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Introduction:Migraine is a common and debilitating pain disorder associated with
dysfunction of the central nervous system. Advanced magnetic resonance
imaging (MRI) studies have reported relevant pathophysiologic states in
migraine. However, its molecular mechanistic processes are still poorly
understood in vivo. This study examined migraine patients with a novel
machine learning (ML) method based on their central μ-opioid and dopamine
D2/D3 profiles, the most critical neurotransmitters in the brain for pain perception
and its cognitive-motivational interface.

Methods: We employed compressive Big Data Analytics (CBDA) to identify
migraineurs and healthy controls (HC) in a large positron emission tomography
(PET) dataset. 198 PET volumes were obtained from 38 migraineurs and 23 HC
during rest and thermal pain challenge. 61 subjects were scanned with the
selective μ-opioid receptor (μOR) radiotracer [11C]Carfentanil, and 22 with the
selective dopamine D2/D3 receptor (DOR) radiotracer [11C]Raclopride. PET scans
were recast into a 1D array of 510,340 voxels with spatial and intensity filtering of
non-displaceable binding potential (BPND), representing the receptor availability
level. We then performed data reduction and CBDA to power rank the predictive
brain voxels.

Results: CBDA classified migraineurs from HC with accuracy, sensitivity, and
specificity above 90% for whole-brain and region-of-interest (ROI) analyses.
The most predictive ROIs for μOR were the insula (anterior), thalamus
(pulvinar, medial-dorsal, and ventral lateral/posterior nuclei), and the putamen.
The latter, putamen (anterior), was also the most predictive for migraine regarding
DOR D2/D3 BPND levels.

Discussion: CBDA of endogenous μ-opioid and D2/D3 dopamine dysfunctions in
the brain can accurately identify a migraine patient based on their receptor
availability across key sensory, motor, and motivational processing regions. Our
ML-based findings in the migraineur’s brain neurotransmission partly explain the
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severe impact of migraine suffering and associated neuropsychiatric comorbidities.
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computer-aided diagnosis, PET imaging data, CBDA

Introduction

Migraine is a pain disorder with a prevalence of more than one
billion people worldwide (Global Burden of Disease GBD, 2017). It
dramatically impacts the patients’ daily lives with frequent headache
attacks, neuropsychiatric comorbidities, and the potential for
substance abuse when unremitted, especially opiates (Bigal et al.,
2009; Buse et al., 2012; Adams et al., 2015; Lipton et al., 2020).
Because of this significant sensory and cognitive-motivational
dysregulation in migraine, the endogenous μ-opioid and D2/
D3 dopamine (DA) molecular mechanisms have recently been
investigated as the potential main culprits of the disorder
(Zubieta et al., 2002; De Felice et al., 2013; Martikainen et al.,
2013; Jassar et al., 2019). Pharmacologically, they are the targets
for the action of the most potent exogenous analgesic and psychotic
drugs available. Positron emission tomography (PET) studies with
[11C]Carfentanil, a selective μ-opioid receptor (μOR) agonist
radiotracer, have demonstrated in vivo a decrease in μOR
availability (non-displaceable binding potential [BPND], where
BPND is equal to the distribution volume ratio, DVR, minus one;
BPND = DVR-1) in the brains of episodic migraineurs during
headache attacks and allodynia (DaSilva et al., 2014a; Nascimento

et al., 2014a). The μOR has a high affinity for the μ-opioid peptides
enkephalins and beta-endorphin. The measure of specific uptake of
[11C]Carfentanil, BPND, decreases when there is an increase in
endogenous μ-opioid (peptides) release and vice versa. The
migraine attacks were also accompanied by an increase in DA
D2/D3 receptor (DOR) BPND measured by [11C]Raclopride in the
basal ganglia; and the longer the history and recurrence of migraine
attacks, the lower the ictal (i.e., during the migraine attacks)
endogenous DA release (DaSilva et al., 2017). Interestingly,
migraine has been associated with a higher prevalence of DA-
deficient disorders, including Restless Legs Syndrome and
Parkinson’s disease (PD) (Cervenka et al., 2006; Scher et al., 2014).

A growing number of laboratories are attempting to translate
migraine and chronic pain neuroimaging data to a more
precision-oriented clinical approach by objectively classifying
patients via potential brain biomarkers (Zhang et al., 2016;
Lamichhane et al., 2021; Dumkrieger et al., 2022; Hsiao et al.,
2022; Wang et al., 2022). Machine learning (ML) methods have
been firstly implemented in migraine research with
electroencephalography (EEG) (Frid et al., 2020) and
structural/functional magnetic resonance imaging (MRI)
(Chong et al., 2017; Ferroni et al., 2020; Hong et al., 2020).

FIGURE 1
End-to-end representation of the CBDA protocol. The initial data wrangling (Steps 1-3) is data-dependent, while the remaining steps (Steps 4-7) of
the CBDA protocol are data-independent
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However, due to its cost and protocol complexity, molecular pain
studies with PET have been scarce and limited to ML approaches
specific to a single region of interest or a single radiotracer
(Torrado-Carvajal et al., 2021). A multimodal ML technique
would be of immense clinical value to characterize migraine
based on its broad neurotransmitters-receptor interactions and
multiple brain regions associated with it.

