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ABSTRACT 

INTER-RATER RELIABILITY OF STATISTICS BASED ON 

RECONSTRUCTED INDIVIDUAL PATIENT DATA FROM 

PUBLISHED KAPLAN-MEIER CURVES  

Megan Smith, M.S. 

University of Nebraska Medical Center, 2023 

Advisor: Lynette Smith, Ph.D. 

Introduction: Time-to-event outcomes include two elements: an indicator 

variable for whether the event has taken place, and the length of time from some 

origin point to the occurrence of the event of interest. Due to the complexity of 

these data, secondary analysis methods, such as indirect comparisons and meta-

analysis, are easier to perform when individual-level patient data (IPD) is 

available. 

Objectives: In 2021, an R package IPDfromKM was published, which 

contains an algorithm for reconstructing IPD from a Kaplan-Meier graph. The 

current research aimed to investigate the reproducibility of the IPDfromKM 

algorithm. 
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Methods: Three statisticians (MS, LS, CW) from the University of 

Nebraska Medical Center Department of Biostatistics independently generated 

reconstructed IPD for a sample of published Kaplan-Meier curves from peer-

reviewed research journals. A sample of survival metrics were collected from the 

reconstructed IPD datasets using the IPDfromKM package, and then compared 

for inter-rater reliability with the intraclass correlation coefficient (ICC). 

Results: Eleven Kaplan-Meier curves from five recently published journal 

articles were selected. The absolute agreement for survival time estimates was 

calculated to have an ICC of 0.967 (95% CI, 0.946, 0.981), demonstrating an 

excellent level of agreement.  Agreement for survival probability estimates was 

also excellent, with an ICC of 0.983 (95% CI, 0.973, 0.99). 

Conclusions: The high level of inter-rater reliability of the reconstructed 

IPD datasets showed that the IPDfromKM algorithm provides a reproducible 

reconstruction of the actual survival data.   
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CHAPTER 1: INTRODUCTION 

1.1 Survival Analysis: Time-to-Event Outcomes 

Time-to-event survival analysis is a statistical technique used to analyze 

the time it takes for an event of interest to occur, such as death, disease, or 

failure. Survival analyses are so-called because a common application is in the 

evaluation of duration of survival, where the event of interest is death. Other 

examples where time-to-event outcomes may be utilized for evaluating a new 

intervention include: time to conception in fertility treatment, time free of 

seizures in epilepsy, and length of hospital stay.  

Time-to-event outcomes include two elements: an indicator variable for 

whether the event has taken place, and the length of time from some origin point 

(i.e. randomization) to the occurrence of the event of interest. In survival 

analysis, the event is not necessarily observed for all subjects, and those 

participants are subsequently right-censored. Depending on the scenario, 

observations can be left-, right-, or interval-censored. Right-censoring is used in 

survival analysis when it is known that the event (e.g. death) will occur at some 

point in the future, but did not occur while the subject was being observed. Left-

censoring is when an event is known to have occurred before a certain point in 
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time, but is not known exactly when, and interval-censoring is used when an 

event is known to have occurred within a given interval, but the exact time is not 

known. Censored observations contribute the time piece of the outcome variable, 

while also recognizing that the event of interest did not occur during the period 

of observation. For example, in a clinical trial of cancer patients, some patients 

may die during the observed study period, which are counted as events, and 

other patients will die outside the scope of the study, at some point in the future; 

these latter observations would be right-censored.  

The goal of survival analysis is to estimate the survival function, which 

describes the probability of the event not occurring up to a given time, and to 

identify factors that may influence the timing of the event. These methods are 

commonly used in cancer trials, where new treatments are targeted at 

significantly increasing patients’ survival prognosis. (1) Clinical trials for new 

drugs seeking FDA approval are often designed to demonstrate superiority over 

the current standard of care, in terms of overall survival (OS), progression-free 

survival (PFS), or another time-to-event outcome. OS is considered the gold 

standard in many oncology clinical trials, due to being objective, patient-

centered, and easy to measure.  

When the trial is based on a time-to-event endpoint, a Kaplan-Meier (KM) 

curve is the typical statistical tool used to report and interpret the results of these 
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analyses.(2) A Kaplan-Meier curve is a graphical representation of the survival 

function, which shows the probability of survival over time. Kaplan-Meier 

curves are non-parametric, meaning there are no assumptions made about the 

underlying distribution of the data, and they are able to model data that are 

censored, truncated, or have missing values. The curve is constructed by 

calculating the proportion of individuals who survive without experiencing the 

event of interest at each time point. These proportions are then plotted against 

time, resulting in a stepwise function that shows the cumulative survival 

probability over time. Kaplan-Meier curves are commonly used to estimate 

survival metrics such as median survival time, the percentage of patients who 

survive beyond a certain time point, and the hazard ratio, which measures the 

relative risk of an event occurring in one group compared to another. 

1.2 Motivation for Reconstructing Individual-Level Patient 

Data 

For many incurable diseases, and especially in oncology, there are 

frequently multiple drugs developed for the exact same or similar indications. 

With so many different treatments being developed in a relatively short period of 

time, there is a need to compare efficacies to determine the place in therapy for 

new pharmaceutical agents.(3) Additionally, newly developed agents have more 
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evidence in the form of single-arm phase-II studies than randomized phase-III 

studies, highlighting the need for the capability to compare multiple groups of 

survival data across trials. 

Situations frequently arise where researchers want to compare outcomes 

across multiple trials, and the methods are fairly straightforward for outcomes 

measured as binary or count data. The fact that time-to-event outcomes are 

comprised of two elements makes the comparison of survival outcomes across 

multiple datasets more complicated. Odds ratios (ORs) or relative risks (RRs) are 

used to measure dichotomous outcomes, but they only account for the number of 

events and not time of occurrence. If survival outcomes were to be measured as 

count data only, then trials of different length and maturity of follow-up may be 

compared, resulting in an unreliable estimate.(4) On the other hand, calculating 

ORs or RRs using survival data only at certain timepoints can make the results 

more interpretable, but at risk of information loss and potentially misleading 

estimates. Thus, these types of measures are less appropriate for analyzing time-

to-event outcomes.  

Meta-analysis is a statistical technique used to combine data from multiple 

trials to produce a summary estimate. Methods for pooling outcomes that are 

dichotomous or continuous are fairly straightforward, but methods for 

combining time-to-event data are more complicated. One common approach 
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analyzes the hazard ratios (HRs) of individual trials and then combines them into 

a pooled summary estimate.(5) However, summary HRs are heavily dependent 

on the assumption of proportional hazards, which has been shown to be 

especially challenging when combining studies from vastly different follow-up 

durations.(6) Another drawback of using this method is that it is not applicable 

to single-arm trials.  

In situations like these, where aggregate data measures are not 

appropriate or insufficient for statistical pooling in meta-analysis, individual-

level patient data (IPD) is the gold standard. (7) In many cases, authors of 

primary research articles will allow access to de-identified IPD in order to enable 

other researchers to conduct further analyses. However, access to IPD is not 

always granted, especially in cancer trials. Serious privacy concerns exist when 

sample sizes and event counts are small. In some cases, mere knowledge of a 

patient’s involvement in a trial could allow someone to distinguish private 

clinical attributes even in a de-identified data set. (8) These privacy concerns 

have prevented a large number of clinical trial authors from sharing IPD survival 

data, which restricts the ability to conduct further analyses and impedes medical 

knowledge. 

In recent years, algorithms that reconstruct individual patient-level data 

from the graphs of Kaplan-Meier curves have been published and subsequently 
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improved upon.(9) The process of reconstructing IPD from Kaplan-Meier 

survival data involves using statistical methods to estimate the underlying 

distribution of survival times and the censoring mechanism. These estimates can 

then be used to simulate individual-level data that is consistent with the 

observed survival data. 

1.3 R Package IPDfromKM 

In 2021, a new algorithm for reconstructing IPD, IPDfromKM, was 

published by statisticians, Liu et al, at the MD Anderson Cancer Center in 

Houston.(10) The authors published IPDfromKM, a package for the R 

programming language that contains an algorithm for reconstructing IPD from a 

Kaplan-Meier graph.(11) This allows researchers to obtain synthesized 

individual patient-level data (IPD) from Kaplan-Meier survival curves, which 

can then be used for secondary analysis of the survival data (i.e. meta-analysis). 

The algorithm accepts most Kaplan-Meier graphs for reconstruction of 

individual patient-level data because the program only requires an image file of 

the Kaplan-Meier graph, along with the input of the total number of enrolled 

patients. Notably, this method can also work for other time-to-event endpoints 

that have been represented with a KM graph. 
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The IPDfromKM package for the R programming language uses an 

iterative algorithm and a non-parametric KM estimation method to recover 

individual event times from survival curves, and also includes functions for 

further data extraction, estimation, and visualization. The package implements a 

two-stage modified iterative K-M estimation algorithm (modified-iKM) approach 

proposed by Guyot et al in 2012 (9) with some modifications. (10) Additional 

information may also be included to increase the accuracy of the estimation, such 

as numbers of patients at risk at given timepoints, total number of patients, and 

total number of events. The additional functions for survival analysis can be used 

to calculate summary statistics such as median survival times and hazard ratios 

as applicable.  

1.4 Objectives 

The IPDfromKM algorithm is a relatively new algorithm, being published 

in 2021, but the enhanced accessibility of the R package has led to the quick 

adoption of this method in many areas of research.(3)  The main objective of this 

research was to describe the level of replicability and agreement of statistics 

estimated from the IPDfromKM method among multiple individuals 

implementing the algorithm.  Reconstructed survival statistics, including 

survival probabilities and survival times, were estimated from datasets 
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reconstructed by a sample of programmers, and then compared for level of 

agreement with the intraclass correlation coefficient (ICC). Reconstructed 

survival metrics were also compared for agreement between software platforms, 

and similarity to reported values from the original publications.  

Agreement was assessed by the intraclass correlation coefficient (ICC), 

which quantifies the reliability of multiple raters measuring subjects similarly on 

a quantitative scale. (12) The ICC ranges from 0 to 1, with 0 being no agreement 

and 1 meaning perfect agreement. The aim of the current research is to 

demonstrate that when implemented by different individuals, the IPDfromKM 

algorithm results in good to excellent inter-rater reliability of reconstructed 

survival estimates, that is, ICC values greater than 0.75. 

Additional motivation was for validation and testing the performance of 

IPDfromKM based on real Kaplan-Meier curves published in peer-reviewed 

journals. The implications of this research are related to the relevance and 

applicability of the IPDfromKM algorithm; this may be a useful tool for 

reconstructing individual patient survival data if the results are independent of 

the programmer conducting analysis. 
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CHAPTER 2: METHODS 

2.1 Selection of Statistical Programmers 

The main objective of this research was to test the level of agreement of 

statistics estimated by the IPDfromKM algorithm when implemented by 

different individuals. To accomplish this, it was decided that three individuals 

would perform the reconstruction of KM survival data, which would 

subsequently be evaluated for level of agreement. These three individuals were 

assumed to be a representative sample from the larger population of statisticians, 

therefore enhancing the generalizability of the results. Two statisticians (LS and 

CW) from the Department of Biostatistics at University of Nebraska Medical 

Center agreed to participate in this research, and the author (MS) acted as the 

third programmer. 

