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Abstract

Background: Cardiovascular diseases, particularly acute myocardial infarction, are the leading cause of disability 
and death. Atherosclerosis, the pathological basis of AMI, can be accelerated by chronic inflammation. Ulcerative 
colitis (UC), a chronic inflammatory disease associated with immunity, contributes to the risk of AMI development. 
However, controversy continues to surround the relationship between these two diseases. The present study unravels 
the pathogenesis of AMI and UC, to provide a new perspective on the clinical management of patients with these co-
morbidities.
Methods: Microarray datasets GSE66360 and GSE87473 were downloaded from the Gene Expression Omnibus 
database. Common differentially expressed genes (co-DEGs) between AMI and UC were identified, and the following 
analyses were performed: enrichment analysis, protein-protein interaction network construction, hub gene identifica-
tion and co-expression analysis.
Results: A total of 267 co-DEGs (233 upregulated and 34 downregulated) were screened for further analysis. 
GO enrichment analysis suggested important roles of chemokines and cytokines in AMI and UC. In addition, the 
 lipopolysaccharide-mediated signaling pathway was found to be closely associated with both diseases. KEGG enrich-
ment analysis revealed that lipid and atherosclerosis, NF-κB, TNF and IL-17 signaling pathways are the core mecha-
nisms involved in the progression of both diseases. Finally, 11 hub genes were identified with cytoHubba: TNF, IL1B, 
TLR2, CXCL8, STAT3, MMP9, ITGAX, CCL4, CSF1R, ICAM1 and CXCL1.
Conclusion: This study reveals a co-pathogenesis mechanism of AMI and UC regulated by specific hub genes, thus 
providing ideas for further mechanistic studies, and new perspectives on the clinical management of patients with these 
comorbidities.
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Introduction

Cardiovascular diseases, particularly acute myo-
cardial infarction (AMI), are the leading cause 
of disability and death [1]. AMI is a myocardial 
necrosis caused by acute and persistent coronary 
artery ischemia and hypoxia [2]. Atherosclerosis, 
the pathological basis of AMI, can be accelerated 
by chronic inflammation [3]. Although early treat-
ment with reperfusion after AMI onset can improve 
clinical outcomes, the risk of recurrence and mor-
tality remains high for as long as 1 year after AMI 
onset [4]. In addition, reperfusion therapy not only 
increases damage to ischemic myocardial tissue 
but also implicates normal myocardial tissue [5]. 
Reperfusion-induced injury accounts for as much as 
50% of overall myocardial injury, and is often asso-
ciated with serious adverse events [5]. Therefore, 
preventing AMI is a major priority.

Ulcerative colitis (UC) is a type of inflammatory 
bowel disease that causes chronic inflammation of 
the intestinal tract [6]. Its pathological mechanism 
is complex and influenced by multiple factors, such 
as genetic background, intestinal immune status and 
intestinal microbial balance. The risk of developing 
colon cancer is 2–3 fold greater in patients with UC 
than the general population. [7, 8]. The age of onset 
of UC is bimodal, with peaks at 2–3 years and 50–
80 years [9]. UC affects not only the gastrointestinal 
tract but also the heart, and pericarditis and myo-
carditis are the most common manifestations [10]. 
Furthermore, patients with UC are at significantly 
elevated risk of both venous thromboembolism and 
mesenteric ischemia [10].

Although UC has been reported to be a risk factor 
for AMI progression [11], the relationship between 
these two diseases remains controversial. Osterman 
et al. [12] have concluded that patients with UC do 
not have elevated AMI incidence. However, Choi 
et al. [13] have reported elevated risk of myocardial 
infarction in patients with UC and a trend towards 
a younger incidence of AMI. UC causes systemic 
inflammatory responses and promotes hypercoagu-
lation in the body [13]. Furthermore, disruption of 
the intestinal mucosal barrier leads to the transfer 
of lipopolysaccharides (LPS) and other endotoxins 
into the bloodstream, thereby inducing the secre-
tion of pro-inflammatory cytokines and leading 
to endothelial disturbances, atherosclerosis and 

acute cardiovascular events [14]. Gut microeco-
logical dysregulation increases plaque vulnerability 
by affecting lipid metabolism and the inflamma-
tory response [15]. Azimi et al. [16] have demon-
strated that Clostridium difficile, Escherichia coli 
and Campylobacter are closely associated with 
the development of UC. Chronic bacterial infec-
tions may contribute to the formation of vulner-
able plaques through enhanced T-cell activation 
and inflammatory responses [17]. Therefore, the 
cardio-intestinal axis may be an important path-
way through which UC promotes the development 
of AMI. Owing to inconsistent research findings 
regarding the relationship between AMI and UC, no 
standard of medical care has been established for 
patients with both conditions. This study therefore 
explored the pathogenesis of AMI and UC, to pro-
vide new perspectives on the clinical management 
of patients with AMI and UC.

Matrials and Methods

Data Source

Relevant datasets in the Gene Expression Omnibus 
(GEO; https://www.ncbi.nlm.nih.gov/geo/) data-
base [18] were searched with the keywords “acute 
myocardial infarction” and “ulcerative colitis.” 
The inclusion criteria were: 1) Homo sapiens (top 
organism); 2) expression profiling with an array 
(study type); 3) total number of samples in a sin-
gle microarray dataset >50; and 4) single microar-
ray dataset from the same sequencing platform. We 
downloaded four microarray datasets from GEO: 
GSE66360-GPL570 [19] and GSE62646-GPL6244 
[20] for AMI, and GSE87473-GPL13158 [21] and 
GSE59071-GPL6244 [22] for UC. The GSE66360 
and GSE87473 datasets were used for mechanistic 
analysis of differentially expressed genes (DEGs), 
and GSE62646 and GSE59071 were used for fur-
ther screening of hub genes. GSE66360 contained 
49 AMI and 50 normal (NL) samples; GSE62646 
included 84 AMI and 14 NL samples; GSE87473 
contained 106 UC-active and 21 NL samples; and 
GSE59071 included 74 UC-active, 23 UC-inactive 
and 11 NL samples. Datasets were downloaded from 
the GEO database via the R GEOquery package and 
pre-processed with Rstudio [23]. Genes were anno-
tated with gene symbols. Because the data used in 

https://www.ncbi.nlm.nih.gov/geo/
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this study were obtained from public databases, no 
local ethics committee approval or informed con-
sent was required.