This novel study has been conducted following best practices in
algorithm development in nuclear medicine and artificial
intelligence (AI) (Bradshaw et al., 2021). We use a promising
semi-supervised machine learning (ML) technique, called
Compressive Big Data Analytics (CBDA) (Marino et al., 2018;
Marino et al., 2020), to identify predictive migraine biomarkers
spatially at the molecular level in vivo. The CBDA protocol exploits
the concepts of subsampling and ensemble predictors to investigate
the core principles of distribution-free and model-agnostic methods
for scientific inference based on Big Data sets. Ensemble predictor
algorithms and subsampling or bootstrapping use common
approaches for objective function optimization, quantification of
noise, bias, prediction error, and variance estimation during the
learning process. CBDA combines in a unique way function
optimization and statistical inference. An end-to-end
representation of the Migraine PET CBDA protocol is shown in
Figure 1. The initial data wrangling (Steps 1-3, Figure 1) is data-
dependent, while the remaining steps (Steps 4-7, Figure 1) of the
CBDA protocol are data-independent. The ensemble predictor
embedded in CBDA is SuperLearner (van der Laan et al., 2007),
a data-adaptive black-box ML approach to prediction and density
estimation. SuperLearner uses cross-validation to estimate the
performance of multiple ML models. Currently, the SuperLearner
library comprises 60 different classification, regression, and artificial
intelligence (AI) algorithms to strengthen its predictive power and
sensitivity (see Material and Methods section for details on the
Migraine CBDA workflow).

A CBDA R package (Marino and Dinov, 2018) can be deployed
on a desktop/laptop environment and a high-performance
computing platform using the LONI graphical pipeline
environment (Rex et al., 2003). Our previous studies (Marino
et al., 2018; Marino et al., 2020) showcased the robustness,
efficiency, accuracy, and viability of our first-generation CBDA
protocol on small-medium-large size data.

This study enhances the protocol to handle PET imaging data
specific to migraine and brain double neurotransmission-receptor
data. We first perform extensive data wrangling on the 3D imaging
data and recast them into 1D vectors of PET intensities. A
thresholding protocol has been designed and implemented to
reduce the large 1D vector of PET intensities (see Material and
Methods section for details).

Across the different predictive analytics tasks, CBDA yielded
accurate results with robust sensitivity and high specificity
metrics. The identified top predictive brain regions of interest
(ROIs) confirmed existing results in the migraine literature
(DaSilva et al., 2014b; DaSilva et al., 2017; Jassar et al., 2019;
Kim et al., 2021). These results suggest new potential avenues for
dissecting the molecular brain mechanisms underlying migraine
and its treatment. PET imaging and the open-source classifier
CBDA point to the importance of using these techniques in
synergy for accurate mining in vivo of the main biomarkers ofTA
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migraine regarding endogenous μ-opioid and dopamine D2/
D3 transmitter-receptor dynamics in the migraine brain.

Materials and methods

PET data collection protocol

Thirty-eight migraine subjects, seven chronic migraine (CM),
31 episodic migraine (EM), and 23 healthy control (HC)
participants, 20–64 years old, underwent structured clinical
phone screening for formal diagnosis as per the International
Headache Society Classification (ICHD-3-beta) (Headache
Classification. Committee of the International Headache Society,
2004), were studied (see Table 1 for details). The clinical samples
(7 chronic migraine, eight episodic migraine and eight healthy
controls) used in this study overlaps with the sample utilized in
our previous publications (DaSilva et al., 2014a; DaSilva et al., 2017;
Jassar et al., 2019). All participants were recruited through local
advertisement at the University of Michigan, Internet and flyers on
bulletin boards. The exclusion criteria included pregnancy, opioid or
hormonal contraceptive use 6 months prior to recruitment, other
chronic pain disorders, as well as major systemic medical or
psychotic disorders. Additionally, all subjects underwent a urine
drug screening to ensure the absence of substance abuse, including
cocaine, amphetamine, methamphetamine, marijuana, and opioids.
More details on inclusion and inclusion criteria please refer to
previous publications (DaSilva et al., 2014a; DaSilva et al., 2017;
Jassar et al., 2019).

A total of 198 PET images obtained after scanning 61 subjects,
comprising two cohorts of 38 migraines subjects (mean 28.84 ±
standard deviation 8.4; nine men and 29 women) and 23 HCs (mean
26.27 ± standard deviation 6.25, six men and 17 women) during
both rest and cutaneous thermal pain threshold were used to train
and validate the CBDA predictive model.

