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Load forecasting is an important prerequisite and foundation for ensuring the
rational planning and safe operation of integrated energy systems. In view of the
interactive coupling problem among multivariate loads, this paper constructs a
TCN-GAT multivariate load forecasting model based on SHAP (Shapley Additive
Explanation) value selection strategy. The model uses temporal convolutional
networks (TCN) tomodel themultivariate load time series of the integrated energy
system, and applies the global attention mechanism (GAT) to process the output
of the network hidden layer state, thereby increasing the weight of key features
that affect load changes. The input variables are filtered by calculating the SHAP
values of each feature, and then returned to the TCN-GAT model for training to
obtain multivariate load forecasting results. This can remove the interference of
features with low correlation to themodel and improve the forecasting effect. The
analysis results of practical examples show that compared with other models, the
TCN-GAT multivariate load forecasting model based on SHAP value selection
strategy proposed in this paper can further reduce the forecasting error and has
better forecasting accuracy and application value.
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1 Introduction

In order to promote the achievement of the “dual carbon” goal and support China’s
ecological civilization construction and sustainable development, it is necessary to build a
clean, low-carbon, safe and efficient energy system (Zhang et al., 2023). The planning, design,
and operation of traditional energy subsystems are often separated from each other. The
coupling between different types of energy is not well reflected, leading to a decline in energy
utilization and safety performance. Integrated energy system (IES) is a new energy system
that integrates power, refrigeration, heating and other energy supplies (Ren et al., 2020; Chen
et al., 2021). It can realize the conversion, utilization, coordinated optimization and coupling
complementarity of multiple energies such as electricity, cooling, heat and gas. As the
physical carrier of the energy internet, IES can meet the diversified energy demand of the
economy and society (Yang et al., 2010), while improving the energy supply reliability and
comprehensive utilization of the system, reducing energy costs and carbon emissions, and
promoting high-quality development of the energy industry. Facing the complex and
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diversified energy supply coupling mechanism in IES, it is necessary
to accurately forecast the energy loads to ensure the rational
planning and safe operation of the energy system.

For the multivariate load forecasting problem in the integrated
energy system, two main methods are currently used: traditional
time series data analysis and machine learning (Sun et al., 2021;
Wang et al., 2022). In the face of one single load forecasting,
traditional methods such as vector autoregressive model (VAR)
and autoregressive integrated moving average model (ARIMA) are
mostly chosen (Yuan et al., 2017; Yang et al., 2018). These methods
only consider the variation law of one load, and do not correspond to
an effective adaptation mechanism for the coupling characteristics
of multivariate loads. Currently, forecasting models based on
machine learning are gradually applied in multivariate load
forecasting studies, such as general regression neural networks
(GRNN) (Li et al., 2018; Zhu, 2020), support vector regression
(SVR) (Fan et al., 2017), extreme learning machine (Liu et al., 2015),
etc. Compared with traditional methods, these models have achieved
certain results in multivariate forecasting. However, with the
development of new energy resources, the proportion of
renewable energy access and the complexity of user-side energy
demand are increasing, which deepens the features and dimensions
of the energy database. It is difficult to construct an accurate and
effective algorithm structure to simulate the actual energy supply
system and energy demand response, so the forecasting accuracy

needs to be improved. In recent years, deep learning has been more
and more widely used in the study of time series forecasting, among
which typical models are represented by long short-term memory
neural networks (LSTM) (Wang et al., 2019; Wang et al., 2020),
convolutional neural networks (CNN) (Liu et al., 2019), recurrent
neural networks (RNN) (Sfetsos, 2000), etc. Li et al. (2020) utilize
multi-column convolutional neural networks (MCNN) for
independent extraction and unified fusion of features of two-
dimensional load pixels in high-dimensional space, and input the
combined features into LSTM for load forecasting. Li et al. (2022)
develop a combined model based on the convolutional neural
network and gated recurrent unit. According to the model
structure adjustment strategy based on the maximum mean
difference, the model structure was dynamically adjusted to the
complex prediction environment.

The above deep learning models have been validated for data
mining and feature learning capability of time series, but they have
their own limitations. These models can not achieve deep mining
and optimal expression in the face of complex correlations among
multiple energy loads. It has been documented that combining
multi-task learning (MTL) with neural networks has certain
advantages in multivariate load forecasting (Tan et al., 2020; Wu
C et al., 2022). However, related studies only simply “hard-connect”
them without reflecting that each feature variable has a different
influence and contribution to different subtasks.