Identification of DEGs

We analyzed the GSE66360 and GSE87473 datasets 
separately with the R limma package [24]. Filtering 
criteria (|logFC| > 0.585 and adjusted P < 0.05) 
were used to determine DEGs between AMI or 
UC and the corresponding NL groups. Volcano 
plots of DEGs were constructed with the R ggplot2 
package [25, 23]. Among the DEGs, logFC > 0.585 
or logFC < − 0.585 indicated upregulation or 
downregulation in the disease group, respectively 
[26, 27]. We used the R VennDiagram package to 
plot Venn diagrams of up- and downregulated genes 
between the datasets GSE66360 and GSE87473 to 
obtain co-DEGs common to both diseases [28].

Functional Enrichment Analyses of  
co-DEGs

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses were used 
to evaluate functional annotation of the key module 
genes. GO terms include biological process, cellular 
component and molecular function categories [29]. 
KEGG is a knowledgebase for systematic analysis 
of gene function, linking genomic information to 
higher-order functional information [30]. We per-
formed enrichment analysis with the R clusterPro-
filer package [31].

PPI Network Construction and Module 
Analysis

The STRING (https://cn.string-db.org/) database 
[32] is designed to integrate all known and predicted 
associations among proteins. The common DEGs 
(co-DEGs) were input into the STRING database, 
“Homo sapiens” was selected, the minimum required 
interaction score was set to ≥0.4, and the free nodes 
were hidden. The downloaded results were input 
into Cytoscape software in tab-separated values for-
mat for further analysis [33]. The key modules were 
obtained with the MCODE plugin in Cytoscape with 
default settings. Subsequently, enrichment analysis 
was performed on the module genes.

Screening and Analysis of Hub Genes

The cytoHubba plugin in Cytoscape was used to 
filter hub genes [34]. Here, we used four algo-
rithms (degree, closeness, EPC and MCC) and 
selected the genes of the first 20 intersections of 
these four algorithms for further analysis. The 
co-expression network of these hub genes was 
constructed via the GeneMANIA (http://gene-
mania.org/) [35] database, with the species set to 
human.

Validation of Hub Gene Expression

We further validated hub gene expression in the 
GSE62646 and GSE59071 datasets. P-value 
< 0.05 was considered to indicate a significant 
difference.

Prediction and Verification of Transcription 
Factors

The TRRUST (https://www.grnpedia.org/trrust) 
database [36] was used to predict transcriptional 
regulatory networks. The species was set to human, 
and the co-hub genes stably expressed in the 
datasets GSE66360, GSE87473, GSE62646 and 
GSE59071 were imported into the TRRUST data-
base to obtain the associated transcription factors 
(TFs). TF regulatory networks were constructed 
in Cytoscape. Subsequently, the expression of 
these TFs was further validated with the datasets 
GSE66360 and GSE87473.

Results

Identification of DEGs

Figure 1 shows the diagram of the study design 
and workflow. After normalization of the microar-
ray data, 670 upregulated and 405 downregulated 
DEGs in GSE66360, and 1323 upregulated and 
1138 downregulated DEGs in GSE87473, were 
identified (Figure 2A, B). The upregulated and 
downregulated DEGs were intersected separately 
to identify co-DEGs for AMI and UC, of which 233 
co-DEGs were upregulated, and 34 were downreg-
ulated (Figure 2C, D).

https://cn.string-db.org/
http://genemania.org/
http://genemania.org/
https://www.grnpedia.org/trrust


C. Chang et al., Uncovering the Genetic Link between Acute Myocardial Infarction4

Functional Enrichment Analyses of  
Co-DEGs

Functional enrichment analyses were performed 
for 267 co-DEGs (Figure 3A, B). GO enrichment 
analysis revealed the following biological pro-
cesses: response to lipopolysaccharide, response 
to molecule of bacterial origin, positive regula-
tion of cytokine production and leukocyte migra-
tion (Figure 3A). KEGG enrichment analysis sug-
gested the importance of osteoclast differentiation, 
lipid and atherosclerosis, NF-kappa B, TNF and 
IL-17 signaling pathways (Figure 3B, Table 1). 
Together, these results suggested that inflammation 
and the immune response are common core mecha-
nisms of UC and AMI.

PPI Network Construction and Module 
Analysis

PPI network analysis of co-DEGs was performed 
with the STRING database (Figure 3C). The results 
were imported into Cytoscape in tab-separated val-
ues format to construct a PPI network. The PPI 
network comprised 205 nodes and 1782 edges 
(Figure 3D). The more connections between nodes 

and the higher the relevance, the higher the node’s 
ranking in the PPI network. (Figure 3C, D). In addi-
tion, five tightly linked gene modules were screened 
via the MCODE plugin in Cytoscape (Figure 4A–E).  
Furthermore, modular genes were integrated, 
and GO and KEGG analyses were performed 
(Figure 4F, G). GO enrichment analysis indicated 
that modular genes were enriched primarily in bio-
logical processes, such as response to molecule of 
bacterial origin, response to lipopolysaccharide and 
leukocyte migration (Figure 4F). KEGG enrichment 
analysis revealed that modular genes were involved 
mainly in osteoclast differentiation, lipid and ath-
erosclerosis, NF-κB, TNF and IL-17 signaling  
pathways (Figure 4G). Overall, AMI and UC had 
many common pathogenic mechanisms, which 
might be mediated by specific hub genes.