2.2 Literature Search for Kaplan-Meier Curves 

Samples of published Kaplan-Meier curves were identified by searching 

PubMed for the terms “kaplan-meier” “survival” “cancer” and “treatment”. Due 

to the overwhelming number of primary research articles that presented results 

with a Kaplan-Meier plot, a sample of articles were selected from recent years of 

publication. Articles were then further screened for relevance. A variety of graph 
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designs were selected, including plots with single/multiple curves, small and 

large sample sizes, censoring marks (with/without), and 95% confidence bands 

(with/without). 

2.3 Reconstruction of Individual Patient Data  

Determination of inter-rater reliability of the IPDfromKM algorithm was 

implemented in a multi-stage approach, as shown in the flowchart in Figure 1. In 

Stage 1, a KM curve was digitized using a graph digitizing program. In Stage 2, 

reconstructed IPD was obtained from the IPDfromKM package, and in Stage 3, 

the ICC was computed from reconstructed estimates. 

 

Figure 1. Flowchart of methods for assessing agreement of reconstructed statistics 
from the IPDfromKM algorithm 
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Graph Digitizing 

For each of the included Kaplan-Meier curves, a high-quality image file 

was obtained. Each graph was digitalized and converted into x-y data pairs 

using two methods.  Two programmers (MS and LS) used the Engauge Digitizer 

software program (Version 12.1, https://github.com/markummitchell/engauge-

digitizer), while the third programmer (CW) utilized the R package Digitize 

(https://github.com/tpoisot/digitize).(13, 14) 

Both digitizing programs use similar methods to convert graphical 

features into x-y data pairs. Details and specifications for each program can be 

found at the respective websites. Briefly, the user first imports the image file of 

the graph into the program, and is then prompted to select with the cursor the 

locations of the x-axis maximum, y-axis maximum, and the origin on the graph. 

After these three reference points are input, the user selects points along the 

survival curve with the cursor. Each programmer was directed to select points as 

close as possible to the location of the steps in the function. The selected points 

are then output as a dataset containing x-y data pairs corresponding to points on 

the Kaplan-Meier curve.  

The exported dataset was saved as a .csv file for input. The R package 

IPDfromKM was then used to reconstruct IPD on the basis of the input x-y data 
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pairs, along with either the number of patients at each specified timepoint if 

available, or the total number of patients in the trial. 

R Package IPDfromKM 

After digitizing the Kaplan-Meier survival curve, the csv file dataset of x-y 

pairs was passed to the preprocess() function in the IPDfromKM package. The 

preprocess() function takes several arguments for input; these are listed in Table 1. 

The preprocess() function prepares the raw data for reconstruction by 

cleaning the data, adjusting for monotonicity, and performing step control. This 

function outputs a class object that can be used directly in the IPDfromKM 

package. For this analysis, vectors containing the number of patients at risk at 

specified timepoints were also input into the function, if available. This decision 

was made in an effort to improve the accuracy of IPD reconstruction. However, it 

should be noted that this information is not available for every KM curve; in 

some cases only the total number of patients in the trial is provided.  

The preprocess() function returns a class object containing the preprocessed 

data that can be further used in the algorithm. The class object from the previous 

step can then be passed directly to the getIPD() function in the IPDfromKM 

package. The arguments for the getIPD() function are listed below in Table 2. 
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Table 1. Arguments Passed to preprocess() Function in the R Package 
IPDfromKM 
 
Argument Description 

dat Two-column dataset extracted from a KM curve, with the first 

column being survival time, and the second survival 

probability. 

trisk If applicable, a vector containing risk time points (i.e. points at 

which number of patients at risk is reported. Often found under 

the x-axis of the KM curve. 

nrisk If applicable, a vector containing the number of patients at risk. 

Often found under the x-axis of the KM curve.  

maxy Scale of the y-axis. Set to 1 when probabilities are plotted using 

decimal numbers (e.g. 0.8). Set to 100 when probabilities are 

reported in percentages (e.g. 80%) 

totalpts  the initial number of patients, with a default value of NULL. 

However, when both trisk and nrisk are NULL, this number is 

required for the estimation. 

Abbreviations: KM; Kaplan-Meier 
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Table 2. Arguments Passed to getIPD() Function in the R Package IPDfromKM 
 
Argument Description 

prep Class object returned from preprocess() function 

armID If applicable. Label used as group indicator when multiple KM 
curves are plotted on one graph 

tot.events Total number of events. May not be available for all KM curves. 

Abbreviations: KM; Kaplan-Meier 

 

Once the IPD has been reconstructed with the getIPD() function, 

additional functions can be called to further analyze the data, including 

summary(), plot(), and survreport(). 

2.4 Methods for Inter-Rater Agreement of Survival 

Statistics from Reconstructed IPD Datasets 

Survival Estimates from IPDfromKM Package 

At the time of curve selection, each Kaplan-Meier curve included in this 

analysis was visually inspected, and benchmark metrics were identified for 

comparison. The IPDfromKM package contains additional functions for 

supplementary survival analysis on the reconstructed IPD that can be used to 
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calculate summary statistics such as median survival times, survival probability, 

and hazard ratios, as applicable. In order to compare the reconstructed IPD 

datasets from the three programmers, the pre-specified benchmark metrics were 

collected from each of the reconstructed data sets using the survreport() function 

in the IPDfromKM package. Standardized metrics were estimated for both 

survival probabilities and survival times from the reconstructed datasets. The 

collated probability estimates and time estimates were then compared for level of 

agreement using the intraclass correlation coefficient (ICC).  

Intraclass Correlation Coefficient 

The intraclass correlation coefficient (ICC) is an index of reliability that is 

commonly used to determine the reproducibility of a quantitative 

measurement.(12) Depending on the situation and how reliability is being 

assessed, the ICC can be used several ways.(15) Inter-rater reliability is 

determined when two or more raters are measuring the same group of subjects; 

this method is the primary objective of this analysis. Test-retest reliability 

(repeated measures of the same subject) and intra-rater reliability (multiple 

scores from the same raters) can also use the ICC for evaluation.  

In the primary analysis, the two-way random-effects model was used for 

measuring inter-rater reliability. In this model, both subjects and raters are 
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considered as random effects, which is appropriate for this research question 

because each subject is measured by the same randomly selected set of k-raters 

with similar characteristics. An additional random-effect term was used where 

multiple estimates were estimated from the same curve IPD. This model can be 

represented by the following equation: 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝜂𝜂𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is the kth measurement of subject i from curve j, 𝜂𝜂𝑖𝑖 is the 

random effect of subject i, 𝜃𝜃𝑖𝑖  is the random effect of curve j, and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the 

unaccounted for error. The variances of these random effects are estimated by the 

random-effects model, and are also used to calculate the ICC. The reliability 

between pairs of observations is calculated by the ratio of true variance over true 

variance plus error variance. In other words, it represents the between-pair 

variance as a proportion of the total variance of the observations. The ICC is 

commonly written using the Greek letter 𝜌𝜌, and can be computed with the 

following formula: 

𝜌𝜌 =
𝜎𝜎𝜂𝜂2

𝜎𝜎𝜂𝜂2 + 𝜎𝜎𝜃𝜃2 + 𝜎𝜎𝜀𝜀2
 

where 𝜎𝜎𝜂𝜂2,𝜎𝜎𝜃𝜃2,𝜎𝜎𝜀𝜀2 are the respective variances as estimated by the random-

effects inter-rater reliability model. 

The ICC can take a value from zero to one, with zero meaning no 

agreement and 1 implying absolute agreement. A suggested interpretation is that 
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index values below 0.5 indicate poor reliability, between 0.5 and 0.75 moderate 

reliability, between 0.75 and 0.9 good reliability, and above 0.9 indicates excellent 

reliability (15) (Table 3). A set of k = 3 raters was used, and ICC was calculated for 

absolute agreement of single measurements. All statistical analyses were 

conducted in R programming language. (Appendix C) 

Table 3. Interpretation of the Intraclass Correlation Coefficient 
 
Value Interpretation 

< 0.5 Poor agreement 

0.5 – 0.75  Moderate agreement 

0.75 – 0.9 Good agreement 

> 0.9 Excellent agreement 

 

Exploratory Analyses 

Several exploratory subgroup analyses were pre-specified to further 

investigate the IPDfromKM method.  When available, reported survival estimate 

values from the original publications were compared to the reconstructed 

estimates. These reported values were also subdivided into survival time and 

survival probability estimates and observed for differences in level of agreement. 
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An additional analysis was conducted to compare the raw reconstructed IPD for 

each curve that is returned from the getIPD() function in the IPDfromKM 

package. 

A set of simple sensitivity analyses were also conducted to explore the 

influence of each individual rater in the level of agreement. For each comparison, 

the dataset for one of the reviewers was omitted, and evaluation of agreement 

was performed on the remaining datasets. The purpose of this was to investigate 

trends in individual implementation of the IPDfromKM algorithm. When the 

programmers MS and LS are omitted from analysis, evaluations of agreement 

account for inter-rater and inter-platform differences, due to the differences in 

graph digitizing software. When only CW is omitted from analysis, agreement is 

affected only by inter-rater effects, because the digitizing platforms are the same. 

If all raters can apply the algorithm equally well, we would expect to not see 

much fluctuation in levels of agreement when raters are iteratively omitted from 

the calculation. The objective for the sensitivity analysis is to investigate the 

resilience of the agreement estimate. 

Sample Size and Power Analysis  

The intraclass correlation coefficient measures the reliability of repeated 

measurements of continuous outcomes. The Power Analysis & Sample Size 
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software (PASS 2019) was used to determine required sample size.(16) The 

expected sample size needed was calculated based on 3 raters and an estimated 

intraclass correlation of approximately 0.8. Using k = 3 raters for repeated 

measurements, a two-sided 95% confidence interval with a width of 0.198 

requires a sample size of n = 37 when the estimated intraclass correlation is 0.800. 

Assuming a drop-out rate of 15% for missing (i.e. not calculable) estimates, the 

target sample size for this analysis was n = 44 estimates among the eleven KM 

survival curves. The data was analyzed using a two-level two-way mixed-effects 

ANOVA model. (17) 

2.5 Bland-Altman Plots for Comparison of Agreement 

Bland-Altman plots are a way to visually investigate inter-rater 

agreement. Also known as Tukey Mean-Difference plots, Bland-Altman plots are 

a graphical tool that compare two different measurement techniques or 

devices.(18) This type of plot is created by plotting the mean of two 

measurements on the x-axis, and the difference between the two on the y-axis. 

