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ABSTRACT
People are able to stop actions before they are executed, and proactively slow down 
the speed of going in line with their expectations of needing to stop. Such slowing 
generally increases the probability that stopping will be successful. Surprisingly 
though, no study has clearly demonstrated that the speed of stopping (measured 
as the stop-signal reaction time, SSRT) is reduced by such proactive adjustments. In 
addition to a number of studies showing non-significant effects, the only study that 
initially had observed a clear effect in this direction found that it was artifactually 
driven by a confounding variable (specifically, by context-independence violations, 
which jeopardize the validity of the SSRT estimation). Here, we tested in two well-
powered and well-controlled experiments whether the SSRT is shorter when stopping 
is anticipated. In each experiment, we used a Stop-Signal Task, in which the stop-
trial frequency was either high (50%) or low (20%). Our results robustly show that the 
SSRT was shorter when stop signals were more anticipated (i.e., in the high-frequent 
condition) while carefully controlling for context-independence violations. Hence, our 
study is first to demonstrate a clear proactive benefit on the speed of stopping, in line 
with an ability to emphasize going or stopping, by trading off the speed of both.
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INTRODUCTION
To achieve long-term goals, we need to be able to stop more immediate but unwanted or 
obsolete actions and impulses (response inhibition). For instance, response inhibition is critical 
when a pedestrian needs to stop themselves from stepping onto the street after a reckless 
driver unexpectedly runs a red light. In this scenario, response inhibition is largely reactive, i.e., 
the success depends on the in-the-moment ability to stop (Verbruggen, McLaren, & Chambers, 
2014; Wessel, 2018). When the need for stopping can be expected on the other hand (e.g., in 
case drivers run that particular red light on a daily basis), the success of response inhibition 
also depends on the ability to proactively adjust settings. In fact, it has been argued that the 
success of inhibition is largely dependent on proactive inhibitory control rather than on reactive 
control when stopping can be anticipated, as is the case in typical lab settings (Wang, 2013; 
Wessel, 2018).

In the popular Stop-Signal Task for example, participants need to execute a simple go task 
as fast and accurately as possible, unless an infrequent stop signal appears after a delay 
(the stop-signal delay, SSD); if such a stop signal appears, participants need to inhibit their 
already-initiated go response (Logan & Cowan, 1984). Response inhibition in this task has been 
described as a horse race between a go response and a stop response, running to execute 
and inhibit a response respectively. The success of inhibition depends on the relative speed of 
the go response (which can be measured as the overt reaction time to the go stimulus, or Go 
RT) versus the speed of the stop response (the stop-signal reaction time, SSRT; which cannot 
be overtly measured, but can be estimated under the assumptions of the horse-race model; 
Logan & Cowan, 1984; see Figure 1A). Participants typically slow down their go responses if 
stop signals can occur, which is commonly referred to as proactive slowing (Verbruggen & 
Logan, 2009a; Vink, Kaldewaij, Zandbelt, Pas, & Plessis, 2015). The adjustment furthermore 
happens in line with the frequency at which stop signals occur: slowing is more pronounced 
when stop signals appear relatively often (Bissett & Logan, 2011; Jahfari et al., 2012; Logan, 
1981; Leunissen, Coxon, & Swinnen, 2016; Logan & Burkell, 1986; Messel, Raud, Hoff, Skaftnes, 
& Huster, 2019; Messel, Raud, Hoff, Stubberud, & Huster, 2021; Ramautar, Kok, & Ridderinkhof, 
2004; Verbruggen & Logan, 2009a). These findings suggest that participants proactively slow 
down their go response in anticipation of possibly needing to stop.

Importantly, such proactive slowing of the go response by itself, and all else being equal, 
improves the likelihood that inhibition will be successful even if the latency of the stop response 
is not influenced at all (see Figure 1B). Still, while proactive slowing through its effects on going 
might affect response inhibition only indirectly (i.e., the outcome of the race is ‘rigged’ in favor 
of the stop response by slowing down the go response), neuroimaging studies have shown that 
also the processes involved in stopping are adjusted when participants expect stop signals to 
occur (for a review see Aron, 2011). For example, Ramautar et al. (2004) manipulated the stop-
trial frequency in an EEG study, and found that the amplitude and latency of the stop-P3 (i.e., 
an ERP component related to the stop response; Wessel & Aron, 2015) were larger and earlier 
when stop-trial frequency was high (50%) compared to low (20%). Furthermore, both Chikazoe 
et al. (2009) and Jahfari et al. (2012) used cues to indicate whether a stop signal was likely to 
appear or not, and showed that inhibition-related brain activity (defined as brain activity that 
associated with the stopping after a signal has been presented) was lower, and preparation-
related brain activity (brain activity associated with the anticipation of a stop signal) higher, 
when stopping was anticipated. Combined, these findings suggest that stopping seems to be 
facilitated in line with the extent that going is slowed down; this suggests that people strike a 
balance between going and stopping, and that this balance is shifted according to anticipations 
of needing to stop (Chikazoe et al., 2009; which is also supported by TMS research, see Jahfari, 
Stinear, Claffey, Verbruggen, & Aron, 2010).

