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Background: Hepatocellular carcinoma (HCC) is a highly lethal liver cancer with
late diagnosis; therefore, the identification of new early biomarkers could help
reduce mortality. Efferocytosis, a process in which one cell engulfs another cell,
including macrophages, dendritic cells, NK cells, etc., plays a complex role in
tumorigenesis, sometimes promoting and sometimes inhibiting tumor
development. However, the role of efferocytosis-related genes (ERGs) in HCC
progression has been poorly studied, and their regulatory effects in HCC
immunotherapy and drug targeting have not been reported.

Methods: We downloaded efferocytosis-related genes from the Genecards
database and screened for ERGs that showed significant expression changes
between HCC and normal tissues and were associated with HCC prognosis.
Machine learning algorithms were used to study prognostic gene features.
CIBERSORT and pRRophetic R packages were used to evaluate the immune
environment of HCC subtypes and predict treatment response. CCK-8
experiments conducted on HCC cells were used to assess the reliability of
drug sensitivity prediction.

Results: We constructed a prognostic prediction model composed of six genes,
and the ROC curve showed good predictive accuracy of the risk model. In
addition, two ERG-related subgroups in HCC showed significant differences in
tumor immune landscape, immune response, and prognostic stratification. The
CCK-8 experiment conducted on HCC cells confirmed the reliability of drug
sensitivity prediction.

Conclusion: Our study emphasizes the importance of efferocytosis in HCC
progression. The risk model based on efferocytosis-related genes developed in
our study provides a novel precision medicine approach for HCC patients,
allowing clinicians to customize treatment plans based on unique patient
characteristics. The results of our investigation carry noteworthy implications
for the development of individualized treatment approaches involving
immunotherapy and chemotherapy, thereby potentially facilitating the
realization of personalized and more efficacious therapeutic interventions
for HCC.
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1 Introduction

HCC is the most common type of liver cancer and accounts for a
significant proportion of cancer-related deaths worldwide (Yang
et al., 2019a). Despite advances in medical treatment, the overall
survival (OS) of HCC patients remains suboptimal, and the precise
molecular mechanisms underlying HCC prognosis are poorly
understood. Currently, HCC prognostic models rely on clinical
indicators such as grading and TNM staging, which may have
limited accuracy (Icard et al., 2021; Zhai et al., 2022; Wang et al.,
2023a; Conche et al., 2023). Therefore, it is imperative to identify
novel and effective prognostic biomarkers for HCC, which may help
to determine specific therapeutic targets. Molecular immune-
targeted therapy represents a promising avenue for future HCC
treatment.

“Efferocytosis” refers to the process by which one cell engulfs
another cell, usually referring to macrophages engulfing apoptotic
cells (Zhou et al., 2020a; Wang et al., 2023b). In addition, there are
other cells such as neutrophils, which release DNA fiber networks
during the inflammatory process and can engulf these DNA fiber
networks and cell debris on DNA (Bukong et al., 2018; Lee et al.,
2022); natural killer cells (NK cells), which are usually part of the
immune system and can kill infected cells or cancer cells, and can
also clear dead cells through efferocytosis (Jensen et al., 2020);
malignant tumor cells, some of which can express efferocytosis-
related receptors and ligands, enabling them to engulf surrounding
apoptotic cells and evade the immune system’s attack (Brightwell
et al., 2016; Zhang et al., 2022); dendritic cells and some other
immune cells also play a role in efferocytosis (Maschalidi et al., 2022;
Nino-Castano et al., 2022). The function of efferocytosis in tumors is
complex and can sometimes promote tumor development and other
times inhibit it (Banerjee et al., 2021; Tajbakhsh et al., 2021; Lin et al.,
2022). In the early stages of tumor development, efferocytosis can
promote tumor growth by reducing immune system attacks and
promoting the growth of tumor cells by clearing apoptotic cells
around them. In addition, tumor cells can further promote tumor
development by expressing efferocytosis-related receptors and
ligands to evade the immune system’s attack. However, in the
late stages of tumor development, efferocytosis can inhibit tumor
growth by promoting the immune system’s attack on the tumor.

