
Henry Ford Health Henry Ford Health

Henry Ford Health Scholarly Commons Henry Ford Health Scholarly Commons

Behavioral Health Articles Behavioral Health Services / Psychiatry

4-17-2023

GBC: a parallel toolkit based on highly addressable byte-encoding GBC: a parallel toolkit based on highly addressable byte-encoding

blocks for extremely large-scale genotypes of species blocks for extremely large-scale genotypes of species

Liubin Zhang

Yangyang Yuan

Wenjie Peng

Bin Tang

Mulin Jun Li

See next page for additional authors

Follow this and additional works at: https://scholarlycommons.henryford.com/behavioralhealth_articles

https://scholarlycommons.henryford.com/
https://scholarlycommons.henryford.com/behavioralhealth_articles
https://scholarlycommons.henryford.com/behavioralhealth
https://scholarlycommons.henryford.com/behavioralhealth_articles?utm_source=scholarlycommons.henryford.com%2Fbehavioralhealth_articles%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors Authors
Liubin Zhang, Yangyang Yuan, Wenjie Peng, Bin Tang, Mulin Jun Li, Hongsheng Gui, Qiang Wang, and
Miaoxin Li

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Zhang et al. Genome Biology (2023) 24:76
https://doi.org/10.1186/s13059-023-02906-z

Genome Biology

GBC: a parallel toolkit based on highly
addressable byte-encoding blocks for extremely
large-scale genotypes of species
Liubin Zhang1,2,3, Yangyang Yuan1,2,3,4, Wenjie Peng1,2,3, Bin Tang1,2,3, Mulin Jun Li5, Hongsheng Gui6,7,
Qiang Wang8 and Miaoxin Li1,2,3,9,10*

Abstract

Whole-genome sequencing projects of millions of subjects contain enormous geno-
types, entailing a huge memory burden and time for computation. Here, we present
GBC, a toolkit for rapidly compressing large-scale genotypes into highly addressable
byte-encoding blocks under an optimized parallel framework. We demonstrate that
GBC is up to 1000 times faster than state-of-the-art methods to access and manage
compressed large-scale genotypes while maintaining a competitive compression ratio.
We also showed that conventional analysis would be substantially sped up if built on
GBC to access genotypes of a large population. GBC’s data structure and algorithms are
valuable for accelerating large-scale genomic research.

Keywords: Large-scale genotypes, Genotype compression, Highly addressable
genotype blocks, Byte-encoding genotypes, Genotype management, Parallelization
algorithm, Cloud computation

Background
Interrogating the full genetic spectrum underlying phenotypes in species requires large sam-
ples. With the dramatic decrease in sequencing costs and advancements in precision medi-
cine, genome-wide genotypes of millions of subjects will soon become routinely available.
However, the storage and computational demands of managing large-scale genotypes have
become increasingly challenging. The Variant Call Format (VCF) [1] is a widely used frame-
work to store the aggregate information of genotypes for genome sequencing projects, and
it has become the standard format for genetic and genomic studies. However, the easy-to-
read text format of VCF files occupies much redundant storage space and is not specifically
designed for large-scale genotype data. Access to large-scale genotypes in VCF for analyses
will impose a huge computational burden, usually due to data overload. While a binary format
by PLINK was proposed to store large-scale genotypes efficiently and speed up genome-wide

*Correspondence:
limiaoxin@mail.sysu.edu.cn

1 Program in Bioinformatics,
Zhongshan School of Medicine
and The Fifth Affiliated Hospital,
Sun Yat-Sen University,
Guangzhou 510080, China
Full list of author information is
available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02906-z&domain=pdf
http://orcid.org/0000-0002-4733-0109

Page 2 of 22Zhang et al. Genome Biology (2023) 24:76

association studies (GWASs) [2], it loses information for multi-allele genotypes and has
no further compression and addressing strategies besides binary encoding. Thus, there is
an urgent need for a more efficient data format and high-performance utilities to meet the
demands of large genetics and genomics projects, such as the UK Biobank (UKBB) [3].

Multiple methods have been proposed to compress genotypes to facilitate the transfer
and storage of large-scale genotype data, e.g., TGC [4], GTShark [5], Genozip [6], and
VCFShark [7]. However, these methods did not support rapid and flexible queries for the
compressed data, which is important for analyses. Thus, block-based methods for com-
pressing genotypes into rapidly accessible formats were developed subsequently, includ-
ing BCFTools [8], PBWT [9], BGT [10], GQT [11], and GTC [12]. Unfortunately, the
block-based methods are still generally inefficient for extremely large-scale genotypes
(say, whole-genome genotypes of millions of subjects) due to a lack of efficient struc-
tures and algorithms. Methods for such large-scale genotypes should have at least four
major technical advantages. First, memory and time overhead usage should grow lin-
early or keep steady when compressing and accessing a larger scale of genotypes. Sec-
ond, it should have a robust framework for massive parallelization in reading, analyzing,
and outputting genotypes. Third, it should efficiently manage the compressed genotypes
(e.g., merging, splitting, and sorting by coordinates of variants). Finally, it should be
equipped with versatile data query and output functions, say, query by specified variants
or subjects, the output of phased or unphased genotypes with various formats (e.g., text,
binary, byte, or other specified formats). Note that some advantages may conflict with
each other in performance. For example, memory usage and disk input-output (I/O)
efficiency may become inefficient when there are many parallel tasks, entailing a robust
design to achieve these advantages simultaneously.

In the present study, we first proposed a unified data structure, Genotype Block (GTB)
format, to store large-scale genotypes into many highly addressable byte-encoding com-
pression blocks. Then, multiple advanced algorithms and a parallel computing frame-
work were developed for efficient compression, decompression, access, management,
and analyses based on the GTBs. Finally, the format and algorithms were implemented
into a user-friendly Genotype Block Compressor (GBC) toolkit. We demonstrated that
GBC is much faster than alternative methods to access and manage genotypes in GTB.
GBC follows the GA4GH [13] application program interface (API) specification (https://
ga4gh- schem as. readt hedocs. io/ en/ latest/ schem as/ varia nts. proto. html) for the design of
Java structures for genetic variants. The GBC software package and API functions are
publicly available at https:// pmglab. top/ gbc, which can be easily integrated into other
tools and applied to various genomics projects.

Results
Overview of the GBC procedure

We first designed a novel GTB format for compressing and storing large-scale geno-
type data of haploid or diploid species with various allele numbers, chromosome num-
bers, and phased or unphased genotypes (Fig. 1a). To begin the compression process,
the input genotype file (in VCF format) is partitioned into several chunks and subse-
quently processed in parallel by multiple threads. In each parallel task, every chunk
is further divided into multiple smaller indexable blocks. Here, a block is the smallest

https://ga4gh-schemas.readthedocs.io/en/latest/schemas/variants.proto.html
https://ga4gh-schemas.readthedocs.io/en/latest/schemas/variants.proto.html
https://pmglab.top/gbc

Page 3 of 22Zhang et al. Genome Biology (2023) 24:76

unit of compression, in which the number of variants is balanced with the sample
size given the maximal array length 231 − 1(≈ 2GB) (Fig. 2a). Then, the genotypes of
the variants are encoded into byte codes (Figs. 1b and 2b). For biallelic variants, their
byte codes are further merged into one-byte codes by combining three phased or four
unphased consecutive genotypes (Fig. 2c). Next, the approximate minimum discrep-
ancy ordering (AMDO) algorithm is applied on the variant level (Fig. 2d) to sort the
variants with similar genotype distributions for improving the compression ratio. The
ZSTD algorithm is then adopted to compress the sorted data in each block (Fig. 2e).
Finally, all the compressed blocks and metadata are written into a single GTB file
(Fig. 2f). The procedure has a linear time complexity regarding the number of subjects

Fig. 1 Structure of Genotype Block (GTB) and byte-encoded table of genotype (BEG) implemented in GBC.
a Magic code: the first two bytes are used to store the compressed parameters. Block numbers: the total
number of blocks contained in the compressed file, which also indicates that the “block abstract information”
at the end of the file has (25*numbers) bytes of memory. Meta information: the meta information in the
header of the VCF file. Subjects information: list of subjects. Block entity data: the compressed data is
combined according to the order of the abstract block information. Abstract block information: abstract
information of the GTB nodes for building the first-level fast index table. b The byte-encoding table of
genotype (BEG)

