts for
that bout (B), (r2 = 0.77). The 2-h wheel exposures described in (A) are
highlighted in (B) (green).
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Following the implementation of transfer learning, the enhanced
CNN was able to classify the young adult mouse train dataset at 98%
accuracy. The enhanced CNN demonstrated 68% accuracy when
applied to the young mouse test dataset. As with aged mice, CNN-
derived foot strike counts temporally mirrored wheel turn counts
across mice that demonstrated varied activity intermittency during
wheel exposure, while cumulative foot strikes were significantly
correlated with cumulative wheel turn counts (r2 = 0.77, p <
0.001; Figure 3).

The age-specific, non-augmented CNN models were then
used to quantify the foot strike frequency across the respective
experimental datasets. Qualitatively, there were no repeatable
patterns of wheel running activity. Wheel running was highly
episodic with periods of variable length ‘rest’ (where the mouse

was either resting, eating, or moving in the cage but not on the
wheel). Foot strike frequency was also profoundly
heterogeneous within and between episodes of wheel running
(Figures 4, 5).

Last, we explored CNN predictions of foot strikes within the
aged mice test dataset as a function of user-identified foot strike
frequency. The data predominantly contained 0-Hz wheel activity
(69% of the total dataset), which was accurately identified by the
CNN (99%, Figure 6). The CNN had difficulty precisely predicting
both slower (1 and 2 Hz combined: 42%) and faster gait (3–6 Hz
combined: 41%). However, when success criteria were loosened to
accept CNN predictions within 1 Hz of labeled data, accuracy was
elevated (1–2 Hz: 65%; 3–6 Hz: 88%).

FIGURE 4
CNN predicted foot strike frequencies for a representative aged
female mouse during a 2-h VWR exposure (d7 of 14, (A)). The 10-min
shaded portion of Figure 4A is expanded in (B), while the shaded 120-s
portion of Figure 4B is expanded in (C). At this temporal
resolution, the intermittent heterogeneity of VWR was evident.

FIGURE 5
CNN predicted foot strike frequencies for a single young adult
female mouse during 2-h VWR exposure (d7 of 13, (A)). The 10-min
shaded portion of Figure 5A is expanded in (B), while the shaded 120-s
portion of Figure 5B is expanded in (C). Increased activity was
observed in younger mice vs. older mice (5A vs. 4A), as was expected
from the literature, yet at 1 s resolution, activity was also clearly
intermittent.
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Discussion

We developed a six-layer CNN to non-invasively quantify mouse
hindlimb foot strikes that occur within each 1-s interval throughout a
2-h VWR exposure. Our approach required two relatively
inexpensive, commercially available pieces of equipment: an angled
running wheel that fits within a standard mouse cage and a video
activity-monitoring cabinet. We found that the CNN predicted foot
strike frequency for old female C57BL/6 mice at accuracies
approaching that of experienced humans. Transfer learning
implemented via an additional smaller labeled dataset modestly
enhanced the original model’s accuracy to predict the foot strike
frequency in young adult female C57BL/6 mice.

The CNN model did not incorporate explicit mechanisms
associated with classifying hindlimb foot strikes. For example,
there was no assumption that there was a wheel or even a mouse
visible within the video frame. Instead, input comprised a set of
randomly selected 1-s videos that included mouse activity (or
inactivity) on and off the wheel (Supplementary Figure S1 is a
representative 1-s video containing five heel strikes). The CNN
model foot strike frequency output was trained upon human-labeled
foot strike frequency data. This strategy was consistent with typical
development of CNNs, which are a class of deep neural networks
commonly used for analyzing visual imagery (Anwar et al., 2018).
Once trained, CNNs essentially function as black boxes (Bilbrey
et al., 2020). To gain an initial understanding of how our CNN
successfully performed the foot strike classification, we visualized
activation at the end of each layer in the CNN (Supplementary
Figures S2 and S3). Qualitatively, it appeared that the training
dataset enabled the CNN model to distinguish outlines of the
mouse, and, in particular, alterations in mouse hindquarter shape

during VWR, which was previously observed in a recent machine
learning assessment of mouse activity (Sheppard et al., 2022).

The old mouse training dataset enabled the CNN model to
predict the foot strike frequency as accurately as the correspondence
between two experienced humans (81% vs. 82.5%). However, given
the literature demonstrating that young mice display different VWR
behaviors than old mice (Manzanares et al., 2018; Bruns et al., 2020),
a diminished accuracy when the CNN was used to classify the foot
strike frequency in young mice was not surprising. We found that
transfer learning enhanced the ability of the CNN initially trained on
old mice to predict young mouse foot strike (+28% vs. original
CNN). This improvement was achieved despite a secondary human-
labeled data-set that was nearly 80% smaller than the initial training
dataset. Although developing a de novo CNN, for every potential
experimental condition (e.g., mouse weight, shape, coat color, and
gait characteristics) would be an impediment to adoption of our
approach, these data suggest that transfer learning on smaller
datasets can overcome this limitation.