Screening and Analysis of Hub Genes

The top 20 genes were screened in the cytoHubba 
plugin, with the degree, closeness, EPC and MCC 
algorithms. (Table 2). The R ggplot2 package was 
used to plot a Venn diagram to identify hub genes 
(Figure 5A). Eleven hub genes were screened: TNF, 
IL1B, TLR2, CXCL8, STAT3, MMP9, ITGAX, 

GSE66360 (AMI) GSE87473 (UC)

Microarray data processing

(�logFC� > 0.585 and adjusted P < 0.05)

co-DEGS
(233 up-regulated genes and
34 down-regulated genes)

Enrichment analyses of co-DEGS PPI network construction and module analysis

Selection and analysis of hub genes

TNF, IL1B, TLR2, CXCL8, STAT3, MMP9,
ITGAX, CCL4, CSF1R, ICAM1, and CXCL1

Construction of a co-expression network of
hub genes by the GeneMANIA database.

GSE62646 (AMI) and GSE59071 (UC)

TNF, STAT3, ITGAX, CSF1R, ICAM1, and CXCL1

Prediction and verification of transcription factors

Enrichment analyses of hub genes

The TFs that regulate these hub genes were predicted by the TRRUST database.

The four TFS (SPI1, RELA, NFKB1, and CEBPD) were significantly up-regulated in GSE66360 and GSE87473.

Validation of hub genes expression

Figure 1 Schematic Diagram of the Study Design and Workflow.
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CCL4, CSF1R, ICAM1 and CXCL1 (Table 3). The 
GeneMANIA database was used to structure hub 
gene co-expression networks [35]. Co-expression 
network analysis indicated complicated PPI net-
works with co-expression (72.67%), co-localization 
(14.25%), physical interactions (5.40%), pathways 
(2.98%), shared protein domains (2.47%), pre-
dicted interactions (1.86%) and genetic interactions 
(0.37%) (Figure 5B). GO analysis revealed the key 
associations of hub genes with biological processes 
such as leukocyte migration, cellular response to 
lipopolysaccharide, cellular response to molecule of 
bacterial origin, cytokine-mediated signaling path-
way and cytokine receptor binding (Figure 6A). 
These results suggested the importance of LPS and 
cytokines in both AMI and UC. In addition, the 
KEGG results suggested that the hub genes were 
involved in lipid and atherosclerosis, rheumatoid 

arthritis (RA), AGE-RAGE signaling pathway in 
diabetic complications, NF-kappa B, IL-17, and 
Toll-like receptor signaling pathways (Figure 6B). 

Validation of Hub Gene Expression

We additionally selected two datasets including 
AMI and UC and validated the reliability of the 
11 hub genes. In the dataset GSE62646, seven hub 
genes were significantly differentially expressed 
in the AMI versus NL group: TNF, STAT3, CCL1, 
ITGAX, CSF1R, ICAM1 and CCL4 (Figure 7). 
Interestingly, CCL4 expression was downregulated 
in AMI (GSE62646), contrary to the previous trend 
of upregulated expression in AMI (GSE66360), 
possibly because of insufficient sample size, the 
sequencing technology used, sample variation, 
etc. The remaining six hub genes with significant 
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Figure 2 Volcano Plots and Venn Diagrams of DEGs.
(A) Volcano plot of GSE66360. (B) Volcano plot of GSE87473. Red indicates upregulated genes, and green indicates down-
regulated genes. Venn diagram of (C) upregulated and (D) downregulated genes in the GSE66360 and GSE87473 datasets.
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differences were all significantly upregulated 
in the AMI group, in agreement with the previ-
ous expression trend. In the GSE59071 dataset, 
all 11 hub genes were significantly upregulated in 
the UC-active group compared with the NL group 
(Figure 8). We defined the six hub genes that were 
stably upregulated in all datasets as co-hub genes; 
these genes were TNF, STAT3, ITGAX, CSF1R, 
ICAM1 and CCL1.

Prediction and Verification of TFs

Using the TRRUST database, we identified 11 TFs 
that might regulate the expression of the co-hub 
genes (Figure 9 and Table 4). The reliability of the 11 
TFs was verified in the GSE66360 and GSE87473 
datasets. In GSE66360, eight TFs significantly dif-
fered between the AMI and NL groups (Figure 10). 

Six TFs (SPI1, RELA, NFKB1, JUN, CEBPD and 
CEBPA) were upregulated, and two TFs (HDAC1 
and STAT1) were downregulated in the AMI group 
compared with the NL group. In GSE87473, six TFs 
were significantly differentially expressed between 
the UC-active and NL groups (Figure 11). Five TFs 
(STAT1, SPI1, RELA, NFKB1 and CEBPD) were 
upregulated, and one TF (CEBPA) was downregu-
lated in the UC-active group compared with the NL 
group. Notably, CEBPA and STAT1 showed oppo-
site expression trends in the AMI and UC groups, 
perhaps because of factors such as disease progres-
sion, cell cycle, tissue and sample differences. SPI1, 
RELA, NFKB1 and CEBPD were stably upregu-
lated in both the AMI and UC-active groups. These 
TFs may be involved in disease progression through 
the regulation of TNF, STAT3, ITGAX, ICAM1 and 
CCL1.
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Table 1 Top 30 Enriched KEGG Pathways.