FIGURE 1
Energy flow relationships among subsystems of IES.
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In addition, we have investigated some new methods for time
series learning. Qin et al. (2022) introduce the LSTM mechanism
into Capsule Network (CapsNet) to capture long-term temporal
correlation of run-to-failure time series measured from degraded
mechanical equipment for accurate RUL estimation. The results
show that CapsNet outperforms CNN in image-based inference
tasks, but whether it retains its superiority in the forecasting of
multivariate loads remains to be investigated. Gaugel and Reichert.
(2023) adopt the transfer learning method to pre-train deep learning
network in the case of scarce industrial data. The results
demonstrate that transfer learning can enhance the performance
of time series segmentation models with respect to accuracy and
training speed. However, in the scenario of non-related datasets,
cases of negative transfer learning were observed as well. Therefore,
it is a difficult task to find which dataset is more relevant.

The temporal convolutional network (TCN) is a neural network
model that utilizes causal convolution and dilated convolution, which can
perform convolution in parallel (Bai et al., 2018). When the input
sequence is long and multi-dimensional, the gradients in TCN are
more stable and occupy less memory compared with other models,
which gives the network a faster processing speed and deeper
information mining capability when facing multivariate load
forecasting problems. The SHAP (Shapley Additive Explanation)

method is a game-theoretic-based additive feature attribution method
that can be used for local and global interpretation of arbitrary models
(Wu K. L et al., 2022). There is a lot of redundant information in the
training process of deep learning algorithms. The SHAP method is
chosen to provide global interpretation, which can reveal the relationship
between different feature variables and forecasting results. Meanwhile, it
canmeasure the influence of these features on each subtask, so as to filter
out the effective features of the data. The global attentionmodel (GAT) is
also used to weigh the useful information in TCN and suppress useless
information in this paper. The combination of the above methods can
efficiently process complex and correlated multi-dimensional time series
load data and is adapted to the interpretability study of the multivariate
load forecasting model.

Considering the characteristics of strong interaction and
coupling among multiple energy sources in integrated energy
systems, a TCN-GAT multivariate load forecasting model based
on SHAP value selection strategy is proposed in this paper. The
multivariate load data in IES with related influencing factors are
input into the TCN network, and the global attention mechanism is
applied to the hidden layer state of the network. The SHAP values of
the feature variables in the multivariate load forecasting task are
calculated by global samples. The features that contribute more to
the forecasting results are selected as input variables, and then
returned to the TCN-GAT model for training and learning to
obtain load forecasting results. This forecasting model can
quantify the different correlations of each load-influencing factor
in a weighted manner, thus achieving the purpose of decoupling and
analyzing complex coupled data for accurate and efficient
forecasting. Finally, it is verified by practical examples that the
multivariate load forecasting model proposed in this paper has
better learning ability and forecasting performance.

2 IES characteristics and SHAP method

2.1 Analysis of sub-energy characteristics
in IES

The integrated energy system (IES) is an energy balance system
that integrates multiple energy sources in a certain area through
advanced physical information technology and innovative
management models to achieve a highly coordinated “source-
grid-load” system (Tan et al., 2020). Compared with the

FIGURE 2
Input variable selection strategy based on SHAP values.

FIGURE 3
Causal and dilated convolution with expansion factor d = 1, 2, 4.
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traditional energy system, the integrated energy system has various
characteristics such as cross-complementary energy sources,
improved reliability and economy of energy supply, and
facilitation of large-scale renewable energy consumption. The
internal energy flow relationship of IES is shown in Figure 1.

The subsystems of IES have certain independence and interaction
according to its operation characteristics and transformation laws in
energy production and consumption, in order to meet the load demand
on the user side. As can be seen from Figure 1, IES consists of electrical
energy system, cooling energy system, thermal energy system and gas
energy system. It operates according to the mutual demand and energy
conversion production law among electricity, cooling, heat and gas loads,
so the multiple energy forms in IES are in a state of simultaneous
coupling. In addition, the types of energy input into IES includewind and
solar energy, which are susceptible to environmental changes. So external
environmental factors also have an influential role in the IES load
changes.

