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Graph energy is defined to be the p-norm of adjacency matrix associated to the
graph for p = 1 elaborated as the sum of the absolute eigenvalues of adjacency
matrix. The graph’s spectral radius represents the adjacency matrix’s largest
absolute eigenvalue. Applications for graph energies and spectral radii can be
found in both molecular computing and computer science. On similar lines,
Inverse Sum Indeg, (ISI) energies, and (ISI) spectral radii can be constructed.
This article’s main focus is the ISI energies, and ISI spectral radii of the
generalized splitting and shadow graphs constructed on any regular graph.
These graphs can be representation of many physical models like networks,
molecules and macromolecules, chains or channels. We actually compute the
relations about the ISI energies and ISI spectral radii of the newly created graphs to
those of the original graph.
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1 Introduction

Since the proof of Kirchhoff’s renowned matrix-tree theorem in 1876, the relationship
between graph eigenvalues and graph structure has been well established. It has been a quest
whether the structure of a graph can be described by the eigenvalues of somematrix associated to
the graph. In network sciences,many real-world problems can be described in terms of a graph or
a network. In most of these problems, eigenvalues play a significant role. One of the best-known
applications is the epidemic control model, where nodes indicate either healthy peers who are
vulnerable to infection or diseased peers [1]. The detection of such nodes can be done using the
spectrum of the graph. It has been proven that there exists a logarithmic growth relationship
between the average distance and the overall number of nodes, [2]. The connection between
Laplacian energy and network coherence was studied by Liu et al. [3]. Fractional derivative of the
Gabor—Morlet wavelet is computed by Guariglia et al. in [4]. X. Zheng et al. proposed a new
framework of adaptive multiscale graph wavelet decomposition for signals in [5]. Guariglia et al.
in [6] analyzed Chebyshev wavelets properties by computing their Fourier transform. Some
properties relating to operators which approximate a signal at a given resolution has been given in
[7]. Some aspects of fractional calculus of zeta functions along with application of Shannon
entropy has been discussed in [8]. The dimer problem and Huckel’s theory are two examples of
usage of graph spectra in statistical physics and chemistry, respectively [9]. Applications in
physics and chemistry provided inspiration for the theory of graph spectra to be developed. In
physics, treating the membrane vibration problem by approximatively solving the related partial
differential equation results in examination of the eigenvalues of a graph that is a discrete model
of the membrane [10]. The topic of membrane vibration served as the inspiration for the first
mathematical publication on graph spectra [11]. The Huckel molecular orbital theory, which
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describes unsaturated conjugated hydrocarbons, uses graph spectra as
one of its primary tools in chemistry. Several statistical physics issues
contain the spectra of specific matrices that are strongly related to
adjacencymatrices [12–14]. The process of counting 1-factors takes into
account the eigenvalues and walks in the associated graphs [10]. The
problem of counting the number of 1-factors in a graph becomes the
dimer problem in physics. The enumeration of 1-factors can be used to
solve a variety of issues in physics, not only the dimer problem. The
famous Ising problem that emerged from the idea of ferromagnetism is
the most well-known [12, 13]. Physicists are interested in the graph-
walk problem for reasons other than the 1-factor enumeration problem.
The random-walk and self-avoiding-walk problems are two such
examples [12, 13]. The eigenvalues can also be used to calculate the
independence number, chromatic number, partitioning, ranking, and
epidemic spreading in networks and clustering [15]. The second largest
eigenvalue of a regular graph can be used in coding theory to represent
theminimumHamming distance of a linear code [16, 17]. According to
Shannon information theory, the eigenvalues of the channel graph can
be used to represent the channel capacity, which is the maximum
amount of information that can be communicated over a channel or
stored in a storage medium [17, 18]. For a given code, an encoder or
decoder is constructed based on the spectral radius of the channel
graph. A graph is used in quantum chemistry to represent the skeleton
of an unsaturated hydrocarbon. In such molecules, the eigenvalues of
molecular graph correspond to electron energy levels. A close
relationship exists between the spectrum of the graph and the
stability of the molecules [19]. The idea of using the spectral radius
of the graph G as a gauge of branching was first put forth by Cvetkovic
and Gutman in 1977 [20]. After this, spectral radii have been discussed
extensively for different purposes [20–23].

