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higher brain dysfunction followed
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Mitochondrial trifunctional protein (MTP) deficiency is an autosomal

recessive disorder caused by impaired metabolism of long-chain fatty

acids (LCFAs). Childhood and late-onset MTP deficiency is characterized by

myopathy/rhabdomyolysis and peripheral neuropathy; however, the features are

unclear. A 44-year-oldwomanwas clinically diagnosedwith Charcot-Marie-Tooth

disease at 3 years of age due to gait disturbance. Her activity and voluntary

speech gradually decreased in her 40s. Cognitive function was evaluated

and brain imaging tests were performed. The Mini-Mental State Examination

and frontal assessment battery scores were 25/30 and 10/18, respectively,

suggesting higher brain dysfunction. Peripheral nerve conduction studies

revealed axonal impairments. Brain computed tomography showed significant

calcification. Magnetic resonance imaging revealed an increased gadolinium

contrast-enhanced signal in the white matter, suggesting demyelination of the

central nervous system (CNS) due to LCFAs. The diagnosis of MTP deficiency

was confirmed through genetic examination. Administration of L-carnitine and a

medium-chain fatty triglyceride diet was initiated, and the progression of higher

brain dysfunction was retarded within 1 year. This patient’s presentation was

suggestive of CNS demyelination. The presence of brain calcification, higher

brain dysfunction, or gadolinium enhancement in the white matter in patients

with peripheral neuropathy may be suggestive of MTP deficiency.
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1. Introduction

Mitochondrial trifunctional protein (MTP) deficiency is an

autosomal recessive disorder decreasing the enzyme involved in

long-chain fatty acids (LCFAs) oxidation (1). The trifunctional

protein is an octamer composed of four alpha and four beta

subunits. The alpha and beta subunits are encoded byHADHA and

HADHB, respectively (2). MTP deficiency presents heterogeneous

clinical phenotypes varying from early-onset life-threatening

cardiomyopathy, hypoketotic hypoglycemia, and liver failure to

a late-onset form with myopathy, recurrent rhabdomyolysis, and

peripheral neuropathy (3). In some late-onset cases, the symptoms

of peripheral neuropathy are similar to those of Charcot–

Marie–Tooth disease (CMT) (4, 5). Additionally, some cases are

complicated by hypoparathyroidism (6, 7).

Herein, we describe the case of a 44-year-old patient who

had been clinically diagnosed with hereditary neuropathy when

she was a child. Recently, she developed progressive higher brain

dysfunction and MTP deficiency was subsequently diagnosed.

Brain magnetic resonance imaging (MRI) suggested demyelination

of the central nervous system (CNS). This report aimed to highlight

the characteristics of adult MTP, which can be complicated by

progressive higher brain dysfunction due to demyelination of the

CNS, including calcification and gadolinium enhancement in the

white matter. It is possible to diagnose MTP deficiency in a patient

with hereditary neuropathy, such as CMT.

2. Case description

A 44-year-old female (height, 1.56m; weight, 49.5 kg) had

been clinically diagnosed with hereditary neuropathy at the age

of 3 due to gait disturbance. Among her two brothers, her

older brother was clinically diagnosed with hereditary neuropathy

and atypical CMT. When she was 10 years old, Achilles tendon

lengthening was performed. She was able to walk until the age

of 15 years, after which she was confined to a wheelchair. After

graduating high school, she could not find a job and lived with

her parents. Her muscle weakness progressed gradually. Based on

the information we have collected, she had no childhood viral

infections that might have induced a metabolic derangement and

worsened the clinical symptoms. From the age of 43, she started

stuttering and gradually stopped her hobbies such as writing,

handicrafts, and games. At the age of 44 years, her response

slowed with decreased activity and voluntary speech. As these

symptoms progressed, she was referred to our hospital for a

thorough investigation.

Physical examination revealed a dropped head, scoliosis, pes

cavus feet, and a hammer toe. Muscle forces were evaluated using

manual muscle testing. The proximal muscles in the bilateral upper

and lower limbs revealed a score of 4. In her lower limbs, both

tibialis anterior and triceps surae obtained a score of 1 or 2.

The hand grip strength was 6 kg/4 kg (right/left). In the distal

lower limbs, her pain and deep sensations were decreased. Muscle

atrophy was observed in the distal lower limbs. Tendon reflexes

were absent in the biceps brachii, triceps brachii, brachioradialis,

patellar tendon, and Achilles tendon. Babinski and Chaddock

signs were positive (big toe extension) in both feet. Finger-to-nose

test of both hands revealed dysmetria. Gaze-evoked nystagmus

was observed. Sentence recitation was sometimes challenging,

and vocabulary recall was extremely slow. The Mini-Mental State

Examination (MMSE) score was 25/30, and the frontal assessment

battery (FAB) score was 10/18. These findings suggested higher

brain dysfunction.