Multivariate load forecasting for integrated energy systems can
help achieve coordinated planning, interactive response and optimal
operation among multiple energy subsystems. The energy coupling
characteristic of IES determines that changes in one type of energy
demand will inevitably cause service providers to adjust the other
types of energy demand. Due to the complex structure of IES, the
amount of data accumulated in long-term operation is sufficient and
huge, so it is difficult to carry out simulation directly. Therefore, this
paper selects the deep learning method for analysis, adopts TCN
neural network to mine deep feature information in the data,
captures useful information in the training process with the help
of global attention mechanism, calculates SHAP values for input

variables filtering, and ultimately completes the multivariate load
forecasting task in IES.

2.2 SHAP method

SHAP (Shapley Additive Explanation) is a game theory-based
additive feature attribution method proposed by Lundberg
(Lundberg and Lee, 2017), which regards all input features in
machine learning as “contributors”. It quantifies the relationship
between input features and output results by calculating the
contribution of each feature to the forecasting sample. The
specific expression is as follows:

yi � ybase + f xi1( ) + f xi2( ) +/ + f xin( ) (1)
where yi is the prediction value of the model for sample xi, ybase is the
mean value of the sum of all sample predictions, and f (xi1) is the
contribution value of the first feature in the ith sample to the final
forecasting result. When f (xi1) > 1 indicates that the feature has a
positive effect on the prediction of the target value; otherwise, it has a
negative effect. Therefore, the SHAP value can not only show the
magnitude of feature influence, but also reflect the positivity or
negativity of feature influence in each sample.

The SHAPmethod can be used for local and global interpretation of
arbitrarymodels. The core idea is to calculate themarginal contribution of
the features to themodel output, and then interpret the “black boxmodel”
at both local and global levels. Since it is necessary to simultaneously
forecast the future moment values of electricity, cooling and heat loads in
an integrated energy system, and analyze the contribution of input feature

FIGURE 4
Residual block in TCN network.
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variables to the forecasting results, this paper adopts an input variable
selection strategy based on SHAPvalues, as shown in Figure 2. The SHAP
values of the feature variables in the multivariate load forecasting task are
calculated by global samples, and only the features that contributemore to
the forecasting results are selected as input variables to improve the
accuracy and effectiveness of the forecasting model.

The core of introducing SHAP value calculation into multivariate
coupling variable forecasting is to interpret themodel forecasting results
as a linear function of binary variables. Assuming that the input variable
vector of the forecasting model is x = (x1, x2, . . . , xn), where n is the
number of input variables. Then the global interpretation model based
on SHAP values can be expressed on the basis of the original
multivariate load forecasting model as follows:

f x( ) � g x′( ) � φ0 +∑n

i�1φixi′ (2)

where f(x) is the output of the multivariate load forecasting model,
g (x’) is the output of the interpretation model, φ0 is the forecasting
reference value, generally the average of the forecasting results, φi is
the SHAP value of the ith feature, and xi′ ∈ 0, 1{ }n is the binary
mapping variable of the input feature, representing the presence or
absence of the ith feature in that sample.

The input variable selection strategy based on SHAP values is
introduced to fit the load forecasting model as an interpretable linear
model. The contribution of each feature to the load forecasting
results can be obtained by calculating the SHAP values of each
feature variable in the global sample. The features with smaller
contributions are screened out to improve the multivariate load
forecasting performance.

3 TCN network and GAT mechanism

3.1 Temporal convolutional network

At present, the recurrent neural network architecture in the
context of deep learning is mainly used for forecasting integrated

energy loads, such as LSTM network, GRU network (Ye et al., 2022),
etc. Bai et al. (2018) believe that there exists a neural network model
that utilizes causal convolution and dilated convolution when
modeling time series data, namely, temporal convolutional
network (TCN). It can improve model performance and avoid
problems such as gradient disappearance, explosion or lack of
memory retention in recursive models. So it is adapted to
modeling tasks of time series.