After engulfing apoptotic cells, antigens in the cells can be
presented to T cells by macrophages, thereby activating T cells to
attack the tumor (Lu et al., 2022; Zhou et al., 2023). Macrophages
play a significant role in the progression of HCC. Recent
investigations have revealed significant findings regarding the
impact of tumor-derived alpha-fetoprotein (tAFP) on
macrophage polarization and its influence on HCC cells.
Specifically, tAFP has been shown to promote the differentiation
of M0 macrophages into M2 macrophages, while concurrently
suppressing the efferocytosis of M1 macrophages towards HCC
cells (Zhang et al., 2023a). Polarization of M1 macrophages
contributes to the protection against HCC, while
M2 macrophages emerges as a prominent factor driving HCC
development (Liu et al., 2022a). In view of this, it is necessary to
study the role of efferocytosis in the progression of HCC. In
addition, efferocytosis can also promote anti-inflammatory
responses, thereby inhibiting tumor development (Zhou et al.,
2020b). Therefore, the role of efferocytosis in tumors is different

from its role in normal physiological conditions and needs to be
analyzed according to specific circumstances. In the treatment of
tumors, efferocytosis can be used as an important target for
intervention to achieve treatment goals (Lahey et al., 2022;
Mehrotra and Ravichandran, 2022). However, the role of
efferocytosis-related genes in the progression and prognosis of
HCC remains poorly understood.

We have developed a risk model based on six efferocytosis-
related genes and identified two ERG-associated subtypes that
exhibit significant differences in tumor immune landscape and
prognostic stratification, highlighting the importance of
efferocytosis status in HCC. Importantly, our study reveals
patterns of immune therapy and chemotherapy response, and
in vitro validation confirms the predictive ability of the
prognostic model for drug response. These findings underscore
the significance of efferocytosis in HCC and suggest potential
therapeutic strategies for patients with different efferocytosis
statuses. This study may provide a basis for future research on
the mechanisms underlying HCC progression and treatment
response, as well as inform clinical decision-making in HCC
management.

2 Materials and methods

2.1 Acquisition of TCGA-LIHC data

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/) has aggregated and scrutinized genomic, transcriptomic,
epigenomic, and proteomic data obtained from thousands of
individuals afflicted with various forms of cancer, culminating in
an extensive data repository exceeding 2.5 petabytes. This
compendium of knowledge has unveiled potential hereditary
drivers of cancer, identified plausible pharmacological targets,
and catalyzed the development of customized cancer therapeutics
(Wang et al., 2016). We obtained the TCGA-LIHC cohort,
comprising transcriptome data of 374 HCC tumor patients and
50 normal liver tissue samples, from TCGA. Additionally, clinical
data of 374 HCC tumor patients were downloaded. After rigorous
selection, we retained clinical data for a total of 370 HCC patients
with comprehensive clinical information.

2.2 ERGs from genecards portal

GeneCards is a portal website and database that furnishes a
wealth of information on more than 155,000 human genes,
encompassing details on gene expression, function, protein
domains, and interactions (Safran et al., 2021). Given its
comprehensiveness and timeliness, GeneCards represents a
valuable resource for investigating the intricacies of human genes
and their implications for disease (Sun et al., 2023; Zhong et al.,
2023). We employed the following approach to obtain the
efferocytosis-related genes. Firstly, we utilized highly relevant
keywords and gene descriptions provided in Genecards, such as
“efferocytosis,” “phagocytosis of apoptotic cells,” and “clearance of
dying cells.” Subsequently, we reviewed the literature to carefully
screen and manually confirm these keywords and descriptions to
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ensure that the final selected genes are indeed closely related to the
efferocytosis process. Finally, we obtained a total of 111 genes related
to efferocytosis (ERGs) from the GeneCards database.

2.3 Prognostic ERGs signature identification

Through the use of univariate Cox regression analysis, we
identified a set of 13 genes that displayed a significant correlation
with the survival rates of patients with HCC. Then, optimal lambda
(λ) was determined to be the ideal value by 10-fold cross validation
when performing the LASSO Cox regression analysis to screen the
core ERGs that were strongly linked with HCC patients’ prognosis
(Chi et al., 2022a; Wang et al., 2022). Using the “glmnet” R package,
6 core genes were subsequently utilized to create a risk signature
(Engebretsen, 2019). The risk score was calculated by integrating the
expression profile of ERGs with the paired multivariate Cox
regression values (β) (Ni et al., 2022; Xu et al., 2022; Zhao et al.,
2023a). Based on their respective gene expression profiles, we
computed a risk score for each patient in the cohort as follows:
Risk score = ê(Exp.GAPDH*0.1481 + Exp.ADAM9*0.1581 +
Exp.SIRT6*0.1247 + Exp.LGALS3*0.0666 - Exp.CD5L*0.0144 -
Exp.IL33*0.0985).