Creating a Bland-Altman plot gives a clear illustration of rater measurements so 

that the level of agreement between the two methods can be compared, and any 

systematic differences between them can be identified. 
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For the purposes of this analysis, Bland-Altman plots were constructed for 

comparison of reported median survival and reported survival rate estimates 

with the same rater who was the primary author of this research (MS). 
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CHAPTER 3: RESULTS 

3.1 Literature Search for Published Kaplan-Meier Graphs 

Eleven curves from five recently published journal articles were selected 

for comparison of inter-rater agreement. (19-23) A variety of graphical designs 

were represented, including plots for both phase II single-arm trials and phase III 

randomized trials, censoring marks (with or without), and 95% confidence bands 

(with or without). Original high-resolution image files were obtained for each 

included KM curve and can be found in the appendix (Appendix A).  

For each curve, benchmark timepoints and percentiles were chosen for the 

primary outcome of comparison of overall inter-rater reliability (Table 3). 

Median survival estimates were reported for all curves except one; curve 5 data 

did not reach maturity for calculation of median survival. Median survival 

estimates can be found in Table 4. All studies except one (curves 10 and 11) also 

reported survival probability estimates for at least one benchmark timepoint, 

shown in Table 5. Curve 5 is excluded from Table 4, and Curves 10 and 11 are 

excluded from Table 5 due to no information to report. 
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Table 4. Characteristics of Included Studies and Planned Benchmarks for 
Analysis of Agreement 
 
ID Sample 

Size 
Maximum 
Survival on KM 
Plot, months 

Benchmark Months 
for Survival 
Comparison 

Benchmark 
Percentiles for 
Comparison 

1 (19) 22 60 6, 12, 24, 36, 48 85, 75, 60, 50 

2 (19) 22 60 12, 18, 24, 30, 48 85, 75, 60, 50 

3 (23) 55 18 3, 6, 9, 12, 15 75, 60, 50, 40, 30 

4 (23) 55 18 3, 6, 9, 12, 15 85, 75, 60, 50 

5 (20) 59 30 3, 6, 9, 12, 18, 24 85, 75, 65, 55 

6 (21) 233 72 12, 24, 36, 48, 60, 66 85, 75, 60, 50 

7 (21) 237 72 12, 24, 36, 48, 60, 66 75, 60, 50, 40, 30 

8 (21) 339 72 12, 24, 36, 48, 60, 66 85, 75, 60, 50 

9 (21) 343 72 12, 24, 36, 48, 60, 66 85, 75, 60, 50, 40 

10 (22) 41 36 6, 12, 18, 24, 30 75, 60, 50, 40, 30 

11 (22) 41 54 6, 12, 18, 24, 36, 48 85, 75, 60, 50 

 

Abbreviations: KM Kaplan-Meier 

3.2 Characteristics of Reconstructed IPD Datasets 

Each of the three programmers independently implemented the 

IPDfromKM algorithm using the graphical digitizing program of their choice to 
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obtain reconstructed IPD datasets. The pre-specified benchmark survival 

estimates were then generated for each reconstructed dataset using the 

survreport() function in the IPDfromKM package. Survival estimates reported in 

the original publication for each study are presented in Table 4 and Table 5, 

along with the respective estimates from each reconstructed IPD dataset as well. 

An example of the output from the survreport() function in the IPDfromKM 

package is shown below in Figure 1.  

 

  

 
Figure 2. Example Output From the survreport() Function in R Package 
IPDfromKM. Reconstructed survival function and cumulative risk function are 
shown in the top two panels, and survival estimates in the bottom panels. 
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Table 5. Median Survival Reported and Calculated for Included Studies 
 
ID Outcome Reported 

Median 
Survival, 
months 
 

Reconstructed 
Median 
Survival, 
months (MS) 
 

Reconstructed 
Median 
Survival, 
months (LS) 

Reconstructed 
Median 
Survival, 
months (CW) 

1  OS 35.1  NC NC 54.17 

2  RFS 34 34.05 34.05 54.34 

3  PFS 4.07 4.07 4.07 4.05 

4  OS 13.73  13.75 13.45 13.73 

6  DFS 65.8 65.86 66.48 65.82 

7  DFS 21.9  21.94 21.34 21.26 

8  DFS 65.8 65.87 66.11 NC 

9  DFS 28.1  28.04 29.44 36.43 

10  PFS 15.23  15.22 15.48 15.52 

11  OS 27.57 27.71 28.13 27.56 

 
Abbreviations: DFS, disease-free survival; NC, not calculable; NR, not reported; OS, overall 
survival; PFS, progression-free survival; RFS, recurrence-free survival 
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Table 6. Survival Probabilities Reported and Calculated for Included Studies 
  
ID Outcome Time, 

months 
Reported 
Survival 
Probability, 
% 

Reconstr. 
Survival 
Probability, 
%  (MS) 

Reconstr. 
Survival 
Probability, 
%  (LS) 

Reconstr. 
Survival 
Probability, 
%  (CW) 

1 OS 12 
24 
36 
 

85.1 
74.5 
49.7 
 

85.11 
74.09 
51.81 

89.16 
77.62 
NC 

85.11 
74.09 
56.99 

2 RFS 12 
24 
36 
 

100.0 
52.4 
43.6 

100.00 
52.66 
42.13 

100.00 
56.82 
NC 

100.00 
51.69 
51.69 

3 PFS 12 17.3 17.04 19.78 16.92 

4 OS 12 54.1 54.37 55.58 54.37 

5 PFS 12 72.5 72.50 73.75 72.50 

6 DFS 24 
36 
48 
 

90 
84 
70 

89.97 
83.41 
69.24 

90.39 
83.79 
69.74 

89.99 
83.43 
69.74 

7 DFS 24 
36 
48 
 

46 
34 
29 
 

46.40 
34.25 
28.80 

46.43 
33.93 
28.51 

46.37 
34.01 
28.64 

8 DFS 24 
36 
48 
 

90 
85 
73 
 

90.40 
84.40 
72.75 

90.07 
84.72 
73.06 

92.04 
88.64 
83.59 

9 DFS 24 
36 
48 
 

55 
44 
38 
 

54.46 
43.99 
37.70 

54.64 
44.12 
37.49 

59.73 
50.38 
44.09 

 
Abbreviations: DFS, disease-free survival; NR, not reported; OS, overall survival; PFS, 
progression-free survival; RFS, recurrence-free survival 
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3.3 Intraclass Correlation Coefficient 

Inter-Rater Reliability 

For the primary outcome of assessing inter-rater reliability, the values for 

the three reconstructed IPD datasets were assessed using the intraclass 

correlation coefficient (ICC). Standardized metrics were estimated for both 

survival probabilities and survival times from the reconstructed datasets, and 

then compared for level of agreement using the intraclass correlation coefficient 

(ICC). The raw data for all primary analysis measurements can be found in the 

Appendix (Table B.1). 

The absolute agreement for survival time estimates with k = 3 raters on an 

actual sample of n = 44 estimates from 11 KM curves was calculated to have an 

ICC of 0.966 (95% CI: 0.926, 0.989), demonstrating an excellent level of 

agreement. With a sample of n = 53 estimates from 11 KM survival curves, the 

agreement for survival probability estimates had an ICC of 0.933 (95% CI: 0.860, 

0.979). Primary and secondary outcomes are reported in Table 6. The primary 

outcomes of level of agreement for survival probability and survival time 

estimates were both greater than 0.9, and indicate an excellent level of 

agreement.  

 



27 
 

Table 7. Inter-rater Agreement of IPDfromKM Algorithm 
 
Agreement Measure Sample 

Size 
ICC 95% CI 

Survival Times 44 0.966 (0.926, 0.989) 

Survival Probabilities 53 0.933 (0.860, 0.979) 

Reported Values     

 Survival Times 8 0.865 (0.672, 0.967) 

 Survival Probabilities 19 0.993 (0.986, 0.997) 

Sensitivity Analysis    

 Survival Times    

 No MS 44 0.941 (0.870, 0.981) 

 No LS 44 0.941 (0.869, 0.981) 

 No CW 47 0.957 (0.904, 0.986) 

 Survival Probabilities    

 No MS 53 0.904 (0.791, 0.969) 

 No LS 56 0.890 (0.760, 0.965) 

 No CW 58 0.902 (0.788, 0.969) 

Abbreviations: CI, Confidence interval; ICC Intraclass correlation coefficient 
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Individual Curve Analysis 

An additional analysis was conducted to compare the raw reconstructed 

IPD times for each curve and assess the ICC. Results are shown in Table 8. The 

per-curve analysis of the raw reconstructed time data shows generally good 

agreement among raters. Curves 3, 4, 6, 7, 8, 9, and 10 all have ICC values very  

Table 8. Per Curve Analysis for Inter-rater Reliability 
 
Curve ID Sample Size ICC 95% CI 

1 22 0.886 (0.782, 0.947) 

2 22 0.853 (0.730, 0.931) 

3 55 0.990 (0.984, 0.994) 

4 55 0.998 (0.997, 0.999) 

5 59 0.897 (0.734, 0.952) 

6 233 0.998 (0.997, 0.998) 

7 237 0.992 (0.989, 0.994) 

8 339 0.998 (0.998, 0.998) 

9 343 0.999 (0.997, 0.999) 

10 41 0.987 (0.977, 0.993) 

11 41 0.684 (0.344, 0.845) 

Abbreviations: CI, Confidence interval; ICC Intraclass correlation coefficient 
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close to 1, demonstrating the excellent agreement between individual 

programmers implementing the IPDfromKM method. Other curves show good 

to excellent inter-rater reliability, with confidence intervals ranging from above 

0.7 to greater than 0.9. Notably, Curve 11 showed only moderate agreement, with 

a point estimate of 0.684 and 95% confidence interval (0.344, 0.845). The 

algorithm produced generally consistent estimates, but curves with smaller 

sample size may be more affected by unreliability. 

Secondary Outcomes 

A secondary analysis was conducted on the subset of survival estimates 

that were reported in the original research studies compared with the estimates 

from the three reconstructed IPD datasets. Again, survival estimates were 

divided into time estimates and probability estimates, and ICC was calculated 

for each group. For this secondary analysis, the difference in levels of agreement 

between time and probability estimates was more drastic. Survival probability 

estimates had a calculated ICC value of 0.993 (95% CI: 0.986, 0.997), while the 

agreement level for median survival time estimates was represented by an ICC of 

only 0.865. With a 95% confidence interval (CI) ranging from 0.672 to 0.967, the 

level of agreement between reported and reconstructed median survival times 
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was indicated as moderate to excellent agreement, demonstrating a higher level 

of uncertainty in this measure. 

A set of simple sensitivity analyses were also conducted to explore the 

influence of each individual rater in the level of agreement. For each comparison, 

the dataset for one of the reviewers was omitted, and evaluation of agreement 

was performed on the remaining datasets. The results for this analysis generally 

showed that the omission of each individual rater does not drastically change the 

agreement level of the estimates. All of the leave-one-out sensitivity analyses 

maintained an excellent level of agreement, with ICC values greater than 0.9. 