Nerve conduction studies (NCS) showed decreased compound

muscle action potential (CMAP) and sensory nerve action potential

(SNAP) amplitudes, sharing almost normal conduction velocity

in peripheral nerves of the extremities, suggesting axonopathy.

Ophthalmologic examination revealed no retinopathy. Brain

computed tomography (CT) revealed significant calcification

in the bilateral cortex, subcortex, basal ganglia, and cerebellar

dentate nuclei. Skeletal muscle CT showed muscle atrophy

and fatty degeneration of the lower limbs. Magnetic resonance

imaging (MRI) showed increased fluid-attenuated inversion

recovery signals in the white matter and increased gadolinium

contrast-enhanced T1-weighted imaging (T1WI) signal in

the white matter of the frontal lobe (Figure 1). Blood tests,

including blood count, creatine kinase, calcium ion, phosphorus,

parathyroid hormone, autoantibodies, and very long-chain

fatty acid (VLCFA), were not remarkable. Her plasma total

carnitine concentration was 28.9 µmol/L which was slightly

low (normal range:45–91 µmol/L). Cerebrospinal fluid tests,

including the oligoclonal band and lactate/pyruvate ratio, were

also normal. Although the calcium, phosphorus, and parathyroid

hormone levels were normal, significant brain calcification might

suggest past hypoparathyroidism. “Calcification” and “peripheral

neuropathy,” implied MTP deficiency. Acylcarnitine analysis

revealed elevated long-chain acylcarnitines, such as C16-OH

and C18:1-OH, which are characteristic of MTP deficiency. A

genetic examination for MTP deficiency revealed a mutation,

c.1175C>T [p.A392V], which was found in two alleles of the

HADHB gene. Fluorescence in situ hybridization showed no

abnormalities at PMP22, and comprehensive screening by next-

generation sequencing of CMT showed no abnormalities. Based

on these results, we diagnosed MTP deficiency (6). Subsequently,

to prevent the progression of MTP deficiency, she was prescribed

a low-fat, high-carbohydrate diet and restriction of long-chain

fatty acids, including a medium-chain fatty triglyceride (MCT)

diet. l-carnitine (3 g/day) was also administrated. (5). 1 year after

treatment commencement, the MMSE score was 26/30, and FAB

score was 11/18. Increased gadolinium contrast-enhanced T1WI

signal was not spread; however, it was sustained (Figure 2). These

findings suggested that the obvious progression of her higher

brain dysfunction was not detected, but the demyelination was

sustained. The clinical course of the patient’s disease is described

in Figure 3.

3. Discussion

In this case, the patient clinically would rather be regarded

as a childhood-onset type (3). Childhood and late-onset MTP

deficiency is usually characterized by myopathy/rhabdomyolysis

and peripheral neuropathy. However, the most important and

unique features of our patient were progressive higher brain

dysfunction, brain calcification, and gadolinium enhancement in
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FIGURE 1

Brain CT and MRI. (A, B) Show significant calcification in the bilateral cortex, subcortex, and basal ganglia on computed tomography (CT). (C) Signal

level is decreased in the white matter on di�usion-weighted images. (D) Signal level is increased in the white matter on fluid-attenuated inversion

recovery imaging. (E) Signal level is decreased in the white matter of the frontal lobe on the T1-weighted image. (F) Gadolinium contrast-enhanced

signal levels is increased in the white matter of the frontal lobe on the T1-weighted image.

FIGURE 2

Brain MRI 1 year after the start of the therapy. (A) The signal level is

decreased in the white matter of the frontal lobe on the

T1-weighted image. (B) Gadolinium contrast-enhanced signal levels

are still sustained compared to those 1 year ago in the white matter

of the frontal lobe on the T1-weighted image.

the white matter. Hence, elucidating the underlying mechanisms

of these symptoms is important for gaining new insights into the

pathophysiology of this disease.