2.4 Evaluating infiltration of immune cells

We employed the CIBERSORT and ssGSEA R scripts to assess the
levels of infiltrating immune cells (Newman et al., 2015; Chi et al.,
2023a). The CIBERSORT algorithm was used to calculate the immune
cell type scores for individual samples, and then the corresponding
scores for each sample were calculated based on the estimated immune
cell type scores (Chi et al., 2022b). In addition, spearman correlation
analysis was used to investigate the relationship between immune cell
and risk scores. Using the immune cell profiles of HCC patients, we
used the ssGSEA method to distinguish individuals classified as
different risks (Zhao et al., 2023b).

2.5 Evaluating the accuracy of
chemotherapy response predictions

We employed the “pRRophetic” R software package for
evaluating the therapeutic response in patient subgroups
classified as high-risk and low-risk, based on the half-maximal
inhibitory concentration (IC50) values obtained from each
individual with HCC from the Genomics of Drug Sensitivity in
Cancer (GDSC) dataset (Geeleher et al., 2014; Chi et al., 2023b).
Further, the transcriptional profiles of HCC cell lines were obtained
from the CCLE website, and risk scores for different HCC cell lines
were calculated using the ERGs risk scoring formula. Based on the
computed results, Huh7 was identified as having a high risk score,
while HepG2 exhibited a comparatively lower risk score. Then, the
sensitivity of HCC cells to the drug was evaluated through
implementation of the CCK-8 assay (Zhang et al., 2023b).

2.6 KEGG and GO analysis

Two frequently utilized bioinformatics resources for
investigating the functional and metabolic pathways of genes
and proteins, as well as other biological features, are the KEGG
and GO databases. Annotations provided by these tools can
facilitate a more comprehensive comprehension of gene and
protein function, ultimately leading to enhanced insights into
gene expression and metabolic regulation. In this study, we
performed enrichment analysis using Gene Set Variation
Analysis (GSVA) and utilized the
“c2.cp.kegg.v7.4.symbols.gmt” data set derived from the
MSigDB database (Hanzelmann et al., 2013; Liu et al., 2023a).

2.7 Statistical analysis

All data analyses were conducted using R version 4.1.3. For
variables that exhibited a normal distribution, the Student’s t-test
was employed, whereas Pearson’s correlation coefficient was used to
evaluate the association between variables. The levels of statistical
significance were set at p < 0.05*, p < 0.01**, and p < 0.001***,
respectively.

3 Results

3.1 Efferocytosis-based gene signature
construction

We retrieved 111 genes associated with efferocytosis from the
Genecards website. The HCC dataset comprising 370 tumor
samples and 50 adjacent normal tissue samples was sourced
from the TCGA database. We employed the “limma” R
package to identify ERGs that were differentially expressed
between HCC tumor and adjacent normal samples. This
analysis identified 20 ERGs with significant differences
(Figure 1A). Next, we utilized the “survival” and “survminer”
R packages to investigate the association between ERGs and
survival in HCC patients. Thirteen out of the 20 ERGs were
significantly linked to survival in HCC patients based on a
p-value cutoff of less than 0.05 and a km score less than 0.05
(Figure 1B). All ERGs except for CD5L, PLG, and IL33 were
found to be poor prognostic factors. To develop an HCC
prognostic model, we conducted Lasso analysis using these
13 ERGs (Figure 1C; Supplementary Table S1). The time-
dependent ROC curve illustrated the favorable predictive
accuracy of the model at 1, 3, and 5 years (Figure 1F). Based
on the median riskscore, we divided the 370 HCC patients into
high-risk and low-risk subgroups, and the high-risk subgroup
displayed a shorter overall survival time than the low-risk
subgroup (Figure 1E), with median survival times of 2.7 and
6.7 years, respectively. Furthermore, we generated a heatmap to
depict the expression levels of the top 10 ERGs in various
riskscore groups (Figure 1D).
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3.2 ERGs expression variations among
subtypes

