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GBC: a parallel toolkit based on highly 
addressable byte-encoding blocks for extremely 
large-scale genotypes of species
Liubin Zhang1,2,3, Yangyang Yuan1,2,3,4, Wenjie Peng1,2,3, Bin Tang1,2,3, Mulin Jun Li5, Hongsheng Gui6,7, 
Qiang Wang8 and Miaoxin Li1,2,3,9,10*   

Abstract 

Whole-genome sequencing projects of millions of subjects contain enormous geno-
types, entailing a huge memory burden and time for computation. Here, we present 
GBC, a toolkit for rapidly compressing large-scale genotypes into highly addressable 
byte-encoding blocks under an optimized parallel framework. We demonstrate that 
GBC is up to 1000 times faster than state-of-the-art methods to access and manage 
compressed large-scale genotypes while maintaining a competitive compression ratio. 
We also showed that conventional analysis would be substantially sped up if built on 
GBC to access genotypes of a large population. GBC’s data structure and algorithms are 
valuable for accelerating large-scale genomic research.

Keywords: Large-scale genotypes, Genotype compression, Highly addressable 
genotype blocks, Byte-encoding genotypes, Genotype management, Parallelization 
algorithm, Cloud computation

Background
Interrogating the full genetic spectrum underlying phenotypes in species requires large sam-
ples. With the dramatic decrease in sequencing costs and advancements in precision medi-
cine, genome-wide genotypes of millions of subjects will soon become routinely available. 
However, the storage and computational demands of managing large-scale genotypes have 
become increasingly challenging. The Variant Call Format (VCF) [1] is a widely used frame-
work to store the aggregate information of genotypes for genome sequencing projects, and 
it has become the standard format for genetic and genomic studies. However, the easy-to-
read text format of VCF files occupies much redundant storage space and is not specifically 
designed for large-scale genotype data. Access to large-scale genotypes in VCF for analyses 
will impose a huge computational burden, usually due to data overload. While a binary format 
by PLINK was proposed to store large-scale genotypes efficiently and speed up genome-wide 
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association studies (GWASs) [2], it loses information for multi-allele genotypes and has 
no further compression and addressing  strategies besides binary encoding. Thus, there is 
an urgent need for a more efficient data format and high-performance utilities to meet the 
demands of large genetics and genomics projects, such as the UK Biobank (UKBB) [3].

Multiple methods have been proposed to compress genotypes to facilitate the transfer 
and storage of large-scale genotype data, e.g., TGC [4], GTShark [5], Genozip [6], and 
VCFShark [7]. However, these methods did not support rapid and flexible queries for the 
compressed data, which is important for analyses. Thus, block-based methods for com-
pressing genotypes into rapidly accessible formats were developed subsequently, includ-
ing BCFTools [8], PBWT [9], BGT [10], GQT [11], and GTC [12]. Unfortunately, the 
block-based methods are still generally inefficient for extremely large-scale genotypes 
(say, whole-genome genotypes of millions of subjects) due to a lack of efficient struc-
tures and algorithms. Methods for such large-scale genotypes should have at least four 
major technical advantages. First, memory and time overhead usage should grow lin-
early or keep steady when compressing and accessing a larger scale of genotypes. Sec-
ond, it should have a robust framework for massive parallelization in reading, analyzing, 
and outputting genotypes. Third, it should efficiently manage the compressed genotypes 
(e.g., merging, splitting, and sorting by coordinates of variants). Finally, it should be 
equipped with versatile data query and output functions, say, query by specified variants 
or subjects, the output of phased or unphased genotypes with various formats (e.g., text, 
binary, byte, or other specified formats). Note that some advantages may conflict with 
each other in performance. For example, memory usage and disk input-output (I/O) 
efficiency may become inefficient when there are many parallel tasks, entailing a robust 
design to achieve these advantages simultaneously.