Fig. 2 The workflow of building a GTB file in the GBC framework. a Slice (one or more) inputs into several
chunks according to the specified number of parallel threads, and then each chunk is divided into several
blocks for compression. b Code genotypes of each variant with byte-encoded genotype (BEG). c Combine
multiple BEG of each biallelic variant into maximized byte-encoded genotype (MBEG). d Sort variants by
approximate minimum discrepancy ordering (AMDO) to improve compression ratio. The sample graph is
produced from the first 4000 biallelic variants of assoc.hg19.vcf.gz (download from https:// doi. org/ 10. 5281/
zenodo. 77375 56). Genotype 0|0 is filled with white, 0|1 or 1|0 is filled with gray, and 1|1 is filled with black.
e Compress the position, genotype, and allele data with an advanced compressor separately. Then, the
compressed data (entity data) is concatenated into a long array and written into the disk, while the abstract
information is recorded in the memory. f Store the compressed data in Genotype Block (GTB) format

https://doi.org/10.5281/zenodo.7737556
https://doi.org/10.5281/zenodo.7737556

Page 4 of 22Zhang et al. Genome Biology (2023) 24:76

and variants with small memory usage (less than 4 GB). It provides the fastest com-
pression speed with a competitive compression ratio to date.

Besides, various advanced algorithms have been developed for rapid access and man-
agement of large-scale genotypes in GTB format. First, a tree structure (i.e., GTBTree)
containing chromosome, block start, and end positions is designed for fast localization
of and access to the indexable blocks and variants. Thus, data retrieval and editing in a
large GTB file can be quickly accomplished only in involved blocks without decompress-
ing the entire file. Second, an MBEG-based address conversion algorithm is developed
for fast localization (especially for access by subjects) of a subject’s genotype at a variant,
which enhances the speed of per-column access by more than 20 times (single thread,
compared with BCFTools). Third, a unique sorting algorithm based on GTBTree makes it
easy to sort variants of various sizes and degrees of disorder in less than 4 GB of memory
by coordinates and without external disk space. Fourth, a file merging algorithm based on
the minimum heap of sample sizes can quickly merge multiple large-scale genotypes in
GTB format. Finally, we designed a cyclic locking model (CLM) for parallel decompres-
sion and downstream analysis, which can help users to design and perform parallelized
computing efficiently. Thanks to the data structure and algorithms, GBC performs well
for extracting, concatenating, merging, and splitting large-scale genotypes.

Efficient compression of large‑scale genotypes by GBC

A series of experiments were carried out to investigate the performance of the algo-
rithms of GBC systematically. We first compared the compression ratio of the GBC with
the other four widely used block-based methods for fast-accessing genotypes, including
BCFTools, BGT, PBWT, and GTC. According to Danek et al. [12], GTC had the largest
compression ratio among the four methods. However, Fig. 3a and b showed that GBC
had the best compression ratio on the typical public datasets (UKBB, 1000GP3, and
SG10K), over 10% higher than GTC. For example, GBC only needed 631.03 MB of disk
space to store the UKBB dataset with 469,835 subjects and 70,581 variants, while GTC
needed 701.45 MB. Besides, we also compared GBC to the other two genotype compres-
sion methods for data archiving (GTShark, Genozip). The two methods’ compression
ratios were around 1.7 to 1.27 times higher than that of GBC for unphased genotypes
(in UKBB exome chr4 dataset: GBC: 0.62 GB, GTShark: 0.51 GB, Genozip: 0.49 GB; in
1000GP3 and SG10K datasets: GBC: 3.68 GB, GTShark: 2.51 GB, Genozip: 2.54 GB, see
details in Additional file 1: Table S1). However, accessing the compressed genotypes by
the two methods is much slower than GBC (see details in the section about data-access
performance). In sum, GBC provided a competitive compression ratio, although its pri-
mary goal is not to save the storage space of archived genotypes.

Then, we investigated the compression and decompression speed of the GBC using
simulated and real genotypes. Figure 3c shows the compression and decompres-
sion speeds of GBC, as well as those of the alternative tools, on simulated datasets.
We found that the GBC was much faster than GTC, which had the highest compres-
sion ratio among the four block-based genotype compression tools. The speed ratio of
GBC to GTC grew exponentially as the sample size increased. For instance, GBC was
over 1000 times faster than GTC in a simulated sample with 500,000 subjects. GBC
took 0.80 min and 3.87 min to compress the genotype datasets with 30,000 variants of

Page 5 of 22Zhang et al. Genome Biology (2023) 24:76

Fig. 3 The performance comparison among GBC and alternative methods (details in Additional file 1: Tables
S1-S5). a The basic performance of different methods on the UKBB exome chr4 dataset. The “standardized
performance ratio” was obtained by scaling the GBC’s result to 1 and all other results against the GBC’s result.
b The basic performance of different methods on the 1000GP3 and SG10K. c The compression speed (upper
region) and decompression speed (lower region) of GBC and other alternative methods with the increase
of sample size on simulated datasets. d The significant improvement of compression and decompression
speed under multi-threads on the 1000GP3 dataset. e Retrieved the genotypes of random variants for all
the subjects on the SG10K dataset. The option of accessing genotypes of variants in multiple regions at
a time is only provided by BCFtools, GBC, and Genozip. Thus, the time cost was estimated by the access
time of individual sites for methods including GTC, PBWT, and BGT. Genozip throws an exception when
accessing 994,485 and 9,944,848 variants. f Retrieved a range of continuous variants for all the subjects on
the Simulation 5000 K and SG10K-chr2 (the genotypes on chromosome 2 of the SG10K dataset) datasets.
BGT, PBWT, GTC, and Genozip failed to compress the simulation 5000 K dataset. g Retrieved all the variants
for a specified subset of subjects on the SG10K-chr2 dataset. h Retrieved all the variants for a specified subset
of subjects on the Simulation 500 K dataset. i Filtered out the variants by alternative allele frequency on the
SG10K-chr2 dataset. j Retrieved continuous variants and random variants in ordered and unordered SG10K
dataset separately. k The comparison of LD coefficients computational speed between GBC and other
popular tools on the 1000GP3 and SG10K datasets. l GBC speeds up follow-up computation (calculating the
pair-wise linkage disequilibrium coefficients as an example) through I/O optimization. m Concatenate the
chromosome-separated files within each dataset. n Split compressed archives by chromosome. o Merge
multiple compressed archives with non-overlapping subjects. p Retrieve all the genotypes for a specified
subset of subjects and rebuild the compressed archives. We tested the time cost of fetching different sizes
of subject subsets on the simulation 500 K dataset. q Sort the variants by coordinate. We used several
disordered simulated data with 100,000 subjects for evaluating the time cost and measured the range of
speed ratio of GBC to BCFtools according to the disordered degree of datasets

Page 6 of 22Zhang et al. Genome Biology (2023) 24:76

100,000 and 500,000 subjects, respectively, while GTC spent 180 min and 4964.19 min
doing this. In the real dataset testing, GBC was 454.73 times faster than GTC in com-
pressing the UKBB [3] genotypes of 32,626 variants on chromosome 10 of 487,409 sub-
jects. Besides, for the imputed genotypes of 4,562,904 variants on chromosome 10 of
487,409 UKBB subjects, GBC took 549.02 min (single-thread model) for the compres-
sion, while CTC failed after 3 weeks of running. Note that PBWT had memory overflow
(> 100 GB memory), GTC had timeout (> 1 week) when compressing more than 500,000
subjects, and Genozip threw an exception when processing the datasets with 5,000,000
subjects. Compared to the two data-archiving methods (GTShark, Genozip), GBC was 2
to 5 times faster in compressing the testing datasets. This comparison showed that GBC
had the superior speed to compress large-scale genotype datasets. Moreover, in terms
of decompression speed, GBC was also approximately 1.8 times faster than others when
decompressing the data to be BGZ format (Fig. 3c, lower region). Note that it is more
reasonable to describe the speed difference in decompression with BGZ format, as it
reduces the influence of the slow disk output speed. Finally, GBC can be several times
faster under multi-threads for compression and decompression (Fig. 3d).