ID Description P-value GeneID

hsa04380 Osteoclast 
differentiation

1.15E-16 IL1B/SOCS3/LILRB2/FOS/FCGR2A/FOSB/JUNB/
SIRPA/FCGR2C/LILRA2/LILRB1/IFNGR1/FCGR3B/
SPI1/SIRPB1/LILRA3/LILRB3/TNF/CSF1R/NCF2/
FCGR1A/IL1A/LILRA1

hsa04668 TNF signaling pathway 2.21E-12 MAP3K8/IL1B/CCL20/SOCS3/CXCL2/ICAM1/FOS/
JUNB/MMP9/CXCL1/TNFAIP3/CEBPB/CXCL3/TNF/
LIF/PTGS2/CREB5/NOD2

hsa04657 IL-17 signaling 
pathway

1.60E-11 IL1B/CCL20/S100A9/CXCL2/FOS/FOSB/MMP9/
CXCL1/CXCL8/S100A8/TNFAIP3/CEBPB/CXCL3/TNF/
PTGS2/LCN2

hsa04060 Cytokine-cytokine 
receptor interaction

1.15E-09 IL1B/CCL20/IL1RN/CCL4/CXCL2/CCL3L3/IL6ST/
CSF3R/CXCL16/CXCL1/CXCL8/OSM/IFNGR1/CXCR1/
RELT/TNFRSF10C/CXCL3/TNF/CSF1R/LIF/CSF2RB/
IL1A/CXCR2/PPBP

hsa05140 Leishmaniasis 1.56E-09 IL1B/TLR2/FOS/FCGR2A/FCGR2C/IFNGR1/FCGR3B/
TNF/NCF2/PTGS2/FCGR1A/IL1A/CYBB

hsa04061 Viral protein 
interaction with 
cytokine and cytokine 
receptor

4.55E-09 CCL20/CCL4/CXCL2/CCL3L3/IL6ST/CXCL1/CXCL8/
CXCR1/TNFRSF10C/CXCL3/TNF/CSF1R/CXCR2/
PPBP

hsa04064 NF-kappa B signaling 
pathway

7.67E-09 IL1B/CCL4/CXCL2/ICAM1/BCL2A1/CXCL1/CXCL8/
LY96/PLAU/LYN/TNFAIP3/CXCL3/TNF/PTGS2

hsa05323 Rheumatoid arthritis 1.53E-07 IL1B/CCL20/TLR2/CXCL2/CCL3L3/ICAM1/FOS/
CXCL1/CXCL8/CXCL3/TNF/IL1A

hsa05417 Lipid and 
atherosclerosis

5.60E-07 IL1B/TLR2/CXCL2/CCL3L3/ICAM1/FOS/MMP9/
STAT3/CXCL1/CXCL8/LY96/LYN/CXCL3/HSPA6/TNF/
NCF2/CYBB

hsa04062 Chemokine signaling 
pathway

3.14E-06 CCL20/CCL4/CXCL2/CCL3L3/CXCL16/STAT3/CXCL1/
CXCL8/LYN/CXCR1/FGR/CXCL3/HCK/CXCR2/PPBP

hsa04610 Complement and 
coagulation cascades

4.54E-06 THBD/PLAUR/SERPINA1/CD55/C5AR1/ITGAX/VWF/
PLAU/CLU/SERPING1

hsa05152 Tuberculosis 7.16E-06 CLEC4E/IL1B/FCER1G/TLR2/FCGR2A/FCGR2C/
ITGAX/IFNGR1/FCGR3B/CEBPB/TNF/FCGR1A/IL1A/
NOD2

hsa05134 Legionellosis 1.03E-05 IL1B/TLR2/CXCL2/CXCL1/CXCL8/CXCL3/HSPA6/TNF

hsa05167 Kaposi sarcoma-
associated herpesvirus 
infection

1.69E-05 ZFP36/CXCL2/ICAM1/IL6ST/FOS/MAPKAPK2/STAT3/
CXCL1/CXCL8/IFNGR1/LYN/CXCL3/HCK/PTGS2

hsa04620 Toll-like receptor 
signaling pathway

2.50E-05 MAP3K8/IL1B/TLR2/CCL4/CCL3L3/FOS/CXCL8/LY96/
TNF/TLR8

hsa05150 Staphylococcus aureus 
infection

7.84E-05 C5AR1/ICAM1/FCGR2A/FCGR2C/FPR1/FPR2/PTAFR/
FCGR3B/FCGR1A

hsa04933 AGE-RAGE signaling 
pathway in diabetic 
complications

0.000107926 THBD/IL1B/ICAM1/STAT3/CXCL8/TNF/EGR1/IL1A/
CYBB

hsa04625 C-type lectin receptor 
signaling pathway

0.000146178 CLEC4E/IL1B/FCER1G/CLEC4D/MAPKAPK2/TNF/
EGR2/EGR3/PTGS2

hsa04662 B cell receptor 
signaling pathway

0.000149294 LILRB2/FOS/LILRA2/LILRB1/LYN/LILRA3/LILRB3/
LILRA1
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Discussion

UC, a type of inflammatory bowel disease, is an 
immune-associated chronic inflammatory disease 
affecting the intestines [6]. Notably, active UC not 
only aggravates the systemic inflammatory response 
but also contributes to the hypercoagulable state of 
the body [13]. AMI is a myocardial necrosis caused 
by acute and persistent coronary artery ischemia 
and hypoxia [2]. Atherosclerotic plaque rupture is 
the most common cause of AMI [37]. In addition to 
accelerating the progression of atherosclerosis, UC 
can lead to the formation of vulnerable plaques by 
affecting intestinal microecology [17]. Patients with 
UC have significantly higher thrombotic events and 
cardiovascular mortality [38]. Kristensen et al. [39] 
have similarly concluded that UC contributes to an 
increased risk of AMI, stroke and cardiovascular 
death, particularly when UC is active, thus further 
increasing the incidence of these adverse events. In 
addition, Ha et al. [40] have suggested that female 
patients with UC are more likely to develop AMI 
than their male counterparts. However, Sinh et al. 
[41] have reported that UC does not increase mor-
tality in patients with AMI. Currently, no consensus 

exists, and the relationship between AMI and UC 
remains controversial. The present study explored 
the pathogenesis of AMI and UC, to provide new 
perspectives for the clinical management of patients 
with AMI and UC, and novel ideas for further 
research on the molecular mechanisms of AMI 
combined with UC.