Using mRNA expression levels as a metric, we proceeded to
assess the expression levels of the six ERGs in both normal and
tumor tissues (Figure 2A). Notably, we observed a significantly
higher expression of all six ERGs in tumor tissues compared to
their adjacent non-tumor counterparts (p < 0.001), with
GAPDH exhibiting the highest level of expression. To further

elucidate the biological significance of these findings, we also
examined the expression levels of the six ERGs in high-risk
versus low-risk subgroups. Interestingly, we found that the
expression trend of the six ERGs in this subgroup mirrored
that of Figure 1A (Figure 2B). Moreover, we employed Kaplan-
Meier curves to establish the correlation between each key ERG
gene and the prognosis of HCC patients, and our analysis
revealed that all six ERGs were significantly linked to a poor
prognosis (p < 0.05).

FIGURE 1
Constructing a prognostic model based on efferocytosis-related genes in HCC. (A) Differential gene screening was conducted to identify ERGs
associated with hepatocellular carcinoma (HCC). (B) 13 genes of prognostic significance, which we refer to as ERGs, were identified from the differential
gene screening analysis. These ERGs demonstrated an association with survival in HCC patients. (C) Utilizing the Lasso method, a prognostic model was
constructed based on the identified ERGs. (D) The risk scores, survival status, and expression levels of the top 6-ERGs were plotted to visualize the
distribution of prognostic risk. (E) Kaplan-Meier (KM) analysis was performed to further investigate the prognostic significance of the 6-ERGs in different
HCC subtypes. (F) The predictive efficiency of the prognostic model was evaluated using ROC analysis.
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3.3 GO and KEGG enrichment analysis

We examined the impact of various signaling pathway
activations on the growth and progression of tumor cells, as well
as their effect on the tumor microenvironment. To identify genes
that were differentially expressed between high-risk and low-risk
groups, we conducted a comparative analysis of gene expression
levels (Figure 3A). In high-risk patients with HCC, several pathways
including Cytoplasmic, Ribosomal Protein, Eukaryotic Translation
Elongation, Developmental Biology, and lnfectious Disease were
significantly enriched (Figure 3B). Additionally, our Gene Ontology
enrichment analysis revealed that the humoral immune response
process was notably upregulated in the high-risk subgroup
(Figure 3C). Furthermore, we investigated the GO pathways that
corresponded to the most differentially expressed genes between the
high-risk and low-risk subgroups (Figures 3D, E).

3.4 Differential immune infiltration levels in
HCC patients with diverse risk profiles

Using the Lasso method, we employed dimensionality reduction
and clustering on a set of 6-ERGs selected for HCC patients, and our
results indicate that these 6-ERGs effectively differentiate between
HCC patients of varying risk levels (Figure 4A). Subsequently, we
investigated the immune infiltration patterns in HCC patients with

distinct prognostic risks (Figures 4B, C). The riskscore values were
sorted in ascending order to represent the proportion of each
immune cell type (Figure 4B). Remarkably, our analyses revealed
significant infiltration of Macrophage M2, activated CD4 memory
T cells, and Tregs in HCC patients classified as high-risk, whereas
Macrophage M1 was notably decreased in this group (Figure 4C).
Additionally, Neutrophils were increased in the high-risk group,
suggesting that the HCC patients with high-risk scores may be
experiencing an immune-suppressed state, which may be associated
with immune checkpoint expression. During our analysis of HCC,
we discovered noteworthy distinctions in the expression of both
macrophage M1 and macrophage M2 between the high- and low-
risk subgroups.

In order to explore this finding further, we sought to investigate
the association between macrophage M1 and macrophage M2, and
ERGs which have been linked to poor prognosis (Figure 4D).
According to the data presented in Figure 4D, the expression
levels of ADAM9, GAPDH, and LGALS3 were observed to be
positively associated with the abundance of Macrophage M2,
while conversely associated with the levels of Macrophage M1.
Furthermore, we conducted a more detailed examination of the
relationship between the 6-ERGs and immune cells (Figure 5A).
Notably, we observed that ADAM9 and GAPDH expression levels
exhibited associations with the concentrations of several distinct
immune cell types (Figures 5B, C).