Rapid accessing of the compressed genotypes by GBC

The time cost of accessing the compressed genotypes is very important for subsequent
analyses. GTB format and GBC functions were primarily proposed to facilitate fast and
flexible access to compressed genotypes. First, we compared the genotype access time of
several alternative methods in extracting 0.01%, 0.1%, 1%, and 10% of the variants from
the SG10K [14] dataset. We found that GBC was more than one order of magnitude
times faster than others (Fig. 3e). Note that when retrieving multiple sporadic variants
in a GTB file, GBC only needs to scan the file once, while PBWT, BGT, and GTC can
only retrieve one variant in a file scan. Second, GBC was 2.07 times faster than the best
of the other peer methods (i.e., BGT) when accessing a set of consecutive variants on
the same chromosome (Fig. 3f). Moreover, GBC can also quickly retrieve the genotype
data given a set of subjects. Its superior speed over other methods became increasingly
striking as the sample size in compressed datasets increased. For example, when extract-
ing genotypes in a single subject, GBC was 1.59 times faster than GTC on small-scale
datasets, while it was 5.16 times faster on large-scale datasets (Fig. 3g, h). We indicated
that all forms of data access would eventually approach the speed of decompressing all
data as the number of genotypes to be extracted increases. However, GBC was still 1.8
times faster than the fastest method (GTC) on large sample sizes (Fig. 3c, lower region).
Besides, GBC was also 1.25 times as fast as other methods when filtering out variants
within a specified allele frequency range (Fig. 3i). We noted that Genozip and GTShark
were much slower than GBC. For example, GTShark took 47,377.98 s to extract geno-
types of a subject from a simulated genotype dataset of 100,000 variants of 5 million
subjects, while GBC only needed 135.10 s. While GTShark only supports extracting gen-
otypes of a single subject from the compressed dataset, Genozip can extract genotypes
of multiple subjects or genotypes in multiple genomic regions from compressed data-
sets. However, in a simulated genotype dataset with 500,000 subjects and 30,000 vari-
ants, Genozip was 845.89 times slower than GBC in accessing the genotypes of a single
subject (Fig. 3g, h, GBC’s 5.34 s vs Genozip’s 4518.75 s). Genozip was even 4576.7 times

Page 7 of 22Zhang et al. Genome Biology (2023) 24:76

slower than GBC in accessing 9948 out of 99,448,478 variants in a dataset with 4810
real subjects in a test (Fig. 3e, GBC’s 10.27 s vs Genozip’s 46,998.60 s). Especially, GBC
is by far the only method that enables fast retrieval in datasets with unsorted variants
(while others only work for ordered variants). The time cost on the unordered datasets
was similar to that of the ordered datasets (Fig. 3j). Last but not least, GBC is the tool
that supports querying data in parallel. The query speed of GBC under multiple threads
could be several times faster than that of a single thread (Fig. 3e-i), which suggests the
great potential of GBC to accelerate parallel calculations.

Significant improvement in the performance of downstream computation by GTB format

The genotype access and calculation can be carried out quickly and efficiently based
on the GTB format, which speeds up follow-up analyses based on genotypes. Here, we
showed the advantage of calculating the pair-wise linkage disequilibrium (LD) coeffi-
cients with GTB format. At the algorithmic level, GBC used bitwise operations to maxi-
mize computational speed, which is similar to PLINK [2] and KGGSeq [15]. However,
GBC accessed genotypes for computation based on the GTB format rather than the vcf.
gz format like other tools (such as PLINK, VCFtools [1], PopLDdecay [16]). Taking the
1000GP3 and SG10K datasets as an example, the results (Fig. 3k) showed that GBC was
3.75 times faster than PLINK(V1.9) in calculating LD from GTB data and compressed
VCF data under a single thread, respectively. Especially, GBC was even 20.3 times faster
than PLINK(V1.9) when both tools used eight threads. Here, we emphasized that the
speed advantage of GBC is largely due to the faster genotype retrieving process and the
cyclic-locked parallelization. Although the latest research indicated that GPU-based
computing could significantly improve the speed of LD calculation [17], GBC mainly
focused on optimizing the computational speed at the I/O level (Fig. 3l). The GTB for-
mat and GBC functions have largely relieved the limitation of I/O by optimizing the I/O
frequency and load in genotype blocks. Therefore, we believe that many tools would per-
form better if they were built on GBC to access and parse large-scale genotype data.

Convenient management of large‑scale compressed files by GBC

Convenient management of large-scale compressed files is also critical for genetic and
genomic studies. We compared GBC with the current popular tool BCFtools [8] for
managing compressed genotype data (PBWT, BGT, and GTC do not support these func-
tions). BCFtools handles compressed BCF in BGZ formats, while GBC manages com-
pressed GTBs. When concatenating genotype files with the same number of subjects, we
found that GBC was 2421.3 times (Fig. 3m) faster than BCFtools. When splitting geno-
types by chromosome, it was 4157.6 times (Fig. 3n) as fast as BCFtools. Besides, GBC
was 4.87 times faster than BCFtools on merging genotypes files with non-overlapping
subjects under four threads (Fig. 3o). For retrieving the genotypes of 500,000 subjects,
the speed of GBC was further increased by 5.8 times because of the advanced GTB
structure (Fig. 3p) compared to the BGZ format (Fig. 3h). In terms of the sorting speed,
GBC was always approximately 3 to 9 times faster than BCFtools for 100,000 subjects
under a single thread (Fig. 3q). The less disordered the data, the better performance the
GBC would have. Particularly, GBC can accomplish the sorting directly in 4 GB of mem-
ory, while the BCFtools may need large external disk space (Additional file 2: Fig. S1).

Page 8 of 22Zhang et al. Genome Biology (2023) 24:76

For instance, BCFTools cannot sort larger datasets (e.g., 100,000 subjects and 1,000,000
variants) in 64 GB of memory. Similar to the data access performance, we believe that
the speed difference between GBC and BCFtools will be more pronounced as sample
sizes increase. These results illustrated that the GTB structure could also facilitate fast
management of large-scale genotypes.

Discussion
In recent years, numerous genome-wide genotypes of large-scale samples for dissecting
genetic mechanisms of phenotypes have grown explosively, raising a heavy computational
burden. Many methods were developed to address this issue by advanced algorithms
compressing large-scale genotypes. However, efficient usage of large-scale genotype data
is far more than compression. In the present study, we proposed a comprehensive solu-
tion for the management and computation of large-scale genotypes. First, we designed
a unified data structure, GTB, to store any type of genotype data flexibly (phased or not,
biallelic or multiallelic, human or non-human) into highly addressable byte-encoding
blocks in a single file. We showed that the novel blocking structure facilitated rapid access
to compressed genotypes compared to the existing genotype compression methods
[9–12]. The single-file strategy also solved the management inefficiency of the multi-file
strategy adopted by most compression methods [9–12]. Moreover, we developed multiple
advanced algorithms based on the GTB format to improve the speed and save RAM for
genotypes’ computation and management. All of them are implemented in our integrated
software toolkit, GBC. To our knowledge, GBC may be the only tool that can compress
and manage whole-genome genotypes of millions of human subjects in an ordinary com-
puter with around 4 GB RAM. Furthermore, its I/O optimized framework for different
types of parallel tasks (e.g., I/O intensive tasks and computing-intensive tasks) process-
ing genotype blocks also enhance the efficiency of large-scale genotypes. Two commonly
used and user-friendly interfaces are also provided, a command line tool (installation-
free) and a Java-API library. Thus, GBC is suitable for a wide range of users, enabling pro-
fessional researchers and amateurs to use it even on personal laptops easily.

The success of GBC showed that compression and rapid access of genotype data could
be well balanced with subtle data structure and advanced algorithms. The data compres-
sion ratio and access speed interfere with each other. GBC does not aim to improve the
compression ratio exclusively. Therefore, GBC may have a lower compression ratio than
the methods for a frozen compression of genotypes which would be very inefficient for
genotype access in subsequent analysis (e.g., GTShark [5], Genozip [6], VCFShark [7]).
Besides the storage space, the speed of access and analysis is also critical for analyses
with large-scale genotype data (e.g., UKBB [3] and TOPMed project [18]). GBC aims to
improve both in a balanced way. While GBC achieves the fastest compression, decom-
pression, query, and manipulation of compressed data among the tools that support fast
retrieval, it also has a highly competitive compression ratio to the compared tools in real
testing datasets. For example, among the four compared tools, GTC, the tool with the
closest compression ratio to GBC, is much slower (more than 1283 times than GBC in
compressing large-scale datasets with ~ 500,000 subjects). While some other tools are
much faster than GTC, they are inferior to GBC in compression ratio. The GTB format
and GBC functions have largely overcome the limitation of I/O by the I/O optimization.