Correspondingly, it can be expected that the speed of stopping (i.e., measured as the SSRT) is 
faster, the more stopping is anticipated (see Figure 1C). Yet, the vast majority of previous work 
has only found numerical evidence in favor of this idea (see Table 1; both in trial-level cuing and 
block-level manipulation contexts). Given the theoretical motivation for such an effect, stop-
related adjustments shown with fMRI and EEG, and the consistent observations of numerical 
trends in the expected direction, we consider that the nonsignificant results could simply be 
due to study-specific limitations. One recurring limitation, for example, is that sample size was 
rather low in most studies. Another concern about some of the previous studies is that the 



method that was used to estimate SSRT may not have been fully suited for the design at hand; 
specifically, many methods become inaccurate when proactive slowing is involved and are thus 
not suited to estimate the SSRT when stop-trial frequency is high (Verbruggen, Chambers, & 
Logan, 2013).

Interestingly, Bissett, Jones, Poldrack, and Logan (2021) recently reanalyzed data of 522 
participants and indeed initially found the expected result that the SSRT was shorter when 
stopping could be anticipated (i.e., when the stop-trial frequency was high, 40%, versus low, 
20%). However, they argued that their results could have been inaccurate because one of the 
key assumptions of the horse-race model was severely violated (i.e., the assumption of context 
independence, which refers to the idea that the go response is unaffected by the stop signal). 
Upon accounting for the data of the participants with severe violations, the effect of stop-
trial frequency on SSRT was eliminated. Consequentially, there have still been no studies so far 
that have shown the expected effect that stopping is faster when anticipated. Furthermore, 
the recent work by Bissett et al. (2021) highlights the need to check for possible context-
independence violations in such research.

In the present study, we aimed to clarify whether the SSRT is shorter when the need to stop 
is anticipated, while also checking for signs of context-independence violations that could 
confound such results. We conducted two well-powered experiments, in which we manipulated 
the stop-trial frequency (high: 50% versus low: 20%) in a typical Stop-Signal Task (see Figure 2). 
Both experiments were designed fully in accordance to the latest recommendations concerning 
task implementation and analysis of Stop-Signal Task data (Verbruggen et al., 2019), with the 
exception of having blocks with a high stop-trial frequency (which is typically discouraged to 
limit proactive slowing), since this was the objective of our study here. Nevertheless, we took 
some additional measures to account for proactive slowing (i.e., in the participant selection, 
feedback messages, and data analysis; see methods section) and conducted various checks 
to establish any violations of the context-independence assumption, in order to ensure the 
accuracy of our SSRT estimates. By doing so, we established that the SSRT is indeed shorter 
when stopping is anticipated, which importantly took place in the absence of signs of context-
independence violations.

Figure 1 The race between go 
and stop and the various ways 
in which proactive control 
could improve the success 
of response inhibition, as 
indicated by the probability 
of stopping, p(stop success): 
(A) base scenario with no 
proactive adjustments, (B) the 
effect of slowing down the 
go response (i.e., the Go RT 
distribution shifts to the right), 
and (C) the additional effect of 
speeding up the stop response 
(the SSRT distribution shifts 
to the left). Note that other 
factors, such as the onset of 
the go stimulus (Go!) or the 
delay of the stop signal (Stop!), 
remained unchanged.

Table 1 List of previous studies 
that have used stop-trial 
frequency to examine effects 
of proactive control on SSRT, 
plus their main findings.