3.5 Investigating the correlation between
ERG expression and immunotherapy
efficacy

The results of the prior analysis indicate that high-risk and low-
risk groups display dissimilar immune microenvironments,
characterized by increased infiltration of Tregs, activated
CD4 memory T cells, and Macrophage M2 in the high-risk
group. These changes create an immunosuppressive
microenvironment, which influences the efficacy of
immunotherapy differently between the groups. Notably, patients
with elevated expression levels of 6-ERGs are more likely to respond
to Anti-PD-L1 and Anti-PD-1 therapy (Figure 6). Moreover, 6-
ERGs can serve as a predictive tool for the accuracy of immune
checkpoint blockade (ICB) in HCC patients (Figures 6A, B).
ADAM9 expression gradually increases in cancer tissue and is
recognized as a negative prognostic biomarker for prostate cancer
patients. Elevated ADAM9 expression is shown to regulate the
inflammatory state of the tissue by modulating the efferocytosis
of macrophages in vitro and in vivo. In HCC patient tissues,
ADAM9 expression is significantly upregulated (Figure 2A),
indicating a higher immune response compared to lower
ADAM9 expression subgroups (Figure 7A). To investigate the
response of high-risk and low-risk HCC patients to ICB, we used
the TIDE algorithm to combine ADAM9 expression levels with
HBV infection factors (Figure 7B). We found that high
ADAM9 expression predicts a higher immune response score,
independent of HBV infection status. Given the effect of
ADAM9 on the immune response score, we further explored the
expression levels of immune checkpoints in HCC patients with
different ERGs riskscores. Surprisingly, we observed that most

FIGURE 2
Expression levels of 6-ERGs. (A) Expression levels of 6-ERGs in
HCC tumor tissues and adjacent tissues. (B) Expression levels of 6-
ERGs in HCC risk subgroups. (*p < 0.05, **p < 0.01, ***p < 0.001).
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immune checkpoints, including PDCD1, CTLA4, and PDCD1LG2,
are significantly upregulated in the high ADAM9 expression group
(Figures 7C, D). Finally, we employed Cibersort to analyze the level
of immune cell infiltration in tissue samples categorized into normal,
low-risk, and high-risk groups (Figures 7E, F), which revealed
significant differences in infiltration levels among the groups.

3.6 Prediction and authentication of drug
sensitivity

To develop targeted therapies for patients with HCC, we
investigated variations in chemotherapy drug sensitivity between
subgroups with high- and low-risk scores. Our analysis compared
the IC50 levels of sixteen chemotherapy drugs in the high-risk score
and low-risk score subgroups (Figure 8). The results revealed
significant differences in IC50 values for some drugs, such as
Etoposide, suggesting that patients with high-risk scores may be
more responsive to this type of chemotherapy (Supplementary Table
S1). To further validate our findings, we assessed riskscores in
various HCC cell lines based on gene expression profiles
(Figure 9; Supplementary Table S2). For drug sensitivity

experiments, we selected Huh7 and HepG2 cell lines to represent
the high-risk score and low-risk score subgroups of HCC patients,
respectively. Consistent with the drug sensitivity prediction results,
our CCK-8 assay data showed that Huh7 cells with a high-risk score
were more sensitive to Etoposide than HepG2 cells (Figure 10A),
supporting the notion that this chemotherapy drug may be a
promising candidate for precision therapy in HCC patients
(Figure 10B).

4 Discussion

While the rise in the incidence of HCC has shown a decelerating
trend in recent times, the morbidity and mortality associated with
this disease remain significant (Yang et al., 2019b; Sung et al., 2021).
As per current estimates, over 70% of patients who undergo radical
resection experience recurrence of the disease within 5 years (Xu
et al., 2019; Zhou et al., 2020c). Given these challenges, developing
an accurate predictive model for postoperative recurrence and
identification of HCC patients with a reduced overall survival is
crucial for optimal clinical decision-making and prognostic
outcomes.

FIGURE 3
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis (A) Volcanomap screening for differential genes. (B)Mountain
map showing the enriched KEGG pathway. (C–E) GO enrichment analysis.
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Efferocytosis is an important process in the immune system,
which maintains tissue health by clearing apoptotic cells. It plays a
crucial role in both normal physiology and pathological conditions,
particularly in tumor progression (Morioka et al., 2019; Myers et al.,
2019; Yang et al., 2022). In HCC tissue, tumor cells continuously
proliferate, die, and undergo apoptosis, leading to the release of
various cytokines and chemicals that trigger inflammatory reactions
and immune responses. These reactions lead to the accumulation of
macrophages, dendritic cells, and NK cells, which control
inflammation and immune responses by clearing apoptotic cells
(Yang et al., 2019a; Garcia-Pras et al., 2021; Leone et al., 2021).
However, tumor cells can exploit the mechanism of efferocytosis to
evade immune system attack (Werfel and Cook, 2018). Studies have
shown that tumor cells can express efferocytosis-related receptors
and ligands, which attract immune cells to clear apoptotic cells
around them and evade immune system attack by interfering with

