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Background: Growing observational studies have shown that abnormal systemic
iron status is associated with Coronary heart disease (CHD). However, these
results from observational studies was not entirely consistent.It remains unclear
whether this relationship represents causality.It is necessary to explore the
causal relationship between iron status and CHD and related cardiovascular
diseases (CVD).
Objective: We aimed to investigate the potential casual relationship between
serum iron status and CHD and related CVD using a two-sample Mendelian
randomization (MR) approach.
Methods: Genetic statistics for single nucleotide polymorphisms (SNPs) between
four iron status parameters were identified in a large-scale genome-wide
association study (GWAS) conducted by the Iron Status Genetics organization.
Three independent single nucleotide polymorphisms (SNPs) (rs1800562,
rs1799945, and rs855791) aligned with four iron status biomarkers were used as
instrumental variables. CHD and related CVD genetic statistics We used publicly
available summary-level GWAS data. Five different MR methods random effects
inverse variance weighting (IVW), MR Egger, weighted median, weighted mode,
and Wald ratio were used to explore the causal relationship between serum iron
status and CHD and related CVD.
Results: In the MR analysis, we found that the causal effect of serum iron (OR =
0.995, 95% CI = 0.992–0.998, p= 0.002) was negatively associated with the
odds of coronary atherosclerosis (AS). Transferrin saturation (TS) (OR = 0.885,
95% CI = 0.797–0.982, p= 0.02) was negatively associated with the odds of
Myocardial infarction (MI).
Conclusion: This MR analysis provides evidence for a causal relationship between
whole-body iron status and CHD development. Our study suggests that a high iron
status may be associated with a reduced risk of developing CHD.
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1. Introduction

Due to an aging population and declining fertility rates,

cardiovascular disease mortality continues to rise and imposes a

considerable economic and health burden on society (1). As

research progresses, more and more studies show the correlation

between systemic iron status and heart disease and related

CVD (2).

CHD remains one of the major diseases threatening the health

of the entire human population (3). The development of CHD

involves many associated CVD. Among CVD, MI, a type of

coronary heart disease, is a serious consequence of coronary

heart disease. Hypertension (HP) is not only a CVD but also one

of the risk factors for CHD, while heart failure (HF) is the end-

stage disease of most CVD including CHD.

Iron, an essential mineral for maintaining homeostasis in the

body, plays a key role in oxygen transport and utilization as well

as in mitochondrial function (4). Iron deficiency (ID) is

associated with morbidity and mortality in CHD, M I and HF

(5–8). Studies have shown that ID is one of the most common

complications of HF. Iron supplementation via intravenous can

reduce the number of hospitalizations for HF (9). It has been

shown that ID impairs the contractility of human cardiomyocytes

by reducing mitochondrial function and decreasing energy

production, which leads to impaired cardiac function (10). When

uncontrolled elevation of iron concentration leads to iron

overload, the basic cellular mechanisms and functional

composition are disrupted and changed (11). The redox

properties of iron enable the generation of reactive oxygen

species (ROS), and iron (Fe2+) and iron (Fe3+) mediate lipid

peroxidation, leading to the formation of alkoxyl (RO) and

peroxyl (RO2) radicals (12, 13). Studies have displayed that in

animal models of ischemia/reperfusion (I/R) cardiac tissue

samples it can be observed that increased mitochondrial iron-

related reactive oxygen species (ROS) production leads to

myocardial injury (14). However, the physiopathological

mechanisms of ID and iron overload participating in CHD and

associated CVD remain unclear. In conclusion both opposite

factors, ID and iron overload, can have an impact on CHD and

related CVD. However, even in observational studies it is difficult

to distinguish which specific association exists between iron

status and CHD and associated CVD, as selective bias or other

biases inherent in observational studies can still influence the

results. Therefore, further studies are necessary to elucidate

whether there is a causal or other relationship between iron

status and CHD and associated CVD.

