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Editorial on the Research Topic

Role of shoot-derived signals in root responses to environmen-
tal changes
Shoot-root communication in plants is essential for the correct integration of responses

to environmental changes. As sessile organisms, plants are continuously subjected to

changing environmental conditions that in most cases constitute a form of stress. Plants,

then must be able to manage the distinct signals perceived by the different organs and

produce an integrated response. In this important task, root- and shoot-derived signals play

a key role. Shoots and roots deliver messages to each other to induce systemic responses.

Shoot growth is modulated by root-derived signals, while nutrient uptake activity in the

root is regulated by shoot-derived signals (Notaguchi and Okamoto, 2015; Ko and

Helariutta, 2017).

In recent years, several molecules have been identified as systemic signals such as RNAs

and microRNAs (Aung et al., 2006; Chiou, 2007; Lin et al., 2008; Buhtz et al., 2010; Liu

et al., 2023), small peptides (Koen et al., 2012; Shanmugam et al., 2012; Shanmugam et al.,

2015; Grillet et al., 2018; Hirayama et al., 2018; Ota et al., 2020; Kobayashi et al., 2021; Shee

et al., 2022; Tabata, 2023), and phytohormones (Kohlen et al., 2011; Borghi et al., 2016; Ko

and Helariutta, 2017; Li et al., 2021) that play an essential role in shoot-

root communication.

MicroRNAs are 20- to 24-nucleotide RNAs that regulate eukaryotic gene expression

posttranscriptionally and transcriptionally as well (by mediating gene silencing)

(Brodersen et al., 2008). The knowledge about the implication of shoot-derived RNAs in

the regulation of several responses to pathogen and abiotic stresses has been increasing in

the last few years and numerous RNAs have been identified. The role of these RNAs in

plant development has been thoroughly reviewed very recently by Liu et al. (2023). Thus,

we can find shoot-derived RNAs involved in the regulation of root responses to different

stresses such as drought [miRNA166 (O. sativa) and miRNA390 (N. tabaccum)]; chilling

[CmoASCL, CmoSDC, CmoCEK1 (C. moschata); CsaACSL, CsaCEK1, CsaP450s (C.
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sativus)]; nutritional stresses such as phosphate [miRNA172 (C.

sativus), miRNA399, miRNA827 and miRNA2111 (A. thaliana)]

and sulfate [miRNA395 (A. thaliana)] deficiencies; and injury

response [Prosystemin (PS) (S. lycopersicum)] (Liu et al., 2023).

Among the small peptides involved in shoot-root

communication are glutathione (GSH; Koen et al., 2012;

Shanmugam et al., 2012; Shanmugam et al., 2015) and Iron Man

(IMA) peptides (Garcıá et al., 2018; Grillet et al., 2018; Hirayama

et al., 2018; Gautam et al., 2021; Kobayashi et al., 2021; Garcıá et al.,

2022; Meng et al., 2022; Peng et al., 2022; Tabata, 2023). Both have

been involved in the regulation of the Fe deficiency response.

However, while IMA peptides are exclusive for the Fe deficiency

response regulatory network, GSH has also been linked to sulfur

nutrition (Liu et al., 2009; Koprivova and Kopriva, 2014). Another

important peptide in long-distance signaling is the phloem-mobile

CEPD-like 2 (CEPDL2) polypeptide which is involved in plant

responses to decreased shoot N status. Its expression increases in

the leaf vasculature in response to decreased shoot N content and,

after translocation to the roots, promotes high-affinity uptake and

root-to-shoot transport of nitrate (Ota et al., 2020).

The present Research Topic includes four papers: one review

and three original research articles. The review by Bai et al.

summarizes the new experimental methods available in the area

of synthetic biology to improve the characteristics of natural heavy

metal hyperaccumulators and include these characteristics into

non-food and high-biomass plant species for phytoremediation of

heavy metals. In this review, synthetic biology is presented as an

innovative way to build modules with new functions that could be

applied to get more efficient natural hyperaccumulator plants in

phytoremediation of heavy metals from soil. The authors

summarize the new experimental methods for the discovery of

synthetic biological elements as well as the knowledge about the

construction of circuits and take into account the signaling between

the different modules to enable their proper function in the

transgenic lines generated.

In Glanz-Idan et al. the importance of a cytokinin (CK) mediated

root–shoot communication network is shown in the regulation of leaf

senescence. The authors propose that a CK-mediated signal is

translocated through the xylem to the leaves where this signal alters

CK biosynthesis, resulting in delayed senescence.

Garcıá et al. studied the relationship among several regulatory

signals related to the Fe deficiency response. IMA peptides were

discovered very recently (Grillet et al., 2018; Hirayama et al., 2018)

and presented as key regulators of the Fe deficiency response,

however their relationship with other known factors that regulate

this response, such as ethylene (activating signal) and LODIS

(LOng-Distance Iron Signal), a repressive signal (Garcıá et al.,

2018), was unknown until the publication of this work.

Finally, the third original paper of the present Research Topic

by Li et al. attempts to clarify how nitrate inhibits nodule growth
Frontiers in Plant Science 02
and nodule nitrogenase activity in Glycine max (L.) Merr roots. The

authors employ a dual-root growth system in which both halves of

the root are inoculated with rhizobia and only one side is subjected

to nitrate treatment. Results obtained suggest that the mechanism

by which the plant systemically suppresses nodulation under

nitrogen-replete conditions is the reduction of carbon fluxes from

shoots to nodules and roots.

To date, most research about plant responses to biotic or abiotic

stresses has been carried out in roots or shoots separately without

considering possible systemic signals that connect them. However,

integration of all signals received from the environment is essential

for the correct development of plants, allowing them to respond

coordinately and leading to a fine adjustment of their responses in

each environmental condition. The knowledge of the signals involved

in shoot-root communication will be essential in the near future to

developing new plant varieties that are more efficient and better

adapted to the changing environmental conditions.
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Centers and Units of Excellence in R&D (Ref. CEX2019-

000968-M).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1139744
https://doi.org/10.3389/fpls.2022.922106
https://doi.org/10.3389/fpls.2022.971773
https://doi.org/10.3389/fpls.2023.1101074
https://doi.org/10.3389/fpls.2023.1220592
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Garcı́a et al. 10.3389/fpls.2023.1220592
References
Aung, K., Lin, S. I., Wu, C. C., Huang, Y. T., Su, C. L., and Chiou, T. J. (2006). pho2, a
phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399
target gene. Plant Physiol. 141, 1000–1011. doi: 10.1104/pp.106.078063

Borghi, L., Liu, G. W., Emonet, A., Kretzschmar, T., and Martinoia, E. (2016). The
importance of strigolactone transport regulation for symbiotic signaling and shoot
branching. Planta 243, 1351–1360. doi: 10.1007/s00425-016-2503-9

Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P.,
Yamamoto, Y. Y., Sieburth, L., et al. (2008). Widespread translational inhibition by
plant miRNAs and siRNAs. Sci. (1979) 320, 1185–1190. doi: 10.1126/science.1159151

Buhtz, A., Pieritz, J., Springer, F., and Kehr, J. (2010) Phloem small RNAs, nutrient
stress responses, and systemic mobility. Available at: http://www.biomedcentral.com/
1471-2229/10/64.

Chiou, T. J. (2007). The role of microRNAs in sensing nutrient stress. Plant Cell
Environ. 30, 323–332. doi: 10.1111/j.1365-3040.2007.01643.x
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