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mutation, and therapeutic
response in ovarian cancer
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Henan, China, 2Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University,
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Background: Ovarian cancer (OC) is a highly lethal and aggressive gynecologic

cancer, with an overall survival rate that has shown little improvement over the

decades. Robust models are urgently needed to distinguish high-risk cases and

predict reliable treatment options for OC. Although anoikis-related genes (ARGs)

have been reported to contribute to tumor growth and metastasis, their

prognostic value in OC remains unknown. The purpose of this study was to

construct an ARG pair (ARGP)-based prognostic signature for patients with OC

and elucidate the potential mechanism underlying the involvement of ARGs in

OC progression.

Methods: The RNA-sequencing and clinical information data of OC patients

were obtained from The Center Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases. A novel algorithm based on pairwise comparison was

utilized to select ARGPs, followed by the Least Absolute Shrinkage and Selection

Operator Cox analysis to construct a prognostic signature. The predictive ability

of the model was validated using an external dataset, a receiver operating

characteristic curve, and stratification analysis. The immune microenvironment

and the proportion of immune cells were analyzed in high- and low-risk OC

cases using seven algorithms. Gene set enrichment analysis and weighted gene

co-expression network analysis were performed to investigate the potential

mechanisms of ARGs in OC occurrence and prognosis.

Results: The 19-ARGP signature was identified as an important prognostic

predictor for 1-, 2-, and 3-year overall survival of patients with OC. Gene

function enrichment analysis showed that the high-risk group was

characterized by the infiltration of immunosuppressive cells and the

enrichment of adherence-related signaling pathway, suggesting that ARGs

were involved in OC progression by mediating immune escape and tumor

metastasis.

Conclusion: We constructed a reliable ARGP prognostic signature of OC, and

our findings suggested that ARGs exerted a vital interplay in OC immune

microenvironment and therapeutic response. These insights provided valuable
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information regarding the molecular mechanisms underlying this disease and

potential targeted therapies.
KEYWORDS

anoikis-related gene pairs, ovarian cancer, prognostic signature, immunoinfiltration,
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1 Introduction

Ovarian cancer (OC) is the most lethal of all female gynecologic

cancers worldwide (1). OC is often referred to as the “silent killer”

owing to atypical symptoms, such as abdominal bloating and

ascites, and a lack of definitive screening tools, leading to its

diagnosis in the advanced stages (2). High-grade serous OC

accounts for up to 70% of all cases, with many patients

experiencing relapse and drug resistance after initial treatment

(3). The conventional management of OC includes optimal

debulking surgery and platinum-based chemotherapy. With

advances in neoadjuvant chemotherapy, cytoreductive surgery,

and molecular targeted therapy, the clinical outcome of OC

patients has improved significantly (4). However, overall survival

(OS) in OC has improved minimally over the last decades.

Therefore, developing more effective prognostic models and

exploring innovative therapeutic targets for predicting and

enhancing outcomes are urgent in OC.

Anoikis is a form of programmed cell death that occurs due to

detachment from the extracellular matrix. This regulatory process is

essential for inhibiting tumor invasion and metastasis in cancer (5).

A critical step in tumor metastasis is the development of anoikis

resistance (6). Numerous studies have shown that anoikis plays a

vital role in OC. In vitro experiments suggest that LRRC15,

NOTCH3, and PCMT1 promote OC cells’ migration and

adhesion by hindering the anoikis-induced cell death (7–9).

CPT1A and CBX2 are overexpressed in high-grade serous OC and

act as drivers of anoikis resistance and tumor dissemination (10,

11). In contrast, angiopoietin-like protein 2, an inflammatory

factor, inhibits peritoneal metastasis of OC cells by suppressing

anoikis resistance (12). Recently, some prognostic models based on

anoikis-related genes (ARGs) using RNA-sequencing data have

been developed for predicting the clinical outcomes of several

cancers, including hepatocellular carcinoma (13), cutaneous

melanoma (14), gastric cancer (15), lung adenocarcinoma (16),

glioblastoma (17), and colorectal cancer (18). However, few studies

have systematically evaluated the prognostic value of ARGs in OC.

Therefore, a more in-depth and detailed analysis is urgent to

explore the prognostic value of ARGs in OC.