MR analysis is a novel method of epidemiological analysis that

strengthens causal inferences by using genetic variation as an

instrumental variable (IV) such as SNPs for exposure. This

method minimizes the effects of residual confounding and

strengthens causal inferences about the effects of specific

exposure factors on outcomes while overcoming the limitations

of traditional epidemiological studies (15). Here, we performed a

2-sample MR study to examine the association of iron status

with HP, AS, CHD, MI, and HF based on the effect of systemic

iron status and CHD and associated CVD using GWAS data,
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aiming to provide new evidence on the relationship between iron

status and disease progression of CHD.
2. Materials and methods

2.1. Study design

A genetic tool of four iron status biomarkers: ferritin, iron,

transferrin, and transferrin saturation (TS), was selected for a

two-sample MR analysis as a way to investigate the association of

iron status biomarkers with the chain of cardiovascular disease

events including HP, AS, CHD, MI and HF. The screening

flowsheet is shown in Figure 1.
2.2. Selection of instrumental SNPs

Genetic variants associated with serum iron status were

identified through a meta-analysis of 19 GWAS, which included

48,972 Europeans (16). A higher level of systemic iron was

associated with higher iron levels, higher transferrin saturation,

and higher ferritin levels, but decreased transferrin levels (4, 16,

17). Thus, genetic tools for iron status should be consistently

related to each of these four markers, and thus three loci

(rs1800562 and rs1799945 in the HFE gene, and rs855791 in

TMPRSS6) could be identified in the meta-analysis performed by

the GIS Consortium as being significantly associated with all four

iron status markers genome-wide (p < 5 × 10−8) in a pattern

consistent with effects on systemic iron status (i.e., increased

serum iron, transferrin saturation and ferritin levels and

decreased transferrin levels) (16), and these three were suggested

as tools for systemic iron status in our MR analysis. Three SNPs

had p < 5 × 10−8 and r2≤ 0.01, and their F-statistics were

calculated to quantify the intensity of the selected instrument

(F-value > 10) (18).

Characteristics and summary data of the SNPs and iron status

parameters shown in Table 1 and Supplementary Table S1,

respectively.
2.3. Outcome data

GWAS statistics related CHD and related CVD can be

extracted from the corresponding authoritative consortium or

cohort studies.

Data for both HP and HF were obtained from UKBiobank,

with a final sample of 462,933 people of European descent for

HP (119,731 HP cases and 343,202 non-cases), and a final

sample of 361,194 people of European descent for HF (1,405 HF

cases and 359,789 non-cases) (19). GWAS resources for coronary

atherosclerosis are based on data from the UKBiobank

consortium for a total of 361,194 individuals of European

descent including 14,334 AS patients and 346,860 healthy

controls (20), and FinnGen for a total of 211,203 individuals of

European descent including 23,363 AS patients and 187,840
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FIGURE 1

Flowsheet of Mendelian randomisation in this study.

TABLE 1 The characteristics and summary data of the exposed SNPs and iron status parameters.

SNP Nearest gene Effect allele Other allele Eaf F Beta SE P
Iron rs1799945 HFE (H63D) C G 0.85 450 −0.189 0.01 1.10 × 10−81

rs1800562 HFE (C282Y) A G 0.067 668 0.328 0.016 2.72 × 10−97

rs855791 TMPRSS6 (V736A) A G 0.446 806 −0.181 0.007 1.32 × 10−139

Ferritin rs1799945 HFE (H63D) C G 0.85 52 −0.065 0.01 1.71 × 10−10

rs1800562 HFE (C282Y) A G 0.067 256 0.204 0.016 1.54 × 10−38

rs855791 TMPRSS6 (V736A) A G 0.446 73 −0.055 0.007 1.38 × 10−14

Transferrin rs1799945 HFE (H63D) C G 0.85 676 0.114 0.01 9.36 × 10−30

rs1800562 HFE (C282Y) A G 0.067 1446 −0.479 0.016 8.90 × 10−196

rs855791 TMPRSS6 (V736A) A G 0.446 47 −0.055 0.007 1.38 × 10−14

Transferrin saturation rs1799945 HFE (H63D) C G 0.85 162 −0.231 0.01 5.13 × 10−109

rs1800562 HFE (C282Y) A G 0.067 2126 −0.479 0.016 2.19 × 10−270

rs855791 TMPRSS6 (V736A) A G 0.446 889 −0.19 0.008 6.41 × 10−137

Liu et al. 10.3389/fcvm.2023.1152201
healthy controls. The second is based on FinnGen data for 211,203

individuals of European descent, including 23,363 AS patients and

187,840 healthy controls, available on the FinnGen study website
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(https://finngen.gitbook.io/documentation/) (20, 21). CHD

Statistical data were obtained from the coronary artery genome-

wide replication and meta-analysis (CARDIoGRAM) and coronary
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artery disease genetics (CARDIoGRAMplusC4D) GWASmeta-

analysis, which included 60,801 cases and 123,504 controls (22).