All 61 subjects were scanned outside (interictal) and/or during
(ictal) migraine attacks using PET with the selective μ-opioid
receptor (μOR) radiotracer [11C]Carfentanil. Additionally, a
subset of 22 subjects were scanned using PET with the selective
dopamine D2/D3 receptor (DA) radiotracer [11C]Raclopride.
Specifically, seven chronic migraineurs underwent ictal CFN PET
(; a total of 14 images). Thirty-one episodic migraineurs underwent
interictal CFN PET (62 images total). Twelve out of 31 episodic
migraineurs had interictal RCL PET (24 images total) and eight of
31 did ictal CFN/RCL PET (32 images total). In total, there were
132 images for all migraineurs.8 episodic migraineurs underwent
both CFN and RCL scans during interictal and ictal states. Thus, the
images are actually referring to 122 and 44 unique subjects,
respectively for CFN and RCL scans.

PET acquisition protocol

PET scans with a radiotracer [11C]Carfentanil, a selective μ-
opioid receptor radiotracer, or [11C]Raclopride, a selective
radiotracer for DA D2/3Rs, were acquired with a Siemens HR +
scanner (Knoxville, TN) in 3-D mode with septa retracted (DaSilva
et al., 2014a; Nascimento et al., 2014b; DaSilva et al., 2017; Jassar

et al., 2019). Each image was reconstructed using the full-width at
half maximum (FWHM) resolution of ~5.5 mm in-plane and 5.0 in
the z-axis. The total dose injected of [11C]Carfentanil was 15 mCi
(555 MBq), with a maximum mass of 0.03 μg per kilogram of body
weight. Each [11C]Raclopride dose of 15 ± 1 mCi (555 ±
37 MBq), ≤50 μg, was administered. 50% of this dose was
administered as a bolus, followed by a continuous and constant
infusion of the remainder to quickly achieve the steady-state tracer
levels. Twenty-one PET images were acquired over 90 min while
increasing duration (30 s up to 10 min). The PET scan with [11C]
Carfentanil included a resting early-phase (5–40 min) without
stimulation, followed by a sustained thermal pain threshold
(STPT) challenge for the late phase (45–90 min) (thermal pain
threshold response). Regarding the PET with [11C]Raclopride,
participants were resting without challenge during the early
phase (30–40 min), followed by the STPT challenge for the late
phase (60–90 min). During the STPT challenge, heat stimuli were
delivered to the forehead area ipsilateral to the headache using a
16 mm2 thermal probe (Pathway model; MEDOC, Ramat Yishai,
Israel). The temperature was increased from a baseline of 32°C
(increasing 1°C/s). Participants were instructed to click a mouse at
the first perception of pain to instantly return temperature to
baseline level. The heat stimuli recurred every 10 s for 20 min
(40–60 min post-radiotracer administration).

The highest temperature allowed by the device during the
challenge was 50°C. The time between scans, assuming the use of
CFN to RCL, could be up to 10 min to ensure the tracers were
optimally delivered. The STPT was applied to the trigeminal nerve
region, which is the most common clinical pain location and
allodynia in migraineurs. The patients’ heads were firmly
stabilized with a soft self-adherent compression bandage wrap
and headrest before each scan. Nonetheless, images also
underwent attenuation correction and quality control before
registration. The probe used for the STPT was attached to the
headrest via a plastic and sturdy holder adjusted to comfortably
rest on the patients’ faces. These are the average molar activities for
the data collected across the different studies: i) CFN (2011–2014)
— 28.57Ci/μmol [1,057 GBq/µmol], ii) Rac (2011–2014)— 20.75Ci/
μmol [767.75 GBq/µmol], iii) CFN (2017-2020) — 117.12Ci/μmol
[4333.44 GBq/µmol].

PET data preprocessing

PET images were reconstructed using interactive algorithms into
a 128 * 128 pixel-matrix in a 24 cm diameter field of view with
attenuation and scatter corrections. A patient motion was corrected
by performing a linear co-registration of the frames of dynamic PET
images. For each participant, PET images were transformed into two
sets of parametric maps: 1) K1, a tracer transport measure usually
used for PET-MRI image co-registration and normalization, and 2)
BPND (non-displaceable binding potential), a receptor-related
measure estimated by applying the Logan plot (Logan et al.,
1996). Both BPND and K1 images were then transformed to the
Montreal Neurological Institute (MNI) standard space using the
DARTEL tool in SPM8 (Ashburner, 2007). The normalized BPND
images were resampled to 2-mm voxels and smoothed with a
Gaussian kernel (3 * 3 * 2 mm). The Logan plot output is
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distribution volume ratio (DVR), where here the ratio means relative
to a reference region, which in our case is the occipital cortex for
Carfentanil and cerebellar gray matter for Raclopride, The reference
region value is always 1.0. Thus, the normalized BPND values used by
CBDA for predictive analytics are calculated subtracting one to DVR
(i.e., BPND = DVR - 1).