It was reported that hypoparathyroidism improvedwith growth

in two siblings with MTP deficiency (6). Similarly, our patient

has the same mutation, c.1175C>T. In addition, there were

two cases of brain calcification reported; however, there was no

hypoparathyroidism during the diagnosis of MTP deficiency (4,

8). Our patient may have had subclinical hypoparathyroidism

during childhood which improved with growth. Since parathyroid

hormone and calcium ion levels were normal, it seemed that

progressive calcification of the brain had already stopped in this

patient. This is insufficient to explain progressive higher brain

dysfunction due to the calcification of the brain. Therefore, we

focused on the increased gadolinium contrast-enhanced T1WI

signals in the white matter of the frontal lobe. Myelin in

oligodendrocytes is composed mainly of fatty acids containing

16–26 carbons, which are abundant in the brain and crucial

for brain function (9, 10). Before considering MTP deficiency,

adrenoleukodystrophy (ALD) should be considered. ALD is a

peroxisomal disorder due to the metabolic derangement of

VLCFA which contains 22–28 carbons (11). VLCFA accumulation

induces cerebral inflammatory demyelination due to progressive

destabilization of myelin sheaths and causes higher brain

dysfunction (11). ALD is characterized by an increased gadolinium

contrast-enhanced signal in the white matter, similar to our patient

(12). Compared to ALD, MTP deficiency impairs the metabolism

of LCFAs which contain 14–21 carbons that are also crucial

for brain function (13). In addition, among patients with MTP

deficiency, accumulation of lipid droplets in the muscle has been

reported (14). Theoretically, LCFAs would also accumulate in the

white matter of patients with MTP deficiency, instead of VLCFA,
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FIGURE 3

Clinical course. The time course of the patient is shown.

since fatty acids that contain 16–21 carbons are also abundant in

the brain.

Several pathomechanisms of MTP deficiency have been

proposed such as the accumulation of toxic hydroxyl acylcarnitines,

energy deficiency, oxidative stress, and disruption of membrane

lipid composition (15, 16). It is possible that these factors will

induce progressive destabilization of myelin sheaths and cerebral

inflammatory demyelination. Therefore, progressive higher brain

dysfunction might be due to demyelination of the CNS by LCFAs.

This was a unique case since there have been no reports of

MRI gadolinium enhancement in the white matter, which is

thought to suggest inflammatory demyelination in patients with

MTP deficiency.

Although there is a possibility that brain calcification could

be a confounding factor in advanced disease with severe white

matter degeneration, there are few reports that Fahr’s disease,

a representative disease with brain calcification, has gadolinium

enhancement. Therefore, we suppose the gadolinium enhancement

in this case is due to active demyelination. Further case series and

pathological findings are needed to prove the demyelination of the

white matter.

This patient was prescribed an MCT diet and l-carnitine (3

g/day). Fatty acid oxidation (FAO) disorder therapy, including

MTP deficiency, is discussed in several previous reports (17–

19). MTP deficiency requires a diet primarily avoiding LCFAs

to prevent the accumulation of toxic hydroxyl acylcarnitines

and oxidative stress. LCFAs are replaced with a specially

produced medium-chain (C8) triglyceride formulation (MCT),

which is efficiently chain-shortened by the medium-chain and

short-chain FAO enzymes to produce energy (20). Carnitine

supplementation can aid carnitine transport and subsequently

improve MTP deficiency in theory; however, carnitine could

also induce the accumulation of toxic intramitochondrial long-

chain acylcarnitines, and supplementation has been associated

with rhabdomyolysis (21). Since this patient did not present with

rhabdomyolysis until now, we continued l-carnitine (3 g/day). If

she develops rhabdomyolysis in the future, we would consider

discontinuing carnitine.

This patient was clinically diagnosed with CMT during

childhood. It is reported that the overall prevalence of neuropathy

is 70% and the median age of onset of neuropathy is 4.7 years

in MTP deficiency (22). In Japan, tandem mass spectrometry was

introduced as a mass screening method for newborns in 2011,

thus, the condition might have been overlooked in some adults.

some cases of MTP deficiency may be hidden, which could be

diagnosed as CMT in childhood. Even if the complications of

myopathy/rhabdomyolysis are absent, the presence of significant

brain calcification, progressive higher brain dysfunction, or white

matter gadolinium enhancement in patients with peripheral

neuropathy may lead to the diagnosis of MTP deficiency, which

is treatable and should not be overlooked. Thus, our report will

help in improving management strategies for such patients. As for

the limitations of this report, it is noted that no examinations,

including imaging, were performed from childhood until the

patient presented here. It is desirable to comprehensively observe

the temporal progression when diagnosing similar cases in the

future. In particular, the contrast brain MRI findings, which

are reported for the first time, are considered significant. The

accumulation of further cases is desired.
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