* B = Bayes Factor.
1 Participants who had 
short SSDs on average, i.e., 
mean(SSD) < 300 msec.
2 Participants who had 
long SSDs on average, i.e., 
mean(SSD) > 300 msec.
3 Computed by us as Hedge’s g: 
i.e., the mean SSRT difference 
divided by the mean standard 
deviations (i.e., Cohen’s dav; 
Lakens, 2013) multiplied by 
an approximation of Hedges’ 
correction factor (see Goulet-
Pelletier & Cousineau, 2018). 
NA indicate that the effect size 
could not be computed due to 
missing information.

STUDY SAMPLE 
SIZE

MANIPULATION MEAN SSRT 
DIFFERENCE

RESULTS

AUTHORS YEAR HIGH LOW REPORTED EFFECT 
SIZE3

TEST p

Logan & Burkell 1986 12 80%, 50% versus 20% plotted NA F(2,44) = 1.34, MSe = 4789 Insig.

Ramautar et al. 2004 14 50% 20% plotted NA F(1,13) = 0.01 0.91

Ramautar et al. 2006 16 50% 20% –10 msec –0.25 F-test Insig.

Verbruggen & Logan 
(Exp. 5)

2009a 18 70% 30% –13 msec -1.1 F < 1 Insig.

Bissett & Logan 2011 24 40% 20% –19 msec NA F(1, 23) = 3.07, MSe = 1395 <0.10; B = 1.58

Jahfari et al. 2012 16 50% 25% –19 msec -0.41 F-test Insig.

Leunissen et al. 2016 22 40% 20% –1 msec -0.03 t = 0.17 0.869

Messel et al. 2019 28 66% 25% –24 msec -0.45 z = –1.62 0.106

Bissett et al. 2021 1361 40% 20% –16 msec NA ANOVA <0.001

Bissett et al. 2021 882 40% 20% –4 msec NA ANOVA 0.24

Messel et al. 2021 22 66% 25% –20 msec -0.39 z-test 0.354
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METHODS
PARTICIPANTS

For the first experiment (Experiment 1), we recruited 50 Psychology Bachelor students of Ghent 
University via an online platform (SONA) to participate in the experiment online. Nine participants 
were excluded according to predefined (and previously used, see Doekemeijer, Verbruggen, & 
Boehler, 2021) criteria: (1) incomplete data (2 participants excluded); (2) the experiment not 
being the main focus on the web browser at any time during the experiment (4 participants); 
(3) poor performance on go trials (go accuracy < 90%; 3 participants); (4) poor performance on 
stop trials (p(respond|signal) < 30% or > 70%, more on this below; 0 participants); (5) evidence 
for a violation of the context-independence assumption (average RT on failed stop-trials > 
average Go RT on go trials; 0 participants); and (6) slowing over the course of the experiment 
(Go RT in the first block < 1.5 times the Go RT in the last block of each condition; 0 participants). 
So, the final sample consisted of 41 participants: 39 female and two male, aged 19 (SD = 3.17) 
on average; meaning that our final sample had a rather severe gender skew.

For the second experiment (Experiment 2), we followed the same procedure as in Experiment 
1 and recruited 64 participants. A total of 18 were excluded according to the above criteria: 
(1) incomplete data (8 participants); (2) the experiment not being the main focus on the 
browser at any time during the experiment (2 participants); (3) poor performance on go trials (5 
participants); (4) poor performance on stop trials (3 participants); (5) evidence for a violation of 
the context-independence assumption (0 participants); and (6) slowing over the course of the 
experiment (0 participants). The final sample consisted of 46 participants, of which 42 female 
and four male, again showing a gender skew. The average age of the sample was 19 (2.23).

Using G*Power (Faul, Erdfelder, Lang, & Buchner, 2007), we conducted sensitivity analyses to 
determine the effect sizes that we would be able to detect for a (two-tailed) paired t-test with 
α = β = 0.05 and our above-mentioned sample sizes. For Experiment 1 (n = 41) and Experiment 
2 (n = 46), we would be able to detect effects of size 0.58 and 0.54, respectively.