In this article, we only restrict to a regular graph G without
isolated vertices referred as base graph. ISImatrix was established by
Zangi et al. having entries didj

di+dj when i ~ j, all entries are 0 elsewhere,
[24]. It has been established that ISI index would be a good indicator
of the total surface area of the octane isomers. A number of
topological indices are used to define the energy of a graph,
many of which are useful in chemistry. This article relates the ISI
energies and ISI spectral radii of larger graphs with ISI energies and
ISI spectral radii of the base graph. Gutman et al. first proposed the
idea of ε(G) in 1978 [25]. This idea is currently gaining a lot of
attention due to its usage and applications in different areas. The
symbol A(G) represents the adjacency matrix of the graph G, whose
all entries are 1 when vertices are adjacent and 0 when vertices are
not adjacent. There are several uses for the greatest eigenvalue of the
A(G) matrix in algebraic graph theory, which is also known as the
graph’s spectral radius and is indicated by the symbol ℘(G). Billal
et al. established closed relations among different versions of
energies and spectral radii of splitting and shadow graphs with
energies and spectral radii of the base graph, [26–28]. The following
[29–31] provides information and sources related to spectral radii. It
is possible to obtain ISI Spectral radius and ISI energy using
Nordhaus-Gaddum-type results, [32]. Some lower bounds for the
adjacency spectral radius and the Laplacian spectral radius in terms
of the degrees and the 2-degrees of vertices are presented by Yu et al.
in [33]. Zhou et al. in [34] provided lower and upper bounds for the
distance energy and spectral radius of bipartite graphs. Matrix
analysis has been studied in relation to graph energies by
Gatmacher [35]. Meenakshi et al. discussed several energies

connected to a graph and the bounds of various matrices
energies connected to a graph in a survey [36].

One-splitting and two-shadow graphs of simple connected graph
were constructed by Samir et al. [37], and it was demonstrated that the
adjacency energies of these newly created graphs are constant multiples
of the energies of the original graph. Later, Samir et al. [38] developed
these ideas and came up results relating to adjacency energies. Liu et al.
investigated distance and adjacency energies of multilevel wheel
networks in [39]. In [40] Chu et al. established the signless
Laplacian and Laplacian energies as well as their spectra using
multilevel wheels. Gutman et al. discussed graph energy and its
applications that provided details on more than a hundred different
varieties of graph energies and their applications in diverse areas, [41].
We refer to [42] for additional information and fundamental concepts
on graph energies. Various applications of graph energies can be traced
down in [43–45]. There are crystallographic uses for various graph
energies [46, 47], the theory of macromolecules [48, 49], protein
sequencing [50–52], biology [53], challenges related to air travel
[54], and construction of spacecraft [55].

Present article focuses on the ISI spectral radii and energy of the
generalized splitting and shadow graphs. To be more precise, we link
the spectral radii and energies of the new graph to those of the base
graphs. The ISI spectral radius and energy of the p-splitting graph
are determined in Section 2. We obtain further results relating to
shadow graphs Section 3.

2 Preliminaries

We outline the main ideas and background data related to our
main findings in this section. For additional details and sources
relevant to this section, see [24]. According to [24], the inverse sum
indeg matrix [ISI(G)] for the graph G has entries kij.

kij �
didj

di + dj
, when vi ~ vj,

0, otherwise.

⎧⎪⎪⎨⎪⎪⎩
⎫⎪⎪⎬⎪⎪⎭

The degrees of the vertices vi and vi are di and dj, respectively.
The distinct eigenvalues of the Inverse Sum Indeg ISI matrix of the

FIGURE 1
A base graph C4.
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graph G are ζ1, ζ2, /ζn. If different ISI eigenvalues of the graph G
have multiplicities of m1, m2, /mn, respectively, then

specISI � ζ1 ζ2/ ζn
m1 m2/ mn

( ). (2.1)

Then ISI energy is defined as

ISIε G( ) � ∑n
i�1

ζ i
∣∣∣∣ ∣∣∣∣.