PET data wrangling

After the PET data have been acquired, we developed and
implemented the following protocol for our PET data analysis and
predictive analytics. We first recast each 3D brain scan into a 1D
array of 510,340 voxels and eliminate voxels with DVR (BPND

+1) < 1.1. Two masks have been used, an CFN mask for CFN data
(Grey Matter mask) and an RCL mask for RCL data (Basal Ganglia
mask). These masks were generated using the Automated
Anatomical Labeling (AAL) brain atlas (Tzourio-Mazoyer et al.,
2002). Both masks are applied in MNI space. These masks include
only the brain tissue where each of the radiotracers most
prominently binds to the appropriate neuro-receptors
(Baumgartner et al., 2006; Karjalainen et al., 2017). These
different masks set voxel intensities outside the ROIs to zero,
leaving the 1D array size unchanged. Therefore, CFN and RCL
masks are specific to the gray matter and basal ganglia,
respectively. Regarding the ROI analysis, ROIs from AAL atlas
have been used for Thalamus, Putamen, and Insula. These ROIs
are applied in MNI space. We did further analysis for Thalamus by
mapping each predictive voxel coordinate in MNI space to
Talairach space to look up the sub-nuclei (Lancaster et al.,
2000). Before the data can be used for predictive analytics, we
used each PET image data across the different phases (early and
late) by thresholding each voxel intensity across the cohorts of
subjects using ad hoc masks (i.e., Grey Matter and Basal Ganglia)
and a newly designed thresholding function (see Table 1 and next
section).

The BPND thresholding function

BPND intensity thresholding is based on two parameters:
threshold and consistency. The thresholding function returns a
reduced 1D array based on:

• consistency (%): given a set of subjects, we want the pixel
location to be above the

• intensity threshold for at least that % of subjects

We apply the thresholding function to each set of images from
the two experiments, combining the early and late phases. The
details on the thresholding protocol and on the datasets used for
predictive analytics are given in Table 1. The consistency value used
in the thresholding function is 80%. The threshold for the whole
brain analysis was set to 2.0, while we used a less stringent threshold
for the ROI analyses (i.e., 1.1) since each ROI has a lot less voxels and
a 2.0 threshold would eliminate most of the BPND values from the
analysis. We then perform our CBDA protocol on the reduced
PET data.

PET data predictive analytics and CBDA
implementation

The study design for our CBDA protocol on the PET imaging
data comprised multiple experiments to be performed on each
dataset. Details on the CBDA protocol are available in our
previous publications (Marino et al., 2018; Marino et al., 2020)
and Figure 1. Here we highlight the main steps and specifications
implemented for analyzing the PET imaging data after data
wrangling has been performed (as described in the previous
section, in Figure 1 and in Table 1).

The CBDA subsampling module samples and returns subsets of
cases/rows and features/columns used to build the smaller training
sets. If needed, imputation (Stekhoven and Buhlmann, 2012),
normalization (Becker et al., 1988) and balancing (Chawla et al.,
2002) are performed on each sample. In this study, there was no
need to perform any of these adjustments since each set of voxels
with their binding potential values has no missingness, and the data
are already normalized. The voxels are then paired to the binary
outcome vector for each patient’s PET image (i.e., migraine = 1 vs
healthy = 0). The CBDA settings for the subsampling module for all
the experiments are the following:

i) M (number of samples from the big dataset) = 5000,
ii) We performed internal cross-validation; thus the Case Sampling

Rate-CSR (i.e., fraction of cases/rows to sample from the original
training/learning set) is set to 138 for the Opioid experiment and
to 60 for the Dopamine experiment,

iii) Feature Sampling Rate—FSR (i.e., a fraction of features/columns
to sample from the original training/learning set) is set to 20.

Each of the 5,000 jobs comprises a training sample the size
specified in the CSR and FSR. Due to the small number of images/
patients, only internal cross-validation is performed.

The sampled pairs are then passed and analyzed by our
ensemble predictor (i.e., the SuperLearner-SL, see (Van Der Laan
and Rubin, 2006; van der Laan et al., 2007; Polley et al., 2017) for
details) that combines many different pre-defined algorithms into a
single predictive model. The SuperLearner algorithm has a large
library of classification algorithms that we use to generate our
predictions (e.g., Generalized Linear Model (McCullagh and
Nelder, 1989), General Additive Model (Hastie and Tibshirani,
1990), Ridge and Lasso Regression (Friedman et al., 2009;
Friedman et al., 2016), Random Forest (Breiman, 2001), Support
Vector Machine (Hearst et al., 1998), Bayes Auto Regressive Tree
(Chipman et al., 2010; Kapelner and BartMachine, 2013)). The
SuperLearner ensemble predictor uses a Non-Negative Least
Squares loss function to build a weighted linear combination of
each algorithm selected to generate the best ensemble prediction
(van der Laan et al., 2007). Cross-validation is always performed by
default for each algorithm and for the ensemble predictor. We use
the default 1 to 10 ratio. A performance metric (accuracy) is then
used to rank each prediction. After ranking, we select for features
with high frequency (signal) among the top-ranked predictive
models and across the M subsamples. The outcome of the CBDA
is a set of key features/voxels for prediction/classification, which we
then test in a set of nested SuperLearner models for overfitting. We
use the top 50 predictive voxels for each CBDA experiment. The
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current CBDA R package (Marino and Dinov, 2018) completes each
instance/job within 2–7 min. Our CBDA technology becomes
feasible and scalable (e.g., thousands of instances/jobs can be run
within 1–2 h) by combining short-burst completion times for each
instance/job with the access to free large scale computational
resources through multicore servers, such as the LONI pipeline
environment (Dinov et al., 2014).