When training a temporal convolutional network, the value at
time t of the previous layer only depends on the value at and before
time t of the next layer, which means TCN is a strictly time-
constrained model. Therefore, the TCN network has two main
constraints: the output and input should have the same length,
and the network should only use information from past steps. To
satisfy these temporal principles, a one-dimensional fully
convolutional network structure (1D FCN) is used in TCN,
where each hidden layer has the same length as the input layer,
and zero-padding is used to ensure that subsequent layers have the
same length. In addition, for the network output, TCN uses causal
convolution, which means the output of each layer at time step t is
no later than the region at the same time step of the previous layer.

When dealing with time series, the network is expected to retain
long-term information. However, pure causal convolution still has
the problem of traditional convolution neural networks, that is, the
length of time modeling is limited by the size of the convolution
kernel. In order to capture longer-term relevant information, it is
necessary to stack many layers linearly. So the researchers proposed
the concept of dilated convolution. Figure 3 shows a schematic
diagram of causal and dilated convolution.

Different from traditional convolution, the dilated
convolution allows the input to be sampled at intervals during
convolution, and the sampling rate is controlled by d in Figure 3,
which is the dilated exaggeration factor. The lowest layer d = 1,
indicating that every point is sampled as input. The middle layer
d = 2, indicating that one of every two points is sampled as input.
And so on. In general, the higher the layer, the larger the d used,
thus achieving a finite layer network with exponentially sized

FIGURE 5
Structure diagram of global attention model.
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receptive fields. Therefore, the TCN uses dilated convolution to
obtain input from every d steps at time t: xt-(k-1)d, . . . , xt-2d, xt-d,
xt, where k is the kernel size. Dilated convolution allows the
network to go back (k-1)d time steps before, allowing the
receptive field of each layer to grow exponentially.

The residual connection proves to be an effective method for
training deep networks. It enables the network to transfer
information in a cross-layer manner, thus obtaining a sufficiently
large receptive field. It not only speeds up the training process, but
also avoids the gradient vanishing problem of deep models. The
residual block constructed in this paper contains two layers of
convolution and nonlinear mapping. To normalize the input of
hidden layer, weight normalization is applied to each convolution
layer to counteract the gradient explosion problem. To prevent
overfitting, regularization is introduced through Dropout after the
convolution layer of each residual block. Meanwhile, the ReLU
activation function is added to the residual block after the two
convolutional layers to introduce non-linearity to the TCN. Figure 4
shows the final residual block.

3.2 Global attention model

The attention mechanism in deep learning draws on the
human attention mindset. It has been widely used in various

types of deep learning tasks, such as natural language
processing, image classification and speech recognition, and
has achieved remarkable results. The attention mechanism can
flexibly capture the relationship between local and global
samples. It observes the weight share of useful information,
and thus pays more attention to the parts similar to the input
elements and suppresses useless information.

The attention mechanism has been frequently used in machine
translation processes in recent years (Bahdanau et al., 2014). In this
process, Luong et al. (2015) proposed an effective attention model:
the global attention model (GAT). The model structure diagram is
shown in Figure 5.

The global attention model is characterized by considering all
hidden states of the encoder when deriving each context vector ct.
For each time step t, the model will derive a content-based score
function according to the current hidden state ht at the top layer
of the neural network and all source states �hs as follows:

score ht , �hs( ) � hTt Wa
�hs (3)

where Wa represents the weight of each source state. By comparing
the current target hidden state ht with the source hidden state �hs, a
variable-length alignment vector ats can be obtained. ats represents
the attention weight of each �hs, whose size equals the number of time
steps on the source side:

FIGURE 6
Structure diagram of TCN-GAT forecasting model.
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ats � exp score ht , �hs( )( )∑S
s′�1 exp score ht , �hs′( )( ) (4)

Using all source states �hs of the neural network as input, with the
alignment vector ats as the weight, a context vector ct can be derived. It
can capture relevant source-side information and help predict the
current target yt. ct is calculated as the weighted average of all
source hidden states:

ct � ∑
s
ats�hs (5)

Here a simple concatenation layer is used to combine the
information from both vectors, resulting in the following
attentional vector:

~ht � f ct , ht( ) � tanh Wc ct ; ht[ ]( ) (6)
Finally, the attention vector ~ht is fed through the softmax layer to

produce the predictive distribution with the following formula:

p yt
∣∣∣∣y < t, x( ) � softmax Ws

~ht( ) (7)

The GAT model uses the hidden state at the top layer of the
neural network in the encoder and decoder to predict the target
yt sequentially through the order: �hs →ats→ct→ ~ht. The
calculation path is clear and convenient. By combining the
GAT model with the TCN neural network, the feature
parameters in the network input that have a greater impact
on the results can be given greater weights, while reducing the

weights of non-critical features that have a lower impact, so as to
improve the accuracy and rationality of the load forecasting
model.