We identified 267 co-DEGs shared by the two 
diseases through bioinformatic methods. Finally, 
six co-hub genes were found to be stably upregu-
lated in both AMI and UC: TNF, STAT3, CCL1, 
ITGAX, CSF1R and ICAM1. The results of enrich-
ment analysis indicated that UC may promote AMI 
through inflammatory and immune responses. GO 
enrichment analysis highlighted the importance of 
leukocyte migration, cytokine-mediated signaling 
pathway, cellular response to lipopolysaccharide 
and positive regulation of NF-kappa B TF activity. 
Leukocyte migration is an early event in vascular 
inflammation progression and is closely associated 
with atherosclerosis [42]. In addition, chemokines 
and cytokines have been associated with chronic 
inflammation [43]. Atherosclerosis is a pathological 
disease characterized by fibroproliferation, chronic 
inflammation, lipid accumulation and immune 

ID Description P-value GeneID

hsa05321 Inflammatory bowel 
disease

0.000210338 IL1B/TLR2/STAT3/IFNGR1/TNF/IL1A/NOD2

hsa04613 Neutrophil extracellular 
trap formation

0.000245589 TLR2/C5AR1/AQP9/FCGR2A/FPR1/FPR2/VWF/
FCGR3B/TLR8/NCF2/FCGR1A/CYBB

hsa05202 Transcriptional 
misregulation in cancer

0.000283882 NFKBIZ/BCL6/NR4A3/BCL2A1/MMP9/CXCL8/PLAU/
SPI1/CEBPB/CSF1R/GZMB/FCGR1A

hsa05144 Malaria 0.000332765 IL1B/TLR2/ICAM1/CXCL8/PECAM1/TNF

hsa05120 Epithelial cell signaling 
in Helicobacter pylori 
infection

0.000334702 CXCL2/CXCL1/CXCL8/LYN/CXCR1/CXCL3/CXCR2

hsa04640 Hematopoietic cell 
lineage

0.000546951 IL1B/CD55/CSF3R/MME/TNF/CSF1R/FCGR1A/IL1A

hsa05133 Pertussis 0.000555306 IL1B/FOS/CXCL8/LY96/TNF/SERPING1/IL1A

hsa05142 Chagas disease 0.00066795 IL1B/TLR2/CCL3L3/FOS/GNA15/CXCL8/IFNGR1/TNF

hsa05146 Amoebiasis 0.00066795 IL1B/TLR2/CXCL2/GNA15/CXCL1/CXCL8/CXCL3/TNF

hsa05418 Fluid shear stress and 
atherosclerosis

0.001243797 THBD/IL1B/ICAM1/FOS/MMP9/PECAM1/TNF/NCF2/
IL1A

hsa05171 Coronavirus disease, 
COVID-19

0.001456841 IL1B/TLR2/C5AR1/IL6ST/FOS/FCGR2A/STAT3/VWF/
CXCL8/TNF/TLR8/CYBB

Table 1 (continued)
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disorders of the vessel wall [44]. As atherosclerotic 
plaques progress to advanced stages, vulnerable 
plaques rupture, thereby leading to the  development 
of AMI. UC is characterized by a massive accumu-
lation of immune cells, myeloid cells and lympho-
cytes in the diseased intestines [45]. The  continued 
activation of these cells, together with the pro-
duction of inflammatory mediators, promotes UC 
recurrence, thus making complete disease cure 

difficult [45]. Therefore, blocking the migration 
of leukocytes to the intestines is the main strategy 
used to control UC and relieve symptoms [45]. LPS 
is a potent inducer of inflammation. Intestinal LPS 
binds LPS-binding protein and celiac particles, and 
enters the body’s circulation through the lymphat-
ics, thus enhancing the inflammatory process [46]. 
In addition, disruption of the intestinal mucosal bar-
rier in UC leads to the transfer of LPS and other 

Leukocyte migration
IL-17 signaling pathway

TNF signaling pathway

Osteoclast differentiation

NF-kappa B signaling pathway

Cytokine-cytokine receptor interaction

Rheumatoid arthritis

Lipid and atherosclerosis

Leishmaniasis

Chemokine signaling pathway

Viral protein interaction with cytokine and cytokine receptor

F G
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A B

D E

Response to lipopolysaccharide
Response to molecule of bacterial origin

Cell chemotaxis
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Leukocyte chemotaxis
Granulocyte migration

Neutrophil migration Count
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5
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25
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Tertiary granule membrane
Ficolin-1-rich granule membrane

Cytokine receptor binding
Cytokine activity
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Signaling receptor activator activity

DNA-binding transcription activator activity, RNA polymerase II-specific
G protein-coupled receptor binding