Page 9 of 22Zhang et al. Genome Biology (2023) 24:76

These are particularly beneficial for developing and applying genomic tools or platforms
that analyze large-scale genotype data. For instance, sequential access to genotypes
in GTB files is 5.78 times faster than that in vcf.gz format on 1000GP3, while random
access to genotypes of a variant is estimated to be more than 71.56 times faster. Further-
more, the LD calculation speed has been improved by 20.3 times under eight threads
due to the efficient I/O, compared to PLINK(V1.9).

It should be noted that the GTB format is not intended to replace VCF. VCF’s text for-
mat that denotes genotypes with various attributes is human-readable and convenient,
making it widely used in the genetic and genomic community. Despite being inefficient
for computing large-scale genotypes, VCF remains essential for sharing and exchang-
ing called variants in the community. Nevertheless, GBC provides efficient functions to
transform VCF to the GTB format, which has a much more efficient design to optimize
access and computation of large-scale genotypes. GBC also includes a complete quality
control procedure to ensure high-quality genotypes are compressed, with those failing
to meet quality criteria being set as missing values. In the performance comparison of
this paper, we removed all quality metrics to make a fair comparison with similar tools
(which cannot store the quality metrics of genotypes, e.g., BGT [10] and GTC [12]).
However, the flexible structure of GTB allows it to store extra data directly, including ID,
INFO, and Genotype Metrics in VCF. This flexibility meets the general analysis require-
ments of a large-scale genotype dataset, which may include other data.

Conclusions
Here, we developed a new toolkit, GBC, for efficient storage, access, management, and
computation of extremely large-scale genotypes and verified its validity by various scales
of genotypes. Most existing tools had no fast-accessible compression format and no effi-
cient usage of RAM or I/O-optimized parallel computing for large-scale genotype data.
In contrast, GBC provides a novel GTB data structure, speed-raising algorithms, and an
I/O-optimized parallel framework with reusable RAM. The computing burden of GBC
is so substantially reduced that whole-genome genotypes of millions of subjects can be
rapidly compressed and accessed in small RAM under a fully parallelized model. We also
showed that many commonly used software tools were very slow or required too much
RAM to process the same amount of large-scale genotypes. Several extensions to GBC
are under consideration for further development, including more efficient functions for
large-scale genomic computations (e.g., the population PCA [19]) based on its paralleli-
zation and low memory consumption advantages. The ability of fast access to genotypes
with low RAM consumption under the optimized parallel framework also makes GTB
and GBC attractive for cloud computation. In sum, GTB and GBC will benefit genetics
and precision medicine studies, whose genotype resources are growing dramatically.

Methods
Compress genotypes into a highly addressable Genotype Block (GTB) format

The structure of GTB

We designed a novel Genotype Block (GTB) format to store the compressed large-
scale genotypes in a file. GTB consisted of 6 main decoupled parts (Fig. 1a, Additional
file 3: Note 1). The first part is the magic code, which stores the software parameters for

Page 10 of 22Zhang et al. Genome Biology (2023) 24:76

building the current GTB file using 2 bytes, including the maximum size of each block
after decompression (for pre-allocated memory when decompressing blocks), whether
the file is ordered or not, the specified compressor, the state of genotype (phased or
unphased), the maximum number of sites per block, and the compression level. The sec-
ond part is the block numbers, which stores the number of sub-blocks in the current
GTB file as a 3-byte integer. The third part is the version of the reference genome for
variants positions and so on (i.e., the meta-information in VCF). As an extension, other
necessary comment fields in the VCF can be concatenated using an intermediate separa-
tor (e.g., “\t”) and stored in this part. The fourth section is the sample information, which
contains the sample sequence length and the sample data. The fifth part is the genotype
sub-blocks. Each sub-block contains three compulsory sub-parts, including genotype
data, position data, and allele data. In addition, other fields from VCF can also be con-
catenated as optional sub-parts. Finally, the sixth part is the abstract block information,
which contains the parameters necessary to access the genotype sub-blocks quickly (i.e.,
index information).

Here is a typical process for generating a GTB file. GBC first writes 5 bytes of place-
holder information for magic code and block numbers at the beginning of compression.
The meta information and subject information are added subsequently. Next, the data
entity and abstract information for each block are written to the disk and memory syn-
chronously to ensure that the order of records in memory is the same as those written
to the file in the hard disk. After all the blocks are compressed, their abstract informa-
tion in the memory is written to the end of the GTB file. Finally, the file pointer returns
to the head of the file, and GTB modifies the placeholder information according to the
compression results, including block size, compressor parameters, the state of genotype
(phased or unphased), and whether the file is in order (whether all the block-coordinates
in current GTB file are non-overlap). In brief, a GTB file is essentially made up of highly
addressable and independent blocks of compressed genotypes.

Chunking inputs and splitting each chunk into blocks

The processed VCF file is sliced into t chunks (if the multi-threading mode is ena-
bled and t threads are specified) with approximately even physical sizes. Under
each thread, the read-in variants of each chunk are divided into multiple blocks of
consecutive entries. Briefly, the block construction is terminated if (a) the num-
ber of variants in the block reaches the maximum size, (b) a different chromosome
occurs, and (c) it reaches the end of the file. The maximum size of variants N in
each block is set automatically, which is mainly dependent on the sample size M as
N ∈ {2n|2n ×M ≤ 231 − 2, 7 ≤ n ≤ 14 and n ∈ N

∗} . GBC can store 128 variants of
16,777,215 subjects or 16,384 variants of 131,071 subjects in each block at most. This
strategy allows the personal laptop to deal with large datasets conveniently because
a block always occupies small memory during the analysis. The blocks from different
chunks are parallelly processed independently under the multi-threaded mode, improv-
ing compression speed. Besides, we have adopted nine commonly used quality control
strategies (described in KGGSeq [15]) in GBC to filter out genotypes and variants with
poor quality. The quality control (QC) is executed by default after read-in, and only gen-
otypes and variants that pass the QC are stored in the blocks. The blocks also allow the

Page 11 of 22Zhang et al. Genome Biology (2023) 24:76

decompressing algorithm only to process a small fraction of all the data for queries (fast
access to the compressed data).

Maximized byte‑encoded of genotype (MBEG)

Conventional genotype array storage in text format (e.g., 0|1) takes up much redun-
dant information space. Therefore, a more efficient and compatible strategy is needed to
encode the genotypes with less space to enhance the information density (containing as
much information as possible in the same byte length). Here, we propose a novel byte-
based lossless encoding strategy to store genotypes, which helps reduce memory bur-
den and accelerate the compression process. It has two steps, and step 2 is specifically
designed for biallelic genotypes.

Step 1 A byte-based encoding strategy of genotype (byte-encoded genotype,
BEG, Fig. 1b) is proposed to encode genotypes. Let a variant v has nv different alleles
nv ∈ [2, 15] . The byte codes of a genotype of the variant can be calculated. The non-miss-
ing phased genotype “ a | b ” (a, b ≥ 0) will be encoded as:

The missing genotype “ .|. ”, is encoded to 0. For an unphased genotype “ a/b ”, it is also
encoded formula (1) after being transformed to “ min{a, b} | max{a, b} ”. For the sake of
unification, a genotype “ a ” of a variant in a male’s chromosome X and Y is converted
into “ a | a ” and is encoded by the above formula. Note that the strategy ensures coherent
genotype encoding values of variants with different allele numbers.

Step 2 However, the BEG array (BEGs) still has unused information space and may
reduce the compression efficiency in a project with large samples. Because a biallelic
variant has 4 (unphased) ~ 5 (phased) possible genotypes and the majority of variants in
human genomes are biallelic, we further combine 3 (phased) ~ 4 (unphased) consecutive
BEG codes into a single byte for biallelic variants as follow:

Conversions (2) and (3) are designed for phased and unphased BEGs, respectively. If the
number of BEG for a variant is not enough to make a group of three or four, the inad-
equate part is called incomplete MBEG (e.g., one variant of 1000 subjects with phased
genotypes will form 334 groups, and two nulls to make up the last group), and the null
BEG

i will be set to the same as the previous one according to BEG i = BEG
i−1 (if i ≥ 1).