TASK AND PROCEDURE

We used the same Stop-Signal Task with visual go and stop signals (programmed in JsPsych, 
De Leeuw, 2015) in both experiments; both experiments were conducted online (hosted on 
the Ghent University staff webspace); the research was conducted according to the ethical 
rules presented in the General Ethical Protocol of the Faculty of Psychology and Educational 
Sciences of Ghent University. On go trials, participants needed to indicate whether an arrow 
(the go stimulus) was pointing left or right, using the left or right arrow-key respectively; on stop 
trials, an additional stop signal appeared as a red box around the go stimulus after a variable 
delay (stop-signal delay, SSD). Each trial started with a fixation cross (shown for 250 msec), 
followed by the go stimulus (shown for 600 msec), the stop-signal after the SSD (on stop trials 
only; shown after the SSD until the start of the blank space), and a blank space (that had a 
variable duration between 750–950 msec) (see left section of Figure 2 for a visual depiction). 
The SSD started at 200 msec and was subsequently updated after each stop trial according to 
an adaptive staircase procedure: if participants failed to inhibit their response on a stop trial, the 
SSD decreased by 50 msec (down to a minimum of 50 msec); if participants were successful, the 
SSD increased by 50 msec (up to a maximum of 550 msec). This procedure has been shown to 
result in about a 50% probability to respond on a stop trial, p(respond|signal), which is optimal 
for estimating SSRT (Band, Van der Molen, & Logan, 2003). Furthermore, since the tracking 
adjusts to the participant’s performance, it may automatically accounts for (some) proactive 
slowing. Importantly, for the tracking to work properly, participants were instructed to respond 
as fast and accurately as possible to both go trials and stop trials, and were discouraged from 
waiting for the stop signal to occur.

The experiments consisted of eight experimental blocks of 160 trials each, in which we 
manipulated the stop-trial frequency on a block level: in four blocks the stop signal appeared 
on 50% of the trials (“high-frequent” blocks), while in the other four blocks the stop signal 
appeared on 20% of the trials (“low-frequent” blocks). Participants were informed at the start 
of each block on the frequency of the stop signals. In Experiment 1, the blocks alternated 
between high- and low-frequent; in Experiment 2, we clustered the low- and high-frequent 
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blocks together, creating one stretch of low-frequent blocks and one of high-frequent blocks 
(each consisting of four blocks; see right section of Figure 2). The starting block/cluster of blocks 
was counterbalanced across participants, and the participants were aware of this manipulation.

A practice block preceded the experimental blocks. The practice block consisted of two phases: 
in the first phase, participants received instructions on the go trials and subsequently practiced 
with 8 go trials; in the second phase, participants received instructions about the stop trials and 
then practiced with 40 trials. Notably, in Experiment 1, the stop-trial frequency in all practice 
stop trials was 20%, so the participants did not practice with any high-frequent blocks. Since we 
had clusters of blocks in Experiment 2, we changed this procedure slightly there: participants 
practiced with a short block (20 trials) with 20% stop-trial frequency before starting the cluster 
of low-frequent experimental blocks and practiced with a short block with 50% stop-trial 
frequency before the high-frequent experimental blocks.

After the practice block(s) and experimental blocks, participants received a feedback screen 
containing their average reaction time on go trials, the amount of go trials that they had not 
responded to (‘go omissions’), and the p(respond|signal) of the current and previous block of 
the same block type. The feedback screen also contained warnings if (1) they had slowed down 
more than 10% compared to their previous average reaction time of the same condition, (2) 
they had more than 2% go omissions or (3) they responded to 30% or fewer stop trials (which 
implies that the participants were waiting excessively on the stop signal to occur), and where 
reminded to not wait for the stop signal to occur.

ANALYSIS PLAN

All analyses were conducted in R version 4.0.3 (R Core Team, 2014); all data and analyses 
scripts are available on OSF: https://osf.io/vfm8b/. We first investigated the go performance in 
the two conditions. In line with previous work, we expected that the mean reaction time on go 
trials (mean Go RT) and the amount of choice errors (i.e., pressing the wrong button) would be 
lower in the high-frequent blocks than in the low-frequent blocks. We additionally expected the 
rate of go omissions (i.e., non-responses on no-signal trials) to be higher in the high-frequent 
condition than in the low-frequent condition (Verbruggen & Logan, 2009a), despite the fact 
that this was clearly discouraged by instruction. We conducted paired t-tests to test these 
hypotheses (using base R) and established the corresponding effect size (Cohen’s d; using the 
‘rstatix’ R package, Kassambara, 2021).

