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Background: Recent studies have reported that machine learning (ML), with

a relatively strong capacity for processing non-linear data and adaptive

ability, could improve the accuracy and e�ciency of prediction. The article

summarizes the published studies on ML models that predict motor function 3–6

months post-stroke.

Methods: A systematic literature search was conducted in PubMed, Embase,

Cochorane and Web of Science as of April 3, 2023 for studies on ML prediction

of motor function in stroke patients. The quality of the literature was assessed

using the Prediction model Risk Of Bias Assessment Tool (PROBAST). A random-

e�ectsmodelwas preferred formeta-analysis using R4.2.0 because of the di�erent

variables and parameters.

Results: A total of 44 studies were included in this meta-analysis, involving 72,368

patients and 136 models. Models were categorized into subgroups according to

the predicted outcome Modified Rankin Scale cut-o� value and whether they

were constructed based on radiomics. C-statistics, sensitivity, and specificity were

calculated. The random-e�ects model showed that the C-statistics of all models

were 0.81 (95% CI: 0.79; 0.83) in the training set and 0.82 (95% CI: 0.80; 0.85)

in the validation set. According to di�erent Modified Rankin Scale cut-o� values,

C-statistics of ML models predicting Modified Rankin Scale>2(used most widely)

in stroke patients were 0.81 (95% CI: 0.78; 0.84) in the training set, and 0.84 (95%

CI: 0.81; 0.87) in the validation set. C-statistics of radiomics-based ML models in

the training set and validation set were 0.81 (95% CI: 0.78; 0.84) and 0.87 (95% CI:

0.83; 0.90), respectively.

Conclusion: ML can be used as an assessment tool for predicting the motor

function in patients with 3–6 months of post-stroke. Additionally, the study found

that ML models with radiomics as a predictive variable were also demonstrated

to have good predictive capabilities. This systematic review provides valuable

guidance for the future optimization of ML prediction systems that predict poor

motor outcomes in stroke patients.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?ID=CRD42022335260, identifier: CRD42022335260.
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1. Introduction

Stroke is an acute cerebrovascular disease caused by sudden

rupture of intracranial vessels or vascular obstruction preventing

blood from flowing into the brain and thereby leading to brain

tissue damage. Based on its pathological pattern, stroke can be

classified into ischemic stroke (IS) and hemorrhagic stroke (HS).

The Global Burden of Diseases, Injuries, and Risk Factors Study

2017 (GBD 2017) reported that stroke resulted in 6.17 million

deaths and is the second leading cause of death and disability

worldwide (1). According to the 2021 Guideline for the Prevention

of Stroke in Patients With Stroke and Transient Ischemic Attack

From the American Stroke Association (ASA), high blood pressure,

diet, abdominal obesity, physical inactivity and smoking represent

82% (2) of the population-attributable risk (PAR) in patients with

IS and HS. Although most IS patients have received effective

treatments, many of them still suffer certain functional impairment

after treatment. Motor function outcome in stroke survivors, as a

primary determinant of the burden of stroke, directly determines

their quality of life. Furthermore, physical disability is a key

factor for the occurrence of mental disorders, such as depression,

which occurs in 33% of stroke survivors (3). Therefore, the motor

function-related outcome is one of the greatest concerns for stroke

patients and their families. Clinically, it is extremely significant

for clinicians to judge the prognosis of stroke patients and make

a long-term treatment plan for those with a poor motor function

outcome (4).

With rapid advances in medical and health informatization,

medical data in a larger scale can be divided into more types,

and the health care field has also entered a new era of big

data. Due to the large scale, diversified types and high hidden

value of medical data, ML algorithms have been widely used

in the medical field (5–8). ML can be defined as a subfield

of artificial intelligence (AI) that uses computerized algorithms

to automatically improve performance through an iterative

learning process or experience (i.e., data collection) (9). Different

from traditional prediction models that use selected variables

for calculation, ML techniques can easily incorporate a large

number of variables to describe the complex and unpredictable

nature of human physiology in a clearer way. Therefore,

ML may be helpful for clinical prediction and identification

of new prognostic markers (10). In recent years, many ML

methods have been applied to the diagnosis and assessment

of stroke (11, 12), including the evaluation of stroke severity

(13), analysis of cerebral edema (14), prediction of hematoma

expansion (15), and incidence prediction (16). Therefore, ML

model predictions not only aid in disease analysis, prevention,

diagnosis, and patient monitoring, but also help clinicians handle

massive amounts of data in a more accurate and efficient

manner (17).