Overall, there was no evidence found that any one of the individuals drastically 

affected the level of inter-rater reliability of the estimates. 

3.4 Bland-Altman Plots 

The Bland-Altman plots are shown below in Figures 3 and 4. The 

estimated survival probabilities (shown in Figure 3) presented good visual 

agreement, with points scattered about the zero line with no clear pattern. A 

couple points have a large difference compared to reported values, but the plot 

generally shows good level of agreement between estimates with no clear 

discernable systematic biases. 
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Similarly, the Bland-Altman plot representing the reported median 

survival time estimates (shown in Figure 4 below) showed generally good 

agreement. There was a single data point that had an extreme value for 

difference compared to mean, but all other points were very close to the zero line 

with no clear discernable patterns. There appear to be no unidentified sources of 

systematic bias within the data. 

 

Figure 3. Bland-Altman plot for agreement of reported and reconstructed 
survival probabilities 
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Figure 4. Bland-Altman plot for agreement of reported and reconstructed 
median survival times 
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CHAPTER 4: DISCUSSION 

4.1 Findings 

The IPDfromKM algorithm is a relatively new algorithm, published in 

2021, that has enabled researchers to independently reconstruct IPD from 

published Kaplan-Meier graphs, which can subsequently be used for secondary 

analysis of survival data. The main objective of this research was to investigate 

the level of replicability of the IPDfromKM method among multiple individuals 

implementing the algorithm, assessed for agreement with the intraclass 

correlation coefficient (ICC). The aim of the current research was to demonstrate 

that, the IPDfromKM algorithm results in good to excellent inter-rater reliability 

of reconstructed survival estimates when implemented by different individuals. 

The high level of inter-rater reliability of the reconstructed IPD datasets 

showed that the IPDfromKM algorithm provides a reliable reconstruction of the 

actual survival data. All but one of the calculated ICC values were greater than 

0.9, indicating an excellent level of agreement. The inter-rater reliability for 

reconstructed median survival times compared to the actual reported values was 

the lowest, with an ICC of 0.865 (95% CI, 0.672, 0.967). The wide range of the 95% 
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confidence interval (CI) is indicative of the small sample size for this specific 

comparison, resulting in greater uncertainty in the reliability statistic. 

Many of the individual curves resulted in ICC values very close to 1, 

demonstrating the excellent agreement between individual programmers 

implementing the IPDfromKM method. Other curves show good to excellent 

inter-rater reliability, with confidence intervals ranging from above 0.7 to greater 

than 0.9. Curves with lower ICC values tended to be from trials with smaller 

number of subjects, suggesting that small sample size curves analyzed by this 

algorithm may be at higher risk of unreliable estimates. 

Additionally, the Bland-Altman plots show generally good agreement 

between reported values and reconstructed values. A few points have relatively 

large differences from reported values, but the plots generally show good level of 

agreement between survival time and rate estimates with no clear discernable 

systematic biases. 

4.2 Limitations 

 There were several limitations with the implementation of the 

IPDfromKM algorithm. Firstly, the algorithm does not accept input for censoring 

marks. Rather, censored observations survival times are estimated according to 

the modified i-KM method, introducing some level of uncertainty. Also, 
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reconstructed IPD from this method does not contain any information about 

covariates from the original dataset, unless they are graphically represented on 

the Kaplan-Meier graph. For example, in order to obtain patient-level 

information on gender, we would require a KM graph with separate survival 

curves for male and female subjects.   

Additionally, limitations related to graph processing were found during 

this research. A variety of graph types were selected for this analysis in order to 

test a real representative sample of published KM curves. Some curves 

incorporate censoring marks, which are additional symbols along the curve 

marking where censored observations occur. Kaplan-Meier graphs with a 

remarkably high number of censoring marks were sometimes challenging during 

the graphical processing step in discerning the location of the individual steps on 

the survival curve. Likewise, trials with an exceptionally large sample size could 

pose the same challenges.  

Lastly, it was found that in this sample of eleven curves, the reported 

median survival time estimates were associated with the lowest levels of inter-

rater reliability. Incidentally, a large proportion of the survival curves included 

in this analysis had tails that ended near the median survival line. This suggests 

that survival curves that end close to the median survival may be quite 

inaccurately estimated. 
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4.3 Implications for Further Research 

Overall, the IPDfromKM algorithm and package was found to be a 

powerful tool for synthesizing IPD from published Kaplan-Meier survival 

curves.  The algorithm accepts most Kaplan-Meier graphs because the program 

only requires an image file of the KM survival curve and the total number of 

enrolled patients. The straightforwardness of the approach, combined with the 

broad eligibility of most published KM survival curves, poses significant 

potential for reconstruction of many time-to-event datasets. Notably, this method 

can work for any time-to-event endpoint that is represented with a KM graph. 

This algorithm is especially promising for implementation in secondary analysis 

of survival data, such as meta-analyses or indirect comparisons for decision-

making in clinical practice. 
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APPENDIX A: ORIGINAL PUBLISHED 

KAPLAN-MEIER GRAPHS  

Figure A.1 Published Kaplan-Meier Plot for Sample Curves 1 and 2 

 

Acuna-Villaorduna, Shankar (19)  
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Figure A.2 Published Kaplan-Meier Plot for Sample Curves 3 and 4 

 

Takeda, Shimokawa (23) 
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Figure A.3 Published Kaplan-Meier Plot for Sample Curve 5 

 

Tanaka, Tanzawa (20)  
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Figure A.4 Published Kaplan-Meier Plot for Sample Curves 6, 7, 8, and 9 

 

Herbst, Wu (21) 
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Figure A.5 Published Kaplan-Meier Plot for Sample Curves 10 and 11 

 

Shi, Xu (22) 
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APPENDIX B: RAW DATA FOR AGREEMENT 

ANALYSIS 

Table B.1. Raw Data for Agreement Analysis 
 
curve.ID index      MS      LS      CW 
1          1     1 17.2542 17.1007 17.0741 
2          1     2 18.4252 29.2136 18.3367 
3          1     3 35.0906 35.0774 30.3607 
4          1     4      NA      NA 54.1683 
5          1     5  0.9545  1.0000  0.9545 
6          1     6  0.8511  0.8916  0.8511 
7          1     7  0.7409  0.7762  0.7409 
8          1     8  0.5181      NA  0.5699 
9          1     9  0.5181      NA  0.5699 
10         2     1 17.6162 18.8277 17.5820 
11         2     2 18.7539 19.6426 18.8730 
12         2     3 22.8699 22.8163 22.8074 
13         2     4 34.0539 34.0529 54.3443 
14         2     5  1.0000  1.0000  1.0000 
15         2     6  0.8125  0.8705  0.8077 
16         2     7  0.5266  0.5682  0.5169 
17         2     8  0.5266  0.5682  0.5169 
18         2     9  0.4213      NA  0.5169 
19         3     1  1.6509  1.6805  1.6358 
20         3     2  2.5917  2.5864  2.5475 
21         3     3  4.0715  4.0700  4.0492 
22         3     4  5.7648  5.7768  5.5777 
23         3     5  5.7648  5.7768  5.5777 
24         3     6  0.5662  0.5795  0.5662 
25         3     7  0.2734  0.2797  0.2734 
26         3     8  0.1917  0.1978  0.1904 
27         3     9  0.1704  0.1978  0.1692 
28         3    10  0.1193  0.1385      NA 
29         4     1  2.4631  2.5844  2.4344 
30         4     2  4.6212  5.4788  4.5777 
31         4     3  9.3083  9.4587  9.6714 
32         4     4 13.7512 13.4450 13.7332 
33         4     5  0.8000  0.8178  0.8000 
34         4     6  0.7091  0.7248  0.7091 
35         4     7  0.6182  0.6319  0.6182 
36         4     8  0.5437  0.5558  0.5437 
37         4     9  0.4687  0.4600  0.4687 
38         5     1  7.3070  7.2920  7.1004 
39         5     2 11.4133 11.4988 11.3974 
40         5     3 14.5425 14.4936 14.5415 
41         5     4 17.4421 19.9538      NA 
42         5     5  0.9492  0.9655  0.9492 
43         5     6  0.8804  0.8956  0.8804 
44         5     7  0.7941  0.8078  0.7941 
45         5     8  0.7250  0.7375  0.7250 
46         5     9  0.6387  0.6497  0.6387 
47         5    10  0.5477  0.5577  0.5593 
48         6     1 33.6776 33.7967 33.2830 
49         6     2 43.7540 44.1608 43.8792 
50         6     3 53.7419 53.8629 53.3887 
51         6     4 65.8643 66.4775 65.8189 
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52         6     5  0.9730  0.9819  0.9775 
53         6     6  0.8997  0.9039  0.8999 
54         6     7  0.8341  0.8379  0.8343 
55         6     8  0.6924  0.6974  0.6974 
56         6     9  0.5224  0.5332  0.5301 
57         6    10  0.3483  0.5332  0.3446 
58         7     1  8.4120  8.3426  8.2868 
59         7     2 13.7778 13.2612 12.7019 
60         7     3 21.9443 21.3389 21.2604 
61         7     4 29.4480 29.3978 28.1208 
62         7     5 42.1254 43.9569 41.0943 
63         7     6  0.6202  0.6190  0.6125 
64         7     7  0.4640  0.4643  0.4637 
65         7     8  0.3425  0.3393  0.3401 
66         7     9  0.2880  0.2851  0.2864 
67         7    10  0.2465  0.2458      NA 
68         7    11  0.2465  0.2458      NA 
69         8     1 34.2711 34.5819 42.6087 
70         8     2 44.9420 44.6272 57.5652 
71         8     3 61.6872 61.8947      NA 
72         8     4 65.8701 66.1132      NA 
73         8     5  0.9811  0.9810  0.9873 
74         8     6  0.9040  0.9007  0.9204 
75         8     7  0.8440  0.8472  0.8864 
76         8     8  0.7275  0.7306  0.8359 
77         8     9  0.6112  0.6097  0.7193 
78         8    10  0.4630  0.5628  0.7193 
79         9     1  6.6937  7.5016  9.0435 
80         9     2 10.8581 10.8915 13.8261 
81         9     3 18.9201 19.5042 24.0000 
82         9     4 28.0398 29.4394 36.4348 
83         9     5 41.6046 43.5782 54.3478 
84         9     6  0.6920  0.6914  0.7718 
85         9     7  0.5446  0.5464  0.5973 
86         9     8  0.4399  0.4412  0.5038 
87         9     9  0.3770  0.3749  0.4409 
88         9    10  0.3394  0.3360  0.3667 
89         9    11  0.3394  0.3360  0.3667 
90        10     1  8.5867 10.6294  8.5346 
91        10     2 13.3960 13.9556 13.3815 
92        10     3 15.2196 15.4785 15.5239 
93        10     4 16.3318 16.6206 16.3317 
94        10     5 17.9449 18.3037 17.8771 
95        10     6  0.8780  0.8780  0.8537 
96        10     7  0.6341  0.6585  0.6341 
97        10     8  0.2927  0.3171  0.2927 
98        10     9  0.1220  0.1220  0.0976 
99        10    10  0.1220  0.1220  0.0976 
100       11     1 13.4601 15.9866 13.3981 
101       11     2 19.2598 20.0735 19.1547 
102       11     3 25.9616 26.0534 25.8283 
103       11     4 27.7074 28.1269 27.5604 
104       11     5  0.9024  1.0000  0.9024 
105       11     6  0.8537  0.8780  0.8537 
106       11     7  0.8049  0.8049  0.8049 
107       11     8  0.6098  0.6585  0.6098 
108       11     9  0.4390  0.4634      NA 
109       11    10  0.4390  0.4634      NA 
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APPENDIX C: R CODE 