the activation of M1 macrophages and increasing the number of
M2 macrophages (Graham et al., 2014; Poon et al., 2014; Soki et al.,
2014). Therefore, efferocytosis plays an important role in tumor
progression. It has been demonstrated regulation of efferocytosis
processes enhances immune cell attack on tumors and increases
apoptosis of tumor cells, thereby delaying tumor growth and
metastasis (Vaught et al., 2015). Therefore, understanding the
relationship between efferocytosis and tumors is of great
significance for the development of more effective tumor
treatment methods.

Utilizing machine learning to construct a reliable prognostic
model based on known efferocytosis-related genes is essential for
improving the accuracy of personalized diagnosis and treatment
prediction for patients with HCC. Such an approach holds great
potential for enhancing the clinical management of HCC patients.
We conducted an investigation to identify differential genes from

FIGURE 4
Identify immune landscape of HCC based on efferocytosis-associated signature. (A) UMAP demonstrates different immune profiles among HCC
subgroups. (B) Proportion of immune cells in HCC tissues. (C) Differences in immune infiltration between HCC subgroups. (D) Correlation between
immune cells and 6-ERGs.
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111 ERGs and subsequently explored their potential prognostic
relevance (Figures 1A, B). The identified differential genes were
regarded as promising markers with the potential to influence the
survival outcomes of HCC patients. Six ERGs, specifically ADAM9,
GAPDH, SIRT6, LGALS3, CD5L, and IL33, were selected for the
development of an HCC prognostic model (Figure 1C). Our model
accurately predicted overall survival of HCC patients at 1, 3, and
5 years, demonstrating its robust predictive ability (Figures 1D–F).

Cell death frequently occurs in solid tumors during malignant
progression, and is influenced by the tumor microenvironment
(TME), which plays a crucial role in tumor heterogeneity and
tumorigenesis (Roy et al., 2018; Gadiyar et al., 2020; Lahey et al.,
2022; Li et al., 2023a; Sandri et al., 2023). The nature of cell death and
the mechanisms involved in corpse clearance can significantly
impact the immune phenotype within the TME (Werfel et al.,
2019). The process of efferocytosis, which clears dying cell
corpses in the TME, has conventionally been viewed as
immunosuppressive (Poon et al., 2014). Our investigation
revealed that individuals exhibiting high ERG levels exhibited
elevated infiltration of Tregs, activated CD4 memory T cells,
Macrophages M2, and neutrophils, in comparison to those with
low ERG levels (Figure 4C). Notably, Tregs have been implicated in
regulating immune response during the development of HCC, from
the early stages to advanced disease. Additionally, Tregs may exert a
suppressive influence on liver function, thereby contributing to the
emergence of primary liver cancer. The role of M2 macrophages in
promoting tumor progression has been widely explored in HCC.

The polarization of TAMs towards the M2 macrophage activation
state plays a crucial role in anti-inflammatory and pro-tumor
activity during tumor progression, which is in stark contrast to
the cytocidal and tumoricidal properties of M1 activation states.
These fuctions of TAMs partly explain the pronounced enrichment
of M2 macrophages in patients with high ERGs, while a divergent
trend was observed for M1 macrophages (Figure 4D). The results
provide insight into the potential role of macrophage polarization in
the prognosis of HCC patients and suggest that targeting ERGs
could be a promising therapeutic strategy for the treatment of HCC.
However, additional research is needed to elucidate the underlying
mechanisms of this relationship and to further evaluate the clinical
relevance of these findings.