In the literature, the published systematic reviews lack

ML model prediction analysis of motor function 3–6 months

post-stroke, especially regarding model predictive capabilities in

different outcome cut-off values to accurately determine efficacy of

ML predictions. Additionally, individual original studies may not

be able to statistically assess the robustness of prediction results.

Therefore, this systematic review and meta-analysis was conducted

to assess the performance of current MLmodels as clinical tools for

predicting medium- and long-term recovery of motor function in

stroke patients.

2. Methods

This systematic review and meta-analysis was performed in

accordance with the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses 2020 (PRISMA 2020), and

prospectively registered in PROSPERO (CRD42022335260).

2.1. Search strategy

A comprehensive and systematic search was conducted in

PubMed, Embase, Cochorane, and Web of Science databases.

The retrieval was as of April 3, 2023. A researcher (Xiaoning Li)

designed the keywords and search strategy of this systematic

review, and both subject headings and free words were

searched. The complete search strategy can be found in the

Supplementary Table S1.

2.2. Inclusion and exclusion criteria

2.2.1. Inclusion criteria
(1) Patients were diagnosed with IS or HS on CT or MRI. IS

included large vessel occlusion, anterior circulation infarction and

posterior circulation infarction. (2) ML was used to predict motor

function in patients 3–6 months post-stroke.

(3) The Modified Rankin Scale was used as the outcome

measure. (4) Aged 18 and older. (5) Articles written in English or

translated into English. (6) Randomized controlled trials, cohort

studies, case-control studies.

2.2.2. Exclusion criteria
(1) Patients were clumsy in physical activities or unable to

function independently before stroke (Premorbid Modified Rankin

Scale ≥ 2). (2) Cerebral hemorrhage resulted from secondary

causes, such as cerebral trauma and subarachnoid hemorrhage.

(3) Prediction models applied clinical scoring rather than ML. (4)

Case reports, protocols, editorials, and perspectives that have no

original data.

2.3. Literature screening and data
extraction

All of the retrieved studies were imported into Endnote for

management. After automatic and manual removal of duplicates,

two researchers (Weiying Zhao and Xue Zheng) independently

assessed remaining articles. Titles and abstracts were preliminarily

screened before the full texts were downloaded. Then we read the

full texts to select eligible studies that meet the inclusion criteria.

If there was any dissent on a study, a third researcher (Lei Chi)

was consulted to assist in determining whether to include it. Before

data extraction, a sheet of standard data extraction was prepared,
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including data source, Modified Rankin Scale cut-off value that was

defined as a poor outcome, outcome prediction time, missing data

processingmethods, sample sizes of the training and validation sets,

validation set confirmation way, internal and external validation

information, predictors and their number, as well as ML model

types. Data of the accuracy metrics were also collected, including

sensitivity, specificity, receiver operator characteristic (ROC), area

under the curve (AUC) and other.

2.4. Quality analysis

The ROB of included studies was assessed using PROBAST

(18). It involves four major domains: participants, predictors,

outcomes and statistic analysis, and reflects the overall ROB

and applicability. The four domains include two, three, six and

nine signaling questions, respectively. Signaling questions are

answered as yes/probable yes (Y/PY), no/probably no (N/PN), or

no information (NI). If a domain is answered with at least a N/PN,

it is considered at high ROB. When all of the four domains were

rated as low ROB, the overall ROB is deemed to be low. Two

researchers (CJ and KZ) independently carried out ROB assessment

in accordance with PROBAST. Then their assessment results were

cross checked. Any dissent was consulted to a third researcher (LW)

for final determination.

2.5. Data analysis

We performed a meta-analysis of the metrics (C-statistics and

accuracy) for evaluating ML models. If C-statistic lacked 95%

confidence interval (CI) and standard error (SE), we referred to

the study by Debray TP et al. (19) to estimate its standard error. In

case of inaccurate original data, we calculated based on sensitivity

and specificity in combination with the sample size of each

molecular subtype and model. Given the difference in variables and

parameters in ML models, a random-effects model was preferred

to perform the meta-analysis. This meta-analysis was conducted

using R4.2.0 (R development Core Team, Vienna, http://www.R-

project.org). A subgroup analysis by ML models and Modified

Rankin Scale threshold was performed in our systematic review and

meta-analysis. Heterogeneity was quantified by calculating I2 as a

percentage. A low level of heterogeneity was present when I2 was

25%, a moderate level when I2 was 50% and a high level when I2

was 75% (20). Publication bias was examined by creating a funnel

plot and Begg’s bias test.