4 Multivariate load forecasting model

4.1 TCN-GAT forecasting model

In this paper, a multivariate load forecasting model under
the integrated energy system is constructed by combining TCN
neural network and global attention mechanism. The structure
diagram is shown in Figure 6. The time series data
corresponding to the collected electricity, cooling, and heat
loads with the relevant influencing feature parameters such as
horizontal irradiance, air temperature, station pressure,
humidity and so on are used as the input variables of the
TCN network. The GAT mechanism is applied to the state
output of the network hidden layer. In this case, the attention
mechanism is manifested by using multiple concatenation layers
to analyze the influence of different input feature parameters on
the forecasting results, quantifying them into feature weight
coefficients, and performing a weighted summation of the
forecasting results of electricity, cooling and heat loads
respectively. The key features affecting the load changes are
highlighted, and the less relevant features are weakened, so as to
achieve the purpose of internal decoupling and accurate

FIGURE 7
Structure diagram of multivariate load forecasting model based on SHAP value selection strategy.
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calculation within the coupled multivariate load forecasting
model. This paper uses the training set data to train and
optimize the model, and calculates the loss function value.
When the loss of the validation set reaches the minimum,
output the optimal model, and input the test set data into the
optimal TCN-GAT model for load forecasting analysis.

4.2 Multivariate load forecasting model
based on SHAP value selection strategy

Figure 7 illustrates the multivariate load forecasting model
based on SHAP value selection strategy proposed in this paper.
By inputting the multivariate load series data into the TCN-
GAT model, the forecasting results of electricity, cooling and
heat loads can be weighted and quantified according to the
different correlations of their influencing factors, respectively.
This paper filters the input variables by calculating SHAP values
of each feature, and then return them to the TCN-GAT model
for training and learning to obtain the multivariate load
forecasting results. It can further reduce the forecasting
error, remove the interference of low-correlation features on
the model, thus improving the forecasting effect. Combining
these two methods can effectively deal with complex and
correlated multi-dimensional time series load data, and adapt
to the interpretability study of multivariate load forecasting
model.

The multivariate load forecasting model based on SHAP value
selection strategy mainly follows the following four steps:

(1) Perform data pre-processing work such as gap data filling and
anomaly data repair for the collected IESmultivariate load series
data, and initially determine the feature parameters affecting the
load forecasting results.

(2) Input the time series data of electricity, cooling and heat loads
and related feature parameters into the trained optimal TCN-
GAT multivariate load forecasting model to forecast and
analyze these load values in the future.

(3) Calculate the evaluation indexes of the forecasting results, and
determine whether the expected accuracy is achieved. Output
the final results if it is achieved, otherwise, proceed to the
next step.

(4) Calculate the SHAP values of each feature and compare their
contribution to the forecasting results. Filter out the features
with less influence, keep the remaining input parameters, and
return to step (2) again for load forecasting.

5 Case analysis

5.1 Data collection

In this paper, the electricity, cooling, and heat load data from
Tempe campus of Arizona State University are used as
experimental data (AUS, 2023). Environmental factors
consider global horizontal irradiance, temperature, humidity,
average wind speed, average wind direction (angle from N),
and atmospheric pressure, in the Measurement and
Instrumentation Data Center on the official website of the
National Renewable Energy Laboratory (NREL) (NREL, 2023).
The data are selected from the nearest meteorological station to
the Tempe campus. The calendar rule considers weekday and
holiday conditions. The data are collected for 2 years from 1 July
2011 to 1 July 2013, in 15-minite steps. The training set,
validation set, and test set are divided into 7:2:1 intervals. The
experiments are implemented in Tensorflow framework using
Python language.

5.2 Evaluation indexes

Given that the constructed multivariate load forecasting model
requires prediction and analysis of multiple load types at the same

TABLE 1 TCN network hyperparameters.