We investigated the effect of proactive control on the speed of stopping by estimating SSRTs 
using the integration approach with replacement of go omissions (Verbruggen et al., 2019). 
In this approach, SSRTs are estimated from the Go RTs, the SSDs, and the overall probability to 
execute the go response while a stop signal was present, p(respond|signal) (Logan & Cowan, 
1984; Verbruggen et al., 2019). Specifically, Go RTs are ranked from short to long and the nth 
Go RT is determined, in which n equals the participant’s p(respond|signal) times the number of 
no-signal trials. Subsequently, the mean SSRT is calculated as the nth Go RT minus the average 
SSD. In the specific version we used, go omissions are replaced by long Go RTs (here: 1250 msec) 
before ranking them. This version has been shown to be most accurate among typical SSRT 
estimation approaches, and to be invariant to the shape of the Go RT distributions (Verbruggen 
et al., 2019). Still, as an extra safeguard against a possible confounding influence of slowing 
continuously over the course of the experiment, we ran an additional analysis, in which we 
explicitly accounted for continuous slowing by estimating the SSRT per block, and subsequently 
averaging them to obtain an unbiased SSRT (as done before by Verbruggen, et al., 2013).

Figure 2 Overview of 
experiment set-ups for 
Experiment 1 and Experiment 
2. (left) The Stop-Signal 
Task that we used in both 
experiments; the stop trials 
were randomly interleaved 
with go trials and comprised 
either 50% (high-frequent 
condition) or 20% (low-
frequent condition) of the 
trials within a block. (right) The 
sequence of high- and low-
frequent blocks; the starting 
block was counterbalanced 
between participants.

https://osf.io/vfm8b/
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Note that we additionally fit a more novel, parametric model to our data in an exploratory 
analysis to estimate SSRTs, while accounting for trigger failures (i.e., instances where the stop 
response was not triggered by the stop signal). However, the model did not adequately capture 
our (high-frequent) data in Experiment 1. We hypothesized that this may be due to either (1) 
the feedback procedure, in which participants got feedback on their performance directly before 
switching to another block type; resulting in feedback that may not immediately be relevant, 
given that participants likely approached the two types of task blocks somewhat differently 
(e.g., differential degrees of proactive slowing); (2) the fact that participants never practiced 
with the high-frequent condition (because training was exclusively done with the more typical 
low-frequent condition); and/or (3) that the previous block type may have had carry-over 
effects into the block of the other block type (e.g., which was supported by our finding that 
the difference between low- and high-frequency blocks was smaller at the very beginning of a 
block than towards the end of a block, see Figure A in the Appendix). In Experiment 2, we solved 
these issues in the design: we had consecutive blocks of the same block types, and a practice 
phase preceding both experimental phases at the respective stop-trial probability. However, 
when modeling the resulting data, the misfit remained in Experiment 2, suggesting that these 
factors did not drive the factor underlying this misfit. We further report our findings and our 
(unsuccessful) attempts to solve the misfit in the supplementary materials on OSF.

RESULTS
GO PERFORMANCE

An overview of the performance on go trials is provided in Table 2. Here, slowing was defined 
as the difference between mean Go RT in the first block minus the mean Go RT in the last block 
of the same condition. Overall, there was negligible across-block slowing within conditions and 
experiments.

As expected, we found that the Go RT was significantly and consistently longer in the high-
frequent condition than the low-frequent condition. We also found that participants made 
significantly more go omissions in the high-frequent condition than the low-frequent condition, 
in line with Verbruggen and Logan (2009a). We additionally found that participants made 
fewer choice errors in the high-frequent than low-frequent condition. Overall, these findings 
correspond to previous reports showing that people proactively adjust their go response in 
anticipation of stop signals (Bissett & Logan, 2011; Elchlepp, Lavric, Chambers, & Verbruggen, 
2016; Leunissen, et al., 2016; Logan, 1981; Logan & Burkell, 1986; Ramautar et al., 2004) and 
in particular, that people respond more cautiously (Jahfari et al., 2012; Verbruggen & Logan, 
2009a).

EXPERIMENT 1 (n = 41) EXPERIMENT 2 (n = 46)

HIGH LOW t (40) p dZ HIGH LOW t (45) p dZ

Go trials

Slowing 31 (110) 18 (56) – – – 7 (67) 18 (40) – – –

Go RT 500 (81) 427 (61) 10.25 <0.001 1.60 521 (112) 430 (70) 9.54 <0.001 1.41

Go omissions 2.9 (3.0) 0.8 (1.4) 4.70 <0.001 0.73 2.6 (2.7) 0.7 (0.9) 4.88 <0.001 0.72

Choice errors 1.3 (1.3) 2.1 (1.8) –4.11 <0.001 –0.64 1.2 (1.2) 2.0 (1.8) –3.90 <0.001 –0.58