In human genomes, the storage space with the maximized byte-encoded genotype array
(MBEGs) will be reduced by nearly 11/12 or 15/16, compared to the common text for-
mat in VCF. Finally, BEG and MBEG can be pre-calculated and stored in an encoding
table with o(1) access time. The encoding table can be loaded in memory for fast encod-
ing or decoding by direct mapping without computing. For instance, the encoding value

(1)a | b →
(a+ 1)2 − b , a ≥ b

b2 + a+ 1 , a < b

(2)
[
BEG

0
, BEG

1
, BEG

2

]
→ 52 · BEG

0
+ 5 · BEG

1
+ BEG

2

(3)
[
BEG

0
, BEG

1
, BEG

2
, BEG

3

]
→ 43 · BEG

0
+ 42 · BEG

1
+ 4 · BEG

2
+ BEG

3

Page 12 of 22Zhang et al. Genome Biology (2023) 24:76

of genotype a | b is the element in row a and column b of the encoding table (Fig. 1b).
The complete coding table of BEG and MBEG can be found in Additional file 1: Table S6.

Approximate minimum discrepancy ordering of variants (AMDO)

The diverse genotype of different variants in a block (especially for the non-con-
servative region) will result in dispersive genotype distributions (Fig. 2d), harming
the genotype compression ratio. Thus, we propose an algorithm named approximate
minimum discrepancy ordering (AMDO) to sort all variants within a block based on
both the allele frequency and genotype distribution. AMDO provides an o(nm) time
complexity in the fast sorting process (compared to GTC with at least o(nm2) time
complexity), and significantly improves the compression ratio.

AMDO starts with extracting the genotype accumulated down-sampling features.
Supposing that each block contains M variants and N subjects, a zero-count matrix
is denoted as C = [cmn]M×N , where cmn is the count of reference alleles (namely 0
alleles) of the mth variant for the nth subject. Then, the genotype vector of a variant
m Cm = [cm0, cm1, · · · , cm(N−1)] is merged into a shorter s-element vector,

where C(l)
m,i covers a maximum of l = ⎡N/s⎤ consecutive genotypes, and s is 24 by

default. Each element C(l)
m,i in the vector is defined as an accumulated count, i.e.:

The accumulation helps discriminate genotype distribution effectively. For exam-
ple, according to (5), two zero-count vectors [0,1,1,2] and [2,1,1,0] have different
accumulated counts, 7 and 9, respectively, although they have the same alternative
allele counts.

All the variants in a block are divided into two groups, i.e., the biallelic and the
multiallelic groups. In the biallelic variants group, the order of the variant vi and
the biallelic variant vj is defined as the dictionary order of C(l)

i and C(l)
j , which are

described below:

• If ∃k0 ∈ [0, s − 1], ∀k ∈ [0, k0 − 1] , such that C(l)
i,k0

< C
(l)
j,k0

 , C(l)
i,k = C

(l)
j,k , then vi > vj;

• If ∃k0 ∈ [0, s − 1], ∀k ∈ [0, k0 − 1] , such that C(l)
i,k0

> C
(l)
j,k0

 , C(l)
i,k = C

(l)
j,k , then vi < vj;

• If ∀k ∈ [0, s − 1] , such that C(l)
i,k = C

(l)
j,k , then vi = vj.

On the contrary, the order will be inverted for multiallelic variants, which helps
maximize the length of similar genotype vectors. Finally, the corresponding infor-
mation of positions, alleles, and MBEGs for variants are sorted according to the
ordered variants (I = [m0,m1, · · · ,mM−1]).

(4)C
(l)
m =

[
C
(l)
m,0,C

(l)
m,1, · · · ,C

(l)
m,s−1

]

(5)C
(l)
m,i =

min {N −1, (i+1)l−1}�

j=1.l

j�

k=i.l

cmk =

(i+1)l−1�

j=i·l

�
(i + 1)l − j

�
cmj , i < s − 1

N−1�

j=i·l

�
N − j

�
cmj , i = s − 1

Page 13 of 22Zhang et al. Genome Biology (2023) 24:76

Merge data stream after compressing with advanced compressors

All the sorted MBEG and BEG codes in each block are further compressed by
advanced compressors. Popular compression algorithms (e.g., Gzip, LZMA, and zlib)
can achieve a compression ratio of 100 or more on genotypes. By default, we chose the
ZSTD (short for Zstandard [20], https:// github. com/ faceb ook/ zstd) because it pro-
vides the fastest speed with a similar compression ratio among the widely used com-
pression algorithms. In detail, the byte codes of each variant are concatenated into a
byte array B1 directly. Next, the position of each variant is converted into 4 bytes, and
then all variants’ positions are concatenated into a byte array B2 . Finally, the alleles
of all variants are concatenated into another byte array B3 with a “/” delimiter. Then,
these concatenated data B1,B2 and B3 are compressed by the latest ZSTD to produce
B̂1, B̂2 and B̂3 , respectively. The data entity is a long vector composed of three sections
of compressed data, including encoded genotypes, positions, and alleles. Two types of
information of each packed block, including abstract information and data entity, are
subsequently written to the GTB file. The abstract information includes the chromo-
some number (1 byte), minimum and maximum positions (4 bytes each), number of
biallelic variants (2 bytes each), number of multiallelic variants (2 bytes), length of
B̂1 (4 bytes), length of B̂2 (3 bytes), length of B̂3 (4 bytes), and magic code (1 byte) in
a block. For other fields at the variant level (e.g., ID, INFO, Genotype Metrics), they
are concatenated and compressed in the same way, then stored in the optional fields
(Fig. 1a).

GBC can be integrated with different compression algorithms. ZSTD and LZMA
algorithms have been embedded to compress each genotype block. We also reserve
two types of compressors for developers to extend in the future.

Memory control benefits to the efficiency of GBC on large‑scale data

Saving memory is critical for large-scale projects, determining whether a user can
easily compress the genotype data on ordinary desktops or servers. GBC overcomes
the high memory load in processing large-scale datasets through three strategies.
First, it has sufficient reusable buffers (also called context structures). Once the buff-
ers are created, they can be re-used throughout the whole process of the task. Second,
it adaptively adjusts the variant counts per block. The number of variants (N) con-
tained in each block is set according to the subject size (M) automatically, as a block
can store 231 − 2 genotypes (approximately 2 GB size) at most. Third, it estimates
memory usage during compression. The memory required is estimated based on the
compression boundary estimation model (see details below).

Supposing a byte array of length s , whose original and estimated compressed sizes are
Rs and Es respectively. For small-scale data (length < 4 kB), the file’s head information
(e.g., hash code, magic code, etc.) is larger than the genotype data in the compressed
data. Thus, we set a fixed upper boundary β , which indicates the minimum memory
required for compression. For large-scale data, the genotypes are the main part of the
compressed data. Therefore, a good compression algorithm should ensure that the size
of the compressed data will not exceed α(< inf) times of the original size. Here, the α is
the main factor in the compression efficiency of large-scale data, which is estimated as:

https://github.com/facebook/zstd

Page 14 of 22Zhang et al. Genome Biology (2023) 24:76

In practice, we estimated α,β by large-scale random data simulation experiments as
follows because the real values are unknown:

For large-scale data, β can often be omitted. Thus, we defined β̂ = 512, 1024, 1536, · · · ,
and the minimum α̂ is obtained through grid search. By the estimation and cal-
culation of our GBC, the compression boundary estimation model of ZSTD is
EZSTD
s = max{1.0014 · s, 7168} , while LZMA is ELZMA

s = max{1.0167 · s, 7680} , and
Gzip is EGzip

s = max{1.0031 · s, 7680}. Among the three algorithms, ZSTD takes the
least amount of time in boundary estimation, indicating that ZSTD has a fairly fast com-
pression speed, which enables GBC to rapidly create GTB files for downstream analyses.

Specify contig file to support non‑human species genome compression

By default, GBC supports the genotype compression of human beings. It can also
encode and compress genotypes of other haplotypic and diploid species. For non-human
genomes, GBC only requires a different contig file(see Additional file 3: Note 3) to
declare the label of the assigned chromosome (e.g., chrX, chrY, chrMT) and its ploidy. A
contig file has “#chromosome,ploidy,length” as the header line, and then each line rep-
resents one chromosome. The option “--contig < file > ” is used as parameter input when
compressing. Since only 1 byte is reserved for storing chromosome numbers in GTB
format, we require that the number of chromosomes in the input contig file does not
exceed 256.