3. Results

3.1. Literature search

A total of 23,594 articles were initially searched from PubMed,

Embase, Cochorane and Web of Science. In the screening

process, not Modified Rankin Scale outcome, Modified Rankin

Scale outcome time <90 days, not clearly identify prediction

standard all exclusion conditions. After screening, a total of 44

papers were eligible (21–64). The selection process is shown

in Figure 1.

3.2. Characteristics of included studies

A total of 44 eligible studies were included in this systematic

review, involving 72,368 patients and 136 prediction models. All

prediction models were internally validated, and 26 of them were

externally validated. Additionally, among the 28 eligible studies,

15 studies were multi-centered (27–29, 39, 45, 47, 52, 55, 58–64);

five studies extracted their original data from databases (24, 25, 32,

37, 57); and the remaining 24 studies were single-centered. Most

eligible studies focused on IS and 7 studies (23, 32, 39, 40, 48, 60, 63)

on HS. A study (32) used the same four models to predict the motor

function in patients with IS and HS respectively. The primary

outcome wasModified Rankin Scale at 3 to 6months after the onset

of stroke. Due to distinct purposes, these included studies defined

poor motor function in a different manner. Specifically, it was

defined as Modified Rankin Scale >1 in 4 studies (26, 31, 45, 58),

Modified Rankin Scale >3 in 4 (39, 53, 60, 63) studies, Modified

Rankin Scale>4 in two (25, 42) studies, andModified Rankin Scale

>2 in other 34 studies. In this study, a total of 13 primary studies

using radiomics as predictive factors were identified (27, 30, 36, 37,

49, 51, 52, 54–57, 61, 62), from which 33 prediction models were

extracted. Among them, 20 models primarily used MRI images as

predictive factors.

In the training set, models of LR (Logistic Regression),

RF (Random Forest), SVM (Support Vector Machine), XGB

(Extreme Gradient Boosting), ANN (Artificial Neural Networks),

DT (Decision Tree), GBM (Gradient Boosting Machine), DNN

(Deep Neural Network), ADB (Adaptive Boosting), KNN (K-

nearest Neighbors), CNN (Convolutional Neural Network) were

applied. C-statistic was used for analysis. Meanwhile, the sensitivity

and specificity of LR, RF, SVM, XGB, ANN, DT, ADB, CNN, Naive

Bayes were calculated. In contrast, the validation set applied LR,

ANN, RF, SVM, XGB, DT, GBM, KNN and GLM and used C-

statistics to evaluate these models. The sensitivity and specificity

of LR, RF, SVM, XGB, ANN, DT, and KNN were also calculated.

Furthermore, these included studies were published from 2017 to

2023, which generally shows an increasing trend year by year. This

reflects the rising popularity of ML prediction. Characteristics of

included studies are presented in the Supplementary Tables S2–S4.

3.3. Quality assessment

In terms of the evaluation of case source, 99 of 136models came

from retrospective case-control studies, which was rated as high

ROB. The high bias of data in retrospective studies caused limited

accuracy of models in prediction. Thus these models were at high

ROB. The other 37 models extracted clinical data from prospective

cohort studies or registration data platforms, thereby rated at low

ROB. Regarding the assessment of predictors, 67 models were rated

at high ROB. Since researchers knew both predictors and data

results in retrospective studies, there was a high ROB in such

studies. For the outcome, 109 models were rated at low ROB,
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FIGURE 1

PRISMA flow diagram of study selection.

and 22 models were at unclear ROB for failing to report whether

the predictor information was unclear at the time of outcome

determination. Lastly, as for the analysis, 88 models were at high

ROB, among them 60 models were rated at high ROB because of

sample size <100 or events per variable(EPV) <10, and 43 models

at unclear ROB due to a failure to elucidate the processing method

of missing data, data complexity and optimal fitting method. The

ROB evaluation is presented in Figure 2.