Stop trials

SSD 260 (83) 185 (65) – – – 275 (97) 182 (74) – – –

p(respond|signal) 49.1 (4.1) 51.3 (3.1) – – – 48.7 (5.0) 51.1 (2.1) – – –

SRRT 434 (56) 389 (50) 9.28 <0.001 1.45 458 (81) 395 (65) 11.07 <0.001 1.63

SSRT 224 (38) 235 (41) –3.40 0.002 –0.53 231 (24) 243 (25) –3.17 0.003 –0.47

SSRT per block 226 (32) 237 (39) –3.21 0.003 –0.50 231 (24) 244 (25) –3.39 0.001 –0.50

Table 2 Per experiment, an 
overview of the go and 
stop performances for 
high- versus low-frequent 
conditions, and the results 
of the corresponding paired 
t-test if applicable. Standard 
deviations are listed inside the 
parentheses.

dz = Cohen’s d; SSD = stop-
signal delay; SRRT = signal-
respond reaction time; 
SSRT = stop-signal reaction 
time as estimated using the 
integration approach with 
replacement of go omissions; 
SSRT per block = averaged 
SSRT calculated per block 
(i.e., to account for proactive 
slowing).

Note: Accuracy (i.e., go 
omissions, choice errors; and 
p(respond|signal)) is reported 
in percentages; latency (all 
other variables) is in msec.
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STOP PERFORMANCE

Again, the overview of the stop performance can be found in Table 2. In addition, we have 
plotted the overall participants’ probabilities to stop as a function of SSD (i.e., the “inhibition 
function”) and SSD distributions in the Appendix (see Figure B; individual plots can be 
found on OSF).

Before estimating the SSRT, we checked whether our data would provide accurate estimates. 
We established that the p(respond|signal) had adequately converged to 50%, as was 
expected from the adaptive staircase procedure. Furthermore, we checked for any context-
independence violations in four ways. First, we checked whether the average reaction time 
on failed stop trials (signal-respond RT, or SRRT) was numerically lower than that of the Go 
RT (which was the case, see Table 2). Second, we checked whether the mean SRRT increased 
progressively over SSD. Third, we plotted the cumulative density function of the Go RT on go 
trials, SRRTs on stop trials with short SSDs (i.e., all values below the mean SSD), and SRRTs 
on stop trials with long SSDs (all values over the mean SSD); and established whether these 
functions had a common minimum but different slopes in order of Go RT (least steep), SRRTs 
on long-SSD trials (steeper), and SRRT on short-SSD trials (steepest) (Verbruggen & Logan, 
2009b). Lastly, we applied the check developed and used by Bissett et al. (2021), with which 
they showed that context independence was violated in their investigation on the effect of 
stop-trial frequency on SSRT. This check entails computing the differences between SRRT and a 
matching Go RT (i.e., the RT of the closest, accurate go trial that preceded the failed stop trial); 
positive values would indicate context-independence violations. Ultimately, we established 
that none of the four checks indicated that the context independence assumption was 
violated1 (see Figure C and Figure D in the Appendix for the last three checks for Experiment 1 
and Experiment 2, respectively).

Since our data seemed to allow for accurate SSRT estimation, we applied the integration 
approach with replacement of go omissions per condition and experiment. We found that the 
mean SSRTs were shorter in the high-frequent blocks than the low-frequent ones (see Table 1). 
In order to further safeguard against any possible confounding influence of continuous slowing 
over the course of the experiment (and possibly more so for the high-frequent condition), in 
a subsequent analysis, we applied another method that estimates the SSRTs per block (again 
using the integration method with replacement), and subsequently averages them (Verbruggen, 
et al., 2013). We again found that the mean SSRTs were lower in the high-frequent blocks than 
the low-frequent blocks.

In an additional analysis suggested by a reviewer, we checked whether our effect could be 
attributed to (a build-up of) reactive adjustments to previous trials (i.e., whether the effect may 
be explained by sequential effects, as suggested earlier by Bissett & Logan, 2011; evidence of 
such buildups in our data can be seen in Figure A in the Appendix) rather than (or in addition to) 
the proactive adjustments made by the participants. Specifically, we accounted for sequential 
effects of the directly preceding trials by estimating the SSRT on exclusively go and stop trials 
that had been preceded by a go trial; we still found a significant difference in SSRT; Experiment 
1: SSRThigh = 222 (SD = 36) msec, SSRTlow = 235 (43) msec; t (40) = –2.76, p < 0.05; Experiment 2: 
SSRThigh = 226 (24) msec, SSRTlow = 242 (25) msec; t (45) = –4.03, p < 0.001.