Input multiple VCF files for compression

One or multiple VCF files can be merged into a single GTB file. For a single input file,
GBC reads the file directly. For an input of multiple files, GBC first treats the file with
the largest sample size as the major file and uses it to build the sample primary indexes.
Other input files will be handled in turns after matching the sample indexes of the major
file. In the matching process, the genotypes of missing subjects will be set as “.|.” sub-
sequently to ensure that all the input files can be compressed together consistently in
subsequent steps.

Fast access and manage genotypes in the highly addressable GTB format

Parse GTB file and create an index table for fast access

When one accesses or manages a GTB file, all data except the block entity data is
instantly loaded into the memory to construct a GTBManager. The GTBManager con-
tains subject information, meta information, the basic status of the GTB (e.g., block size,
compressor parameters), and the GTBTree (an index table for fast access, built from
block abstract information). Throughout the program’s lifetime, the GTBManager of the

(6)Es = max
{
α̂ · s, β̂

}

(7)arg min
α̂,β̂

I(ES < RS)+ α̂ +
β̂

10× 10242

Page 15 of 22Zhang et al. Genome Biology (2023) 24:76

read-in GTB files is always in the cache, which helps speed up multiple accesses to the
data from the same files.

Here is the creation process of GTBTree. First, a GTBNode is built from the abstract
information and the range of entity positions of a block (calculated by accumulating
original lengths of compressed positions, alleles, and genotypes data). Then, all GTB-
Nodes of the same chromosome are grouped. Finally, the GTBNodes of all chromosomes
are collected to form the GTBTree. Because the compressed blocks may be out of order,
we sort the GTBTree according to the minimum and maximum positions of each block’s
chromosome. Then, the address of a variant is determined jointly by three indexes: the
GTB file’s ID (if multiple GTB datasets were input), GTBNode, and the index within the
block. Therefore, searching for a variant with a given position can be done by looking
up the GTBNode(s) based on the boundary coordinates of the blocks at first. Then, the
candidate GTBNode(s) can decompress the position data to verify its location within a
block. Noticeably, the index table enables fast data access even if the original file is out of
order.

The addressing algorithm to access location‑specific genotypes

Accessing genotypes by column (i.e., subjects) is usually slower than by row (i.e., sites)
because decompression involves all blocks. An addressing algorithm is developed to help
quickly access a genotype from the MBEGs directly, which is implemented in two steps:

Step 1: Locating the start pointer of the mth variant In the MBEGs of a decompressed
GTB block i , which contains bbiallelici biallelic variants and bmultiallelic

i multiallelic variants,
the start pointer of the mth variant in the MBEGs is calculated as:

where l is determined by the state of genotypes (phased: l = 3 ; unphased: l = 4), and N
is the number of subjects.

The address of the nth subject in the multiallelic encoding sequence is n , whereas in
the biallelic encoding sequence, which is retrieved by triples (index, groupIndex, codeIn-
dex), where:

• index: The index of the nth subject in the GTB subject information, that is n.
• groupIndex: The index of the MBEG code containing the genotype of nth subject in
the whole encoding sequence, calculated as ⎣n/l⎦.
• codeIndex: The index of the nth subject in the MBEG code containing the genotype
of nth subject, calculated as n%l.

Step 2: Decoding the genotype of the nth subject The biallelic genotype for the mth vari-
ant of the nth subject is stored in the codeIndexth BEG of the

(
Pm + groupIndex

)th
MBEG , and the multiallelic genotype for the mth variant of the nth subject is stored in the
(Pm + n)th BEG.

(8)Pm =

{
m · ⌈N

l
⌉ ,m < bbiallelici

bbiallelici · ⌈N
l
⌉ +

(
m− bbiallelici

)
· N , else

Page 16 of 22Zhang et al. Genome Biology (2023) 24:76

The I/O optimized parallel framework for reading through GTB

While compression based on the GTB structure can facilitate parallel computing, the
common bottleneck (often neglected) is disk I/O. Hard disks can have high bandwidth
when reading or writing sequentially, but the addressing time (latency) is expensive. In
many cases, multiple threads will not fasten the disk I/O and even make it worse (e.g.,
reading/writing a single 4-GB file to disk is much faster than multiple files with a total
size of 4 GB). Based on the GTB structure, we used the producer/consumer model to
coordinate the reading threads in GBC (see Additional file 2: Fig. S1a). The producer
is responsible for mapping the requested variants onto GTB nodes and then adding
involved GTB nodes into a task queue (a thread-safe collection in which multiple threads
are added and data are updated concurrently). The consumers are the threads that read
the tasks from the task queue, then load block entity data separately from the file and
process the data (e.g., decompression). The model enables GBC to speed up analyses in
two ways. First, the threads can be started before users process the file, which saves the
time overhead of threads creating and recycling. Second, users can instantiate multiple
consumers (i.e., number of threads) if the mapping speed of the producer is faster than
the processing speed of the consumer(s). In addition, because the GTB structure packs
genotypes of multiple variants into one block with remarkable compression ratios, it
requires fewer I/O requests when retrieving multiple variants through multiple reading
threads.

The cyclic locking model‑based parallel algorithms to optimize decompression

Computing large-scale genotype data (such as decompression and LD calculation) often
generates significant output data using multiple threads. Maintaining the order of the
output data is a critical issue for massively parallel processing. The most common way to
keep the order is using temporary files to store data and finally splice them into a single
file. However, it usually takes up extra space and extra I/O costs, affecting the efficiency
of parallel computing. Therefore, we propose an algorithm for parallel output and derive
a theory for optimization.

The order problem in multiple threads is solved by a cyclic locking model (CLM, see
Additional file 2: Fig. S1b and Fig. S1c) for decompression in which the current thread
holds the lock of the next thread sequentially. When a reusable thread finishes decom-
pression, it stays in memory to wait to write genotypes into disks until the previous
thread has released its lock. The thread releases the lock of the next thread once it fin-
ishes writing the current data to disk. In detail, in a parallel decompression process with
t threads, thread#0 holds the lock of thread#1, thread#1 holds the lock of thread#2, …,
and thread#(t − 1) holds the lock of thread#0. Only the lock of thread#0 is released at
the beginning of decompression. Any other thread cannot write to the disk because their
previous threads do not release the lock. After thread#0 finishes the writing, it releases
the lock of thread#1. The program continues this loop to decompress all the data. There-
fore, CLM ensures that the decompressed data are output in the order of the GTB nodes.

It is known that the actual efficiency of parallelism usually depends on the device’s
computing resources (such as memory, CPU cores, CPU clock speed, and I/O speed).
Here, we estimate the theoretical processing time of parallel computation for CLM to

Page 17 of 22Zhang et al. Genome Biology (2023) 24:76

derive an optimal number of threads. Assume that the source file (the file size is S) is
split into k tasks with approximately the same time overhead (the k depends on the avail-
able memory). Denote the average output time of each task as to , and the average pro-
cessing time as tp . The time required to complete the task under n threads in parallel can
be calculated as:

where tε is the time cost of thread switching (unavoidable); to and tp depend on k and the
processing speed of the device. Thus, we can replace to = 1

vo
· S
k and tp = 1

vp
· S
k in the

above equation:

Here, vo and vp denotes the output speed and computation speed when processing unit
files (S/k), and they can be estimated by the parameters of the benchmark device. Next,
we use the overall efficiency of multi-threading to measure the benefits of multi-thread-
ing as:

Generally, the parallelism will be efficient when n ∈ N =

{
n|n ≤ ⌈

tp
to
⌉ + 1

}
 , while it is

inefficient when n > maxN . Being inefficient means that thread switching and resource
contention will increase time overhead. We showed multiple cases in Additional file 2:
Fig. S1b and Fig. S1c and in Additional file 3 (I/O intensive task and computing-intensive
task). The result indicated that the CLM algorithm is efficient for all parallel computing
scenarios that require output data because maxN ≥ 2 (see Additional file 2: Fig.
S1d ~ Fig. S1g). Therefore, given the memory and CPU cores, the CLM theoretical esti-
mation can help find the best file-splitting task number (k) and thread number n on a
device.

In addition, because the slow disk I/O speed will limit the ability of the parallel decom-
pression algorithm, GBC also provides a way to directly decompress the data to BGZ
format. Based on CLM, we have also developed a Java version of the parallel-bgzip com-
pression algorithm, which has now been integrated into GBC as an auxiliary function.