The spectral radius for ISI matrix is

℘ISI G( ) � max
n

i�1
ζ i

∣∣∣∣ ∣∣∣∣,
where the eigenvalues of the ISI matrix are ζ1, ζ2, . . . , ζn. It is
worth mentioning that these two invariants are quite different as
the ISI energy is the sum whereas the ISI spetral radius is the
largest value. Our findings are fundamentally dependent on the
following definitions. In order to generate the p-splitting graph
Splp(G) of the graph G, new p vertices are added to each vertex v
of the graph G, ensuring that each of the new vertices is also
connected to each vertices that is adjacent to v in G, [56]. Base
graph C4 is given in Figure 1 and 1-splitting graph of C4 is given
in Figure 2.

A fresh p copy of the graph G is first considered when creating
the p-shadow graph Shp(G) of the graph. The neighbors of the
corresponding vertex V in Gj are then connected to each vertex U in
Gi. The 4-shadow graph of C4 is given in Figure 3.

Let AϵRm×n, BϵRp×q. Then A⊗B [38], is given by

A ⊗ B �

a11B . . .a1nB
. . . .
. . . .
. . . .

am1B . . .amnB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The following proposition will be frequently used to prove the
main results. In fact, it relates the eigenvalues of the tensor product
of two matrices with the eigenvalues of these matrices.

Proposition 1.1. [57] Assuming that α is an eigenvalue of A and β

is an eigenvalue of B. Then an eigenvalue of A⊗B is αβ.

3 ISI energies and ISI spectral radii of p
splitting graph of G

The ISI energies and ISI spectral radii of the p-splitting graph of G
and the ISI energies and ISI spectral radii of the base graph are compared
in this section. We wish to reiterate that G is any regular graph.

Theorem 1. The relation between the ISI energy of the base graph G
and the ISI energy of the p-splitting graph of G is

ISIε Splp G( )( ) � p + 1
�����������
p2 + 20p + 4

√
p + 2

ISIε G( ).

Proof

ISI(Splp(G)) matrix may be written as follows

FIGURE 2
Spl1(C4), the 1-splitting graph of C4. FIGURE 3

Sh4(C4), the 4-shadow graph of C4.
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ISI Splp G( )( ) �
ℵ1 ℵ2 . . . ℵ2

ℵ2 0 . . . 0
..
. ..

.
1 ..

.

ℵ2 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Matrix ℵ1 is given by ℵ1 = (p + 1)ISI(G). Matrix ℵ2 is given
by ℵ2 � (2(p+1)

p+2 )ISI(G).

ISI Splp G( )( ) �

p + 1( )ISI G( ) 2 p+1( )
p+2 ISI G( ) . . .

2 p+1( )
p+2 ISI G( )

2 p+1( )
p+2 ISI G( ) 0 . . . 0

..

. ..
.

1 ..
.

2 p+1( )
p+2 ISI G( ) 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p+1

� ISI G( ) ⊗

p + 1( ) 2 p+1( )
p+2 . . .

2 p+1( )
p+2

2 p+1( )
p+2 0 . . . 0

..

. ..
.

1 ..
.

2 p+1( )
p+2 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p+1

Let [A] = cij having entries

cij �

p + 1( ) 2 p+1( )
p+2 . . .

2 p+1( )
p+2

2 p+1( )
p+2 0 . . . 0

..

. ..
.

1 ..
.

2 p+1( )
p+2 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p+1

We are looking for ISIε(Splp(G)), therefore obtaining all
eigenvalues of [A] is necessary. The eigenvalues of [A] are being
calculated right now. Due to its rank, [A] has only two non-zero
eigenvalues. The eigenvalues of [A] are represented by the symbols
α1 and α1. Clearly, then, we have

α1 + α2 � tr A( ) � p + 1. (3.1)
Trace of the matrix A is denoted by tr(A). Consider [A2] = dij

having entries

dij �

p + 1( )2 + p
4 p+1( )2

p+2( )2
2 p+1( )2

p+2 . . .
2 p+1( )2

p+2

2 p+1( )2
p+2

4 p+1( )2
p+2( )2 . . .