So, our findings robustly indicated that participants have a shorter SSRT when stop trials are 
more common, and that this effect was neither driven by confounding effects of proactive 
slowing nor by violations of the context-independence assumption of the horse-race model 
underlying SSRT estimation nor sequential effects.

DISCUSSION
In this paper, we investigated the effect of proactive control on the speed of stopping (estimated 
as the SSRT), which we examined by manipulating the stop-trial frequency (high: 50% versus 
low: 20%) in two experiments employing a typical Stop-Signal Task. We expected to find that the 

1	 Although we thus did not find consistent signs of (strong) context-independence violations in our data, 
we did find two patterns in our Figures that were inconsistent with the predictions of the horse-race model. 
We further elaborate on these inconsistences in Figure C and D of the Appendix.
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speed of the stop response would be faster when stopping could be anticipated (i.e., in the 50% 
condition), despite this not having been convincingly demonstrated yet. Following the latest 
recommendations with respect to experiment set-up and SSRT estimations (see Verbruggen 
et al., 2019), we established in two experiments that people indeed proactively adjusted 
their stop response in line with the frequency of the stop signal, and thus in line with their 
anticipations. Specifically, they displayed shorter SSRTs when stop-trials are more frequent. This 
study is therefore the first to clearly demonstrate that there is an effect of stop-trial frequency 
on the speed of the stop response, and thereby resolves the perceived discrepancy between 
the neuroimaging studies that show that stopping is affected by such anticipation on the one 
hand (e.g., Chikazoe et al., 2009; Ramautar et al., 2004, 2006) and behavioral work that showed 
insignificant results on the other (see Table 1).

Together with the well-known finding that people slow down their go responses in anticipation 
of needing to stop (which we also observed here), our main finding that stopping is sped up 
reinforces the idea that people balance the demands of the go response and stop response and 
that this balance is adjusted proactively (Chikazoe et al., 2009; Jahfari, et al., 2010; Verbruggen 
& Logan, 2009a; in addition to reactively adjusting within a given block, Strayer & Kramer, 1994, 
which we also briefly explored in Figure A in the Appendix). Although adjustments to the go 
response alone can already (to some extent) explain why stopping is improved at a behavioral 
level (as in Figure 1B), we here show that the latency of the stop response is also adjusted 
(Figure 1C), indicating that proactive control improves inhibition in two separable ways.

Still an important but unanswered question concerns how the stop response is affected 
proactively. For one, it is unclear at which stage(s) the stop response is improved, i.e., 
at the attentional, selection, and/or execution stage (Verbruggen et al., 2014). Another 
unanswered question concerns the role of trigger failures in the effect of proactive inhibitory 
control on the stop response. Trigger failures are instances where the stop response was not 
initiated, meaning that inhibition was doomed to fail. These failures have recently received 
ample attention in the response-inhibition field, initially because they can lead to incorrect 
conclusions about the SSRT if they are ignored (i.e., SSRTs are overestimated if trigger failures 
are ignored; Matzke, Love, & Heathcote, 2017). Additionally, trigger failures have been found 
to primarily explain various inter-individual response inhibition differences (e.g., people 
with ADHD have more trigger failures than healthy controls; Weigard, Heathcote, Matzke, 
& Huang-Pollock, 2019) as well as a prominent intra-individual difference (i.e., the rate of 
trigger failures is lower when stopping is rewarded compared to unrewarded; Doekemeijer, 
Verbruggen, & Boehler, 2021). In line with this emerging view that trigger failures are an 
important feature of stop performance, it seems plausible that proactive control primarily 
modulates the rate of trigger failures rather than (or in addition to) the SSRT. We attempted 
to answer this question here by applying a novel parametric model that is able to dissociate 
trigger failures versus SSRT, but were unsuccessful in doing so given that the model did not 
capture our high-frequent data well (see OSF for more detail: https://osf.io/vfm8b/?view_
only=1bd83355355745e1a5a00e90b64599d5). This means that the results of this additional 
analysis are, at this point, inconclusive. So, our work clearly showed that there is an effect 
of proactive control on the stop response, but more work is needed to validly delineate how 
proactive control affects the stop response exactly.