#install.packages("IPDfromKM") 
library(IPDfromKM) 
 
############################################################################## 
#Curve 1 
##############################################################################
# 
 
data1 <- read.csv('Curve 1_axis.csv') 
times1 <- c(0,12,24,36,48,60) 
# Vector for nrisk - counts of subjects 
counts1 <- c(22,16,13,5,5,3) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD1 <- IPDfromKM::preprocess(data1, trisk=times1, nrisk=counts1, 
                                 totalpts = 22, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_1 <- IPDfromKM::getIPD(pre_IPD1) 
#print(IPD_1) 
#summary(IPD_1) 
#plot(IPD_1) 
 
# survreport fn -  
report1 <- IPDfromKM::survreport(ipd1 = IPD_1$IPD,arms=1,interval = 6, 
                                s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
 
surv.1 <- c(report1$arm1$survtime$time, 
            report1$arm1$survprob$Surv[c(1,2,4,6,8)]) 
surv.1 
# 
# 
############################################################################## 
#Curve 2 
##############################################################################
# 
 
data2 <- read.csv('Curve 2_axis edited.csv') 
times2 <- c(0,12,24,36,48,60) 
# Vector for nrisk - counts of subjects 
counts2 <- c(22,16,7,4,4,2) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD2 <- IPDfromKM::preprocess(data2, trisk=times2, nrisk=counts2, 
                                  totalpts = 22, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_2 <- IPDfromKM::getIPD(pre_IPD2) 
#summary(IPD_2) 
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#plot(IPD_2) 
 
# survreport fn -  
report2 <- IPDfromKM::survreport(ipd1 = IPD_2$IPD,arms=1,interval = 6, 
                                 s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
 
surv.2 <- c(report2$arm1$survtime$time, 
            report2$arm1$survprob$Surv[c(2:5,8)]) 
surv.2 
# 
# 
############################################################################## 
#Curve 3 
##############################################################################
# 
 
data3 <- read.csv('Curve 3_.csv') 
times3 <- c(0,3,6,9,12,15) 
# Vector for nrisk - counts of subjects 
counts3 <- c(55,29,15,9,8,4) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD3 <- IPDfromKM::preprocess(data3, trisk=times3, nrisk=counts3, 
                                  totalpts = 55, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_3 <- IPDfromKM::getIPD(pre_IPD3) 
#summary(IPD_3) 
#plot(IPD_3) 
 
# survreport fn -  
report3 <- IPDfromKM::survreport(ipd1 = IPD_3$IPD,arms=1,interval = 3, 
                                 s=c(.75,.6,.5,.4,.3),showplots = TRUE) 
 
surv.3 <- c(report3$arm1$survtime$time, 
            report3$arm1$survprob$Surv[c(1:5)]) 
surv.3 
# 
# 
############################################################################## 
#Curve 4 
##############################################################################
# 
 
data4 <- read.csv('Curve 4_.csv') 
times4 <- c(0,6,12,18,24) 
# Vector for nrisk - counts of subjects 
counts4 <- c(55,39,29,0,0) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD4 <- IPDfromKM::preprocess(data4, trisk=times4, nrisk=counts4, 
                                  totalpts = 55, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_4 <- IPDfromKM::getIPD(pre_IPD4) 
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#summary(IPD_4) 
#plot(IPD_4) 
 
# survreport fn -  
report4 <- IPDfromKM::survreport(ipd1 = IPD_4$IPD,arms=1,interval = 3, 
                                 s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
 
surv.4 <- c(report4$arm1$survtime$time, 
            report4$arm1$survprob$Surv[c(1:5)]) 
surv.4 
# 
# 
############################################################################## 
#Curve 5 
##############################################################################
# 
 
data5 <- read.csv('Curve 5_axis edited.csv') 
times5 <- c(0,3,6,9,12,15,18,21,24,27) 
# Vector for nrisk - counts of subjects 
counts5 <- c(59,56,51,46,42,37,29,16,4,0) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD5 <- IPDfromKM::preprocess(data5, trisk=times5, nrisk=counts5, 
                                  totalpts = 59, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_5 <- IPDfromKM::getIPD(pre_IPD5) 
#summary(IPD_5) 
#plot(IPD_5) 
 
# survreport fn -  
report5 <- IPDfromKM::survreport(ipd1 = IPD_5$IPD,arms=1,interval = 3, 
                                 s=c(0.85,0.75,0.65,0.55),showplots = TRUE) 
 
surv.5 <- c(report5$arm1$survtime$time, 
            report5$arm1$survprob$Surv[c(1:6)]) 
surv.5 
# 
# 
############################################################################## 
#Curve 6 
##############################################################################
# 
 
data6 <- read.csv('Curve 6_.csv') 
times6 <- c(0,6,12,18,24,30,36,42,48,54,60,66,72) 
# Vector for nrisk - counts of subjects 
counts6 <- c(233,222,216,202,196,192,174,138,90,45,20,2,0) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD6 <- IPDfromKM::preprocess(data6, trisk=times6, nrisk=counts6, 
                                  totalpts = 233, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
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IPD_6 <- IPDfromKM::getIPD(pre_IPD6) 
#summary(IPD_6) 
#plot(IPD_6) 
 
# survreport fn -  
report6 <- IPDfromKM::survreport(ipd1 = IPD_6$IPD,arms=1,interval = 6, 
                                 s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
 
surv.6 <- c(report6$arm1$survtime$time, 
            report6$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.6 
# 
# 
############################################################################## 
#Curve 7 
##############################################################################
# 
 
data7 <- read.csv('Curve 7_.csv') 
# Vector for nrisk - counts of subjects 
counts7 <- c(237,191,141,124,106,91,74,61,41,23,11,1,0) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD7 <- IPDfromKM::preprocess(data7, trisk=times6, nrisk=counts7, 
                                  totalpts = 237, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_7 <- IPDfromKM::getIPD(pre_IPD7) 
#summary(IPD_7) 
#plot(IPD_7) 
 
# survreport fn -  
report7 <- IPDfromKM::survreport(ipd1 = IPD_7$IPD,arms=1,interval = 6, 
                                 s=c(0.75,0.6,0.5,.4,.3),showplots = TRUE) 
 
surv.7 <- c(report7$arm1$survtime$time, 
            report7$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.7 
# 
# 
############################################################################## 
#Curve 8 
##############################################################################
# 
 
data8 <- read.csv('Curve 8_.csv') 
# Vector for nrisk - counts of subjects 
counts8 <- c(339,316,307,289,278,270,249,201,139,73,33,5,0) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD8 <- IPDfromKM::preprocess(data8, trisk=times6, nrisk=counts8, 
                                  totalpts = 339, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_8 <- IPDfromKM::getIPD(pre_IPD8) 
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#summary(IPD_8) 
#plot(IPD_8) 
 
# survreport fn -  
report8 <- IPDfromKM::survreport(ipd1 = IPD_8$IPD,arms=1,interval = 6, 
                                 s=c(.85,.75,.6,.5),showplots = TRUE) 
 
surv.8 <- c(report8$arm1$survtime$time, 
            report8$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.8 
# 
############################################################################## 
#Curve 9 
##############################################################################
# 
 
data9 <- read.csv('Curve 9_.csv') 
# Vector for nrisk - counts of subjects 
counts9 <- c(343,288,230,205,181,162,137,115,84,48,25,4,0) 
 
# Call IPDfromKM package - preprocess function 
pre_IPD9 <- IPDfromKM::preprocess(data9, trisk=times6, nrisk=counts9, 
                                  totalpts = 343, maxy=1) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_9 <- IPDfromKM::getIPD(pre_IPD9) 
#summary(IPD_9) 
#plot(IPD_9) 
 
# survreport fn -  
report9 <- IPDfromKM::survreport(ipd1 = IPD_9$IPD,arms=1,interval = 6, 
                                 s=c(.85,.75,.6,.5,.4),showplots = TRUE) 
 
surv.9 <- c(report9$arm1$survtime$time, 
            report9$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.9 
# 
# 
############################################################################## 
#Curve 10 
##############################################################################
# 
 
data10 <- read.csv('Curve_10.csv') 
# No number at risk provided on graph 
 
# Call IPDfromKM package - preprocess function 
pre_IPD10 <- IPDfromKM::preprocess(data10, totalpts = 41, maxy=100) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_10 <- IPDfromKM::getIPD(pre_IPD10) 
##summary(IPD_10) 
#plot(IPD_10) 
 
# survreport fn -  
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report10 <- IPDfromKM::survreport(ipd1 = IPD_10$IPD,arms=1,interval = 6, 
                                 s=c(.75,.6,.5,.4,.3),showplots = TRUE) 
 
surv.10 <- c(report10$arm1$survtime$time, 
             report10$arm1$survprob$Surv[c(1:5)]) 
surv.10 
# 
# 
############################################################################## 
#Curve 11 
##############################################################################
# 
data11 <- read.csv('Curve 11.csv') 
# No number at risk provided on graph 
# Call IPDfromKM package - preprocess function 
pre_IPD11 <- IPDfromKM::preprocess(data11, totalpts = 41, maxy=100) 
 