Immune receptor activity
Chemokine receptor binding
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Figure 4 Significant Gene Module and Enrichment Analysis of the Modular Genes.
(A-E) Five significant gene clustering modules. Functional enrichment analyses of the modular genes. (F) GO. (G) KEGG.
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endotoxins into the bloodstream, thereby inducing 
a pro-inflammatory cytokine response that leads to 
endothelial dysfunction, atherosclerosis and acute 
cardiovascular events [14]. KEGG enrichment 
analysis highlighted the importance of lipid and 
atherosclerosis, RA, NF-kappa B, IL-17 and Toll-
like receptor signaling pathways. Atherosclerosis 
is an inflammatory disease characterized by lipid 
 accumulation in the arterial wall [47]. Lipids and 
atherosclerosis are the pathological basis for the 
development of AMI. The pathogenesis of RA is 
associated with chronic inflammatory and immune 
system disorders [48]. Numerous studies have 
reported a significantly elevated risk of AMI and 
UC in patients with RA [49, 50]. NF-κB is involved 
in immunity, inflammation, cell proliferation and 
apoptosis [51]. In particular, overactivation of the 
NF-κB signaling pathway is closely associated with 
various inflammatory diseases [51].

IL-17 is expressed by various leukocyte subsets, 
such as gamma-delta (γδ) T cells, natural killer 
(NK) cells, NK T cells and neutrophils [52]. IL-17 
exacerbates the inflammatory response of plaque 
tissues, and promotes thrombosis and vulnerable 

plaque formation [52]. TLRs are clonal transmem-
brane signaling receptors that link intrinsic and spe-
cific immunity [53]. They are found primarily in 
macrophages, dendritic cells, NK cells and lympho-
cytes [54]. TLRs are activated by binding damage-
associated molecular patterns, microbial-associated 
molecular patterns and pathogen-associated molec-
ular patterns, thereby regulating inflammation and 
the immune response [55].

Eleven TFs that may regulate co-hub gene expres-
sion were identified with the TRRUST  database. 
However, colony-stimulating factor 1 receptor 
(CSF1R) was found to be outside the transcrip-
tional regulatory network. This finding might have 
been due to a lack of data in the TRRUST database. 
CSF1R is a type I single-transmembrane protein 
that is abundantly enriched in myeloid cells. CSF1R 
binds its endogenous ligands (CSF1 and IL-34) and 
activates downstream signaling pathways, including 
PI3K/AKT, JAK/STATs and MAPK, thereby regu-
lating the proliferation, differentiation, migration 
and activation of target immune cells [56]. Xiang 
et al.[56] have suggested that CSF-1R is a poten-
tial target for regulating inflammatory diseases. 
Furthermore, through further validation, four TFs 
(SPI1, RELA, NFKB1 and CEBPD) were found to 
be stably upregulated in AMI compared with UC. 
These TFs synergistically regulate co-hub genes 
(TNF, STAT3, ITGAX, ICAM1 and CCL1).

TNF acts as a pleiotropic cytokine, which directly 
induces the expression of inflammation-associated 
genes, induces cell death, and indirectly drives 
inflammation and immune responses [57]. Luo 
et al. [58] have proposed TNF-α as a novel bio-
marker for predicting plaque rupture in patients 
with ST-elevation myocardial infarction. Thus, 
inhibition of TNF-α may decrease the inflamma-
tory load of the body and stabilize plaques, par-
ticularly in people with multiple inflammatory 
diseases. TNF-α antagonists are important drugs 
in the treatment of UC [59]. However, long-term 
inhibition of TNF-α increases the risk of opportun-
istic infections and skin cancer [60]. To overcome 
such limitations, inhibition of TNF-α downstream 
inflammation-associated pathways may serve as 
an alternative. TNF activates caspase protease, 
JNK and NF-κB signaling pathways, thus regulat-
ing apoptosis, inflammation and immune processes 
[61]. Diminished DNA methylation in diseased 

Table 2 Top 20 Genes Ranked in cytoHubba.

Rank Degree Closeness EPC MCC

1 TNF TNF IL1B TLR2

2 IL1B IL1B TNF TNF

3 TLR2 CXCL8 TLR2 IL1B

4 CXCL8 TLR2 CXCL8 CXCL8

5 STAT3 STAT3 CCL4 CCL4

6 MMP9 MMP9 STAT3 STAT3

7 SPI1 SPI1 ITGAX ICAM1

8 FCGR3B CCL4 TLR8 CXCL1

9 TLR8 FCGR3B FCGR3B CXCL2

10 ITGAX TLR8 SPI1 IL1A

11 CCL4 ICAM1 MMP9 IL1RN

12 CSF1R CSF1R CSF1R PTGS2

13 ICAM1 ITGAX TREM1 CXCL3

14 PTGS2 PTGS2 CXCL1 MMP9

15 S100A12 CYBB CYBB CCL20

16 TREM1 CXCL1 S100A12 CXCR2

17 CYBB FOS ICAM1 TNFAIP3

18 FOS S100A12 S100A9 SOCS3

19 CXCL1 TREM1 LILRB2 ITGAX
20 FCGR2C FCGR1A FCGR2C CSF1R
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tissue during AMI induces SPI1 overexpression and 
overactivates the TNF-α/NF-κB signaling pathway, 
thus exacerbating myocardial tissue inflammation 
[62]. The NF-κB family has five members: NFKB1, 
NFKB2, RELA, c-REL and RELB [63]. These pro-
teins dimerize and form functional NF-κB. Among 
them, the NFKB1 gene promoter -94 insertion/dele-
tion ATTG polymorphism is associated with the 
risk and severity of acute coronary syndromes [64]. 
Chen et al. [65] have found that inhibition of the 
inflammatory pathway associated with v-rel avian 
reticuloendotheliosis viral oncogene homolog A 

(RELA) is an effective target for the treatment of 
UC. In addition, inhibition of the RELA/TNF-α 
signaling pathway in AMI protects cardiac function 
through anti-inflammatory effects [66].