3.4. Variable ordering

The present study summarized and ordered the predictors

in included models. All predictors were divided into five

categories, which comprehensively covered all-round information

of stroke patients. This was helpful for clinicians to provide

targeted secondary prevention and health guidance for

corresponding patients in the future. Among all predictors,

age (patient demographics) was used most frequently in

prediction models, followed by initial NIHSS (clinical variables),

glucose level (laboratory values), initial Modified Rankin Scale

(clinical variables). In terms of the medication history, the

frequency of thrombolysis treatment was high (shown in

Figure 3).

3.5. Machine learning outcomes

Firstly, a random-effects model was used to combine the C-

statistics in ML models. The overall C-statistic for the 96 models

in the training set was 0.81 (95% CI: 0.79; 0.83). The 96 models

can be classified into 12 types, which were ordered according to

their frequency of application to prediction. Among the 12 model

types, the LR model was used 29 times in all eligible studies to

predict post-stroke motor function, and the C-statistic was 0.81

(95% CI: 0.78; 0.85). ANN had the best performance in prediction

with a C-statistic of 0.91 (95% CI: 0.86; 0.95). The overall C-statistic

for 71 models in the validation set was 0.82 (95% CI: 0.80; 0.85).

The 71 models were divided into 10 types, which were also ranked

according to their application frequency in prediction. Among the

nine model types, LR models were used most frequently, namely 20

times, to predict post-stroke motor function, with a C-statistic of

0.82 (95% CI: 0.78; 0.87). The performance of each model can be

seen in Table 1 and Figure 4.

To minimize the heterogeneity of data sources, the present

study also performed C-statistic pooling based on different

Modified Rankin Scale cutoff thresholds. Among the training set

models with Modified Rankin Scale >2, there were 85 in total with

a C-statistic of 0.81 (95% CI: 0.78; 0.84), and among the validation

set models, there were 48 in total with a C-statistic of 0.84 (95% CI:
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FIGURE 2

ROB evaluation.

FIGURE 3

TOP 15 predictors 136 prognostic models for long-term post-stroke

ML models. SBP, systolic blood pressure; DBP, diastolic blood

pressure; GCS, Glasgow Coma Scale.

0.81; 0.87). In both the prediction model of training and validation

sets, the ANN prediction performed the best with C-statistics of

0.91 (95% CI: 0.86; 0.95) and 0.89 (95% CI: 0.83; 0.96), respectively,

as shown in Figure 5. For models with Modified Rankin Scale >

1, there were 6 training set models, with an overall C-statistic of

0.78 (95% CI: 0.77; 0.80). There were 14 validation set models, with

an overall C-statistic of 0.79 (95% CI: 0.77; 0.82). For models with

Modified Rankin Scale >3, there were 5 training set models, with

an overall C-statistic of 0.83 (95% CI: 0.78; 0.88). There were 4

validation set models, all of which were LR models, with an overall

C-statistic of 0.87 (95% CI: 0.82; 0.92). There were no training set

models withModified Rankin Scale> 4, but there were 5 validation

set models, with an overall C-statistic of 0.79 (95% CI: 0.78; 0.81).

The performance of each model within the subgroups can be seen

in Table 2.

Additionally, the C-statistics were also combined for

radiomics-based machine learning prediction models. The

training set included a total of 20 prediction models from 8

categories. The overall C-statistic was 0.81 (95% CI: 0.78; 0.84).

The most numerous type was the LR model, which also had the

best predictive performance with a C-statistic of 0.86 (95% CI:

0.82; 0.91). There were 13 validation set models, with an overall

C-statistic of 0.87 (95% CI: 0.83; 0.90). Similarly, the LR model had

the best predictive performance with a C-statistic of 0.91 (95% CI:

0.88; 0.95). The performance of the remaining models is provided

in Table 3 and Figure 6.

3.6. Sensitivity and specificity

In order to avoid data imbalance, the sensitivity and specificity

of models in prediction were analyzed. The training set included

39 models in total with the overall sensitivity of 0.72 (95% CI: 0.70;

0.75). LR were used 15 times, with a sensitivity of 0.74 (95% CI:

0.67; 0.79). Additionally, the overall specificity was 0.77 (95% CI:

0.74; 0.80). The validation set included 40 models, and the overall

sensitivity and specificity were 0.74 (95%CI: 0.69; 0.79) and 0.72

(95%CI: 0.66; 0.77), respectively. Sensitivity and specificity analyses

were also conducted for subgroups with different Modified Rankin
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TABLE 1 Overall C-statistics of machine learning models.