# IPDfromKM package, getIPD fn - input preprocessed data 
IPD_11 <- IPDfromKM::getIPD(pre_IPD11) 
#summary(IPD_11) 
#plot(IPD_11) 
# survreport fn -  
report11 <- IPDfromKM::survreport(ipd1 = IPD_11$IPD,arms=1,interval = 6, 
                                  s=c(.85,.75,.6,.5),showplots = TRUE) 
surv.11 <- c(report11$arm1$survtime$time, 
             report11$arm1$survprob$Surv[c(1:4,6,8)]) 
surv.11 
# 
# 
##############################################################################
# 
################################ Lynette Smith 
############################################################################## 
#Curve 1 
##############################################################################
# 
 
data1.LS <- read.csv('Curve 1 LS.csv') 
pre_IPD1.LS <- IPDfromKM::preprocess(data1.LS, trisk=times1, nrisk=counts1, 
                                  totalpts = 22, maxy=1) 
IPD_1.LS <- IPDfromKM::getIPD(pre_IPD1.LS) 
report1.LS <- IPDfromKM::survreport(ipd1 = IPD_1.LS$IPD,arms=1,interval = 6, 
                                 s=c(0.85,0.75,0.6,0.5),showplots = T) 
surv.1.LS <- c(report1.LS$arm1$survtime$time, 
               report1.LS$arm1$survprob$Surv[c(1,2,4,6,8)]) 
surv.1.LS 
# 
# 
############################################################################## 
#Curve 2 
##############################################################################
# 
 
data2.LS <- read.csv('Curve 2 LS.csv') 
pre_IPD2.LS <- IPDfromKM::preprocess(data2.LS, trisk=times2, nrisk=counts2, 
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                                  totalpts = 22, maxy=1) 
IPD_2.LS <- IPDfromKM::getIPD(pre_IPD2.LS) 
 
report2.LS <- IPDfromKM::survreport(ipd1 = IPD_2.LS$IPD,arms=1,interval = 6, 
                                 s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
surv.2.LS <- c(report2.LS$arm1$survtime$time, 
               report2.LS$arm1$survprob$Surv[c(2:5,8)]) 
surv.2.LS 
# 
# 
############################################################################## 
#Curve 3 
##############################################################################
# 
 
data3.LS <- read.csv('Curve 3 LS.csv') 
pre_IPD3.LS <- IPDfromKM::preprocess(data3.LS, trisk=times3, nrisk=counts3, 
                                  totalpts = 55, maxy=1) 
IPD_3.LS <- IPDfromKM::getIPD(pre_IPD3.LS) 
 
report3.LS <- IPDfromKM::survreport(ipd1 = IPD_3.LS$IPD,arms=1,interval = 3, 
                                 s=c(.75,.6,.5,.4,.3),showplots = TRUE) 
surv.3.LS <- c(report3.LS$arm1$survtime$time, 
               report3.LS$arm1$survprob$Surv[c(1:5)]) 
surv.3.LS 
# 
# 
############################################################################## 
#Curve 4 
##############################################################################
# 
 
data4.LS <- read.csv('Curve 4 LS.csv') 
pre_IPD4.LS <- IPDfromKM::preprocess(data4.LS, trisk=times4, nrisk=counts4, 
                                  totalpts = 55, maxy=1) 
IPD_4.LS <- IPDfromKM::getIPD(pre_IPD4.LS) 
 
report4.LS <- IPDfromKM::survreport(ipd1 = IPD_4.LS$IPD,arms=1,interval = 3, 
                                 s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
surv.4.LS <- c(report4.LS$arm1$survtime$time, 
               report4.LS$arm1$survprob$Surv[c(1:5)]) 
surv.4.LS 
# 
# 
############################################################################## 
#Curve 5 
##############################################################################
# 
 
data5.LS <- read.csv('Curve 5 LS.csv') 
pre_IPD5.LS <- IPDfromKM::preprocess(data5.LS, trisk=times5, nrisk=counts5, 
                                  totalpts = 59, maxy=1) 
IPD_5.LS <- IPDfromKM::getIPD(pre_IPD5.LS) 
 
report5.LS <- IPDfromKM::survreport(ipd1 = IPD_5.LS$IPD,arms=1,interval = 3, 
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                                 s=c(0.85,0.75,0.65,0.55),showplots = TRUE) 
surv.5.LS <- c(report5.LS$arm1$survtime$time, 
               report5.LS$arm1$survprob$Surv[c(1:6)]) 
surv.5.LS 
# 
# 
############################################################################## 
#Curve 6 
##############################################################################
# 
 
data6.LS <- read.csv('Curve 6 LS.csv') 
pre_IPD6.LS <- IPDfromKM::preprocess(data6.LS, trisk=times6, nrisk=counts6, 
                                  totalpts = 233, maxy=1) 
IPD_6.LS <- IPDfromKM::getIPD(pre_IPD6.LS) 
 
report6.LS <- IPDfromKM::survreport(ipd1 = IPD_6.LS$IPD,arms=1,interval = 6, 
                                 s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
surv.6.LS <- c(report6.LS$arm1$survtime$time, 
               report6.LS$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.6.LS 
# 
# 
############################################################################## 
#Curve 7 
##############################################################################
# 
 
data7.LS <- read.csv('Curve 7 LS.csv') 
pre_IPD7.LS <- IPDfromKM::preprocess(data7.LS, trisk=times6, nrisk=counts7, 
                                  totalpts = 237, maxy=1) 
IPD_7.LS <- IPDfromKM::getIPD(pre_IPD7.LS) 
 
report7.LS <- IPDfromKM::survreport(ipd1 = IPD_7.LS$IPD,arms=1,interval = 6, 
                                 s=c(0.75,0.6,0.5,.4,.3),showplots = TRUE) 
surv.7.LS <- c(report7.LS$arm1$survtime$time, 
               report7.LS$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.7.LS 
# 
# 
# 
# 
############################################################################## 
#Curve 8 
##############################################################################
# 
 
data8.LS <- read.csv('Curve 8 LS.csv') 
pre_IPD8.LS <- IPDfromKM::preprocess(data8.LS, trisk=times6, nrisk=counts8, 
                                  totalpts = 339, maxy=1) 
IPD_8.LS <- IPDfromKM::getIPD(pre_IPD8.LS) 
 
report8.LS <- IPDfromKM::survreport(ipd1 = IPD_8.LS$IPD,arms=1,interval = 6, 
                                 s=c(.85,.75,.6,.5),showplots = TRUE) 
surv.8.LS <- c(report8.LS$arm1$survtime$time, 
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               report8.LS$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.8.LS 
# 
# 
############################################################################## 
#Curve 9 
##############################################################################
# 
 
data9.LS <- read.csv('Curve 9 LS.csv') 
pre_IPD9.LS <- IPDfromKM::preprocess(data9.LS, trisk=times6, nrisk=counts9, 
                                  totalpts = 343, maxy=1) 
IPD_9.LS <- IPDfromKM::getIPD(pre_IPD9.LS) 
 
report9.LS <- IPDfromKM::survreport(ipd1 = IPD_9.LS$IPD,arms=1,interval = 6, 
                                 s=c(.85,.75,.6,.5,.4),showplots = TRUE) 
surv.9.LS <- c(report9.LS$arm1$survtime$time, 
               report9.LS$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.9.LS 
# 
# 
############################################################################## 
#Curve 10 
##############################################################################
# 
 
data10.LS <- read.csv('Curve 10 LS.csv') 
pre_IPD10.LS <- IPDfromKM::preprocess(data10.LS, totalpts = 41, maxy=100) 
IPD_10.LS <- IPDfromKM::getIPD(pre_IPD10.LS) 
 
report10.LS <- IPDfromKM::survreport(ipd1 = IPD_10.LS$IPD,arms=1,interval = 6, 
                                  s=c(.75,.6,.5,.4,.3),showplots = TRUE) 
surv.10.LS <- c(report10.LS$arm1$survtime$time, 
                report10.LS$arm1$survprob$Surv[c(1:5)]) 
surv.10.LS 
# 
# 
############################################################################## 
#Curve 11 
##############################################################################
# 
 
data11.LS <- read.csv('Curve 11 LS.csv') 
pre_IPD11.LS <- IPDfromKM::preprocess(data11.LS, totalpts = 41, maxy=100) 
IPD_11.LS <- IPDfromKM::getIPD(pre_IPD11.LS) 
 
report11.LS <- IPDfromKM::survreport(ipd1 = IPD_11.LS$IPD,arms=1,interval = 6, 
                                  s=c(.85,.75,.6,.5),showplots = TRUE) 
 
surv.11.LS <- c(report11.LS$arm1$survtime$time, 
                report11.LS$arm1$survprob$Surv[c(1:4,6,8)]) 
surv.11.LS 
# 
# 
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##############################################################################
# 
################################ Chris Wichman 
############################################################################## 
#Curve 1 
##############################################################################
# 
data1.CW <- read.csv('Curve01 CSW data.csv') 
pre_IPD1.CW <- IPDfromKM::preprocess(data1.CW, trisk=times1, nrisk=counts1, 
                                     totalpts = 22, maxy=1) 
IPD_1.CW <- IPDfromKM::getIPD(pre_IPD1.CW) 
 
report1.CW <- IPDfromKM::survreport(ipd1 = IPD_1.CW$IPD,arms=1,interval = 6, 
                                    s=c(0.85,0.75,0.6,0.5),showplots = T) 
surv.1.CW <- c(report1.CW$arm1$survtime$time, 
               report1.CW$arm1$survprob$Surv[c(1,2,4,6,8)]) 
surv.1.CW 
# 
# 
############################################################################## 
#Curve 2 
##############################################################################
# 
 
data2.CW <- read.csv('Curve02 CSW data.csv') 
pre_IPD2.CW <- IPDfromKM::preprocess(data2.CW, trisk=times2, nrisk=counts2, 
                                     totalpts = 22, maxy=1) 
IPD_2.CW <- IPDfromKM::getIPD(pre_IPD2.CW) 
 
report2.CW <- IPDfromKM::survreport(ipd1 = IPD_2.CW$IPD,arms=1,interval = 6, 
                                    s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
surv.2.CW <- c(report2.CW$arm1$survtime$time, 
               report2.CW$arm1$survprob$Surv[c(2:5,8)]) 
surv.2.CW 
# 
# 
############################################################################## 
#Curve 3 
##############################################################################
# 
 
data3.CW <- read.csv('Curve03 CSW data.csv') 
pre_IPD3.CW <- IPDfromKM::preprocess(data3.CW, trisk=times3, nrisk=counts3, 
                                     totalpts = 55, maxy=1) 
IPD_3.CW <- IPDfromKM::getIPD(pre_IPD3.CW) 
 
report3.CW <- IPDfromKM::survreport(ipd1 = IPD_3.CW$IPD,arms=1,interval = 3, 
                                    s=c(.75,.6,.5,.4,.3),showplots = TRUE) 
surv.3.CW <- c(report3.CW$arm1$survtime$time, 
               report3.CW$arm1$survprob$Surv[c(1:5)]) 
surv.3.CW 
# 
# 
############################################################################## 
#Curve 4 
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##############################################################################
# 
 
data4.CW <- read.csv('Curve04 CSW data.csv') 
pre_IPD4.CW <- IPDfromKM::preprocess(data4.CW, trisk=times4, nrisk=counts4, 
                                     totalpts = 55, maxy=1) 
IPD_4.CW <- IPDfromKM::getIPD(pre_IPD4.CW) 
 
report4.CW <- IPDfromKM::survreport(ipd1 = IPD_4.CW$IPD,arms=1,interval = 3, 
                                    s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
surv.4.CW <- c(report4.CW$arm1$survtime$time, 
               report4.CW$arm1$survprob$Surv[c(1:5)]) 
surv.4.CW 
# 
# 
############################################################################## 
#Curve 5 
##############################################################################
# 
 