Sort GTB by variants’ coordinates using a two‑level index table

Large-scale genotype files (number of subjects and sites) are difficult to load into mem-
ory for directly sorting by variants’ coordinates. It is typical to use the temporary disk/
memory space for sorting (e.g., BCFtools). In detail, the whole file is split into several
chunks, and each chunk is sorted separately before being combined. However, BCFTools
cannot sort very large datasets (e.g., VCF with 100,000 subjects and 1,000,000 variants)
in 64 GB of memory. Thus, We propose a novel GTB-based sorting method to direct
sort arbitrary scale genotype files within 4 GB of memory. The following is the sorting
procedure on a chromosome (see Additional file 2: Fig. S2a):

(9)
tntotal = ⌈ kn⌉

(
to + tp

)
+ ((k − 1) mod n)to +max

{(
(n− 1)to − tp

)
, 0
}(

⌈ kn⌉ − 1
)
+ kntε

(10)
tntotal = ⌈ kn⌉

(
1
vo

+ 1
vp

)
S
k
+ ((k − 1) mod n) S

kvo
+max

{(
(n−1)S
kvo

− S
kvp

)
, 0
}(

⌈ kn⌉ − 1
)
+ kntε

(11)En =
k(to+tp)

tntotal

Page 18 of 22Zhang et al. Genome Biology (2023) 24:76

Step 1: Construct a two-level index table of variants within the chromosome. The
index table contains the positions and indexes of variants (chromosome position,
GTBNode index, index within the block).
Step 2: Sort the index table by position.
Step 3: Move consecutive variants into a new GTB (balanced with the sample size)
and sort the variants within the new block according to the GTBNode Index.
Step 4: The old blocks are decompressed sequentially by GBC, and the genotype data
are expanded into BEGs by order of the variants in the new block.
Step 5: Perform compression (see the procedure in Fig. 2c~f) when all the genotypes
of a new block have been added.

The purpose of sorting GTBNode Index (i.e., step 3) is to ensure that each old block
will be decompressed at most once in the new block. The required memory is only
equal to the size of each block because all threads share a single decompressor. We have
shown that this algorithm makes the GBC 3 ~ 9 times faster (the “Results” section) than
BCFtools under a single thread with no requirement for external disk space. Further-
more, the independence among the GTBs makes parallel sorting possible.

Merge multiple GTBs and identify inconsistent allele labels

Merging multiple genotype files is performed by recursively merging two files in a queue
of length L(L ≥ 2) . A file that is merged at the ith time is decompressed and recom-
pressed L− i times. Thus, files containing more subjects should be placed at the back
of the queue whenever possible. The minimum heap is used to optimize the merging
process, and the node weights are the number of subjects in the file. The two files with
the smallest weights in a heap are merged at first, and the merged file is added to the
minimal heap. The process is repeated until only one file remains in the minimum heap
(e.g., see Additional file 2: Fig. S2b).

The labeling of mismatched alleles can become a critical issue when merging geno-
types from different batches. Therefore, GBC designs three functions to identify incon-
sistent allele labels:

• Check for allele frequency: the difference between the allele frequency of vari-
ant 1 and the allele frequency of variant 2 is less than the threshold (i.e., ∣∣AF1 − AF2

∣∣ < 0.1). This will work for variants with minor allele frequencies much
less than 0.5.

• Check for allele count: 2 × 2 column tables are constructed using the number of ref-
erence alleles at a variant of two batches to be merged. The chi-square tests are per-
formed. If the hypothesis test rejects the H0 hypothesis (i.e., the allele frequencies
of the two variants are identical), then the variants in different batches cannot be
considered potentially identical. Note that this will not be suitable for the scenario in
that the two batches are used for cases and controls, respectively.

• Check for LD pattern: we first collect nearby variants of a given variant in which
the absolute value of the genotypic correlation is over a threshold (say, 0.8) in
two batches separately. Then, the positive signs of the correlation coefficients are
counted in the two batches. If the numbers of signs are very different between the

Page 19 of 22Zhang et al. Genome Biology (2023) 24:76

two batches, the allele labels should be flipped; otherwise, the allele labels are not
flipped. This function can be used for variants with minor allele frequencies close
to 0.5.

Evaluation and comparison

Three publicly available datasets were used for performance testing in this study,
1000GP3 [21], SG10K [14], and UKBB [3]. Besides, simulated datasets with various sam-
ple sizes (see Additional file 3: Note 2 and Additional file 1: Table S1) were also used
to investigate the tools’ speed systematically. Note that the execution (compression,
decompression, access) time is usually positively correlated with the scale of data. We
excluded the non-genotype data in the VCF format to make a fair comparison. The com-
pression ratio and speed of genotypes in phased and unphased were similar. So, in large-
scale datasets like UKBB, we only tested each data set in one phasing state (phased or
unphased).

We mainly compared GBC with PBWT [9], BGT [10], and GTC [12] because they
were designed for a similar purpose to GBC—compressing genotypes into a fast-
accessible format. GBC does not aim to exclusively achieve the highest compression
ratio but an efficiently accessible compression. These tools have had different geno-
type formats, and “compression” refers to the conversion of genotypes to the formats
designed by these tools. Another well-known tool, GQT [11], was excluded from the
comparison tools due to its poor compression performance and inability to retrieve
the specified variant and subject [12, 22]. Besides, we also excluded SeqArray [22] and
GTRAC [23] from the list of comparison tools because SeqArray [22] is an R Library
that does not provide standard command-line tools, and the output format of GTRAC
[23] does not contain the standard VCF format. BCFTools [8], a popular method for
fast accessing genotypes, is included in our comparison tool list. Although some lat-
est studies argued that the access performance of BCFTools is poor [10–12], it offers
almost the most comprehensive genotype management functions by far (which other
tools do not have). Finally, GTShark [5] and Genozip [6], which provide a high com-
pression ratio for genotype archiving, were also used to demonstrate the performance
difference between fast-accessing and data-archiving methods. The versions and
operating parameters of all software are shown in Additional file 3: Note 4.

The evaluation metrics for comparing basic compression performance include com-
pression ratio, compression speed, and decompression speed with different sample
sizes. For the comparison of accessing the compressed genotypes, the evaluation met-
rics included the speed of subject extraction and variant extraction (accessing ran-
dom and contiguous variants, filtering by allele frequency). Then, for the performance
of managing files, both GBC and BCFtools were used for compressed datasets, which
avoided the interference of decompression and re-compression. Finally, GBC was
compared with PLINK for the time overhead of population LD computation. Since
both tools used bitwise operations, the time overhead of LD computation was linearly
related to the sample size, which meaned that the performance in small-scale data can
approximate the performance difference of LD computation in any sample scale.

Page 20 of 22Zhang et al. Genome Biology (2023) 24:76

Additional information

System requirements

GBC was developed based on Oracle JDK 8. It is available on any computer device
that supports or is compatible with Oracle JDK 8. Users are required to download and
install the Oracle JDK or Open JDK firstly.

Computing environment

Experiments for UKBB datasets were run on the following configuration: 106 GB
memory, Intel(R) Xeon(R) CPU X5560 @ 2.80 GHz 16 cores, and an SSD with sequen-
tial write speeds of up to 111 MB/s and sequential read speeds of up to 115 MB/s. All
Other experiments were run on the following configuration: 32 GB 2933 MHz DDR4,
Intel Core i7-10,700 2.9 GHz 8 cores, and a NvMe SSD with sequential write speeds
of up to 1950 MB/s and sequential read speeds of up to 2400 MB/s.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 02906-z.

Additional file 1: Table S1. The basic compression performance comparison between GBC and alternative tools.
Table S2. The comparison of GBC’s compression and decompression speed under multiple threads in the 1000GP3
dataset. Table S3. The data query performance comparison between GBC and alternative tools. Table S4. The com-
parison of LD calculation speed between GBC and alternative tools in the 1000GP3 and SG10K datasets. Table S5.
The file management performance comparison between GBC and alternative tools. Table S6. BEG and MBEG coding
tables for genotypes of diploid species.

Additional file 2: Fig. S1. Using CLM algorithm to achieve ordered output during parallel computation of large-
scale data. Fig. S2. Optimized file management (sorting and merging) based on GTB.