4 p+1( )2
p+2( )2

..

. ..
.

1 ..
.

2 p+1( )2
p+2

4 p+1( )2
p+2( )2 /

4 p+1( )2
p+2( )2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p+1

Then

α21 + α22 � tr A2( ) � p + 1( )2 + 2p( ) 4 p + 1( )2
p + 2( )2 . (3.2)

Eqs 3.1, 3.2 when solved yield the following results

α1 � p + 1
2 p + 2( ) p + 2 +

�����������
p2 + 20p + 4

√( ), (3.3)

and

α2 � p + 1
2 p + 2( ) p + 2 −

�����������
p2 + 20p + 4

√( ). (3.4)

The notation Ch(A) stands for the characteristic equation of [A].
Finally, we may find Ch(A), which is denoted by Ch(A) � αp−1(α−
p+1

2(p+2) (p+2+
����������
p2+20p +4√ ))(α− p+1

2(p+2) (p + 2− ����������
p2+20p + 4

√ ))�0.
Consequently, we reach at the following spectrum,

specA � 0
p + 1

2 p + 2( ) p + 2 +
�����������
p2 + 20p + 4

√( ) p + 1
2 p + 2( ) p + 2 −

�����������
p2 + 20p + 4

√( )
p − 1 1 1

⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠.

(3.5)

In light of the fact that ISI(Splp(G)) = ISI(G)⊗A. By applying
Proposition 1.1, we get

ISIε Splp G( )( )
� ∑n

i�1
|
p + 1 p + 2 ±

�����������
p2 + 20p + 4

√( )
2 p + 2( ) ζ i|

� ∑n
i�1

|ζ i|
p + 1 p + 2 +

�����������
p2 + 20p + 4

√( )
2 p + 2( ) +

p + 1
�����������
p2 + 20p + 4

√
− p + 2( )( )

2 p + 2( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� p + 1

�����������
p2 + 20p + 4

√
p + 2

ISIε G( ).

Proposition 3.1. ISI energy of p-splitting graph of Cs is

ISIε Splp Cs( )( ) �

4 cot
π

s
, if s ≡ 0 mod4( ),

4 csc
π

s
, if s ≡ 2 mod4( ),

2 csc
π

2s
, if s ≡ 1 mod2( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
p + 1

�����������
p2 + 20p + 4

√
p + 2

.

Proof

ISI Cs( ) �

0
d1d2

d1 + d2
0 0 / 0

d1ds

d1 + ds

d2d1

d2 + d1
0

d2d3

d2 + d3
0 / 0 0

0
d3d2

d3 + d2
0

d3d4

d3 + d4
/ 0 0

..

. ..
. ..

. ..
.

/ ..
. ..

.

dsd1

ds + d1
0 0 0 /

dsds−1
ds + ds−1

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since each vertex in Cs has degree 2 because Cs is a 2 regular
graph, we get

ISI Cs( ) �

0 1 0 0 / 0 1
1 0 1 0 / 0 0
0 1 0 1 / 0 0
..
. ..

. ..
. ..

.
/ ..

. ..
.

1 0 0 0 / 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

ISI eigenvalues of Cs are easily observed as follows
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sz � 2 cos
2πz
s
, z � 0, 1, 2, . . . , s − 1. (3.6)

Then utilizing Theorem 6 of [58], we have

ISIε Cs( ) �

4 cot
π

s
, if s ≡ 0 mod4( ),

4 csc
π

s
, if s ≡ 2 mod4( ),

2 csc
π

2s
, if s ≡ 1 mod2( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (3.7)

Theorem 1 can be used to get the desired result since cycle graph
is a regular graph.

Base graph K4 is given in Figure 4 and 1-splitting graph of K4 is
given in Figure 5.

Proposition 3.2. ISI energy of p-splitting graph of

Ks isISIε(Splp(Ks)) � ((s − 1)2) p+1
������
p2+20p+4

√
p+2 .