In the present study, we adopted a novel algorithm that

employed pairwise comparison to identify valid anoikis-related

gene pairs (ARGPs) and generated a prognostic signature of 19

ARGPs. The 19-ARGP signature was shown to be reliable and valid

in predicting the OS of OC patients and was identified as an

independent predictive factor in OC. Furthermore, we revealed
02
potential relationships between ARGs and the immune

microenvironment, as well as their potential value in therapy.
2 Materials and methods

2.1 Data collection and preprocessing

We obtained the HTSeq-FPKM raw data and relevant clinical

information data of OC cases from The Center Genome Atlas (TCGA)

database ((https://portal.gdc.cancer.gov/) as the training set. After

excluding patients without complete survival data, a total of 365 OC

patients with complete follow-up data and their follow-up time greater

than 30 days were included. In the process of further verification, we

adopted the same inclusion criteria and downloaded the GSE9891 (n =

229) dataset of OC cases from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/). All datasets were freely

available and publicly accessible from the TCGA database or the GEO

database. This study was strictly complied with the data extraction

policies of the database, and the ethics committee approval was not

required to conduct the current study. The raw data were preprocessed

to carry out batch normalization to offset the deviations in datasets

using “Combat” function in R’s “sva” package (19). ARGs were

obtained from the GeneCards database (https://www.genecards.org/

Search/Keyword?queryString=anoikis). A total of 434 ARGs were

acquired from the GeneCards database (relevance score>0.4).
2.2 Identification of ARGPs in patients with
OC

Univariate Cox regression analysis of datasets was performed

using R’s “survival” package for identifying prognostic ARGs, and

those ARGs with p< 0.05 were selected (n = 52). We pairwise

compared the relative expression levels of prognostic ARGs in each

sample and scored each ARG (20). ARGs were paired to constitute

ARG pairs (ARGPs), including ARG1 and ARG2. If the expression

level of ARG1 was lower than that of ARG2 in a particular ARGP,

the score of this pair was recorded as 1; otherwise, the score was

recorded as 0. This approach based on pairwise comparison could

remove the technical heterogeneity and does not require additional

standardization because the score entirely depends on gene

expression levels in samples. ARGPs generally received the same

score (0 or 1) in more than 80% of the samples, possibly attributable

to (1) the dependence on platform priority measurements, which
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could lead to bias and may not be reproducible across platforms,

and (2) the biological priority transcription, which could not

provide discriminatory information about patients’ survival.

Therefore, we deleted these ARGPs with constant value in each

dataset and obtained 431 ARGPs. Finally, univariate Cox regression

analysis of ARGP was performed using R’s “survival” package to

identify prognostic AGRPs (n = 50).
2.3 Construction, validation,
and assessment of an ARGP
prognostic signature

The data of OC cases from the TCGA database were utilized as

the training cohort. The Least Absolute Shrinkage and Selection

Operator (LASSO) penalized Cox regression analysis was

performed to further screen and remove collinearity for 50

ARGPs. Finally, a risk score model with b (Coef) value multiplied

by the ARGP score was established. Risk score = (b1*ARGP1
+b2*ARGP2+b3*ARGP3+…+bn*ARGPn), where xi and b (Coef)

are the relative expression level and coefficient of ARGP (21, 22),

respectively. The risk score formula was as follows:

Risk score =o
n

i=1
xi*Coef

Finally, a total of 19 ARGPs were identified for prognostic

signature building. A total of 366 patients were divided into high-

and low-risk groups with the cutoff thresholds of median risk score.

Kaplan–Meier survival analysis and log-rank test were performed to

generate survival curves for OS and compare the differences

between high- and low-risk cases using R’s “survival” and

“survminer“ packages, respectively. The 1-, 2-, and 3-year receiver

operating characteristic (ROC) curves and their area under the

ROC curves (AUC) were evaluated. The prognostic accuracy of the

risk score and other clinical information, such as age, were assessed

using univariate and multivariate Cox regression analyses. The

predictive power was assessed using a nomogram and time-

dependent ROC curves. The discriminative ability of the

nomogram was evaluated using calibration curves.
2.4 Weighted gene co-expression network
analysis and functional enrichment analysis

Weighted gene co-expression network analysis (WGCNA)

could cluster genes with similar expression patterns and find the

association between modules and specific phonotypes. The

signature has well quantified the risk in patients with OC. To

elucidate the reason for the significant heterogeneity between the

high- and low-risk groups, we constructed a weighted gene co-

expression network using R ’s “WGCNA” package with

approximately scale-free characteristics (23). An adjacency matrix

was determined by these genes’ expression correlation. The gene

modules were produced using the method of topological overlap

measure (TOM) (24). Co-expression genes modules and clustering
Frontiers in Endocrinology 03
graphs were performed using the dynamic tree cutting algorithm