data5.CW <- read.csv('Curve05 CSW data.csv') 
pre_IPD5.CW <- IPDfromKM::preprocess(data5.CW, trisk=times5, nrisk=counts5, 
                                     totalpts = 59, maxy=1) 
IPD_5.CW <- IPDfromKM::getIPD(pre_IPD5.CW) 
 
report5.CW <- IPDfromKM::survreport(ipd1 = IPD_5.CW$IPD,arms=1,interval = 3, 
                                    s=c(0.85,0.75,0.65,0.55),showplots = TRUE) 
surv.5.CW <- c(report5.CW$arm1$survtime$time, 
               report5.CW$arm1$survprob$Surv[c(1:6)]) 
surv.5.CW 
# 
# 
############################################################################## 
#Curve 6 
##############################################################################
# 
 
data6.CW <- read.csv('Curve06 CSW osimertinib data.csv') 
pre_IPD6.CW <- IPDfromKM::preprocess(data6.CW, trisk=times6, nrisk=counts6, 
                                     totalpts = 233, maxy=1) 
IPD_6.CW <- IPDfromKM::getIPD(pre_IPD6.CW) 
 
report6.CW <- IPDfromKM::survreport(ipd1 = IPD_6.CW$IPD,arms=1,interval = 6, 
                                    s=c(0.85,0.75,0.6,0.5),showplots = TRUE) 
surv.6.CW <- c(report6.CW$arm1$survtime$time, 
               report6.CW$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.6.CW 
# 
# 
############################################################################## 
#Curve 7 
##############################################################################
# 
 
data7.CW <- read.csv('Curve07 CSW placebo data.csv') 
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pre_IPD7.CW <- IPDfromKM::preprocess(data7.CW, trisk=times6, nrisk=counts7, 
                                     totalpts = 237, maxy=1) 
IPD_7.CW <- IPDfromKM::getIPD(pre_IPD7.CW) 
 
report7.CW <- IPDfromKM::survreport(ipd1 = IPD_7.CW$IPD,arms=1,interval = 6, 
                                    s=c(0.75,0.6,0.5,.4,.3),showplots = TRUE) 
surv.7.CW <- c(report7.CW$arm1$survtime$time, 
               report7.CW$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.7.CW 
# 
# 
############################################################################## 
#Curve 8 
##############################################################################
# 
 
data8.CW <- read.csv('Curve08 CSW data.csv') 
pre_IPD8.CW <- IPDfromKM::preprocess(data8.CW, trisk=times6, nrisk=counts8, 
                                     totalpts = 339, maxy=1) 
IPD_8.CW <- IPDfromKM::getIPD(pre_IPD8.CW) 
plot(IPD_8.CW) 
report8.CW <- IPDfromKM::survreport(ipd1 = IPD_8.CW$IPD,arms=1,interval = 6, 
                                    s=c(.85,.75,.6,.5),showplots = TRUE) 
surv.8.CW <- c(report8.CW$arm1$survtime$time, 
               report8.CW$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.8.CW 
# 
# 
############################################################################## 
#Curve 9 
##############################################################################
# 
 
data9.CW <- read.csv('Curve09 CSW data.csv') 
pre_IPD9.CW <- IPDfromKM::preprocess(data9.CW, trisk=times6, nrisk=counts9, 
                                     totalpts = 343, maxy=1) 
IPD_9.CW <- IPDfromKM::getIPD(pre_IPD9.CW) 
 
report9.CW <- IPDfromKM::survreport(ipd1 = IPD_9.CW$IPD,arms=1,interval = 6, 
                                    s=c(.85,.75,.6,.5,.4),showplots = TRUE) 
surv.9.CW <- c(report9.CW$arm1$survtime$time, 
               report9.CW$arm1$survprob$Surv[c(2,4,6,8,10,11)]) 
surv.9.CW 
# 
# 
############################################################################## 
#Curve 10 
##############################################################################
# 
 
data10.CW <- read.csv('Curve10 CSW data.csv') 
pre_IPD10.CW <- IPDfromKM::preprocess(data10.CW, totalpts = 41, maxy=100) 
IPD_10.CW <- IPDfromKM::getIPD(pre_IPD10.CW) 
 
report10.CW <- IPDfromKM::survreport(ipd1 = IPD_10.CW$IPD,arms=1,interval = 6, 
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                                     s=c(.75,.6,.5,.4,.3),showplots = TRUE) 
surv.10.CW <- c(report10.CW$arm1$survtime$time, 
                report10.CW$arm1$survprob$Surv[c(1:5)]) 
surv.10.CW 
# 
# 
############################################################################## 
#Curve 11 
##############################################################################
# 
 
data11.CW <- read.csv('Curve11 CSW data.csv') 
pre_IPD11.CW <- IPDfromKM::preprocess(data11.CW, totalpts = 41, maxy=100) 
IPD_11.CW <- IPDfromKM::getIPD(pre_IPD11.CW) 
 
report11.CW <- IPDfromKM::survreport(ipd1 = IPD_11.CW$IPD,arms=1,interval = 6, 
                                     s=c(.85,.75,.6,.5),showplots = TRUE) 
 
surv.11.CW <- c(report11.CW$arm1$survtime$time, 
                report11.CW$arm1$survprob$Surv[c(1:4,6,8)]) 
surv.11.CW 
# 
# 
##############################################################################
# 
###################################   ICC    
############################################################################## 
# 
#  dataframe for all raw reconstructed values 
 
df.all <- data.frame( 
  curve.ID = c(rep(1,length(surv.1)), rep(2,length(surv.2)), 
                      rep(3,length(surv.3)), rep(4,length(surv.4)), 
                      rep(5,length(surv.5)), rep(6,length(surv.6)), 
                      rep(7,length(surv.7)), rep(8,length(surv.8)), 
                      rep(9,length(surv.9)), rep(10,length(surv.10)), 
                      rep(11,length(surv.11))), 
  index = c(1:length(surv.1), 1:length(surv.2), 1:length(surv.3),  
                    1:length(surv.4), 1:length(surv.5), 1:length(surv.6), 
                    1:length(surv.7), 1:length(surv.8), 1:length(surv.9), 
                    1:length(surv.10), 1:length(surv.11)), 
  MS = c(surv.1, surv.2, surv.3, surv.4, surv.5, surv.6, surv.7,  
                 surv.8, surv.9, surv.10, surv.11), 
  LS = c(surv.1.LS, surv.2.LS, surv.3.LS, surv.4.LS, surv.5.LS, surv.6.LS, 
                 surv.7.LS, surv.8.LS, surv.9.LS, surv.10.LS, surv.11.LS), 
  CW = c(surv.1.CW, surv.2.CW, surv.3.CW, surv.4.CW, surv.5.CW, surv.6.CW,  
                 surv.7.CW, surv.8.CW, surv.9.CW, surv.10.CW, surv.11.CW) 
) 
##############################################################################
# 
#########  Intraclass Correlation Coefficient 
##############################################################################  
#install.packages("irr") 
require(irr) 
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# Subgroups 
# Survival time estimates  
times.MS <- c(report1$arm1$survtime$time, report2$arm1$survtime$time, 
              report3$arm1$survtime$time, report4$arm1$survtime$time, 
              report5$arm1$survtime$time, report6$arm1$survtime$time, 
              report7$arm1$survtime$time, report8$arm1$survtime$time, 
              report9$arm1$survtime$time, report10$arm1$survtime$time, 
              report11$arm1$survtime$time) 
 
times.LS <- c(report1.LS$arm1$survtime$time, report2.LS$arm1$survtime$time, 
              report3.LS$arm1$survtime$time, report4.LS$arm1$survtime$time, 
              report5.LS$arm1$survtime$time, report6.LS$arm1$survtime$time, 
              report7.LS$arm1$survtime$time, report8.LS$arm1$survtime$time, 
              report9.LS$arm1$survtime$time, report10.LS$arm1$survtime$time, 
              report11.LS$arm1$survtime$time) 
 
times.CW <- c(report1.CW$arm1$survtime$time, report2.CW$arm1$survtime$time, 
              report3.CW$arm1$survtime$time, report4.CW$arm1$survtime$time, 
              report5.CW$arm1$survtime$time, report6.CW$arm1$survtime$time, 
              report7.CW$arm1$survtime$time, report8.CW$arm1$survtime$time, 
              report9.CW$arm1$survtime$time, report10.CW$arm1$survtime$time, 
              report11.CW$arm1$survtime$time) 
 
# Dataframe for ALL survival time estimates  
all.times <- data.frame(times.MS,times.LS,times.CW) 
sum(is.na(all.times)) 
 
 
##############################################################################
# 
#####################   Collate data 
##############################################################################  
#install.packages("irr") 
#install.packages("lme4") 
#install.packages("misty") 
install.packages("psychometric") 
require(irr) 
require(lme4) 
require(misty) 
require(psychometric) 
 
# Subgroups 
# Survival time estimates  
times.MS <- c(report1$arm1$survtime$time, report2$arm1$survtime$time, 
              report3$arm1$survtime$time, report4$arm1$survtime$time, 
              report5$arm1$survtime$time, report6$arm1$survtime$time, 
              report7$arm1$survtime$time, report8$arm1$survtime$time, 
              report9$arm1$survtime$time, report10$arm1$survtime$time, 
              report11$arm1$survtime$time) 
 
times.LS <- c(report1.LS$arm1$survtime$time, report2.LS$arm1$survtime$time, 
              report3.LS$arm1$survtime$time, report4.LS$arm1$survtime$time, 
              report5.LS$arm1$survtime$time, report6.LS$arm1$survtime$time, 
              report7.LS$arm1$survtime$time, report8.LS$arm1$survtime$time, 
              report9.LS$arm1$survtime$time, report10.LS$arm1$survtime$time, 
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              report11.LS$arm1$survtime$time) 
 
times.CW <- c(report1.CW$arm1$survtime$time, report2.CW$arm1$survtime$time, 
              report3.CW$arm1$survtime$time, report4.CW$arm1$survtime$time, 
              report5.CW$arm1$survtime$time, report6.CW$arm1$survtime$time, 
              report7.CW$arm1$survtime$time, report8.CW$arm1$survtime$time, 
              report9.CW$arm1$survtime$time, report10.CW$arm1$survtime$time, 
              report11.CW$arm1$survtime$time) 
 
ID.times <- c(rep(1,length(report1$arm1$survtime$time)), 
              rep(2,length(report2$arm1$survtime$time)), 
              rep(3,length(report3$arm1$survtime$time)), 
              rep(4,length(report4$arm1$survtime$time)), 
              rep(5,length(report5$arm1$survtime$time)), 
              rep(6,length(report6$arm1$survtime$time)), 
              rep(7,length(report7$arm1$survtime$time)),  
              rep(8,length(report8$arm1$survtime$time)), 
              rep(9,length(report9$arm1$survtime$time)), 
              rep(10,length(report10$arm1$survtime$time)), 
              rep(11,length(report11$arm1$survtime$time))) 
 