Statistics for MI were also obtained from the Coronary Artery

Whole Genome Replication and Meta-Analysis (CARDIoGRAM)

and Coronary Artery Disease Genetics (CARDIoGRAMplusC4D)

GWASmeta-analysis, which included 43,678 cases and 128,199

controls (22), and FinnGen which included 12,801 cases and

187,840 controls (21). We used aggregated data from published

GWAS that referenced the original definitions of the diseases in

their GWAS without any modifications. The specific data sources

used are in Supplementary Table S4.
2.4. Statistical analysis

MR analysis was performed using five methods, inverse

variance weighting (IVW) under a multiplicative random effects

model, MR-Egger, Weighted median, Simple mode, and

Weighted mode. IVW was performed by combining the Wald

ratio estimates for each individual SNP will be one causal

estimate for each risk factor (23). A sensitivity analysis is

required to test the validity and robustness of the IVW estimates

due to invalid instrumental bias and polymorphism.

Sensitivity analyses include heterogeneity tests, genetic

pleiotropy tests, and the “leave-one-out” method (19). In

sensitivity analysis, we can use the weighted median method to

check for invalid instrumental bias to estimate the multiplicity of

potential causal effects or the inclusion of invalid instruments

(24), while the use of MR-Egger regression can explain both the

dilution bias of the skewed regression, with the mean level of

multiplicity consisting of the intercept term (24, 25).

Subsequently, symmetries can be visualized using funnel plots,

and if they are skewed in one direction, they indicate a potential

multiplicative effect (26). Cochran’s Q test was also used to

estimate the heterogeneity between the Wald ratio estimated for

the different SNPs (27). Finally, to identify all genetic variants

potentially affecting SNPs, we performed a “leave-one-out”

analysis, whose fluctuations in results before and after removal of

SNPs may reflect unstable associations.

To further investigate the relationship between iron status

biomarkers and CHD and related CVD, we separately selected

the iron status biomarkers with positive MR analysis results as

described above and each SNP of the corresponding disease for

two-sample MR analysis again, respectively, to obtain a more

accurate estimate of the causal effect of each iron status

biomarker and disease. The characteristics and summary data of

the separately selected SNPs are shown in Supplementary Table S2.

“Two SampleMR” (version 0.5.6) of R software (version 4.2.1)

was used for all analyses. P values less than 0.05 were considered

statistically significant.
3. Result

Genetically determined higher serum iron was negatively

associated with higher odds of AS (OR = 0.995, 95% CI = 0.992–
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0.998, p = 0.002). The same results were obtained again using

each SNP (OR = 0.996,95% CI = 0.992–0.998, p = 0.0009). Higher

TS was negatively associated with higher odds of MI(Finn) (OR

= 0.885, 95% CI = 0.797–0.982, p = 0.02). A repeat MR analysis

using each SNP yielded no causal relationship between TS and

MI (Finn) (p = 0.657) while higher TS was negatively associated

with higher odds of MI (OR = 0.939, 95% CI = 0.886–0,996, p =

0.037), using the inverse variance-weighted approach. Moreover,

the sensitivity analysis revealed that the selected instruments did

not differ horizontally (p-values >0.05 for MR-Egger intercepts)

or heterogeneously (p-values >0.05 for Cochran’s Q statistic). In

addition, MR-Egger regression and funnel plot appearance

analyses showed a poor possibility of horizontal polymorphism

(all p-values for MR-Egger intercept > 0.05) and visually, the

leave-one-out analysis plot proved that the results were not

altered by the removal of any SNPs and the results remained

quite robust. The remaining MR analyses were negative that iron

status markers were not causally associated with HP, CHD or HF.

Complete results are presented in Supplementary Figure S2.