Features ranking

As highlighted in the Results section, the CBDA protocol has
been performed 5 times on each dataset to ensure robustness of the
predictive voxels selected. Once a filtered dataset is passed to the
CBDA protocol, each time the top 50 predictive voxels from each
replication are merged together in a set of 250 non-unique voxels.
There is always a 30% up to 40% overlap across the 250 top

predictive voxels across the five replications. Usually the
maximum accuracy is achieved with less than 50 voxels for each
replication, but we list 50 for completeness. We then label each voxel
selected based on their ROI (see Figure 2), sub-region or nucleus (see
Figures 3, 4), depending on the data used. Each table then rank the
voxels by the frequency of occurrence of their respective labels (e.g.,
ROI, sub-regions, and nuclei). A total of 30 CBDA experiments have
been performed, each one generating 5,000 subsamples.

Results

The CBDA results highlight top predictive voxels grouped
by region-of-interest (ROI) of non-displaceable binding
potential (BPND) for 198 PET images from migraineurs and
healthy controls (HC) (2/1 ratio) during rest and thermal pain
challenge. Subjects were scanned with the selective μOR

FIGURE 2
CBDA results for the Whole Brain analysis. The binding potentials of the top 50 predictive voxels across 5 replications from the top 3 ROIs are
grouped together by their respective ROI descriptions (tables in the figure). Each voxel is then plotted in the 2D rendering of the brain (see the images
above the tables). The ranking in the tables is based solely on the fraction of the voxels belonging to their respective ROI. Higher % can be interpreted as a
ROI with more predictive power. Panel (A, B): µ-Opioid (Carfentanil) results, based on the Grey Matter mask. Panel (C, D): Dopamine D2/D3
(Raclopride) results based on the Basal Ganglia mask. Note: the search for the predictive coordinates for Thalamus and sub-nuclei was performed in
Talairach space.
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radiotracer [11C]Carfentanil and the selective DOR D2/
D3 radiotracer [11C]Raclopride. The first sets of top
predictive voxels for μOR and D2/D3 BPND were returned
after performing CBDA on the whole brain masks filtered
datasets (Figure 2). Based on the results described in
Figure 2, the voxels of each top predictive ROI are isolated,
and CBDA is independently performed on each ROI to identify
predictive sub-regions (namely nuclei, see Figures 3, 4). To
ensure robustness, the CBDA protocol has been performed five
times on each dataset, and the top 50 predictive voxels from
each replication have been merged (see Feature Ranking in the
Methods section for details). There is significant overlap on the
top predictive voxels across the five replications. The tables
embedded in Figures 2–4 recapitulate most of the 250 top
predictive voxels ranked by the frequency of occurrence and
grouped by ROIs. The accuracy returned by the internal cross-

validation over the set of experiments varied between 80% and
95%, with sensitivity and specificity within 73% and 99% (see
Table 2 for detailed results on the Whole Brain Opioid data and
Supplementary Text S1 for details on everything else). The
following subsections describe the results in detail.

Top predictive ROIs: opioid vs. dopamine
whole brain analysis

Figure 2 Illustrates the detailed results returned by CBDA
using the Gray Matter and Basal Ganglia masks on the PET
images of the entire brain. Figures 2A,C list the top predictive
voxels grouped by their respective ROIs and the frequency of
each voxel selected as a top predictive one across the five
different replications. Due to the binding profile of the

FIGURE 3
CBDA results for the Insula and Thalamus ROI. The binding potentials of the top 50 predictive voxels across 5 replications from the Insula [Panels (A,
B)] and Thalamus [Panels (C, D)]. The binding potentials of the top 50 predictive voxels across 5 replications are grouped together by their respective sub-
regions or nuclei, wherever possible (tables in the figure). Each voxel is then plotted in the 2D rendering of the ROI (see the images above the tables). The
ranking in the tables is based solely on the fraction of the voxels belonging to their respective subregions/nuclei. Higher % can be interpreted as a
subregion/nucleus with more predictive power. Panels (A, B): µ-Opioid (Carfentanil) results for Insula. Panel (C, D): µ-Opioid (Carfentanil) results for
Thalamus. Note: the search for the predictive coordinates for Thalamus and sub-nuclei was performed in Talairach space.
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Carfentanil tracer (i.e., more diffused receptors in the brain),
the μ-opioid CBDA results are scattered over more ROIs than
the Raclopride analysis which mainly binds in the basal
ganglia. Figure 2A table lists the top eight predictive ROIs in
the μ-opioid analysis, representing ~73% of the top predictive
voxels.