Proof

ISI Ks( ) �

0
d1d2

d1 + d2

d1d3

d1 + d3
. . .

d1ds

d1 + ds

d2d1

d2 + d1
0

d2d3

d2 + d3
. . .

d2ds

d2 + ds

d3d1

d3 + d1

d3d2

d3 + d2
0 . . .

d3ds

d3 + ds

..

. ..
. ..

.
1 ..

.

dsd1

ds + d1

dsd2

ds + d2

dsd3

ds + d3
. . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since each vertex in Ks has a degree of s − 1 because Ks is a s − 1
regular graph, we get

ISI Ks( ) �

0
s − 1
2

s − 1
2

. . .
s − 1
2

s − 1
2

0
s − 1
2

. . .
s − 1
2

s − 1
2

s − 1
2

0 . . .
s − 1
2

..

. ..
. ..

.
1 ..

.

s − 1
2

s − 1
2

s − 1
2

. . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

ISIspec Ks( ) �
s − 1( )2
2

− s − 1( )
2

1 s − 1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (3.8)

ISIε(Ks) � |(s−1)22 | + |−(s−1)22 |.ISIε(Ks) � (s−1)2
2 + (s−1)2

2 .
Finally, we have

ISIε Ks( ) � s − 1( )2. (3.9)
Theorem 1 can be used to get the desired result since complete

graph is a regular graph.
Base graph K3,3 is given in Figure 6 and 1-splitting graph of K3,3

is given in Figure 7.

Proposition 3.3. ISI energy of p-splitting graph of

Ks,s isISIε(Splp(Ks,s)) � p+1
������
p2+20p+4

√
p+2 (s2).

.

Since each vertex in Ks,s has a degree of s because Ks,s is a s-
regular graph, we get

FIGURE 4
A base graph K4.

FIGURE 5
Spl1(K4), the 1-splitting graph of K4.
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.

ISIspec Ks,s( ) � s( )3
2s

0
− s( )3
2s

1 2s − 2 1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (3.10)

ISIε(Ks) � |(s)32s | + |−(s)32s |.
ISIε(Ks) � (s)3

2s + (s)3
2s .

Finally, we have

ISIε Ks,s( ) � s( )2. (3.11)

Theorem 1 can be used to get the desired result since complete
graph is a regular graph.

Theorem 2. The relation between the ISI spectral radius of the base
graph G and the ISI spectral radius of the p-splitting graph of

G is℘ISI(Splp(G)) � ℘ISI(G)(p+1(p+2+
������
p2+20p+4

√
)

2(p+2) ).
Proof Using the same justifications as Formula 3.5 in Theorem 1,

specA � 0
p + 1

2 p + 2( ) p + 2 +
�����������
p2 + 20p + 4

√( ) p + 1
2 p + 2( ) p + 2 −

�����������
p2 + 20p + 4

√( )
p − 1 1 1

⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠.

In light of the fact that ISI(Splp(G)) = ISI(G)⊗A. By applying
Proposition 1.1, we get

℘ISI Splp G( )( ) � maxn
i�1 specA( ))ζ i∣∣∣∣ ∣∣∣∣

� maxn
i�1 |ζ i|

p + 1 p + 2 ±
�����������
p2 + 20p + 4

√( )
2 p + 2( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� ℘ISI G( )
p + 1 p + 2 +

�����������
p2 + 20p + 4

√( )
2 p + 2( )⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠.

Proposition 3.4. ISI spectral radius of p-splitting graph of Cs is

℘ISI(Splp(Cs)) � p+1(p+2+
������
p2+20p+4

√
)

2(p+2) (2).
Proof Using Eq. 3.6, all eigenvalues of Cs are

sz � 2 cos
2πz
s
, z � 0, 1, 2, . . . , s − 1.

The largest absolute eigenvalue of Cs is 2. So, we arrive at

℘ISI Cs( ) � 2. (3.12)
Theorem 2 can be used to get the desired result since cycle graph

is a regular graph.
The following result give the ISI spectral radius of p-splitting

graph of Ks.