(25). Afterwards, the modules with related genes were merged into

new modules. Gene significance (GS) and module significance (MS;

the mean value of all GS values) were calculated to measure the

correlation between genes and modules. We further identified the

gene module (blue module) that was significantly co-expressed in

the high-risk group and performed functional enrichment analysis

for this module. Furthermore, we used the dataset of C2–C8 from

the Molecular Signature Database (MSigDB) database for gene set

enrichment analysis (GSEA) to comprehensively analyze the

activity differences in the pathway between high- and low-risk

groups, and verify the results of the previous functional

enrichment analysis (26).
2.5 Immune infiltration analysis

We analyzed the difference in immune cell infiltration between

high- and low-risk groups, and the association between signature

and immuno-infiltration scores using the following R packages:

“MCPcounter” (27), “CIBERSORT” (28), “xCell” (29), “TIMER”

(30), “EPIC” (31), “CIBERSORT-ABS” (32), and “QUANTISEQ”

(33). Stromal scores in malignant tissue were estimated using the

“Estimation of STromal and Immune cells in Malignant Tumors

using Expression data” (ESTIMATE) algorithm (34). The Wilcox

test was utilized to compare the differences of stromal scores

between high- and low-risk groups. Fisher’s exact test was utilized

to evaluate the correlation between risk scores and stromal scores.
2.6 Mutation profile analysis

We obtained the somatic mutation data of patients with OC

from the TCGA database (https://portal.gdc.cancer.gov/). Waterfall

graphs were utilized to show the differences in mutation between

high- and low-risk groups. R’s “maftools” package was utilized to

analyze, annotate, and visualize the mutation profile of this

signature. The “plotmafSummary” function was applied to show

the mutation landscape in high- and low-risk groups.
2.7 Prediction of drug therapy response

Drug IC50 values were downloaded from the Genomics of Drug

Sensitivity in Cancer (GDSC) database (https://www.cancerrxgene.

org/). We calculated the differences of drug IC50 values between the

high- and low-risk cases using R’s “pRRophetic” package to guide

clinical medication (35).
2.8 Statistical analysis

R software was utilized to perform all statistical analyses in this

study, and statistical significance was set at p< 0.05.
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3 Results

3.1 Identification of prognostic ARGs
and ARGPs

The flowchart of this study is shown in Figure 1. OC samples

from the TCGA database (n = 365, excluding the patients without

complete survival data) were analyzed as the training cohort, and

the dataset GSE9891 (n = 229) from the GEO database was analyzed

as part of the validation cohort. A total of 434 ARGs (relevance

score > 0.4) were obtained from the GeneCards database.

Univariable Cox regression analysis was performed to identify

prognostic ARGs (n = 52, p value <0.05) and prognostic

ARGPs (n = 50) using R’s “survival” package (Figure 2A;

Supplementary Table 1).
3.2 Construction and validation of an ARGP
prognostic signature

After screening and removing collinearity via the LASSO

penalized Cox regression analysis, a risk score model with the b
(Coef) value multiplied by the ARGP score was established. A total

of 19 ARGPs had significant associations with OS (p< 0.001) in OC

and were identified for prognostic signature construction (Table 1;

Figures 2B–D). A total of 366 patients were divided into high- and
Frontiers in Endocrinology 04
low-risk groups with the cutoff thresholds of median risk score. We

predicted the OS in the training and validation datasets. One-, 2-,

and 3-year time-dependent ROC curves were plotted for the

training cohort dataset. The AUCs at 1, 2, and 3 years were 0.683,

0.734, and 0.715 in the training cohort, respectively (Figure 3A).

The Kaplan–Meier curves showed that OS in the high-risk group

was worse than that in the low-risk group (p = 1.6062 × 10−11)

(Figure 3B). An independent validation set, GSE9891 (n = 229), was

utilized for confirming the consistency of the prognostic value of the

novel ARGP signature. The same approaches were performed to

calculate risk scores and divide them into high- and low-risk groups

with the cutoff thresholds of median risk score. In this validation

cohort, the AUCs at 1, 2, and 3 years were 0.745, 0.752, and 0.766,

respectively (Figure 3C). The patients in the high-risk group had

worse OS than the patients in the low-risk group (Figure 3D). Next,

univariable and multivariable Cox regression analyses were

performed for evaluating the effects of age, tumor grade, and

ARGP risk score on the time-independent ROC curve of the risk

score in the training cohort. Univariable Cox regression analysis

exhibited a significant association of the 19-ARGPs prognostic

signature with OS (hazard ratio [HR] =3.852, 95% confidence

interval [CI]: 2.770–5.282; p< 0.001) (Figure 3E). Multivariable

Cox regression analysis showed that the 19-ARGPs prognostic

signature was a prognostic factor in patients with OC,

independently of age and tumor grade (HR = 3.605, 95% CI:

2.606–4.987; p< 0.001) (Figure 3F). Then, we established a
FIGURE 1

The flowchart of the data analysis.
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nomogram including age and risk scores to evaluate OC prognosis