# Dataframe for ALL survival time estimates  
all.times <- data.frame(times.MS,times.LS,times.CW) 
 
# Survival probability estimates 
 
prob.MS <- c(report1$arm1$survprob$Surv[c(1,2,4,6,8)], 
             report2$arm1$survprob$Surv[c(2:5,8)], 
             report3$arm1$survprob$Surv[c(1:5)], 
             report4$arm1$survprob$Surv[c(1:5)], 
             report5$arm1$survprob$Surv[c(1:6)], 
             report6$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report7$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report8$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report9$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report10$arm1$survprob$Surv[c(1:5)], 
             report11$arm1$survprob$Surv[c(1:4,6,8)]) 
 
prob.LS <- c(report1.LS$arm1$survprob$Surv[c(1,2,4,6,8)], 
             report2.LS$arm1$survprob$Surv[c(2:5,8)], 
             report3.LS$arm1$survprob$Surv[c(1:5)], 
             report4.LS$arm1$survprob$Surv[c(1:5)], 
             report5.LS$arm1$survprob$Surv[c(1:6)], 
             report6.LS$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report7.LS$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report8.LS$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report9.LS$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report10.LS$arm1$survprob$Surv[c(1:5)], 
             report11.LS$arm1$survprob$Surv[c(1:4,6,8)]) 
 
prob.CW <- c(report1.CW$arm1$survprob$Surv[c(1,2,4,6,8)], 
             report2.CW$arm1$survprob$Surv[c(2:5,8)], 
             report3.CW$arm1$survprob$Surv[c(1:5)], 
             report4.CW$arm1$survprob$Surv[c(1:5)], 
             report5.CW$arm1$survprob$Surv[c(1:6)], 
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             report6.CW$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report7.CW$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report8.CW$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report9.CW$arm1$survprob$Surv[c(2,4,6,8,10,11)], 
             report10.CW$arm1$survprob$Surv[c(1:5)], 
             report11.CW$arm1$survprob$Surv[c(1:4,6,8)]) 
 
 
ID.prob <- c(rep(1,5), rep(2,5), rep(3,5), rep(4,5), rep(5,6), rep(6,6), 
             rep(7,6), rep(8,6), rep(9,6), rep(10,5), rep(11,6)) 
 
############################################################################## 
##########################   NEW  ICC 
############################################################################## 
 
 
m.icc <- data.frame(times = c(times.MS,times.LS,times.CW),  
                    rater = c(rep(1,length(times.MS)), 
rep(2,length(times.LS)), 
                              rep(3, length(times.CW))), 
                    curveID = rep(ID.times,3)) 
m.icc.prob <- data.frame(rate = c(prob.MS, prob.LS, prob.CW),  
                         rater = c(rep(1,length(prob.MS)),  
                                   rep(2,length(prob.LS)), 
                                   rep(3, length(prob.CW))), 
                         curveID = rep(ID.prob,3)) 
 
# NEW ICC 
ICC2.lme(times, grp = curveID, data = m.icc) 
ICC2.CI(times, iv =curveID, data = m.icc) 
 
# NEW ICC - probabilities 
ICC2.lme(rate, grp = curveID, data = m.icc.prob) 
ICC2.CI(rate, iv =curveID, data = m.icc.prob) 
 
 
####### Reported benchmarks - ALL  
############################################ 
 
# Median survival times 
 
rep.times.MS <- c(report1$arm1$survtime$time[4], 
report2$arm1$survtime$time[4], 
              report3$arm1$survtime$time[3], report4$arm1$survtime$time[4], 
              report6$arm1$survtime$time[4], report7$arm1$survtime$time[3], 
              report8$arm1$survtime$time[4], report9$arm1$survtime$time[4], 
              report10$arm1$survtime$time[3], report11$arm1$survtime$time[4]) 
 
rep.times.LS <- c(report1.LS$arm1$survtime$time[4], 
report2.LS$arm1$survtime$time[4], 
              report3.LS$arm1$survtime$time[3], 
report4.LS$arm1$survtime$time[4], 
              report6.LS$arm1$survtime$time[4], 
report7.LS$arm1$survtime$time[3], 
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              report8.LS$arm1$survtime$time[4], 
report9.LS$arm1$survtime$time[4], 
              report10.LS$arm1$survtime$time[3], 
report11.LS$arm1$survtime$time[4]) 
 
rep.times.CW <- c(report1.CW$arm1$survtime$time[4], 
report2.CW$arm1$survtime$time[4], 
              report3.CW$arm1$survtime$time[3], 
report4.CW$arm1$survtime$time[4], 
              report6.CW$arm1$survtime$time[4], 
report7.CW$arm1$survtime$time[3], 
              report8.CW$arm1$survtime$time[4], 
report9.CW$arm1$survtime$time[4], 
              report10.CW$arm1$survtime$time[3], 
report11.CW$arm1$survtime$time[4]) 
 
# probabilities 
 
rep.prob.MS <- c(report1$arm1$survprob$Surv[c(2,4,6)], 
                 report2$arm1$survprob$Surv[c(2,4,6)], 
                 report3$arm1$survprob$Surv[4], 
                 report4$arm1$survprob$Surv[4], 
                 report5$arm1$survprob$Surv[4], 
                 report6$arm1$survprob$Surv[c(4,6,8)], 
                 report7$arm1$survprob$Surv[c(4,6,8)], 
                 report8$arm1$survprob$Surv[c(4,6,8)], 
                 report9$arm1$survprob$Surv[c(4,6,8)]) 
 
rep.prob.LS <- c(report1.LS$arm1$survprob$Surv[c(2,4,6)], 
                 report2.LS$arm1$survprob$Surv[c(2,4,6)], 
                 report3.LS$arm1$survprob$Surv[4], 
                 report4.LS$arm1$survprob$Surv[4], 
                 report5.LS$arm1$survprob$Surv[4], 
                 report6.LS$arm1$survprob$Surv[c(4,6,8)], 
                 report7.LS$arm1$survprob$Surv[c(4,6,8)], 
                 report8.LS$arm1$survprob$Surv[c(4,6,8)], 
                 report9.LS$arm1$survprob$Surv[c(4,6,8)]) 
 
rep.prob.CW <- c(report1.CW$arm1$survprob$Surv[c(2,4,6)], 
                 report2.CW$arm1$survprob$Surv[c(2,4,6)], 
                 report3.CW$arm1$survprob$Surv[4], 
                 report4.CW$arm1$survprob$Surv[4], 
                 report5.CW$arm1$survprob$Surv[4], 
                 report6.CW$arm1$survprob$Surv[c(4,6,8)], 
                 report7.CW$arm1$survprob$Surv[c(4,6,8)], 
                 report8.CW$arm1$survprob$Surv[c(4,6,8)], 
                 report9.CW$arm1$survprob$Surv[c(4,6,8)]) 
 
times.Reported <- c(35.1, 34, 4.07, 13.73, 35.8, 21.9, 65.8, 28.1, 15.23, 
27.57) 
prob.Reported <- c(.851, .745, .497, 1, .524, .436, .173, .541, .725, .90, 
                   .84, .70, .46, .34, .29, .90, .85, .73, .55, .44, .38) 
 
rep.times.ICC <- data.frame(times.Reported, rep.times.MS, rep.times.LS,  
                            rep.times.CW) 
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rep.prob.ICC <- data.frame(prob.Reported, rep.prob.MS, rep.prob.LS, 
rep.prob.CW) 
 
 
# ICC - REPORTED times 
icc(rep.times.ICC,model = 'twoway', type = 'agreement', unit = 'single') 
# ICC - REPORTED probabilities 
icc(rep.prob.ICC,model = 'twoway', type = 'agreement', unit = 'single') 
 
########################################################################## 
############################################################################ 
# Sensitivity analysis 
 
# Times agreement 
# no MS 
ICC2.CI(times, iv = curveID, data = m.icc[m.icc$rater !=1,]) 
# no LS 
ICC2.CI(times, iv = curveID, data = m.icc[m.icc$rater !=2,]) 
# no CW 
ICC2.CI(times, iv = curveID, data = m.icc[m.icc$rater !=3,]) 
 
# reported times  ##################################### 
# no MS 
ICC2.CI(rate, iv = curveID, data = m.icc.prob[m.icc.prob$rater !=1,]) 
# no LS 
ICC2.CI(rate, iv = curveID, data = m.icc.prob[m.icc.prob$rater !=2,]) 
# no CW 
ICC2.CI(rate, iv = curveID, data = m.icc.prob[m.icc.prob$rater !=3,]) 
 
# Probs agreement 
# no MS 
no.MS.prob <- data.frame(prob.LS,prob.CW) 
icc(no.MS.prob,model = 't', type = 'a', unit = 's') 
# no LS 
no.LS.prob <- data.frame(prob.MS,prob.CW) 
icc(no.LS.prob,model = 't', type = 'a', unit = 's') 
# no CW 
no.CW.prob <- data.frame(prob.MS,prob.LS) 
icc(no.CW.prob,model = 't', type = 'a', unit = 's') 
 
#################################################################### 
# Compare IPD 
 
######      Per curve ICC   ######################################### 
 
#curve 1 
icc(data.frame(IPD_1$IPD$time, IPD_1.LS$IPD$time, IPD_1.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 2 
icc(data.frame(IPD_2$IPD$time, IPD_2.LS$IPD$time, IPD_2.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 3 
icc(data.frame(IPD_3$IPD$time, IPD_3.LS$IPD$time, IPD_3.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 4 
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icc(data.frame(IPD_4$IPD$time, IPD_4.LS$IPD$time, IPD_4.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 5 
icc(data.frame(IPD_5$IPD$time, IPD_5.LS$IPD$time, IPD_5.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 6 
icc(data.frame(IPD_6$IPD$time, IPD_6.LS$IPD$time, IPD_6.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 7 
icc(data.frame(IPD_7$IPD$time, IPD_7.LS$IPD$time, IPD_7.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 8 
icc(data.frame(IPD_8$IPD$time, IPD_8.LS$IPD$time, IPD_8.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 9 
icc(data.frame(IPD_9$IPD$time, IPD_9.LS$IPD$time, IPD_9.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 10 
icc(data.frame(IPD_10$IPD$time, IPD_10.LS$IPD$time, IPD_10.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
#curve 11 
icc(data.frame(IPD_11$IPD$time, IPD_11.LS$IPD$time, IPD_11.CW$IPD$time),  
    model = 't', type = 'a', unit = 's') 
 
############################################################################# 
#########     Bland-Altman     ############################################# 
############################################################################ 
 
install.packages("blandr") 
install.packages("ggplot2") 
require(blandr) 
require(ggplot2) 
 
ba.plot.times <- blandr.draw(rep.times.MS, times.Reported, ciShading = FALSE) 
ba.plot.time + labs(title = 'Bland-Altman plot for agreement with reported 
survival times') 
plot.new() 
ba.plot.prob <- blandr.draw(rep.prob.MS, prob.Reported, ciShading = FALSE) 
ba.plot.prob + labs(title = 'Bland-Altman plot for agreement with reported 
survival rates') 
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