Model Training Validation

Number of
models

Sample size C-statistics
(95%CI)

Number of
models

Sample size C-statistics
(95%CI)

LR 29 17,459 0.81 [0.78; 0.85] 20 5,819 0.82 [0.78; 0.87]

RF 17 53,869 0.80 [0.73; 0.86] 9 43,629 0.85 [0.79; 0.91]

SVM 10 49,840 0.84 [0.78; 0.90] 8 43,466 0.85 [0.78; 0.92]

XGB 9 10,150 0.85 [0.82; 0.87] 7 3,138 0.81[0.78; 0.84]

ANN 9 86,701 0.91 [0.86; 0.95] 12 83,384 0.84 [0.78; 0.91]

DT 7 3,136 0.69 [0.57; 0.83] 6 3,342 0.73 [0.66; 0.80]

Other 5 2,972 0.72[0.59; 0.86] 5 1,115 0.80 [0.72; 0.89]

GBM 3 1,778 0.79 [0.69; 0.92] 2 326 0.88 [0.84; 0.92]

DNN 3 5,516 0.85 [0.79; 0.92] NA NA NA

ADB 2 1,113 0.77 [0.60; 0.98] NA NA NA

KNN 1 293 0.74 1 297 0.82

CNN 1 322 0.83 NA NA NA

GLM NA NA NA 1 251 0.83

Overall 96 23,3149 0.81 [0.79; 0.83] 71 18,4767 0.82 [0.80; 0.85]

FIGURE 4

Forest plot of the overall C-statistics predicting 3–6m Modified Rankin Scale outcomes in stroke patients.

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2023.1039794
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2023.1039794

FIGURE 5

Forest plot of the C-statistics predicting 3–6m Modified Rankin Scale >2 outcomes in stroke patients.

Scale thresholds. The sensitivity and specificity of ML models and

subgroups were presented in Table 4 and Figure 7.

3.7. Publication bias

In the meta-analysis of C-statistic, no publication bias was

found in the funnel plots for both the training set and validation

set of ML models for predicting motor function 3–6 months after

stroke. The results of Begg test showed that P = 0.473 in the

training set, P = 0.909 in the verification set. The funnel plots are

shown in Figures 8, 9. In the meta-analysis of the diagnostic 4-fold

table, there was publication bias in the training set of ML models

for predicting motor function 3–6 months after stroke, while no

publication bias was found in the validation set. The Beg test results

showed that P = 0.01 in the training set, P = 0.31 in the validation

set. The funnel plots are shown in Figures 10, 11.

4. Discussion

The study reviews the performance of ML models in the

prediction of motor function recovery in patients 3–6 months post-

stroke. In the case of Modified Rankin Scale >1, >2, >3, >4, the

model’s predictive performance was favorable. The C-statistics for

models with predictive factors based on radiomics were 0.81 (95%

CI: 0.78; 0.84) in the training set and 0.87 (95% CI: 0.83; 0.90) in the

validation set. The overall sensitivity and specificity of the models

were both over 0.70 and relatively balanced. The study makes up

the gap and deficiency in current researches on the prediction of

motor function recovery in stroke patients, which has significant

instruction for clinical practice. In the quality assessment part,

the ROB of original studies was analyzed in accordance with

the PROBAST standard. This provides detailed suggestions for

researchers to design model prediction tests in the future, which

is conducive to standardization and unification.

According to this analysis of predictors, age and initial NIHSS,

are the most critical predictors for the prognosis of motor function

in patients with stroke for 90 to 180 days, followed by glucose level,

initial Modified Rankin Scale. This is consistent with the results

of previous studies (2, 65, 66) on prediction models and meta-

analysis of predictors. A large number of studies show that aged

patients with acute IS have higher mortality and poorer quality

of life than their young counterparts. For instance, both cerebral

infarction complicated with pulmonary infection and hemorrhagic

transformation after cerebral infarction are more likely to cause

relatively poor outcomes in aged patients (67, 68). NIHSS score has

been widely recognized as a key determinant of the prognosis in

patients with acute IS in China and abroad (69). Furthermore, a

previous study (70) on motor function outcome in stroke patients
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TABLE 2 C-statistics of subgroups machine learning models (according to threshold of Modified Rankin Scale).