(Figure 3G). ROC curves (Figure 3H) and calibration curves

(Figure 3I) of the model proved that the nomogram had a great

predictive performance.
3.3 WGCNA and functional
enrichment analysis

R’s “pickSoftThreshold” package was utilized to calculate the soft

thresholding power b (set at 3), in which the scale independence

reached 0.9 (Figure 4A) and had a relatively high-average
Frontiers in Endocrinology 05
connectivity (Figure 4B). We constructed a weighted gene co-

expression network using R ’s “WGCNA” package with

approximately scale-free characteristics. Co-expression gene

modules and clustering graphs were performed using the dynamic

tree cutting algorithm. Five gene co-expression modules were finally

constructed (Figure 4C). We used the method of TOM and mapped

the relationships between the identified gene modules (Figure 4D).

The light color represented a low overlap, and the dark red color

represented a high overlap. These results revealed that the gene

expression level was relatively independent between modules.

Afterwards, the correlated modules were merged into new

modules. The results showed that five modules could be clustered
D

A B

C

FIGURE 2

Construction of the ARGP signature in OC patients. (A) The forest plot of 52 candidate prognostic ARGs using univariable Cox regression analysis.
ARGs with a hazard ratio > 1 are considered as prognostic risk factors. (B) Coefficient of the 19 ARGPs. (C) Parameter selection by the LASSO
algorithm. (D) Trend graph of LASSO coefficients. ARGPs, anoikis-related gene pairs; OC, ovarian cancer; TCGA, The Cancer Genome Atlas; LASSO,
Least Absolute Shrinkage and Selection Operator.
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into blue, turquoise, brown, yellow, and gray modules, respectively

(Figure 4E). We further calculated the GS and MS, and

identified the gene module blue, which was mostly significantly

correlated with high-risk cases (p< 0.001). Then, we performed

GO and KEGG analyses in the blue module. The GO analysis

showed that (Figure 5A), regarding the biological process, the genes

were mainly enriched in extracellular structure and matrix

organization, as well as external encapsulating organization. As

for the cellular component, the genes were mainly enriched in

extracellular matrix structural constituent, collagen binding, and

extracellular matrix binding. As for molecular function, the genes

were mainly enriched in basement membrane and collagen-

containing extracellular matrix. The KEGG analysis showed that

the blue module pathways include the PI3K-Akt signaling

pathway, human papillomavirus infection, focal adhesion, and

ECM–receptor interaction (Figure 5B). Finally, the dataset of

C2–C8 from the MSigDB database was used for GSEA to

comprehensively analyze the differences in signaling pathway

activation between high- and low-risk groups, and confirm the

results of the previous functional enrichment analysis. The GSEA

revealed that the genes were mainly enriched in pathways in cancer,

ECM–receptor interaction, focal adhesion, extracellular structure

organization, immune response, and collagen-containing

extracellular matrix (Figure 5C). Consequently, the GSEA results

were almost in agreement with the conclusions obtained from GO

and KEGG analyses.
Frontiers in Endocrinology 06
3.4 Assessment of immune infiltration

A major direction is to investigate the infiltration of immune

cells in the immune microenvironment of OC. We compared the

differences in immune cell infiltration between high- and low-risk

groups, and the association between signature and immuno-

infiltration scores using the following R packages: “MCPcounter”,

“CIBERSORT”, “xCell”, “TIMER”, “EPIC”, “CIBERSORT-ABS”, and

“QUANTISEQ” . Stromal scores were calculated by the

“ESTIMATE” algorithm. Fourteen immune cell types showed

significantly different proportions between the high- and low-risk

groups (p< 0.05) (Figure 6A). In particular, M2 macrophages,

neutrophils, endothelial cells, and cancer-associated fibroblasts

(CAFs) had elevated infiltration levels in high-risk cases

compared with those in low-risk cases, whereas M1 macrophages,

CD4+ memory T cells, CD4+ Th1 T cells, CD8+ T cells, CD8+

central memory T cells, class-switched memory B cells, common

lymphoid progenitors, hematopoietic stem cells, and plasmacytoid

dendritic cells had decreased proportions (all p< 0.01). Among

them, the infiltration of M2 macrophages, neutrophils, endothelial

cells, and CAFs was positively correlated with the risk score of OC

patients (all p< 0.001). The infiltration of M1 macrophages, CD4+

memory T cells, CD4+ Th1 T cells, CD8+ central memory T cells,

class-switched memory B cells, common lymphoid progenitors,

hematopoietic stem cells, and plasmacytoid dendritic cells was

negatively correlated with the risk score of OC patients (all p<
TABLE 1 Nineteen ARGPs used for the construction of the prognostic risk model.