CCAAT enhancer binding protein delta (CEBPD), 
a member of the CEBP family, is a TF that regulates 
many biological processes, particularly inflamma-
tion and immune responses [67, 68]. CEBPD is acti-
vated by inflammatory factors such as IL-6, IFN-α, 
IFN-γ and IL1B, and it participates in inflammation 
and immune regulation [67]. CEBPD is considered 
an inflammatory enhancer in aortic endothelial 

Degree

A EPC MCC

Closeness

B
Networks

Functions

Co-expression

Co-localization

Physical interactions

Pathway

Shared protein domains

Predicted

Genetic interactions

Leukocyte migration

Granulocyte chemotaxis

Granulocyte migration

Myeloid leukocyte migration

Leukocyte chemotaxis

Cell chemotaxis

Response to molecule of bacterial origin

Figure 5 Venn Diagram and Co-Expression Network of Hub Genes.
(A) Venn diagram, showing 11 overlapping hub genes identified by four algorithms. (B) Co-expression network of hub genes.
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cells, and it exacerbates tissue damage in concert 
with TNF-α [69]. CEBPD aggravates tissue dam-
age by inducing inflammatory gene expression in 
liver tissue, lung tissue and brain glial cells [70]. 
Moreover, CEBPD promotes macrophage polariza-
tion toward M1 and exacerbates tissue inflammation 
[71]. CEBPD and TNF have been found to be stably 
upregulated in patients with AMI and UC. Thus, the 
CEBPD/TNF axis may be a potential mechanism 
for the treatment of AMI and UC. However, this 
possibility must be further verified in in vivo and 
in vitro models.

STAT3 is an important regulator of cell prolif-
eration, differentiation, apoptosis, angiogenesis, 
inflammation and the immune response [72]. STAT 
proteins are activated by a variety of protein kinases, 
including Janus kinase, growth factor receptor, 
non-receptor tyrosine kinase and G protein-coupled 
receptor [73]. Among them, STAT3 is involved in 
atherosclerosis through the regulation of endothe-
lial cell function, macrophage polarization, inflam-
mation and the immune response [74]. STAT3 has 
four isoforms with different functions: STAT3-α, 
STAT3-β, STAT3-γ and STAT3-δ [74]. STAT3-α-
mediated activation of the IL-6/JAK2/STAT3 sign-
aling pathway is predominantly pro-inflammatory 
[74]. Jiang et al. [75] have constructed a UC model 
in rats and have reported anti-inflammatory protec-
tive effects via inhibition of the JAK2/STAT3 sign-
aling pathway, thereby decreasing IL-1β, IL-6 and 

TNF-α expression. However, STAT3-β promotes 
the expression of certain anti-inflammatory genes 
while inhibiting the synthesis of inflammatory fac-
tors [74]. These predominant anti-inflammatory 
effects may be associated with IL-10-mediated 
activation of STAT3 [76]. Li et al. [77] have found 
that targeting the activation of the IL-10/STAT3 
axis exerts cardioprotective effects by modulat-
ing the inflammatory response, myocardial fibrosis 
and apoptosis. In addition, activation of the IL-10/
STAT3 signaling pathway promotes macrophage 
polarization to the M2 type [78]. STAT3 and SPI1 
are overexpressed in patients with ankylosing spon-
dylitis and are closely associated with immune sys-
tem disorders [79]. Similarly, we found that STAT3 
and SPI1 were overexpressed in patients with both 
AMI and UC, thus suggesting that SPI1/STAT3 may 
be an important pathway leading to AMI and UC; 
however, further experimental verification is war-
ranted. Overactivation or inactivation of STAT3 
can lead to human disease [80]. Therefore, how to 
balance the activation of STAT3 must be further 
explored.

Integrin alpha-X (ITGAX) is member of the 
 integrin family [81]. ITGAX is considered a poten-
tial therapeutic target for various inflammatory and 
immune-associated diseases, such as periodonti-
tis, atherosclerosis, primary dry syndrome and IgA 
nephropathy [82–84]. Overexpression of ITGAX 
has been shown to activate the PI3k/Akt axis and 
promote angiogenesis in ovarian tumor tissues. 
However, no relevant animal experiments have 
been reported for ITGAX in AMI or UC.

ICAM-1 is a transmembrane glycoprotein 
expressed at low basal levels in immune cells, 
endothelial cells and epithelial cells [85]. ICAM-1 
expression is induced by multiple inflammatory 
cytokines and shows tissue-specific differences. 
ICAM-1 in endothelial cells is induced primar-
ily by TNFα or IL-1β, whereas in intestinal epi-
thelial cells, it is induced by IFNγ [86]. Freitas 
et al. [87] have demonstrated that circulating 
ICAM-1 levels are positively associated with the 
risk of coronary artery disease and are a potential 
marker of cardiovascular disease. The ICAM-1 
gene polymorphism is closely associated with the 
development of UC [88]. ICAM-1 plays a funda-
mental role in neutrophil crossing of the endothe-
lial cell layer [88]. Yu et al. [89] have found that 

Table 3 Information on the 11 Hub Genes.