Subgroup Training Validation

Number of
models

Sample size C-statistics
(95%CI)

Number of
models

Sample size C-statistics
(95%CI)

Modified Rankin Scale >1

LR 2 2,012 0.76 [0.74; 0.79] 3 1,148 0.82 [0.76; 0.88]

XGB 1 1,524 0.81 2 678 0.78 [0.72; 0.84]

RF 1 1,524 0.78 2 678 0.79 [0.73; 0.86]

DNN 1 1,524 0.78 NA NA NA

SVM 1 1,524 0.77 2 678 0.81 [0.73; 0.90]

KNN NA NA NA 1 297 0.82

ANN NA NA NA 3 443 0.66 [0.53; 0.82]

Other NA NA NA 1 31 0.75

Overall 6 8,108 0.78 [0.77; 0.80] 14 3,953 0.79 [0.77; 0.82]

Modified Rankin Scale >2

LR 24 13,742 0.81 [0.76; 0.86] 12 2,578 0.81 [0.74; 0.89]

RF 15 52,067 0.79 [0.72; 0.87] 6 41,425 0.87 [0.80; 0.96]

SVM 9 48,316 0.85 [0.78; 0.92] 5 41,262 0.88 [0.79; 0.98]

ANN 9 86,701 0.91 [0.86; 0.95] 8 81,415 0.89 [0.83; 0.96]

XGB 8 8,626 0.85 [0.82; 0.88] 4 934 0.84 [0.82; 0.87]

DT 6 2,858 0.68 [0.54; 0.85] 6 3,342 0.73 [0.66; 0.80]

Other 5 2,972 0.72 [0.59; 0.86] 4 1,084 0.81 [0.71; 0.92]

GBM 3 1,778 0.79 [0.69; 0.92] 2 326 0.88 [0.84; 0.92]

DNN 2 3,992 0.88 [0.87; 0.90] NA NA NA

ADB 2 1,113 0.77 [0.60; 0.98] NA NA NA

CNN 1 322 0.83 NA NA NA

KNN 1 293 0.74 NA NA NA

GLM NA NA NA 1 251 0.83

Overall 85 222,780 0.81 [0.78; 0.84] 48 172,617 0.84 [0.81; 0.87]

Modified Rankin Scale >3

LR 3 1,705 0.86 [0.84; 0.89] 4 567 0.87 [0.82; 0.92]

RF 1 278 0.82 NA NA NA

DT 1 278 0.75 NA NA NA

Overall 5 2,261 0.83 [0.78; 0.88] 4 567 0.87 [0.82; 0.92]

Modified Rankin Scale >4

ANN NA NA NA 1 1,526 0.81

LR NA NA NA 1 1,526 0.80

RF NA NA NA 1 1,526 0.80

XGB NA NA NA 1 1,526 0.78

SVM NA NA NA 1 1,526 0.77

Overall NA NA NA 5 7,630 0.79 [0.78; 0.81]

show that initial measures were found to be the most significant

predictors of upper limb recovery; odds ratio 14.84 (95% CI 9.08–

24.25) and 38.62 (95% CI 8.40–177.53) respectively.

AI has been widely applied in the diagnosis, classification,

and prediction of stroke. One of its biggest advantages is that it

can process data endlessly and can perform faster than traditional
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TABLE 3 C-statistics of radiomics-based predictors machine learning models.

Model Training Validation

Number of
models

Sample size C-statistics
(95%CI)

Number of
models

Sample size C-statistics
(95%CI)

LR 8 4,055 0.86 [0.82; 0.91] 4 350 0.91 [0.88; 0.95]

RF 3 4,595 0.77 [0.72; 0.82] 1 163 0.90

XGB 3 4,725 0.81 [0.79; 0.81] 2 456 0.84 [0.80; 0.87]

ANN 2 3,251 0.81 [0.78; 0.84] 1 74 0.73

CNN 1 322 0.83 NA NA NA

SVM 1 3,001 0.79 NA NA NA

KNN 1 293 0.74 NA NA NA

GBM 1 293 0.68 2 326 0.88 [0.84; 0.92]