Additional file 3: Note 1. A detailed description of GTB file. Note 2. The generation method of simulation geno-
types. Note 3. The format of the contig file. Note 4. Examined programs.

Additional file 4. Review history.

Acknowledgements
Not applicable.

Peer review information
Anahita Bishop and Stephanie McClelland were the primary editors of this article and managed its editorial process and
peer review in collaborati3.on with the rest of the editorial team.

Review history
The review history is available as Additional file 4.

Availability of code and software
All the algorithms presented in the paper have been effectively implemented in Java, and the source code for the GBC
(v1.2, the version for publication) [24] can be publicly accessed on Zenodo (https:// doi. org/ 10. 5281/ zenodo. 77375 56)
under a BSD 3-Clause License. Additionally, the latest GBC software package, equipped with API functions and a user
manual, is freely available to the public at https://pmglab.top/gbc and can be conveniently integrated into various tools
and sequencing projects.

Authors’ contributions
M. L. and L. Z. conceived this project. M. L. supervised this research and provided hardware support. M. L., L. Z., and Y. Y.
designed the detailed implementations. L. Z., W. P., and B. T. developed and optimized the java code of GBC. L. Z., J. L., H.
G., and Q. W. conducted the experiments. M. L. and L. Z. directed the experiments and data analysis. L. Z. and Y. Y. wrote
the user manual of GBC. M. L., L. Z., and Y. Y. wrote the manuscript. All authors read and provided feedback on the final
manuscript.

Funding
This work was funded by the National Natural Science Foundation of China (31970650 and 32170637), National Key R&D
Program of China (2018YFC0910500), Science and Technology Program of Guangzhou (201803010116), and Guangdong
Project (2017GC010644).

Availability of data and materials
In this study, partial genotype data from the UK Biobank was accessed through a collaboration with applications
no.86920. Data are available for bona fide researchers upon application to the UK Biobank, and the high-coverage

https://doi.org/10.1186/s13059-023-02906-z
https://doi.org/10.5281/zenodo.7737556

Page 21 of 22Zhang et al. Genome Biology (2023) 24:76

whole-genome sequencing data of SG10K is available on https:// ega- archi ve. org with accession number
EGAS00001003875 (14). The 1000GP3 dataset (22) in this paper is shown in https:// pmglab. top/ genot ypes (dataset is
also available on the FTP site at http:// ftp. 1000g enomes. ebi. ac. uk/ vol1/ ftp/ relea se/ 20130 502/), which do not require
access rights. Lastly, all simulation data used in this study were generated using the method described in Additional
file 3: Note 2, and this method has been implemented in the VCFGenerator.java, which is available at https:// doi. org/ 10.
5281/ zenodo. 77375 56.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Program in Bioinformatics, Zhongshan School of Medicine and The Fifth Affiliated Hospital, Sun Yat-Sen University,
Guangzhou 510080, China. 2 Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, China. 3 Center for Disease
Genome Research, Sun Yat-Sen University, Guangzhou, China. 4 School of Medical Technology and Information Engineer-
ing, Zhejiang Chinese Medical University, Hangzhou, China. 5 The Province and Ministry Co-Sponsored Collaborative
Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China. 6 Behavioral Health Services, Henry
Ford Health, Detroit, MI, USA. 7 Center for Health Policy & Health Services Research, Henry Ford Health, Detroit, MI, USA.
8 Mental Health Center, West China Hospital, Sichuan University, Chengdu, China. 9 Key Laboratory of Tropical Disease
Control (SYSU), Ministry of Education, Guangzhou 510080, China. 10 Guangdong Provincial Key Laboratory of Biomedical
Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun
Yat-sen University, Zhuhai, China.

Received: 15 April 2022 Accepted: 22 March 2023

References
 1. Danecek P, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.
 2. Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum

Genet. 2007;81(3):559–75.
 3. Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9.
 4. Deorowicz S, Danek A, Grabowski S. Genome compression: a novel approach for large collections. Bioinformatics.

2013;29(20):2572–8.
 5. Deorowicz S, Danek A. GTShark: genotype compression in large projects. Bioinformatics. 2019;35(22):4791–3.
 6. Lan D, et al. genozip: a fast and efficient compression tool for VCF files. Bioinformatics. 2020;36(13):4091–2.
 7. Deorowicz S, Danek A, Kokot M. VCFShark: how to squeeze a VCF file. Bioinformatics. 2021.
 8. Danecek P, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008.
 9. Durbin R. Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). Bioin-

formatics. 2014;30(9):1266–72.
 10. Li H. BGT: efficient and flexible genotype query across many samples. Bioinformatics. 2016;32(4):590–2.
 11. Layer RM, et al. Efficient genotype compression and analysis of large genetic-variation data sets. Nat Methods.

2016;13(1):63–5.
 12. Danek A, Deorowicz S. GTC: how to maintain huge genotype collections in a compressed form. Bioinformatics.

2018;34(11):1834–40.
 13. Rehm HL, et al. GA4GH: international policies and standards for data sharing across genomic research and health-

care. Cell Genom. 2021;1(2):100029.
 14. Wu D, et al. Large-scale whole-genome sequencing of three diverse Asian populations in Singapore. Cell.

2019;179(3):736-749.e15.
 15. Li M, et al. Robust and rapid algorithms facilitate large-scale whole genome sequencing downstream analysis in an

integrative framework. Nucleic Acids Res. 2017;45(9):e75.
 16. Zhang C, et al. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call

format files. Bioinformatics. 2019;35(10):1786–8.
 17. Theodoris C, et al. quickLD: an efficient software for linkage disequilibrium analyses. Mol Ecol Resour.

2021;21(7):2580–7.
 18. Taliun D, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature.

2021;590(7845):290–9.
 19. Menozzi P, Piazza A, Cavalli-Sforza L. Synthetic maps of human gene frequencies in Europeans. Science.

1978;201(4358):786–92.
 20. Collet YTC. Smaller and faster data compression with Zstandard. 2016.
 21. Auton A, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.

https://ega-archive.org
https://pmglab.top/genotypes
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://doi.org/10.5281/zenodo.7737556
https://doi.org/10.5281/zenodo.7737556

Page 22 of 22Zhang et al. Genome Biology (2023) 24:76

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 22. Zheng X, et al. SeqArray-a storage-efficient high-performance data format for WGS variant calls. Bioinformatics.
2017;33(15):2251–7.

 23. Tatwawadi K, et al. GTRAC: fast retrieval from compressed collections of genomic variants. Bioinformatics.
2016;32(17):i479–86.

 24. Zhang L, Miaoxin L. Source code for GBC (v1.2, the version for publication) (release). 2023. Zenodo. https:// doi. org/
10. 5281/ zenodo. 77375 56

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.7737556
https://doi.org/10.5281/zenodo.7737556

	GBC: a parallel toolkit based on highly addressable byte-encoding blocks for extremely large-scale genotypes of species
	Authors

	GBC: a parallel toolkit based on highly addressable byte-encoding blocks for extremely large-scale genotypes of species
	Abstract
	Background
	Results
	Overview of the GBC procedure
	Efficient compression of large-scale genotypes by GBC
	Rapid accessing of the compressed genotypes by GBC
	Significant improvement in the performance of downstream computation by GTB format
	Convenient management of large-scale compressed files by GBC

	Discussion
	Conclusions
	Methods
	Compress genotypes into a highly addressable Genotype Block (GTB) format
	The structure of GTB
	Chunking inputs and splitting each chunk into blocks
	Maximized byte-encoded of genotype (MBEG)
	Approximate minimum discrepancy ordering of variants (AMDO)

	Merge data stream after compressing with advanced compressors
	Memory control benefits to the efficiency of GBC on large-scale data
	Specify contig file to support non-human species genome compression
	Input multiple VCF files for compression

	Fast access and manage genotypes in the highly addressable GTB format
	Parse GTB file and create an index table for fast access
	The addressing algorithm to access location-specific genotypes
	Step 1: Locating the start pointer of the variant
	Step 2: Decoding the genotype of the subject

	The IO optimized parallel framework for reading through GTB
	The cyclic locking model-based parallel algorithms to optimize decompression
	Sort GTB by variants’ coordinates using a two-level index table
	Merge multiple GTBs and identify inconsistent allele labels
	Evaluation and comparison

	Additional information
	System requirements
	Computing environment

	Anchor 35
	Acknowledgements
	References