The top three ROIs selected are Insula, Thalamus, and Putamen.
If we compare these results with the DOR D2/D3 analysis results
(shown in Figure 2C table), putamen represents alone almost the
same percentage of predictive voxels (i.e., ~70%) compared to the
top eight ROIs in the μ-opioid analysis. The binding potential levels
of the top three predictive ROIs returned by the Dopamine CBDA
analysis were able to predict migraine patients from healthy controls
with almost 100% accuracy. The detailed results for the μ-opioid
analysis are shown in Supplementary Text S1 (Panel A). The min-
max of the 95% confidence intervals for the accuracy across the five
replications are 84% and 99%. Similarly, the min-max values are
0.74 and 0.97 for sensitivity and 0.98 and one for specificity, with
positive and negative predicted value rates approaching one in most
replications. Although we list and merge the top 50 predictive voxels
across the five replications (Figure 2A), the best results can be

achieved using as low as the top seven (replication two) up to the top
32 voxels (replication four).

The detailed results for the Dopamine analysis are shown in
Supplementary Text S1 (Panel B). The min-max of the 95%
confidence intervals for the accuracy are 94% and 100%, with
100% sensitivity and specificity. The table in Figure 2C shows the
top predictive voxels across the five replications grouped by sub-
regions. The best results shown in Figures 2C,D can be achieved
using as low as the top three (replication one, two, and five) and up
to the top 17 voxels (replication 2).

Figures 2B,D portray the 2D and 3D spatial distributions of the
voxels of the top three predictive ROIs for the Opioid and Dopamine
analyses, respectively.

Top predictive nuclei: opioid vs. dopamine
ROI analysis

CBDA analyses based on the Whole Brain and Basal Ganglia
generated separate predictive analytics independently for each of the
top predictive ROIs, as illustrated in Figure 2. We focused on the top

FIGURE 4
CBDA results for the Putamen ROI. The binding potentials of the top 50 predictive voxels across 5 replications are grouped together by their
respective sub-regions or nuclei, wherever possible (tables in the figure). Each voxel is then plotted in the 2D rendering of the ROI (see the images above
the tables). The ranking in the tables is based solely on the fraction of the voxels belonging to their respective subregions/nuclei. Higher % can be
interpreted as a subregion/nucleus with more predictive power. Panel (A): µ-Opioid (Carfentanil) results. Panel (B): Dopamine D2/D3 (Raclopride)
results.

TABLE 2 Summary of the CBDA results on the five replications performed on the whole brain for the Carfentanil data (Opioid Grey Matter Mask).

Replication 1 Replication 2 Replication 3 Replication 4 Replication 5

Accuracy: 0.9058 Accuracy: 0.9348 Accuracy: 0.9783 Accuracy: 0.9058 Accuracy: 0.9638

95% CI: (0.8443, 0.9489) 95% CI: (0.8798, 0.9697) 95% CI: (0.9378, 0.9955) 95% CI: (0.9603, 0.9998) 95% CI: (0.9175, 0.9881)

Sensitivity: 0.7391 Sensitivity: 0.8043 Sensitivity: 0.9348 Sensitivity: 0.9783 Sensitivity: 0.8913

Specificity: 0.9891 Specificity: 1 Specificity: 1 Specificity: 1 Specificity: 1
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three ROIs for the μ-Opioid experiment (i.e., Insula, Thalamus, and
Putamen), and only at the Putamen ROI for the Dopamine
experiment due to its preeminence in the initial basal ganglia
CBDA analysis.

Figure 3 shows the CBDA results on Insula and Thalamus for
the Opioid experiment, while Figure 4 compares the Putamen region
between the two experiments. The top predictive voxels were then
mapped to ROI sub-regions or nuclei.

Detailed results for the Opioid Insular sub-regions, Thalamus
nuclei, and Putamen sub-regions analyses (see Supplementary Text
S1—Panel C, D, E, and F) have similar min-max of the 95%
confidence intervals for the accuracy within 97% and 100%, with
100% sensitivity and specificity. The tables in Figures 3, 4 show the
top predictive voxels across the five replications grouped by sub-
regions and nuclei. The best results shown in the tables can be
achieved using as low as the top three up to the top 11 voxel, across
the five replications.

Figures 3B,D, and the top row of Figures 4A,B portray the 2D
and 3D spatial distributions of the top predictive voxels of the ROIs
analyzed, namely Insula, Thalamus, and Putamen for the three μ-
opioid data and only putamen for the Dopamine D2/D3 data,
respectively.

External cross validation results

Due to the limited number of subjects, the results showcased so
far in the study are based on internal cross validation analyses. As a
proof of concept, Supplementary Text S3 showcases a tentative
CBDA external cross validation experiment performed on the Grey
Matter mask for the whole brain BPND μ-opioid Carfentanil data.
Due to the low number of subjects, it was not feasible to obtain a
large enough and balanced subsample for the Dopamine BPND
dataset. In order to achieve meaningful results, we used a 20%–
80% split between validation and training set. Based on the
demographics (23 healthy, 38 migraine) and since each subject
has two PET images (early and late), we selected four healthy
(2 males, two females, eight PET images [early/late]) and eight
migraine (4 males, four females, 16 PET images [early/late])
subjects. We then performed five CBDA replications on the Grey
Matter mask data (Whole Brain), using the trained model to predict
the outcomes (0 = healthy, 1-migraine) of the external validation set.
The CBDA external cross validation results confirmed our main
results (see Supplementary Text S3 for details).