DT NA NA NA 1 163 0.86

Other NA NA NA 2 326 0.87 [0.83; 0.91]

Overall 20 20,535 0.81 [0.78; 0.84] 13 1858 0.87 [0.83; 0.90]

FIGURE 6

Forest plot of the C-statistics predicting 3–6m Modified Rankin Scale outcomes in stroke patients (radiomics-based predictors).

computer-aided detection and diagnosis (CAD) (71). Although

there are more and more studies on post-stroke motor function

prognosis, there is still a lack of prediction and guidance for

neurological motor function, especially for model evaluation after

stratifying prediction outcomes. A previous systematic review

(72) collected and summarized clinical prognosis trials for

patients with large vessel occlusion undergoing thrombectomy,

and predicted 90-day Modified Rankin Scale for 802 patients.
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TABLE 4 Sensitivity and specificity of overall and subgroup machine learning models.

Subgroup Training Validation

Number of models Sample size Sen (95%CI) Spe (95%CI) Number of models Sample size Sen (95%CI) Spe (95%CI)

Model type

LR 15 10,637 0.74 [0.67;0.79] 0.77 [0.73;0.82] 11 4,204 0.75 [0.69;0.80] 0.72 [0.63;0.80]

RF 6 2,598 0.71 [0.68; 0.74] 0.78 [0.64; 0.88] 5 3,058 0.73 [0.61; 0.83] 0.73 [0.59; 0.83]

SVM 4 4,592 0.70 [0.63;0.76] 0.77 [0.65;0.86] 6 3,189 0.72 [0.59;0.81] 0.76 [0.65;0.85]

Other 3 387 0.75 [0.67;0.81] 0.78 [0.71;0.83] 2 538 0.67 [0.64;0.71] 0.71 [0.68;0.74]

XGB 3 5,022 0.73 [0.70;0.75] 0.77 [0.70;0.83] 5 2,682 0.69 [0.54; 0.80] 0.78 [0.62; 0.88]

ANN 3 3,513 0.76 [0.73; 0.79] 0.81 [0.78; 0.84] 8 2,720 0.72 [0.59; 0.82] 0.72 [0.59; 0.83]

DT 2 724 0.80 [0.65; 0.90] 0.82 [0.67; 0.91] 2 1,014 0.77 [0.74; 0.79] 0.59 [0.57; 0.61]

ADB 1 614 0.73 0.60 NA NA NA NA

CNN 1 322 0.67 0.87 NA NA NA NA

NB 1 150 0.75 0.68 NA NA NA NA

KNN 0 NA NA NA 1 297 1.00 0.10

Modified Rankin Scale

>1 0 NA NA NA 13 3,483 0.85 [0.76;0.91] 0.57 [0.46;0.68]

>2 38 27,724 0.72 [0.69;0.75] 0.77 [0.74;0.80] 20 6,302 0.68 [0.62;0.72] 0.79 [0.72;0.84]

>3 1 835 0.75 0.70 2 287 0.84 [0.75;0.90] 0.68 [0.63;0.72]

>4 0 NA NA NA 5 7,630 0.65 [0.56;0.73] 0.80 [0.72;0.86]

Overall 39 28,559 0.72 [0.70;0.75] 0.77 [0.74;0.80] 40 17,702 0.74 [0.69;0.79] 0.72 [0.66;0.77]
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FIGURE 7

Forest plot of the sensitivity and specificity predicting 3–6m Modified Rankin Scale outcomes in stroke patients.

The random-effects model showed an AUC of 0.846 (95% CI

0.686–0.902), indicating good predictive performance. However,

as most of the limited number of included studies used SVM,

a comprehensive comparison of the predictive performance of

various models to determine the best model was not possible.

Similarly, earlier research (73) in rehabilitation medicine on

the prediction of post-stroke function recovery confirmed the

application of ML prediction ability in clinical settings but did not

provide specific C-statistic values, making it difficult to accurately

assess predictive performance. Therefore, conducting a meta-

analysis of ML motor function prediction models classified by

prognosis outcome and predictive factors is both necessary and

valuable, as it deepens the understanding of earlier research and

further clarifies the ideal application value of ML in predicting

post-stroke outcomes.