ARGPs HR HR.95L HR.95H p-value Coef

BCL2L11|PAK1 1.47333803 1.17937649 1.84056996 0.00064251 0.09480493

BCL2L11|BAG1 1.58561102 1.25861827 1.99755746 9.16E-05 0.19745688

BCL2L11|CASP2 1.63155084 1.26741604 2.10030334 0.00014523 0.18205579

CASP8|SIK2 0.63387534 0.49000651 0.8199849 0.00051851 -0.148909

EGFR|CD44 1.53410392 1.20319668 1.95601839 0.00055606 0.12497917

EGFR|CEACAM1 1.72837356 1.32675224 2.25156972 5.00E-05 0.04406857

PAK1|PTPN1 0.67154817 0.5361234 0.84118125 0.00053018 -0.1724271

CXCL12|RANBP9 1.70957506 1.35174158 2.16213435 7.63E-06 0.12245401

CXCL12|SERPINB1 1.650946 1.30842036 2.08313993 2.38E-05 0.09693771

CCR7|SFRP1 0.59902015 0.44330899 0.80942445 0.00084817 -0.4663205

SIK2|CASP2 1.66572202 1.28949977 2.15171024 9.36E-05 0.12576852

EPHA2|ELK1 1.46364272 1.17054749 1.83012652 0.00083428 0.19446517

RANBP9|ITGB5 0.6841881 0.5460297 0.85730383 0.00097445 -0.1820706

CRYAB|BAG1 1.84019723 1.36868529 2.47414498 5.39E-05 0.07910198

CRYAB|ENDOG 1.76440589 1.32520848 2.34916104 0.00010111 0.28384764

PAK4|SERPINB1 1.52888397 1.21930998 1.91705656 0.00023539 0.05102467

ELK1|BIN1 0.67644187 0.53649342 0.85289695 0.00094839 -0.0170117

ELK1|CCDC80 0.55782112 0.43482044 0.71561586 4.38E-06 -0.0436929

BAG1|CCDC80 0.57643064 0.45701078 0.72705568 3.30E-06 -0.0357301
fro
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FIGURE 3

Validation of the ARGP model. OC cases were classified into high- and low-risk groups by median risk score. (A, B) Time-dependent ROC curves for
predicting OS at 1, 2, and 3 years in the training and validation cohort. (C, D) Kaplan–Meier curves of OS in the training and validation cohort. (E) The
forest plot of univariate Cox regression analysis for the prognosis of OC patients. (F) The forest plot of multivariate Cox regression analysis for the
prognosis of OC patients. (G) The nomogram was constructed based on age and risk scores. (H) ROC curves of the nomogram predicting OS at 1, 2,
and 3 years. (I) Calibration plots of OS at 1, 2, and 3 years. OS, overall survival; ROC, receiver operating characteristic. **p<0.01; ***p<0.001.
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0.001) (Figure 6B). Furthermore, the Wilcox test showed that

stromal scores in high-risk cases were higher than those in low-

risk cases (p< 0.001) (Figure 6C). Fisher’s exact test showed that

stromal scores were positively correlated with risk scores (p< 0.001)

(Figure 6D). In high-risk patients with OC, high stromal scores

reflected the presence of mesenchymal cells that had been reported

previously (36). These results suggested that OC patients in the

high-risk group could be more prone to immune escape due to the

existence of immunosuppressive microenvironment, resulting in

tumor recurrence and metastasis.
3.5 Identification of mutation profiles

We used R’s “maftools” package to analyze, annotate, and

visualize the mutation profi les of this signature. The

“plotmafSummary” function was performed to show the somatic
Frontiers in Endocrinology 08
mutation profiles in high- and low-risk groups of OC patients. In

the high-risk group, a waterfall plot revealed that approximately 116

of 117 (99.15%) samples showed somatic mutations (Figure 7A). In

the low-risk group, approximately 123 of 127 (96.85%) samples

showed somatic mutations (Figure 8A). Among them, the top 10

mutated genes in the high- and low-risk groups are shown in

Figures 7G, 8G, respectively. TP53 was the most frequent mutated

gene in high-risk (85%) and low-risk (87%) cases, followed by TTN

(27%) in high-risk (27%) and low-risk (26%) cases. Other mutated

genes were different in these two groups. In the high-risk group,

CSMD3 (17%) and USH2A (10%) were common mutated genes. In

contrast, MUC16 (9%) and RYR2 (9%) were common mutated

genes in the low-risk group. The overall levels of tumor mutation

burden (TMB) in high-risk cases (192 mutations) were lower than

those in low-risk cases (248 mutations). Next, gene mutations were

classified into eight types. Missense mutation was the most frequent

variation type in both groups, followed by nonsense mutation,
D E

A

B

C

FIGURE 4

The co-expression network established using WGCNA. (A) The x-axis suggests the soft-thresholding power value. The y-axis represents the scale-
free fit index. (B) The y-axis represents the mean connectivity. (C) Clustering dendrogram of genes on the basis of a dissimilarity measure. Different
colors reflect gene modules. (D) The heatmap shows the visualization of WGCNA network. (E) Module–trait relationships. WGCNA, weighted gene
co-expression network analysis.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1193622
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Duan and Xu 10.3389/fendo.2023.1193622
deletion, and insertion (Figures 7B, 8B). Single-nucleotide