Predictive analytics results for interictal only
patients images

As a proof of concept, similarly to the external cross validation
effort, we perform CBDA on the only [11C]Carfentanil BPND μ-
opioid data of episodic migraineurs during the interictal state.
Individuals with migraineurs experience various types of
discomfort, including sensory hypersensitivities and emotional/
cognitive dysfunction, even during headache-free days (Vincent
et al., 2022). Previous neuroimaging studies have demonstrated
some level of neural abnormalities associated with interictal
sensory alterations, susceptibility to migraine attack and severity

(Ashina et al., 2021). Thus, we analyzed the data by only including
interictal patients/images, which will provide a better insight into the
molecular substrate of migraine burden and help guide treatment
strategy. Based on Table 1, we included 108 images from 31 patients
and 23 HC for the CBDA protocol.

The CBDA results for the interictal patients/images confirmed
our main results (see Supplementary Text S4 for details).

Discussion and conclusions

This work is the result of an interdisciplinary effort across
different domain experts. In order to avoid the common pitfalls
emerging in AI studies, we focused on reproducibility and
transparency. In an effort to promote reproducibility and
transparency, we make our code implementations open source
and available on public repositories (Marino and Dinov, 2018;
Marino and Dinov, 2019). We fully disclose our datasets
characteristics and limitations as well as the potential challenges
regarding spatial correlation and sample sizes.

There are several limitations when predictive analytics
techniques are applied to very high resolution data, such voxel
intensities in PET scan measures (like in this study). There is an
intrinsic spatial correlation that can be partially eliminated by any
data wrangling performed after data has been collected. Of course,
this limitation can also be alleviated by a significant progress in PET
scan technology. In this study, we do not cluster the voxels before
any predictive analytics is performed (like most of the methods in
the current literature, see (Peng et al., 2014; Retico et al., 2015; Mete
et al., 2016; Klyuzhin et al., 2018) for examples). We apply our
CBDA method to the single voxel intensities (upon some
thresholding), and then guide the post-optimization clustering by
the ROI classification, as well as MNI mapping of the sub-regions
(whenever available). Our approach does not bias the predictive
analytics by any a priori distance-based clustering approaches. We
retain the original voxels and ROI coordinates to facilitate any
clinical translation of the results.

Another limitation is specific to the data collected in this study,
rather than to themethodology implemented here. There is a limited
supply of external independent validation datasets due to the very
recent use of Carfentanil and Raclopride tracers in PET migraine
studies. This scarcity may present some obstacles when it comes to
obtaining precise and dependable findings to compare with the
present results. However, it is hopeful that future research will
broaden the usage of these tracers and offer more data for the
purpose of validation.

As a final limitation of this study, we want to stress that results
obtained on the Whole Brain Dopamine data (Basal Ganglia Mask),
as well as on all the individual ROI predictive analytics, are very
similar in terms of accuracy, sensitivity and specificity, likely due to
the small number of co-localized voxels which drive the correct
classification. We are gathering more subjects to independently
validate these results on a larger cohort with external validation
settings.

The analysis using the CBDA protocol of our large PET dataset
accurately identified migraine patients’ brains from those of healthy
controls based on their μ-opioid and dopamine D2/D3 receptor
availability measure (BPND). The accuracy, sensitivity, and
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specificity were above 90% for both whole-brain and region-of-
interest (ROI) analyses. The most predictive ROIs for μ-opioid were
insula, Thalamus, and putamen. Putamen led the ranking for
dopamine D2/D3, followed by caudate and pallidum, respectively.
These are critical sensory, motor, and motivational processing
regions that are also related to pain and migraine suffering.

The Compressive Big Data Analytics method used i)
subsampling and bootstrapping for reducing the PET Big Data
voxel space into smaller chunks, and ii) ensemble predictors for
predictive analytics. Given the size of each PET image, we designed
and implemented a thresholding function that provides significant
data compression (up to 60 folds). This functionality improved the
clinical predictive power and reduced the computational costs (e.g.,
CPU time, memory, and storage resources). This method augments
the power of machine learning classification and artificial
intelligence prediction using MRI and PET in pain and migraine
(Chong et al., 2021; Torrado-Carvajal et al., 2021). In addition, the
technique provides a robust approach for combining and evaluating
heterogeneous data on μ-opioid and dopamine D2/D3 receptor
availability (BPND) in migraine.

The entire CBDA protocol was designed, implemented, and
validated as a reproducible, open project using the statistical
computing language R. The workflow ran on the LONI pipeline
environment, a free platform for high-performance computing,
which allowed the simultaneous submission of hundreds of
independent components of the CBDA protocol. In addition, our
results showcased the scalability, efficiency, and potential of CBDA
to compress complex neuroimaging data into structural information
leading to derived knowledge and translational action not only the
basic diagnostic molecular profile but the ranking of potential
treatment targets in the brain for migraine-related μ-opioid and
dopamine D2/D3 dysfunction.