Proposition 3.5. ISI spectral radius of p-splitting graph of Ks is

℘ISI(Splp(Ks)) � p+1(p+2+
������
p2+20p+4

√
)

2(p+2)
(s−1)2

2( ).
Proof Using the same justifications as Formula 3.8 in
Proposition 3.2,

ISIspec Ks( ) �
s − 1( )2
2

− s − 1( )
2

1 s − 1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.

The largest absolute eigenvalue of Ks is
(s−1)2

2 . So, we arrive at

℘ISI Ks( ) � s − 1( )2
2

. (3.13)

FIGURE 7
Spl1(K3,3), the 1-splitting graph of K3,3.

FIGURE 6
A base graph K3,3.
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Theorem 2 can be used to get the desired result since complete
graph is a regular graph.

Proposition 3.6. ISI spectral radius of p-splitting graph of Ks,s is

℘ISI(Splp(Ks,s)) � p+1(p+2+
������
p2+20p+4

√
)

2(p+2)
s2

2( ).
Proof Using the same justifications as Formula 3.10 in
Proposition 3.3,

ISIspec Ks,s( ) � s( )3
2s

0
− s( )3
2s

1 2s − 2 1

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠.

The largest absolute eigenvalue of Ks,s is
(s)3
2s . So, we arrive at

℘ISI Ks,s( ) � s2

2
. (3.14)

Theorem 2 can be used to get the desired result since complete
bipartite graph is a regular graph.

4 ISI energies and ISI spectral radii of p-
shadow graph of G

The ISI energies and ISI spectral radii of the p-shadow graph of
G and the ISI energies and ISI spectral radii of the base graph are
compared in this section. We wish to reiterate that G is any regular
graph.

Theorem 3. The relation between the ISI energy of the base graph G
and the ISI energy of the p-shadow graph of G is

ISIε Shp G( )( ) � p2ISIε G( ).

Proof You may write ISI(Shp(G)) matrix as follows

ISI Shp G( )( ) �
ℵ3 ℵ3 . . . ℵ3

ℵ3 ℵ3 . . . ℵ3

..

. ..
.

1 ..
.

ℵ3 ℵ3 / ℵ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Matrix ℵ3 is given by ℵ3 = (p)ISI(G).

ISI Shp G( )( ) �
p( )ISI G( ) p( )ISI G( ) . . . p( )ISI G( )
p( )ISI G( ) p( )ISI G( ) . . . p( )ISI G( )

..

. ..
.

1 ..
.

p( )ISI G( ) p( )ISI G( ) / p( )ISI G( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p

� ISI G( ) ⊗
p p . . . p
p p . . . p

..

. ..
.

1 ..
.

p p / p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p

Let [M] = mij having entries

mij �
p p . . . p
p p . . . p

..

. ..
.

1 ..
.

p p / p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p

We are looking for ISIε(Shp(G)), therefore obtaining all
eigenvalues of M is necessary. The eigenvalues of [M] are being
calculated right now. Due to its rank, [M] has only one non-zero
eigenvalue. The notation Ch(M) stands for characteristic equation of
[M]. Finally, we may find Ch(M), which is denoted byCh(M) =
αp−1(α − p2) = 0.

Consequently, we reach at the following spectrum,

specM � 0 p2

p − 1 1
( ). (4.1)

In light of the fact that ISI(Shp(G)) = ISI(G)⊗M. By applying
Proposition 1.1, we get

FIGURE 8
Sh2(K4), the 2-shadow graph of K4.

FIGURE 9
Sh2(K3,3), the 2-shadow graph of K3,3.
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ISIε Shp G( )( ) � ∑n
i�1

|p2ζ i|

� ∑n
i�1

|ζ i| p2[ ]
� p2ISIε G( ).

Proposition 4.1. ISI energy of p-shadow graph of Cs isISIε(Shp(Cs))

� p2

4 cot
π

s
, if s ≡ 0(mod4),

4 csc
π

s
, if s ≡ 2(mod4),

2 csc
π

2s
, if s ≡ 1(mod2).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Proof Using the same justifications as Formula 3.7 in Proposition

3.1, we haveISIε(Cs) =

4 cot
π

s
, if s ≡ 0(mod4),

4 csc
π

s
, if s ≡ 2(mod4),

2 csc
π

2s
, if s ≡ 1(mod2).