polymorphism mutated more frequently than insertion and

deletion, and C>T was the most frequent single-nucleotide

variant class (Figures 7D, E, 8D, E). Furthermore, variant number

in each sample was calculated in high-risk (median number: 53) and

low-risk groups (median number: 58) (Figures 7C, 8C). Boxplot

revealed the variant classification with different colors (Figures 7F,

8F). The differences of co-occurrence and mutually exclusive

expression in mutation profiles between the two groups are

shown in Figures 7H, 8H.
3.6 Prediction of drug therapy response

Targeted therapy plays a critical role in many aspects of OC

management, and the relationship between risk score and targeted

therapeutic response was analyzed. We downloaded the half-

maximal inhibitory concentration (IC50) values of drugs from the

GDSC website and calculated the differences in IC50 values between

the high- and low-risk groups using R’s “pRRophetic” package.

High-risk cases were more sensitive to AP.24534 (ponatinib),
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AZD.0530 (saracatinib), Bexarotene, Embelin, Dasatinib,

Imatinib, Midostaurin, Pazopanib, and Pyrimethamine (p< 0.001)

(Figures 9A–I, 10A–I). These results confirmed the validity of the

ARGP signature in predicting targeted therapy response. It is a

valuable guidance for the medication of OC patients.
4 Discussion

OC is known for its insidious onset and poor prognosis. Even

with decades of advancements in OC treatment, the 5-year OS

rate has not shown significant improvement (37). Anoikis, a type

of programmed cell death, plays an important role in tumor

progression and metastasis. ARGs have been confirmed to be

involved in the occurrence and development of OC. However,

the prognostic values of ARGs in OC have not been elucidated.

Considering the important role of ARGs in OC, we constructed

an ARGPs-based model to predict the prognosis of OC cases. In

this study, we identified 52 prognostic ARGs and created 431

ARGPs. Among them, 50 ARGPs with prognostic values were

found (Supplementary Table 1). We found that BCL2L11|PAK1,
A

B C

FIGURE 5

Functional enrichment analysis of 19-ARGPs. (A) Significant enriched GO analysis. (B) Significantly enriched KEGG pathways. (C) The GSEA reveals
these most significant enrichment pathways. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set
enrichment analysis.
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BCL2L11|BAG1, BCL2L11|CASP2, EGFR|CD44, EGFR|

CEACAM1, ITGA5|CD44, ITGA5|PIN1, FN1|IFI27, CXCL12|

CD4, CXCL12|XIAP, CXCL12|RANBP9, SIK2|CASP2, CRYAB|

BAG1, CRYAB|ENDOG, PDGFRB|PIN1, PDGFRB|SERPINB1,

PAK4|SERPINB1, LRP1|BAG1, LRP1|APOBEC3G, LRP1|

CASP2, LRP1|ENDOG, and ITGB5|SERPINB1 were prognostic

risk factors (HR > 1). Other gene pairs were prognostic

protection factors in OC. In particular, BCL2L11, CD44, and

PAK1 were reported as the independent prognosis markers of

OC (38–40). Expect for the three genes, other genes were
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identified for the first time as prognostic factors in OC. Genes

EGFR, XIAP, PIN1, and PDGFRB play important roles in the

occurrence and progression of OC and may act as the therapeutic

targets in OC (41–43). The expression levels of ITGA5, CRYAB,

IFI27, and CEACAM6 genes were significantly increased in high-

grade OC, which promoted OC metastasis (44–46). IFI27may be

related to platinum resistance of OC (47). Endonuclease G

(ENDOG) and BAG1 promote OC cell proliferation (48) by

regulating EGF signaling pathway and enhancing anoikis

resistance (49). Furthermore, the roles of LRP1, RANBP9,
D

A

B C

FIGURE 6

Assessment of immune cell infiltration between the two risk groups. (A) The heatmap shows that differences of immune cell infiltration between
high- and low-risk groups using seven algorithms. (B) The correlation analysis of immune cells using bubble chart. (C) The differences of stromal
scores between high- and low-risk cases. (D) The correlation analysis between stromal scores and risk scores.
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SERPINB1, and CASP2 genes in OC have not been reported in

previous studies, which need to be explored.