Entry Gene 
symbol

Description

P01375 TNF Tumor necrosis factor
P01584 IL1B Interleukin-1 beta
O60603 TLR2 Toll-like receptor 2
P10145 CXCL8 C-X-C motif chemokine 8
P40763 STAT3 Signal transducer and 

activator of transcription 3
P14780 MMP9 Matrix metalloproteinase-9
P20702 ITGAX Integrin alpha-X
P13236 CCL4 C-C motif chemokine 4
P07333 CSF1R Macrophage colony-

stimulating factor 1 receptor
P05362 ICAM1 Intercellular adhesion 

molecule 1
P09341 CXCL1 C-X-C motif chemokine 1
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ICAM-1 accelerates atherosclerosis by promoting 
leukocyte infiltration. Moreover, upregulation of 
ICAM-1 is associated with excessive activation 
of the RELA/NLRP3 axis, and leads to dysfunc-
tion of the human umbilical vein endothelium by 
regulating inflammatory responses and oxidative 

stress [90]. Similarly, we found that both RELA 
and ICAM-1 were stably upregulated in the dis-
ease group.

C-C motif chemokine ligand 1 (CCL1), a CC 
chemokine family member, mediates the migra-
tion of monocytes to regions of inflammation [91]. 

–log10 (Pvalue)

–log10 (Pvalue)

8.468 9.477.66

A

B

8.001 10.526.89

KEGG pathway

Lipid and atherosclerosis
Rheumatoid arthritis
NF-kappa B signaling pathway
Malaria
Legionellosis
IL-17 signaling pathway
Viral protein interaction with cytokine and cytokine receptor
AGE-RAGE signaling pathway in diabetic complications
Amoebiasis
Toll-like receptor signaling pathway

Leukocyte migration

Gene ontology

Cellular response to lipopolysaccharide
Cellular response to molecule of bacterial origin
Cytokine-mediated signaling pathway
Cellular response to biotic stimulus
Cytokine receptor binding
Positive regulation of leukocyte migration
Positive regulation of NF-kappaB transcription factor activity
Response to lipopolysaccharide
Response to molecule of bacterial origin

Figure 6 Functional Enrichment Analyses of Hub Genes.
(A) GO. (B) KEGG. The left half-circle represents hub genes significantly enriched in different terms. Different colors on the 
right side represent different terms. *** P  <  0.001.
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Figure 7 Expression of 11 Hub Genes in GSE62646.
AMI, acute myocardial infarction; NL, normal. *P  <  0.05; ** P  <  0.05 and ≥0.001; *** P  <  0.001.
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Harpel et al. [92] have suggested that CCL1 and its 
receptor CCR8 are closely associated with inflam-
mation and atherosclerosis. CCL1 is upregulated 
in several immune diseases, such as rheumatic 
heart disease, atopic dermatitis and psoriasis [93, 
94]. CCR8 is activated by CCL1 and mediates the 
recruitment of T helper 2 cells to sites of inflamma-
tion [95]. Notably, CCL1 has no significant chemo-
tactic effect on neutrophils [96]. Olsen et al. [95] 

have demonstrated that elevated circulating CCL1 
is strongly associated with prognosis and mortal-
ity in colorectal cancer. Current studies on CCL1 
in AMI or UC are inadequate. In conclusion, our 
data indicated that TNF, STAT3, ITGAX, ICAM1 
and CCL1 are important targets for the treatment of 
patients with both UC and AMI.

Although previous studies have explored the hub 
genes associated with AMI and UC separately [97, 
98], most current animal studies have been limited 
to a single disease, thus failing to address the clini-
cal coexistence of multiple diseases. Moreover, few 
studies have explored the common molecular mech-
anisms between these diseases through advanced 
bioinformatics methods. We sought to elucidate the 
molecular mechanisms underlying AMI and UC, to 
provide novel insight into the clinical management 
of patients with these comorbidities. Decreasing 
mortality and improving quality of life in patients 
with AMI combined with UC may be achieved by 
further standardizing clinical management strate-
gies. However, this study has several limitations. 
First, only significant DEGs between disease and 
normal tissues were analyzed; consequently, cer-
tain genes that showed no significant changes in 
expression but played an important regulatory role 
were ignored. In addition, animal experiments are 
necessary to further reveal the causal relationship 
between these hub genes and the pathogenesis of 
the two diseases.

Table 4 Key Transcriptional Factors of Co-Hub Genes.

Key TF Description P-value Genes

RELA v-rel reticuloendotheliosis viral oncogene homolog A (avian) 5.91E-09 ICAM1, STAT3, ITGAX, 
TNF, CXCL1

CEBPA CCAAT/enhancer binding protein (C/EBP), alpha 3.70E-07 ICAM1, ITGAX, STAT3

SPI1 Spleen focus forming virus (SFFV) proviral integration oncogene spi1 6.71E-07 STAT3, TNF, ITGAX

NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 9.53E-07 ITGAX, ICAM1, TNF, 
CXCL1

SP1 Sp1 transcription factor 5.57E-06 ICAM1, TNF, ITGAX, 
CXCL1

CEBPD CCAAT/enhancer binding protein (C/EBP), delta 1.14E-05 TNF, CXCL1

SIRT1 Sirtuin 1 9.44E-05 ICAM1, TNF

BRCA1 Breast cancer 1, early onset 0.000133 CXCL1, STAT3

HDAC1 Histone deacetylase 1 0.000207 STAT3, ICAM1

STAT1 Signal transducer and activator of transcription 1, 91 kDa 0.00029 ICAM1, STAT3
JUN Jun proto-oncogene 0.00091 ITGAX, TNF

Figure 9 Transcriptional Regulatory Network.
Yellow represents transcription factors, and red represents 
genes.
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Figure 11 Expression of 11 TFs in GSE87473.
UC, ulcerative colitis; NL, normal.
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Conclusions

We used a bioinformatics approach to study patients 
with AMI combined with UC. We discovered many 
pathogenic mechanisms shared by AMI and UC and 
possibly mediated by the specified hub genes. Our 
research offers novel ideas to further investigate the 
molecular mechanisms underlying AMI combined 
with UC.
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