TCN network hyperparameters Value

Number of convolutional kernels in the convolutional layer 64

Convolution kernel size 3

Expansion list [1, 2, 4, 8]

Number of neurons in the output layer 3

Learning rate 0.001

Optimization solver Adam

Loss function MSE

Accuracy index accuracy

Maximum number of iterations 300

Batch sample size 128

TABLE 2 The influence of neurons number in the Attention layer on the forecasting accuracy of the model.

Neurons number in the Attention layer Number of training parameters Loss function Model accuracy

4 95,311 6.07 × 10−4 0.9472

8 95,835 5.62 × 10−4 0.9482

16 96,883 5.04 × 10−4 0.9502

32 98,979 6.04 × 10−4 0.9490

64 103,171 6.53 × 10−4 0.9390
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time, root mean square error (RMSE) and mean absolute percentage
error (MAPE) are chosen as evaluation indexes in this paper. The
specific expressions are as follows:

ERMSE �
												∑n

t�1 yt − ŷt( )2
n

√
(8)

EMAPE � 1
n
∑n

t�1
ŷt − yt
yt

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ × 100% (9)

where yt is the actual value, ŷt is the predicted value, and n is the
number of samples involved in the calculation.

5.3 Model parameters setting

The accuracy of model prediction is strongly correlated with its
structural design and hyperparameter selection. To obtain the
optimal structural parameters of the model in this paper, the grid
search method is used here to determine the values of TCN network
parameters, and the parameter values of the GAT model are
determined by variable control method.

Experimentally, the number of convolutional kernels of the TCN
network is set to 64, and the expansion list is [1, 2, 4, 8]. The causal
network is chosen, the residual block is added to skip the
connections, and the Dropout layer with a deactivation rate of
0.1 is added to prevent overfitting. Batch normalization is used in
the residual block and ReLU is selected for the activation function.
To solve the sparse gradient and noise problem in the network,
Adam algorithm is selected for parameter adjustment and iteration,
which can update the neural network weights iteratively based on
the training data. The hyperparameters of the TCN network are set
as shown in Table 1.

The influence of neurons number in the Attention layer on the
forecasting accuracy of the model is analyzed by several
experiments, as shown in Table 2. According to its loss function
value and model accuracy, the model training effect is best when the
Attention layer is set to 16 neurons.

Here adopts an early termination mechanism for the TCN-GAT
model, which means the iterative training is stopped when the
detection data do not improve for 30 consecutive training sessions.
This not only ensures the generalization ability of the model by
stopping training in time before the model falls into overfitting, but
also prevents the model from underfitting due to too few training
times.

5.4 Comparative analysis of forecasting
results

5.4.1 Comparison of forecasting results based on
SHAP value selection strategy

Perform load forecasting for 10-dimensional input features,
including electricity load, cooling load, heat load, global
horizontal irradiance, temperature, humidity, average wind speed,
average wind direction, atmospheric pressure, and calendar rules,
and calculate the global SHAP values of each feature. Here, the
SHAP values of different features need to be obtained separately for
the electricity, cooling and heat load forecasting results. Through the
global interpretation of the SHAP method, the key characteristic
parameters that affect different load changes can be more directly
and clearly observed.

The global SHAP values of the 10-dimensional input features are
arranged in descending order, as shown in Figure 8. Each point in
the scatter plot represents a sample. The denser the sample, the
wider the vertical width. The abscissa is the SHAP value. The sample
points on the right side of the 0-axis indicate that the feature sample
has a positive influence on the forecasting result, while the sample
points on the left side indicate that the feature sample has a negative
influence. The vertical axis represents the actual value of the sample
itself. The redder the value, the larger the value. The bluer the value,
the smaller the value.

FIGURE 8
Diagrams of SHAP values of each feature on electricity load
forecasting (A), cooling load forecasting (B) and heat load
forecasting (C).
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As can be seen from Figure 8 that each feature variable has
different influences on the results of different forecasting tasks.
Table 3 presents the contribution ranking of all the feature variables
to the electricity, cooling and heat load forecasting results, from
which the following conclusions can be drawn:

(1) The load forecasting task has a strong autocorrelation, that is,
the load forecast value at a certain moment is closely related
to its historical data before that moment. The autocorrelation
of the electricity load is particularly obvious. This indicates
that there is a certain internal regularity and continuity of
each load series in the continuous time range.