Recent studies have used CNN/machine learning in
combination with commercial algorithms to characterize mouse
gait and posture during open-field activity (Sturman et al., 2020;
Sheppard et al., 2022). Closer to the challenge we addressed,
machine learning has recently been used to quantify sleep stages
in mice (Geuther et al., 2022). High-resolution quantification of
mouse gait during VWR poses an additional barrier as the activity is
spatially confined when gait is most rapid (e.g., when beginning to
ambulate, mice move forward on the wheel, but once running
ensues, they are spatially static until they decrease gait speed).
Our approach is flexible as it provides a framework to use CNNs
to quantify any gait-related behavior. The primarily limitation to
this goal (which could include future interfacing with commercial

FIGURE 6
Histograms of CNN predicted foot strike frequency plotted separately for each user-labeled foot strike frequency (aged mouse dataset; 0–6 Hz).
Dark green indicates when the CNN prediction matched labeled frequency, light green indicates a predicted frequency within 1 Hz of labeled frequency,
and blue indicates >1 Hz difference between the predicted and labeled frequency. For example, the experienced user identified 40 videos as
demonstrating 4-Hz foot strikes. For these same 40 videos, the CNN identified 12 as 4-Hz foot strikes and 34 of 40 (85%) as 3, 4, or 5 Hz.
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software) is the ability to visualize and reproducibly label ‘gold-
standard/ground-truths.’

There are additional limitations to our study. As often occurs
with CNNs, ground-truth labels did not exist for the challenge we
explored. We, therefore, developed our own dataset to train the
CNN using foot strikes classified by one experienced user. This
simplified approach was chosen as one of our goals was to explore
the minimum necessary data labeling to enable an accurate CNN.
We did explore whether the trained CNN would successfully predict
foot strike frequency data labeled by an independent viewer (the
second experienced user). For this preliminary test, the CNN did not
require additional transfer learning (i.e., the CNN was similarly
accurate in predicting data labeled by both experienced observers;
data not shown).

Second, there are a high number of variables underlying the
mouse behavior during VWR that hold potential to undermine
the relation between foot strike quantification and wheel turns
(or distance traveled). For example, mice frequently exhibit a
burst of running, and then jump off the wheel, which continues to
rotate due to angular momentum. Additionally, the speed,
direction, and duration of each activity burst are highly
heterogeneous, even within a few minutes. Despite these
limitations, cumulative CNN-quantified foot strikes predicted
approximately 80% of the variability of wheel turn counts within
each 2-h activity bout.

Finally, we did not focus on optimizing CNN accuracy or
identifying trends within the foot strike datasets as our granular
analysis (Figure 6) suggested there is substantial room for
improvement of CNN accuracy. For example, we believe the
inaccuracy at 1 and 2 Hz arose from both physiologic (mouse
walking gait is generally classified to begin at 2.5 Hz (Bellardita
and Kiehn, 2015)) and labeling limitations (a single foot strike in a 1-
s video was observed at the end or beginning of the frame grab,
representing the initiation or cessation of activity, respectively). This
might be addressed by altering the framework we used to label test
data from discrete videos to enable continuous sampling. The
temporal signature of foot strikes within a given wheel exposure
emphasizes the benefit that might be achieved with this
enhancement (only limited by imaging resolution). Ultimately,
we believe that CNN accuracy would be enhanced by a
combination of increased training and testing dataset size (as
augmented datasets appeared to have minimal benefit), enriching
the ratio of activity vs. non-activity occurrences within labeled
videos, architectural refinements (e.g., reframing as an ordinal
regression problem, hyper parameter tuning), and more efficient
image pre-processing (to enhance computation speed).

Despite these limitations, we were able to non-invasively resolve
hindlimb foot strikes during VWR at 1-s resolution for the first time.
Even cursory observation of these gait ‘signatures’ revealed an
extremely rich dataset characterized by heterogeneity between
mice and across wheel exposures for the same mouse. Like
humans, some mice demonstrated consistently greater daily foot
strike counts than other mice, while some mice were characterized
by variability within and across days. Unlike low-resolution
measures such as wheel turn counts, which have been shown to
be minimally related to induced tissue adaptation (Schlecht et al.,
2018), we believe the complex heterogeneity of foot strikes holds
substantial potential to identify those aspects of locomotory

behavior that underlie adaptation induced by VWR. For example,
in the context of bone mechanotransduction, the foot strike dataset
could be explored to generate hypotheses regarding what aspect of
behavior on the wheel (e.g., minimum foot strikes within a given
time period, followed by sufficient rest intervals (Srinivasan et al.,
2002; Srinivasan et al., 2015)) is correlated with skeletal adaptation.
Given the variability and the size of the resulting datasets,
development of unbiased data mining strategies will likely be
required to relate VWR gait signatures to adaptation of the
cardiovascular, musculoskeletal, or central nervous systems.

Conclusion

We developed a CNN that accurately predicted hindlimb foot
strikes at 1-s resolution throughout a voluntary wheel running
exposure. This foot strike resolution holds potential to overcome
a primary barrier that impairs the ability to relate intermittent
heterogeneous wheel running activity to induced physiological
responses. More broadly, we believe that this platform could be
readily extended to quantify any gait-related behavior, for which
ground-truth labeling can be estimated.
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