Classification of migraine based on its
central μ-opioid and dopamine D2/D3

PET studies have recently demonstrated that pain activates
endogenous opioid and dopamine receptor-mediated
neurotransmission in cortical and brainstem regions. The
magnitude of the opioid and dopamine regional activations are
related to the individual’s capacity to suppress sensory and affective
elements of the acute pain experience (Zubieta et al., 2001;
Scott et al., 2008), which can lead to maladaptations in the
receptor availability in the same regions in chronic pain disorders
(Martikainen et al., 2015). CBDA modeling of the data demonstrated
a fingerprint of migraine in such pain’s μ-opioid and dopamine
receptor network. For example, the insula is known to participate
in pain perception and chronic pain (Mayr et al., 2021). It is divided
into the anterior component, primarily related to limbic regions,
including the amygdala, and plays a vital role in cognitive-emotional
pain modulation. The posterior insula is associated with sensorimotor
integration and receives nociceptive inputs from the Thalamus. This
holistic role of the insular cortex in pain processing (Borsook et al.,
2016)might explain its leading ranking in ourML classificationmodel
for migraine, the anterior insular slightly more than the posterior one.
The dysfunctional activity in the insula is commonly linked to
migraine, and its moment-to-moment variability of resting-state

activity increases with structures on the ascending trigeminal
somatosensory system in parallel with the severity of the attacks
(Lim et al., 2021). There is also evidence of cortical neuroplasticity
that correlates with the history and frequency of the attacks (Maleki
et al., 2012; Woldeamanuel et al., 2019). At least in animal models,
electric stimulation of the insula effectively reverses mechanical
hypersensitivity, which can be abolished by pharmacologically
blocking the μ-opioid receptors (MOR) system (Dimov et al., 2018).
Such findings indicate the central role in the insular μ-opioidergic
malfunction inmigraineurs, and further studies can lead to the potential
development of new migraine and pain therapies directly targeting the
region (Bergeron et al., 2021; Liu et al., 2021).

Our second-ranking structure for μ-opioid dysfunction in
migraine was the Thalamus. Thalamus is the relay structure in
the brain that participates in multiple phases of migraine
pathophysiology outside (interictal) and during (ictal) the
attacks (Martinelli et al., 2021). Its highly specialized nuclei
dynamically integrate with other regions in the brain associated
with patients’ suffering. The leading thalamic nuclei in our study
were the pulvinar and medial dorsal. They receive inputs from
dura-sensitive spinal trigeminal nucleus neurons and play a crucial
role in the photophobia and allodynia during migraine
(Hodkinson et al., 2016). The other implicated thalamic nuclei
were the venteroposterior medial (VPM) and lateral (VPL) that are
key in the processing of nociceptive inputs from cranial and
extracranial structures during the attacks, respectively, and
commonly reported in fMRI studies in migraine (Lim et al.,
2021). In a recent study, chronic migraine patients scanned
with PET during attacks under thermal challenge showed
increased endogenous μ-opioid receptor-neurotransmission in
the thalamic venteroposterior nuclei (Lim et al., 2021). Overall,
the thalamic fingerprint of migraine confirms its involvement in
the broad sensory dysfunction commonly noticed in migraineurs,
including inefficient inhibitory pain modulatory responses and
sensitization when exposed to multiple external stimuli such as
thermal, mechanical, light, and sound (Lim et al., 2021). This broad
μ-opioid receptor dysfunction in critical integrative thalamic
nuclei explains the long list of symptoms in a migraine attack
and the co-existence of multiple pain disorders, such as
temporomandibular disorders and fibromyalgia (Onder et al.,
2019; Kleykamp et al., 2021).

The comorbidity in migraine goes beyond chronic pain, and in
recent years the associations of migraine and motor disorders are
becoming more evident in clinical and translational studies,
including depression and Parkinson’s disease (Cervenka et al.,
2006; Scher et al., 2014). This is primarily attributed to the
imbalance and deficiency in DA D2/D3 receptor (DOR) BPND in
the basal ganglia in migraineurs (DaSilva et al., 2017). Herein, we
found that the putamen was the most predictive region in the basal
ganglia for migraine regarding DOR D2/D3 BPND levels. The third
was for μ-opioid BPND levels, mainly in its anterior portion, which
connects with the large associative regions in the cortex. The
putamen is one of the major sites of cortical input into basal
ganglia and is commonly activated during pain and pain-related
motor responses. There is a D2 receptor activity associated with
variability in pain suffering and modulation in both acute and
chronic pain disorders. For instance, patients with Parkinson’s
disease have increased thermal pain sensitivity. On the contrary,
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patients with lesions in the putamen have this sensitivity impaired
(Lorberboym et al., 2004; Starr et al., 2011), which also extends to
psychological pain (Husain et al., 1991).

These findings suggest a neural framework formigraine classification
based on µ-opioid and D2/D3 dopamine receptor availability
dysfunction, two of the most crucial central endogenous receptor-
neurotransmitters mechanisms in the brain. It also contributes to our
better understanding of the large association of migraine patients’ pain
and discomfort, their increased sensitivity and aversive reactions to
environmental stimuli, and co-existing cognitive-motivational
disorders, like Parkinson’s disease and depression (Meerwijk et al., 2013).
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