(2) There is a strong correlation among electricity, cooling, and heat
loads. This is because the measurement area is a campus
environment, where cooling and heat demand is usually
accompanied by an increase in electricity load. This also
verifies the characteristics of the mutual coupling and
correlation of energy within IES as described in the previous
section, and proves the superiority of the multivariate load
forecasting model proposed in this paper.

(3) There is a strong correlation between multivariate loads and
external influencing factors. It can be seen from Figure 8 that
these feature variables have a non-negligible effect on the three
types of load forecasting results in this model. Since this paper
establishes an integrated forecasting model for multiple loads,
the input variables cannot be changed according to the
individual forecasted load. Therefore, seven feature variables

with the highest contribution to the forecasting results are
selected here, which are electricity load, cooling load, heat
load, temperature, global horizontal irradiance, calendar rule,
and atmospheric pressure.

The feature variables that have been selected by SHAP values are
input into the model again for forecasting. The evaluation indexes of
the two forecasting results are shown in Table 4. It is obvious that the
forecasting error is reduced, indicating that the forecasting accuracy
of the model is significantly improved after filtering the input
features, which proves the effectiveness of the input feature
selection strategy based on SHAP values.

5.4.2 Comparison of forecasting results of different
models

To verify the accuracy and effectiveness of the TCN-GATmodel
for multivariate load data forecasting, the model proposed in this
paper is compared with the other four forecasting models. The
comparison models are: the LSTM neural network model, which is
widely used in the load forecasting analysis of integrated energy
systems, the LSTM-GAT model, the TCN neural network model,
and the TCN-AT model, which combines the ordinary attention
mechanism with the TCN network. The experimental forecasting
results and evaluation indexes of different models are shown in
Figure 9 and Table 5.

The forecasting results for different loads show that the
electricity load has the highest forecasting accuracy, with an
average EMAPE of 3.544% lower compared to the cooling load

TABLE 3 Model input features filtered based on SHAP values.

Load type Electricity load Cooling load Heat load

Feature contribution ranking (in descending order from 10 to 1)

electricity load 10 9 9

cooling load 7 10 4

heat load 9 7 10

global horizontal irradiance 5 3 6

temperature 6 8 8

humidity 4 4 3

average wind speed 1 1 1

average wind direction 2 2 2

atmospheric pressure 3 5 7

calendar rule 8 6 5

TABLE 4 Comparison of model forecasting effects based on SHAP value selection strategy.

Load type

Electricity load Cooling load Heat load

MAPE
(%)

RMSE
/kW

MAPE
(%)

RMSE
/kW

MAPE
(%)

RMSE
/kW

original input 0.602 131.28 3.250 516.16 4.234 0.284

input filtered by SHAP values 0.515 109.91 3.175 478.63 3.784 0.255
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and 3.9102% lower compared to the heat load. This is due to the fact
that user’s electricity load is the most regular in time dimension and
less affected by external climatic factors and calendar rules, which
can be accurately predicted based on historical time series data
through the deep information mining capability and historical
behavior learning ability of TCN network. The cooling load
forecasting error is smaller than that of the heat load, which is
related to the environmental factors in the data collection area.
Arizona State University is in a tropical desert climate with high

temperature and dryness all year round. The cooling load demand is
significantly higher than the heat load, so the prediction is more
accurate and effective by learning the correlation information of the
cooling load. While the heat demand in this area is low, the annual
average heat load is 4.042 kW according to the original data
collection. Observing ERMSE, it can be seen that the heat load
supply is low and the error is around 0.251 kW–0.402 kW, which
accounts for a large proportion of the original load. Therefore, the
final mean absolute error of heat load is the largest, and the
forecasting accuracy is relatively the lowest.