For stroke prediction, most existing ML algorithms use binary

classification to evaluate the outcome indicator. Conventionally,

when Modified Rankin Scale are 0–2, functional outcomes are

usually defined as “good”; when Modified Rankin Scale 3–

6, functional outcomes are typically defined as “poor.” Studies

usually measure Modified Rankin Scale at 90 days post-stroke

(38, 74, 75). However, with different patient situations in clinical

settings and various research objectives, studies have started using

Modified Rankin Scale threshold values such as 0–1 VS 2–6, 0–

3 VS 4–6, and conducting later follow-ups. New ML algorithms

that incorporate these results will provide greater assistance

to clinicians.

The advancement of machine learning has made it possible to

transform subjective visual interpretation into objective evaluation

driven by image data. Radiomics has emerged in this context.
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FIGURE 8

Funnel plot for publication bias of C-statistics in the training set.

FIGURE 9

Funnel plot for publication bias of C-statistics in the validation set.

Radiomics is a computer-aided process that can extract a large

number of quantitative features from biomedical images in an

objective, repeatable, and high-throughput manner (76, 77). These

features can be combined with other medical information such as

demographics, clinical, histological, or genomic data to improve

clinical treatment decision-making and accelerate the progress

of precision medicine. A systematic review (78) reveals that the

artificial intelligence coupling CNN with image feature has greater

sensitivity, up to 83%. ML not only offers promising applications

in medical imaging by learning information features and patterns

from structured input data, but also promotes the emergence of

deep learning (DL) and demonstrates its excellent performance

in medical image processing (79, 80). XinruiWang’s latest study

(81) analyzed ML models to predict the volume of core infarct

tissue in AIS patients based on basic CT or MRI imaging at

admission. DL models outperformed traditional ML classifiers,

with the best performance observed in DL algorithms combined

with CT data. Currently, the pooled dice similarity coefficient score

of the included MLmodels for final infarct prediction based on ML

was 0.50 (95% CI 0.39–0.61).

In theory, different imaging modalities and parameters

provide different diagnostic and prognostic information that can

complement each other. Therefore, adjusting and optimizing

parameters for multimodal imaging data in radiomics can improve

the overall predictive performance. In addition, the study combined

clinical data such as clinical symptom assessment, medical history,
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FIGURE 10

Funnel plot for publication bias of diagnostic 4-fold table in the training set.

FIGURE 11

Funnel plot for publication bias of diagnostic 4-fold table in the validation set.

and laboratory examinations (82, 83). Multidimensional input

information consisting of both imaging and clinical data has the

potential to establish better prediction models, which is a direction

for future research.

4.1. Limitation

However, there are some limitations to the present study that

need to be considered. First, due to the different types of algorithms
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and parameter adjustments, there is inevitably a high degree of

heterogeneity between studies. To minimize the heterogeneity,

we conducted subgroup analysis according to different Modified

Rankin Scale cut-off values and analyzed the performance of

predictive factors based on different categories. Moreover, from the

summary plot of variables, it can be observed that the predictive

factors in each study are similar to some degree and selected from

five dimensions. Second, although ML has enormous potential in

the computing function of huge data, its “black box” characteristic

restricts clinicians from trusting the ML prediction. Meanwhile,

due to the instability of association between impact factors, ML

model requires plenty of samples to improve its accuracy (84, 85).

Third, while using the Modified Rankin Scale as a functional

outcome measure can directly elucidate the functional levels, it

fails to express the details of various post-stroke neurological

symptoms, such as dysarthria and pure sensory stroke. At last,

from the literature quality assessment summary table, retrospective

case studies are in the majority, leading to a high ROB and poor

performance of prediction models. Therefore, in order to avoid

high ROB, future clinical studies on ML prediction should collect

data from clinical registration platforms or prospective clinical

studies. Additionally, the design of clinical protocol should meet

the requirement of EPV ≥20 to ensure the reliability of the results

of the prediction model.

5. Conclusion

In this study, we conducted a systematic review and meta-

analysis of the current research using ML algorithms to predict

post-stroke motor function 3–6 months. Due to its good predictive

performance, sensitivity, and specificity, ML can be used as

an evaluation tool for predicting motor function after stroke.

Additionally, the study found that ML models with radiomics as

predictive variables also demonstrated good predictive capabilities.

The multidimensional input information consisting of both

imaging and clinical data has the potential to establish better

prediction models that can guide clinical work.
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