We pairwise compared the expression levels of prognostic

ARGs in each sample and innovatively calculated the ARGP

score. A total of 19 ARGPs were used for the construction of the

prognostic model. Among them, CASP8|SIK2, PAK1|PTPN1,

CCR7|SFRP1, RANBP9|ITGB5, ELK1|BIN1, ELK1|CCDC80, and

BAG1|CCDC80 are prognostic protection factors (HR< 1). The

downregulated expression of caspase-8 in OC may be linked to high

aggressiveness with chronic inflammation and immune resistance

(50). As for chemotherapy, SIK2 decreases sensitivity of OC cells to

paclitaxel and promotes migration of OC cells (51, 52). PTPN1 is

overexpressed in high-grade serous OC, and may act as a marker of

better chemotherapy response (53). Furthermore, SIK2 and CCR7

both participate in epithelial–mesenchymal transition and promote

OC cell migration and invasion (54), whereas SFRP1 and BIN1 both

inhibit the epithelial OC through inhibiting Wnt/b-catenin
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signaling (55, 56). Steroid hormones also regulate ARGs and are

involved in OC occurrence. For example, follicle-stimulating

hormone can stimulate phosphorylated Elk-1 in OC cells (57).

High expression levels of APOBEC3G and ITGB5may be correlated

with improved outcomes in high-grade OC patients (58, 59). These

ARGs were found for the first time as prognostic protection factors

in OC. More in-depth clinical research is necessary to explore their

prognostic protection function.

In this study, we found that OC patients in the high-risk group

had worse OS than the low-risk group. External validation dataset

and internal hierarchical verification revealed the great prediction

power of this signature, providing a reliable and effective

tool for clinicians to evaluate the survival of OC patients.

Furthermore, we explored the potential function of a 19-ARGP

signature in OC using immune cell infiltration analysis and

WGCNA combined with functional enriched analysis. High

proportions of immunosuppressive cells, such as M2 macrophages,
D
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FIGURE 7

Mutation profiles in the high-risk group of OC patients. (A) Waterfall plot reflects the top 30 frequent mutation genes. (B) Eight common variant
classifications in all samples. (C) Variations per sample. (D) Three variant types in all samples. (E) Six classes of SNV. (F) Summary of variant
classification. (G) Top 10 mutated genes. (H) The correlation analysis of mutated genes. *p<0.001; ·p<0.05.
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and CAFs were found in the high-risk cases. M1 macrophages, CD4+

memory T cells, CD4+ Th1 T cells, CD8+ T cells, CD8+ central

memory T cells, class-switched memory B cells, common lymphoid

progenitors, hematopoietic stem cells, and plasmacytoid dendritic

cells had high proportions in low-risk cases. These results suggest that

immunosuppressive microenvironment probably promotes OC

progression and metastasis by mediating immune scape. CAFs

could recruit ITGA5high ascitic tumor cells to form metastatic units,

which further sustain ascitic OC cells’ ITGA5 expression by EGF

secretion (44). CAFs also induce epithelial–mesenchymal transition

in OC by CXCL12/CXCR4 and PAK1/b-catenin signaling pathways

(60). The regulation of ARGs in the immune microenvironment

needs further investigation.

At present, many clinical trials focus on targeted therapeutics. We

further explored the drug response of patients with OC in two groups.

Except for the nine drugs mentioned above, other compounds were

also identified, for which the high-risk group showed higher sensitivity

than the low-risk group (Supplementary Figures 1, 2). Somatic

mutations are considered as the key of immunotherapy in tumors

(61). In this study, the proportion of somatic mutations in high-risk
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cases (99.15%) were higher than that in low-risk cases (96.85%). High

proportions of somatic mutations will lead to an increase in neoantigen

production, thus improving the immune therapy response. These

results require clinical trials to further elucidate and verify.

There are some limitations in our study. This is a retrospective

study with data from the TCGA and GEO databases, lacking some

clinical information, such as therapeutic and prognostic data. Our

results require further investigation about patients with OC in

clinical settings. At the same time, a portion of the prognostic

genes related to the anoikis that we have obtained still lack sufficient

in vitro and in vivo experiment verification in OC.
5 Conclusion

In conclusion, we established a novel and reliable 19-ARGP

prognostic signature for predicting the OS of OC patients and

analyzed the association between the immune microenvironment

and OC. Furthermore, this study indicated that the risk score was

relevant to immune cells’ infiltration and somatic mutation. Finally,
D

A B

E

F G

H

C

FIGURE 8

Mutation profiles in the low-risk group of OC patients. (A) Waterfall plot reflects the top 30 frequent mutation genes. (B) Eight common variant
classifications in all samples. (C) Variations per sample. (D) Three variant types in all samples. (E) Six classes of SNV. (F) Summary of variant
classification. (G) Top 10 mutated genes. (H) The correlation analysis of mutated genes. *p<0.001; ·p<0.05.
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FIGURE 9