Immunotherapy has become an essential therapeutic strategy for
cancer and has been extensively investigated (Gong et al., 2022; Jin
et al., 2022; Zhao et al., 2022; Wang et al., 2023c). This approach
involves leveraging the immune system to recognize and eradicate
cancerous cells. Numerous types of immune therapies, such as
checkpoint inhibitors, adoptive cell transfer, and cancer vaccines,
have been developed (Llovet et al., 2022; Peng et al., 2022; Liu et al.,
2023b). PD-1 and PD-L1 have been closely associated with
macrophages (Liu et al., 2018). Moreover, Abrogation of
Efferocytosis leads to diminished immunosuppressive
characteristics of macrophages, as evidenced by a reduction in
the expression of M2-associated markers such as PD-L1 and PD-
L2 (Cruz Cruz et al., 2023). Our study results demonstrate that high
ERGs group exhibited elevated PD-1 and PD-L1 expression levels in

FIGURE 5
Correlation between immune cells and 6-ERGs. (A)Heatmapwas used to show the correlation between immune cells and 6-efferocytosis genes (6-
ERGs). (B,C) Bar plots were used to illustrate the relationship between GAPDH and ADAM9 with immune cell infiltration.
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comparison with the low ERGs group, which could be linked to the
macrophage infiltration phenomenon (Figures 7C, D). This
observation provides a partial rationale for the superior efficacy
of anti-PD-1 and anti-PD-L1 immunotherapy among high ERGs
group patients with HCC, emphasizing the important value of the
ERGs model in immunotherapy strategies (Figure 6). To further
advance the clinical application of this model for predicting anti-
PD-1 and PD-L1 response, our subsequent investigations will focus
on the evidence from in vivo immunotherapy experiments. It is
crucial and valuable to assess the accuracy of the ERGs-based model
in predicting immunotherapy response by utilizing different risk-
scored HCC cell lines or ERGs gene knockout mice. HBV, one of the
etiological factors contributing to hepatocellular carcinoma (HCC),
exerts a significant impact on the progression of this malignancy.
However, in our study, HBV-positive HCC patients did not exhibit

significant differences in immune therapy response scores compared
to HBV-negative patients (Figure 7B). We postulate that this
observation may be closely associated with the viral load of HBV.
Despite both groups being HBV-positive HCC patients, variations in
viral load could lead to divergent responses to immune therapy.
Therefore, overall, HBV-positive HCC patients may demonstrate
immune response outcomes comparable to those of HCC patients
without HBV infection.

In addition to the interplay between tumor-immune cells,
disrupted pathways within tumor cells can also affect the
advancement of HCC (Llovet et al., 2018). To gain deeper
insights into the differences in pathway enrichment among
HCC patients with varying risks, we performed GO and
KEGG analyses (Figure 3C). Our findings revealed significant
differences in the enrichment of immune response pathways

FIGURE 6
Immunotherapy response prediction. (A) Prediction of immune therapy response to anti-PD-L1 treatment in HCC patients based on 6-ERGs. (B)
Prediction of immune therapy response to anti-PD-1 treatment in HCC patients based on 6-ERGs.

Frontiers in Pharmacology frontiersin.org09

Xu et al. 10.3389/fphar.2023.1218244

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1218244


within HCC subgroups classified based on ERGs. These results
suggest that ERGs may have an impact on the immune response
outcomes of HCC patients (Chang et al., 2013; Fenutria et al.,
2014; Braga et al., 2017; Kornberg et al., 2018; Fu et al., 2020; Nie
et al., 2020).Our pathway enrichment analysis revealed
significant enrichment in cytoplasmic ribosomal proteins,
eukaryotic translation elongation, humoral immune response,
and cytosolic large ribosomal subunit pathways in HCC patients
with high expression of ERGs (Figures 3B–E), which could
potentially influence the response of HCC patients to
chemotherapy. Drug resistance is also an important factor in
persistent tumor progression. Leveraging the six ERGs, we
identified sixteen potential clinical drugs that could be tailored
to specific subtypes of HCC (Figure 8). We then tested the
reliability of our predictions by selecting etoposide as a
representative drug. Based on the expression levels of ERGs,
HCC cell lines were classified into high and low ERG expression
groups, with Huh7 and HepG2 representing the high and low
groups, respectively (Figure 9). Our results demonstrated that
Huh7 cells exhibited greater sensitivity to etoposide, with a lower

IC50, compared to HepG2 cells when treated with various
concentrations of the drug (Figure 10A). Furthermore, under
identical treatment conditions with the same concentration of
etoposide, the drug exhibited greater cytotoxicity to Huh7 cells
(Figure 10B). Our findings are in agreement with our initial
predictions of drug sensitivity and underscore the reliability of
ERGs in predicting chemotherapy response. Based on the drug
sensitivity list provided in Supplementary Table S1, the
implementation of combination therapeutic strategies
involving specific drugs in conjunction with first-line
treatments may potentially enhance the anti-tumor therapeutic
efficacy for high-risk or low-risk hepatocellular carcinoma
patients. It is important to note that prior to implementation,
rigorous in vivo experiments are required to validate these
approaches adequately.