And the positive results were presented in Figure 2. The IVW

results are shown in Table 2. Results of MR Analysis are

expressed as the ORs for a positive result per one standard

deviation (SD) increase for each iron biomarker, as shown in

Figure 3 and Supplementary Figure S4. The leave-one-out

analysis plot proves that removing any SNP does not change the

results and is quite robust. The leave-one-out analysis graph of

positive results are presented in Figure 4, and all results are

presented in Supplementary Figure S3. The results of MR

Analysis of AS and MI with the separately selected SNPs

associated with Iron and TS are presented in Supplementary

Table S3 and Supplementary Figure S3. The results of the

positive results reanalysis are expressed as ORs per one standard

deviation (SD) increase in positive results for each iron

biomarker, as shown Supplementary Figure S4.
4. Discussion

We applied MR to analyze the causal relationship between four

biomarkers of iron status and CHD and related CVD and

concluded that there is a partial causal relationship between

systemic iron status and CHD and related CVD. In this MR

analysis, there was a negative correlation between serum iron

levels and coronary AS and between TS and MI. The same

conclusion was reached when the MR analysis was repeated for

AS and MI using the individual SNPs for serum iron and TS,

respectively. It implies that a genetically determined increase in

serum iron decreases the risk of AS and a genetically determined

increase in TS decreases the risk of MI. Based on the fact that TS

is one of the biomarkers reflecting systemic iron status, we can

speculate that genetically determined ID may lead to an

increased risk of CHD.

In a study of patients on hemodialysis, it was found that high

doses of intravenous iron reduced the risk of MI compared to

lower doses (28). More noteworthy is the finding in another

study that patients who were iron deficient at the time of acute
frontiersin.org
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FIGURE 2

The result of two-sample MR analyses. (A) is the result of two samples MR analyses of Iron. (B) is the result of two samples MR analyses of TS.
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coronary syndrome had a significantly higher risk of cardiovascular

mortality and nonfatal myocardial infarction over 4 years (6),

results that are consistent with those obtained in this paper.

However, in patients with st-segment elevation myocardial

infarction treated with percutaneous coronary intervention,

patients with ID were found to have a better in-hospital

prognosis. The investigators speculate that this may be related to

the ability of ID to reduce myocardial ischemia-reperfusion injury

(29). Based on the above, we hypothesize that the effect of iron
Frontiers in Cardiovascular Medicine 05
on MI is not only that higher iron levels reduce the risk of MI,

but also that ID increases the long-term effects of a worse

incidence of MI. Considering the small causal effect, these MR-

based analyses should be referenced with caution. Previous MR

analyses on iron status and carotid plaque have also shown that

genetically determined iron levels increase carotid plaque with a

protective effect (30). This laterally supports the results of the MR

of serum iron with AS in this paper. However, some studies have

yielded contradictory results, suggesting that high iron promotes
frontiersin.org
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TABLE 2 The results of IVW.

HP AS AS(Finn) CAD

Exposure nSNP Beta SE P Beta SE P Beta SE P Beta SE P
Iron 3 0.028 0.0194 0.147 −0.005 0.0016 0.002 −0.031 0.0805 0.704 −0.075 0.0461 0.104

Ferritin 3 0.064 0.0402 0.110 −0.008 0.0053 0.116 0.003 0.1998 0.989 −0.189 0.1008 0.060

Transferrin 3 −0.032 0.0182 0.081 0.001 0.0036 0.726 −0.105 0.0687 0.127 0.042 0.0791 0.595

Transferrin saturation 3 −0.001 0.0221 0.959 −0.002 0.0025 0.446 −0.071 0.0474 0.134 0.006 0.0579 0.920

MI(Finn) MI HF

Exposure nSNP Beta SE P Beta SE P Beta SE P
Iron 3 −0.082 0.0958 0.390 −0.062 0.0426 0.145 −1.43 × 10−4 0.0005 0.779

Ferritin 3 −0.084 0.2624 0.746 −0.176 0.0988 0.074 −4.66 × 10−4 0.0011 0.676

Transferrin 3 −0.101 0.1160 0.382 0.063 0.0593 0.287 4.20 × 10−4 0.0005 0.429

Transferrin saturation 3 −0.122 0.0532 0.022 0.021 0.0484 0.668 1.16 × 10−4 0.0004 0.776

FIGURE 3

Forest plot summarizing causality of positive results.