Prediction of drug therapy response. Boxplot of IC50 values for drugs including AP.24534 (A), AZD.0530 (B), Bexarotene (C), Embelin (D), Dasatinib
(E), Imatinib (F), Midostaurin (G), Pazopanib (H), and Pyrimethamine (I) in high- and low-risk groups.
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FIGURE 10

The correlation analysis between the IC50 value of drugs and the risk score. These drugs include AP.24534 (A), AZD.0530 (B), Bexarotene (C),
Embelin (D), Dasatinib (E), Imatinib (F), Midostaurin (G), Pazopanib (H), and Pyrimethamine (I).
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the ARGP signature may help identify patients with OC suitable for

targeted therapy and act as a promising predictive factor to offer

insights into therapeutic strategies.
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W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

35. Geeleher P, Cox N, Huang RS. pRRophetic: an r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One (2014)
9(9):e107468. doi: 10.1371/journal.pone.0107468

36. Zhang Q, Wang C, Cliby WA. Cancer-associated stroma significantly
contributes to the mesenchymal subtype signature of serous ovarian cancer. Gynecol
Oncol (2019) 152(2):368–74. doi: 10.1016/j.ygyno.2018.11.014

37. Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian cancer
immunotherapy and personalized medicine. Int J Mol Sci (2021) 22(12):6532. doi:
10.3390/ijms22126532

38. Cai J, Qiu J, Wang H, Sun J, Ji Y. Identification of potential biomarkers in
ovarian carcinoma and an evaluation of their prognostic value. Ann Transl Med (2021)
9(18):1472. doi: 10.21037/atm-21-4606

39. Bartakova A, Michalova K, Presl J, Vlasak P, Kostun J, Bouda J. CD44 as a cancer
stem cell marker and its prognostic value in patients with ovarian carcinoma. J Obstet
Gynaecol (2018) 38(1):110–4. doi: 10.1080/01443615.2017.1336753

40. Siu MK, Wong ES, Chan HY, Kong DS, Woo NW, Tam KF, et al. Differential
expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on
prognosis and cell invasion. Int J Cancer (2010) 127(1):21–31. doi: 10.1002/ijc.25005

41. Cremona M, Vandenberg CJ, Farrelly AM, Madden SF, Morgan C, Kalachand R,
et al. BRCA mutations lead to XIAP overexpression and sensitise ovarian cancer to
inhibitor of apoptosis (IAP) family inhibitors. Br J Cancer (2022) 127(3):488–99. doi:
10.1038/s41416-022-01823-5

42. Li X, Wang H, Ding J, Nie S, Wang L, Zhang L, et al. Celastrol strongly inhibits
proliferation, migration and cancer stem cell properties through suppression of Pin1 in
ovarian cancer cells. Eur J Pharmacol (2019) 842:146–56. doi: 10.1016/
j.ejphar.2018.10.043

43. Sun T, Bi F, Liu Z, Yang Q. TMEM119 facilitates ovarian cancer cell
proliferation, invasion, and migration via the PDGFRB/PI3K/AKT signaling
pathway. J Transl Med (2021) 19(1):111. doi: 10.1186/s12967-021-02781-x
Frontiers in Endocrinology 15
44. Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor
spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med (2019) 216
(3):688–703. doi: 10.1084/jem.20180765

45. du Manoir S, Delpech H, Orsetti B, Jacot W, Pirot N, Noel J, et al. In high-grade
ovarian carcinoma, platinum-sensitive tumor recurrence and acquired-resistance
derive from quiescent residual cancer cells that overexpress CRYAB, CEACAM6,
and SOX2. J Pathol (2022) 257(3):367–78. doi: 10.1002/path.5896

46. Kim YS, Hwan JD, Bae S, Bae DH, Shick WA. Identification of differentially
expressed genes using an annealing control primer system in stage III serous ovarian
carcinoma. BMC Cancer (2010) 10:576. doi: 10.1186/1471-2407-10-576

47. Guo K, Li L. Prediction of key candidate genes for platinum resistance in ovarian
cancer. Int J Gen Med (2021) 14:8237–48. doi: 10.2147/IJGM.S338044

48. Choi YN, Seo TW, Lee YT, Jeong DH, Yoo SJ. Nuclear endonuclease G controls
cell proliferation in ovarian cancer. FEBS Open Bio (2023) 13(4):655–69. doi: 10.1002/
2211-5463.13572
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