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. Theorem 3

can be used to get the desired result since cycle graph is a regular
graph.

2-shadow graph of K4 is given in Figure 8.

Proposition 4.2. ISI energy of p-shadow graph of Ks is

ISIε Shp Ks( )( ) � p2s2 + p2 − 2p2s.

Proof. Using the same justifications as Formula 3.9 in Proposition
3.2, we have

ISIε Ks( ) � s2 + 1 − 2s.

Theorem 3 can be used to get the desired result since complete
graph is a regular graph.

2-shadow graph of K3,3 is given in Figure 9.

Proposition 4.3. ISI energy of p-shadow graph of Ks,s is

ISIε Shp Ks,s( )( ) � p2s2.

Proof Using the same justifications as Formula 3.11 in Proposition
3.3, we haveISIε(Ks,s) = s2.

Theorem 3 can be used to get the desired result since complete
bipartite graph is a regular graph.

Theorem 4. The relation between the ISI spectral radius of the base
graph G and the ISI spectral radius of the p-shadow graph of G is

℘ISI Shp G( )( ) � ℘ISI G( ) p2( ).
Proof Using the same justifications as Formula 4.1 in Theorem 3,

specM � 0 p2

p − 1 1
( ).

In light of the fact that ISI(Shp(G)) = ISI(G)⊗M. By applying
Proposition 1.1, we get

℘ISI Shp G( )( ) � maxn
i�1 specA( ))ζ i∣∣∣∣ ∣∣∣∣

� maxn
i�1 |ζ i| p2[ ]

� ℘ISI G( ) p2( ).

Proposition 4.4. ISI spectral radius of p-shadow graph of Cs is

℘ISI Shp Cs( )( ) � 2p2.

Proof Utilizing Eq. 3.12 of Proposition 3.4, we have

ISIε cs( ) � 2.

Theorem 4 can be used to get the desired result since cycle graph
is a regular graph.

Proposition 4.5. ISI spectral radius of p-shadow graph of Ks is

℘ISI Shp Ks( )( ) � p2s2 + p2 − 2p2s

2
.

Proof Utilizing Eq. 3.13 of Proposition 3.5, we have

℘ISI Ks( ) � s2 + 1 − 2s
2

.

Theorem 4 can be used to get the desired result since complete
graph is a regular graph.

Proposition 4.6. ISI spectral radius of p-shadow graph of Ks,s is

℘ISI Shp Ks,s( )( ) � p2s2

2
.

Proof Utilizing Eq. 3.14 of Proposition 3.6, we have

℘ISI Ks,s( ) � s2

2
.

Theorem 4 can be used to get the desired result since complete
bipartite graph is a regular graph.

5 Conclusion and applications

Most well known theories in spectral graph theory are graph
energy and the spectral radius. These thoughts establish a
connection between mathematics and chemistry. The
literature contains a huge amount of writing on these ideas.
Exploring the spectral radii and energies of bigger graphs is a
task that we must rise to. By focusing on splitting and shadow
graphs, we arrived at the conclusions that the spectral radii and
energies of the newly developed graphs are multiples of the
spectral radii and energies of the original graphs. As
propositions, we derived these particular relations for the
basic families of graphs such as cycle, complete and complete
bipartite graphs.

Recently it has been observed that physical and chemical
properties of anticancer drugs were well correlated with ISI
energies and spectral radius. Moreover, this work implied that
these anticancer drugs may be utilized for further study by
pharmacists and chemists in designing new drugs, using the
concept of these topological indices. The more correlated drugs
may have a better impact on the treatment of cancer. For a better
treatment of cancer, a future study may be carried out by
interdisciplinary researchers as a joint venture, [59]. ISI
energy and its variants have diverse, amazing and, to some
extent, unanticipated utilizations in crystallography and total
surface are of octane isomers [60]. ISI energy has some
connection with protein sequences [49, 52]. ISI energies and
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ISI spectrum has applications in network analysis and resilience
[54, 61, 62]. Similarly other key invariants of graphs like
chromatic number can be estimated using ISI energy.
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