In recent years, the connection between efferocytosis and
tumors has garnered notable interest. The expression of glycolytic
metabolic genes is known to influence the TME and thus the
susceptibility of HCC cells to immunotherapy or chemotherapy.
As such, personalized therapeutic approaches should be

FIGURE 7
The level of immune checkpoint in HCC subtypes. (A) The TIDE score between ADAM9 subgroups. (B) HBV infection does not affect the
effectiveness of immunotherapy. (C,D) There are differences in the expression of immune checkpoint markers between the high-risk and low-risk groups
of HCC. (E,F) CIBERSORT analysis revealed differences in immune infiltration between the subgroups.
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implemented for cancer patients based on their specific degree of
efferocytosis. The classification of tumor samples using gene
expression profiling has been well-established as a reliable
technique (Werfel et al., 2019; Gong et al., 2022; Zhao et al.,
2022). In the present investigation, we classified HCC patients
based on the expression levels of efferocytosis-related genes,
revealing significant differences in prognostic outcomes and
immune infiltration profiles among patients with varying ERG
expression levels. Our findings support the use of a six-gene
efferocytosis-related model to accurately predict patient
prognosis. Furthermore, our cell toxicity assays have confirmed
the efficacy of our chemotherapy sensitivity predictions, which
could aid clinicians in selecting optimal treatment regimens (Jin
et al., 2021; Liu et al., 2022b; Zhong et al., 2022). These results
emphasize the capability of our 6-gene model to serve as a reliable
prognostic indicator for overall survival in individuals with HCC.
Furthermore, our findings suggest that this model could be
instrumental in pinpointing novel therapeutic targets for high-
risk patient cohorts.

Despite the valuable clinical implications of our investigation
regarding prognostic assessment and treatment selection for
patients diagnosed with HCC, it is essential to acknowledge
the limitations present in our study. Primarily, our research is
retrospective in nature, necessitating validation through
prospective studies in the future. Due to the unavailability of
mRNA expression profile data for HCC patients undergoing
immunotherapy, an indirect assessment was conducted to
explore the predictive capability of this signature in terms of
immunotherapy response. It is important to note that this
approach may deviate from the actual circumstances,
introducing a potential limitation in the analysis.
Consequently, it is imperative to conduct further validation
studies that incorporate data obtained from HCC patients
undergoing immunotherapy. Besides, the migratory capacity of
tumor cells is closely associated with unfavorable prognosis and
recurrence (Wu et al., 2021; Li et al., 2023b). However, the
relationship between efferocytosis and the migratory potential
remains understudied in our investigation. Ultimately, the

FIGURE 8
Drug sensitivity prediction.
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current study lacks sufficient in vivo experiments to enhance the
reliability of drug prediction outcomes, thus impacting their
potential for further clinical applications. These limitations
warrant the need for future investigations aimed at refining
and expanding upon these aspects.

5 Conclusion

Efferocytosis plays a critical role in both normal physiological
processes and pathological conditions, particularly in tumor
progression, within the immune system. Despite this, the
function of efferocytosis-related genes in HCC progression and
prognosis remains largely unexplored. To address this gap, we
developed a risk model based on six efferocytosis-related genes
and identified two subtypes associated with ERG that demonstrate
significant differences in both tumor immune landscape and
prognostic stratification. Our results underscore the importance
of efferocytosis status in HCC, and have significant implications
for predicting patterns of immune therapy and chemotherapy
response. Furthermore, in vitro validation confirms the model’s
predictive ability for drug response, offering important insights into
potential therapeutic strategies for patients with different
efferocytosis statuses. Overall, our study highlights the crucial
role of efferocytosis in HCC and serves as a valuable foundation
for further research into HCC progression and treatment response,
as well as for guiding clinical decision-making in HCCmanagement.

FIGURE 9
6-ERGs expression levels in HCC cell lines.

FIGURE 10
Drug sensitivity testing. (A,B) The CCK-8 assay revealed the
cytotoxic effects of Etoposide on Huh7 and HepG2 cells at different
concentrations.
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