FIGURE 4

Leave-one-outanalyses of positive results in the causal relationship between iron status and CHD and related CVD. (A) is the result of TS and MI(Finn), and
(B) is the result of Iron and AS.

Liu et al. 10.3389/fcvm.2023.1152201
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the progression of atherosclerosis and increases its severity (31).

This discrepancy may stem from the fact that the occurrence of

AS is influenced by genetic and environmental factors, and we

analyzed the relationship from a genetic perspective, focusing on

lifetime effects rather than short-term effects.

Some of these results contradict the results of the reported

papers, which may be explained by the fact that no correction

for disease subtyping population stratification and population

pedigree was performed when processing GWAS data for CHD,

in which cases of acute coronary syndrome, coronary artery

bypass grafting, and percutaneous coronary revascularization

were included in the CHD cases used (17). As part of the

current MR study, three SNPs were selected from a recent large-

scale GWAS. Among them, mutations in the gene HFE include

rs1800562 (also known as C282Y) and rs1799945 (also known as

H63D). The missense mutation in rs1800562 retains the

dysfunctional HFE in the endoplasmic reticulum instead of being

transported to the plasma membrane, resulting in the

parenchymal iron overload disease of hereditary

hemochromatosis (HH) (32). A recent study of 2890 European

patients with C282Y-pure HH found a significantly lower risk of

cardiovascular disease in C282Y-pure HH patients compared to

age-matched subjects (33). Moreover, compared to HFE wild-

type study participants, C282Y-positive participants had lower

total cholesterol and LDL-C levels (34). In addition, a large

GWAS study showed that genetic variants on H63D are

associated with the prevalence of hypertension (35). It has been

hypothesized that H63D causes toxic damage to the vascular

endothelium by increasing iron stores and producing oxidative

stress (36). However, the exact mechanism by which H63D

causes hypertension remains unclear. Hepcidin, a key role of iron

homeostasis, is a peptide hormone synthesized in hepatocytes

that regulates cellular iron output by interacting with iron

transport proteins (37, 38). Mutations in TMPRSS6 result in

excessive iron uptake by encoding a type II plasma membrane

serine protease, called matriptase-2, which inhibits hepcidin (39).

Moreover, rs1800562 and rs1799945 have been reported to affect

hepcidin (40). In conclusion, the above indicates that all three

SNPs above can be involved in the occurrence and development

of CVD by regulating iron metabolism.

Iron, one of the most essential nutrients, has been shown in

many previous studies to be associated with abnormal iron

status and CVD. In a cohort of 12,164 individuals from three

European populations ID was associated with a 24% increased

risk of CHD, a 26% increased risk of CVD death and a 12%

increased risk of all-cause mortality, with 5.4% of deaths,

11.7% of CVD deaths and 10.7% of CHD events attributable

to iron deficiency(ID) (41). ID is also an observable indicator

of HF, about half of HF patients having ID according to the

definition of ID (42, 43), with a specific prevalence of ID in

chronic HF of about 47%–68%, and the more severe the HF,

the more likely it is to occur (44). A double-blind randomized

trial showed that intravenous iron carboxymaltose

supplementation reduced the risk of HF hospitalization in

iron-deficient patients with stable left ventricular ejection

fraction below 50% after an acute HF episode, but had no
Frontiers in Cardiovascular Medicine 07
significant effect on their risk of cardiovascular death (45).

However, although observational studies and MR analyses

have indicated that ID increases the risk of CHD, there are no

relevant experimental results indicating that improving ID

reduces the risk of developing CHD. In an epic-Heidelberg

study,serum ferritin concentrations were associated with IM

risk and cardiovascular disease mortality, but were not

statistically significant after adjustment (46). Thus the effect of

iron deficiency on CHD and CVD remains questionable.

Therefore, the hypothesis has been put forward that the effect

of iron on the heart lies in the increased oxidative stress due

to iron overload (47).