Figure 9 shows the comparative analysis of the forecasting
values of each model on a typical day. It can be seen that the
forecasting errors of both LSTM and LSTM-GAT models are
larger than those of TCN and TCN-GAT models. This indicates
that the TCN network is superior to the LSTM network in terms
of the integrated forecasting and learning ability for
multivariate loads. The TCN-AT model has higher
forecasting accuracy compared with the TCN network alone,
and its EMAPE for electricity, cooling, and heat loads are lower
than the original network by 0.242%, 0.887%, and 0.58%,
respectively. It shows that the attention mechanism is
effective for the feature grasping among the coupled sub-
energy loads. The forecasting results of the TCN-GAT model
proposed in this paper have the smallest error with the actual
values. The EMAPE of its electricity, cooling, and heat loads are
0.515%, 3.175%, and 3.764%, respectively. It is demonstrated
that applying the global attention mechanism to the TCN
network enables the coupled multivariate load forecasting
model to be internally decoupled for training and learning,
which performs optimally compared to other forecasting
models. At the same time, when the load fluctuates, the
model in this paper can also achieve a good prediction effect
by correcting the future forecasting value through the actual
data of the previous moment.

In summary, the multivariate load forecasting model based on
SHAP value selection strategy proposed in this paper can deeply
explore the effective information in multivariate time series, and
improve the accuracy of forecasting by quantifying the
contribution of relevant influencing factors to the results. It has
superior performance compared with other traditional forecasting
methods.

FIGURE 9
Model forecasting of a typical day on electricity load (A), cooling
load (B) and heat load (C).

TABLE 5 Evaluation indexes of forecasting results of different models.

Models

Electricity load Cooling load Heat load

MAPE
(%)

RMSE
/kW

MAPE
(%)

RMSE
/kW

MAPE
(%)

RMSE
/kW

LSTM 0.934 187.86 6.845 1,088.2 7.300 0.402

LSTM-GAT 0.938 193.39 3.370 511.09 3.784 0.255

TCN 0.802 167.54 4.483 674.75 4.516 0.301

TCN-AT 0.560 119.06 3.596 569.89 3.936 0.260

TCN-GAT 0.515 109.91 3.175 478.63 3.764 0.251

The meaning of the bold value here indicates that the load forecasting error of the TCN-

GAT model is the smallest among all models.
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6 Conclusion

To address the problem of sub-energy interaction coupling in
integrated energy systems, this paper proposes a TCN-GAT
multivariate load forecasting model based on SHAP value
selection strategy. The model uses TCN convolutional neural
network to model the multivariate load time series, and applies
the global attention mechanism to process the state output of the
network hidden layer, which increases the weights of key features
that affect the load changes. The input variables are filtered by
calculating the SHAP values of each feature, and then returned to
the TCN-GAT model training to obtain multivariate load
forecasting results. This can remove the interference of features
with low correlation to the model, and improve the forecasting
effect. The following conclusions can be drawn from the example
analysis:

(1) There are strong autocorrelations and intercorrelations
among multivariate loads, meteorological factors and
calendar rules, with varying degrees of influence. After
SHAP value selection, the seven feature variables with the
highest contribution to the forecasting results are input into
the model, and the forecasting accuracy is improved. The
effectiveness of the input feature selection strategy based on
SHAP values is demonstrated.

(2) Among the forecasting results of the three types of loads, the
electricity load has the most regularity in the time dimension
and is least affected by the other feature variables, so its
forecasting accuracy is the highest. In contrast, the cooling
and heat loads are more influenced by climatic and
environmental factors, and the data curves are prone to
sudden changes and fluctuations. Therefore, the training and
learning effect is not as good as that of the electricity load,
resulting in a decrease in the forecasting accuracy.

(3) The TCN-GAT model proposed in this paper has the relatively
highest forecasting accuracy. It is demonstrated that applying
the global attention mechanism to the TCN network can deeply
explore the effective information in the multivariate time series,
and improve the forecasting accuracy by quantifying the
contribution of relevant influencing factors to the results,
which has a superior performance compared with the
traditional forecasting methods.

The difficulty in dealing with multivariate load forecasting
problems lies not only in studying their internal coupling and
correlation, but also in the data itself, such as high-frequency
disturbances and non-stationarity of load and meteorological
data. Meanwhile, in the analysis for time series, the accuracy and
forecasting ability of the model can be further improved by
determining the lag order of different input features. We did not

consider these issues in the model of this paper, but we will explore
them further in the subsequent work.

In the follow-up work, we can consider adding joint forecasting
of renewable energy sources in IES, such as wind energy,
photovoltaic, geothermal energy, biomass energy, etc.
Meanwhile, energy price is also one of the important
influencing factors on load change. At present, there are few
price impact analyses for integrated energy sources, which can
be the focus of future research.
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