More generally, our finding that the stop response is proactively adjusted was expected 
from the (numerical) trend-level effects on the SSRT that had been reported in previous 
studies. Most studies had insignificant results, presumably due to limited sample sizes2 and 
potentially by other factors, like the method that is used to estimate the SSRTs, for which the 
recommendations have evolved over recent years (Verbruggen et al., 2013; Verbruggen et 
al., 2019). A pertinent and recent exception is the study of Bisset et al. (2021). In that study, 
the authors initially established significant SSRT differences in a data set where stop-trial 
frequency had been manipulated (high: 40% versus low: 20%), but also found that the effect 
seemed to be caused by context-independence violations that happen when the stop signal 

2	 Based on a reviewer’s suggestion, we have conducted an ad-hoc meta-analysis (using the ‘meta’ package 
in R, Balduzzi, Rücker, & Schwarzer, 2019); see supplementary analysis on OSF), which showed that the previous 
studies pooled effect size (Hedge’s g) was –0.41 (i.e., a medium effect size, as we also found in our studies). 
This provides further evidence that the insignificant trend-level findings may indeed have been due to limited 
sample sizes.

https://osf.io/vfm8b/?view_only=1bd83355355745e1a5a00e90b64599d5
https://osf.io/vfm8b/?view_only=1bd83355355745e1a5a00e90b64599d5
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follows the go stimulus very rapidly (i.e., at a short SSD). After accounting for that by excluding 
participants accordingly, the stop-trial probability effect on SSRT in their study disappeared, 
leading the authors to conclude that it was an artifact of the context-independence 
violations observed. Interestingly, in our study, we conducted four checks, including the one 
described by Bissett et al. (2021), and found no evidence that the assumption of context 
independence was violated in our sample. Possibly, the difference in findings can be attributed 
to differences in the complexity of the go task: we used simple stimulus-response mappings 
(i.e. arrow images that correspond to the arrow-key responses), whereas Bissett et al. (2021) 
used rather complex mappings (multiple shapes that correspond to arbitrary responses). This 
idea is further supported by a finding of Sánchez-Carmona et al. (2021) who used a simple go 
task and similarly to the present study did not find any evidence for context-independence 
violations. More research is however needed to structurally investigate whether (and if so, why) 
stimulus-response mappings may indeed relate to context-independence violations, which is 
an important venue to explore given Bissett et al. (2021)’s conclusion that such violations 
could critically undermine a large portion of the Stop-Signal Task literature. In this sense, our 
findings are reassuring in that context-independence violations are thus not ubiquitous in 
Stop-Signal Task data.

One limitation of our study, however, is that the integration method used to estimate the 
SSRT assumes that the stop response plays out equally on all trials, and thus that the SSRT 
is independent of SSD (i.e., the assumption of “stop context-independence”). In contrast to 
the violation of context-dependence described above, we note that the task designs used 
in our study potentially allows for violations of this stop context-independence assumption. 
Specifically, the upper bound of the SSD staircase was very close to the end of each trial (i.e., 
50 msec before the end of the trial), so it is likely that the stop stimulus was gone before the 
stop response could run to full completion when SSDs were long. Although perception is not 
perfectly correlated with the exact duration of stimulation (e.g., Hawkins & Shulman, 1979), 
it is possible that the SSRT could therefore be prolonged on stop trials with particularly long 
SSDs (which were more prevalent on high-frequent blocks), meaning that violations of stop 
context-independence may be present in our (particularly high-frequent) data. However, it is 
unlikely that those potential stop context-independence violations confounded our finding 
that stopping is faster when anticipated, as the violations predict SSRT to be longer on high-
frequent blocks, which is the opposite pattern of what we found here.

In summary, response inhibition can be proactively adjusted according to one’s anticipations of 
needing to stop. This proactive adjustment happens both by modulating the go response (i.e., 
by responding more cautiously) but also by modulating the stop response. Here, we particularly 
found evidence that the stop response is sped up (i.e., the SSRT is shorter) when stopping is 
anticipated (as estimated by two established variants of the non-parametric integration 
approach). Moreover, given the discrepancy between our results and those of Bissett et al. 
(2021) on the topic of context-independence violations of the horse-race model (which 
jeopardize the validity of the SSRT estimates) occur, more research is needed on establishing 
under what circumstances they arise.
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