Ferroptosis, in which the key factors of iron toxicity are Fe2+

accumulation and lipid peroxidation, is a novel form of cell

death with unique genetic, biochemical, morphological and

metabolic characteristics in contrast to apoptosis, necroptosis and

scorch death (13). As iron plays a key role in catalyzing

phospholipid peroxidation in ferroptosis, unrestricted lipid

peroxidation is exactly one of the hallmark symptoms of

ferroptosis (48) Lipid peroxidation is subject to molecular

oxidation reactions that generate peroxyl radicals, and if not

eventually reduced to the corresponding alcohols, the

propagation of the radical-mediated reactions leads to the

formation of numerous secondary products that disrupt cell

membrane integrity and eventually lead to cell death (49). On

the other hand, excessive intracellular iron accumulation is

associated with an overproduction of ROS, which leads to

extensive oxidation of polyunsaturated fatty acids and disruption

of cell membrane structure, ultimately leading to cell death (50).

Iron overload has also been suggested as one of the potential

mechanisms of myocardial I/R injury (51). An increase in Fe2+

concentration in cardiomyocytes has been reported to be

observed in I/R-treated rats (52, 53). The upregulation of TfR1 in

I/R-treated rat hearts was associated with elevated iron content,

and the inhibiting of TfR1 expression accompanied a decrease in

iron content and reduced I/R injury, so hypoxia may be

responsible for causing I/R iron overload (54). Consistently, iron

death is observed during atherosclerosis. The likelihood of

atherosclerosis can be reduced by inhibiting iron death in aortic

endothelial cells to attenuate lipid peroxidation and endothelial

dysfunction (55).

Morever, it has been shown that systemic iron satuts are not

equal to cardiac iron levels, so systemic iron disorders do not

directly affect cardiac iron satuts (56, 57), and further studies

are needed to determine whether systemic iron supplements

have a beneficial effect on CVD. Studies have shown that a low-

iron diet fed to rats results in reduced levels of iron transport

proteins in the rat heart, resulting in reduced iron output from

heart cells (58), suggesting that iron levels in the heart are not

necessarily affected by a low-iron diet. Consistently, in another

study of a mild cardiomyopathy model in FthMCK/MCK mice

both showed reduced cardiac iron levels without changes in

serum or skeletal muscle iron levels, but after 4 weeks on a

high iron diet, cardiac GSH levels in mice were reduced due to

increased cardiac iron levels, resulting in cardiomyocyte

ferroptosis.
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Herein, the decrease in serum iron does not correlate positively

with the decrease in cardiac iron levels,which cellular iron levels

may be increased and be caused ferroptosis in cardiomyocytes

while iron supplementation (59). Combined with the results of

the Mendelian study in this paper, we can propose the

hypothesis that the effect of decreased systemic iron status on

CVD lies in overall cardiomyocyte function. Systemic iron status

is negatively correlated with diseasewhen there are more normal

cardiomyocytes than damaged cardiomyocytes in a

cardiovascular disease event, whereas systemic iron status is not

correlated with disease development when the situation is

reversed. It is possible that iron supplementation at this point

will lead to cellular iron overload, which will promote the

development of cellular ferroptosis as a result. Therefore,

considering the potentially deleterious effects of ID and iron

overload, iron status intervention strategies may not be

beneficial for patients in the CHD and related CVD without ID.

In conclusion, based on the effect of systemic iron status on

cardiac cellular iron levels, future studies should aim to identify

CHD and related CVD phenotypes that would benefit from

improved ID and to investigate their specific pathophysiological

mechanisms.

The study we conducted has several limitations. First, because

individual data were not available and we only performed summary

statistics, the CHD and related CVD data used in this study were

not stratified by disease subtype, such as dividing CHD into

stable angina pectoris and acute non-ST-segment elevation

myocardial infarction. Indeed, iron status markers may have a

stronger association with specific subtypes of CHD or at acute

onset. Therefore, further studies are needed to investigate

whether similar results exist in patients of different races,

different subtypes of CHD and CVD, and different degrees of

disease severity. Second, for some exposures, the body may have

mechanisms to respond to this exposure level, such as systemic

iron status that is not synchronized with cellular iron levels,

which hinders our study of iron metabolism and CHD and

related CVD from macroscopic regulators to microscopic

pathophysiological changes in the present study. Considering the

small causal effect of this analysis, the MR Analysis estimates of

this study should be interpreted with caution, and the inferences

and assumptions in this paper should be referred to with

caution. Nevertheless, the present study provides some clues to

the pathophysiology and therapeutic exploration of CHD and

related CVD. We expect future studies to delve into the

relationship between CHD and related CVD and iron status,

which may provide new insights into the prevention and

treatment of CHD.
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