In the present study, we first proposed a unified data structure, Genotype Block (GTB) 
format, to store large-scale genotypes into many highly addressable byte-encoding com-
pression blocks. Then, multiple advanced algorithms and a parallel computing frame-
work were developed for efficient compression, decompression, access, management, 
and analyses based on the GTBs. Finally, the format and algorithms were implemented 
into a user-friendly Genotype Block Compressor (GBC) toolkit. We demonstrated that 
GBC is much faster than alternative methods to access and manage genotypes in GTB. 
GBC follows the GA4GH [13] application program interface (API) specification (https:// 
ga4gh- schem as. readt hedocs. io/ en/ latest/ schem as/ varia nts. proto. html) for the design of 
Java structures for genetic variants. The GBC software package and API functions are 
publicly available at https:// pmglab. top/ gbc, which can be easily integrated into other 
tools and applied to various genomics projects.

Results
Overview of the GBC procedure

We first designed a novel GTB format for compressing and storing large-scale geno-
type data of haploid or diploid species with various allele numbers, chromosome num-
bers, and phased or unphased genotypes (Fig. 1a). To begin the compression process, 
the input genotype file (in VCF format) is partitioned into several chunks and subse-
quently processed in parallel by multiple threads. In each parallel task, every chunk 
is further divided into multiple smaller indexable blocks. Here, a block is the smallest 

https://ga4gh-schemas.readthedocs.io/en/latest/schemas/variants.proto.html
https://ga4gh-schemas.readthedocs.io/en/latest/schemas/variants.proto.html
https://pmglab.top/gbc
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unit of compression, in which the number of variants is balanced with the sample 
size given the maximal array length 231 − 1(≈ 2GB) (Fig. 2a). Then, the genotypes of 
the variants are encoded into byte codes (Figs. 1b and 2b). For biallelic variants, their 
byte codes are further merged into one-byte codes by combining three phased or four 
unphased consecutive genotypes (Fig.  2c). Next, the approximate minimum discrep-
ancy ordering (AMDO) algorithm is applied on the variant level (Fig. 2d) to sort the 
variants with similar genotype distributions for improving the compression ratio. The 
ZSTD algorithm is then adopted to compress the sorted data in each block (Fig. 2e). 
Finally, all the compressed blocks and metadata are written into a single GTB file 
(Fig. 2f ). The procedure has a linear time complexity regarding the number of subjects 

Fig. 1 Structure of Genotype Block (GTB) and byte-encoded table of genotype (BEG) implemented in GBC. 
a Magic code: the first two bytes are used to store the compressed parameters. Block numbers: the total 
number of blocks contained in the compressed file, which also indicates that the “block abstract information” 
at the end of the file has (25*numbers) bytes of memory. Meta information: the meta information in the 
header of the VCF file. Subjects information: list of subjects. Block entity data: the compressed data is 
combined according to the order of the abstract block information. Abstract block information: abstract 
information of the GTB nodes for building the first-level fast index table. b The byte-encoding table of 
genotype (BEG)

Fig. 2 The workflow of building a GTB file in the GBC framework. a Slice (one or more) inputs into several 
chunks according to the specified number of parallel threads, and then each chunk is divided into several 
blocks for compression. b Code genotypes of each variant with byte-encoded genotype (BEG). c Combine 
multiple BEG of each biallelic variant into maximized byte-encoded genotype (MBEG). d Sort variants by 
approximate minimum discrepancy ordering (AMDO) to improve compression ratio. The sample graph is 
produced from the first 4000 biallelic variants of assoc.hg19.vcf.gz (download from https:// doi. org/ 10. 5281/ 
zenodo. 77375 56). Genotype 0|0 is filled with white, 0|1 or 1|0 is filled with gray, and 1|1 is filled with black. 
e Compress the position, genotype, and allele data with an advanced compressor separately. Then, the 
compressed data (entity data) is concatenated into a long array and written into the disk, while the abstract 
information is recorded in the memory. f Store the compressed data in Genotype Block (GTB) format

https://doi.org/10.5281/zenodo.7737556
https://doi.org/10.5281/zenodo.7737556
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and variants with small memory usage (less than 4 GB). It provides the fastest com-
pression speed with a competitive compression ratio to date.

Besides, various advanced algorithms have been developed for rapid access and man-
agement of large-scale genotypes in GTB format. First, a tree structure (i.e., GTBTree) 
containing chromosome, block start, and end positions is designed for fast localization 
of and access to the indexable blocks and variants. Thus, data retrieval and editing in a 
large GTB file can be quickly accomplished only in involved blocks without decompress-
ing the entire file. Second, an MBEG-based address conversion algorithm is developed 
for fast localization (especially for access by subjects) of a subject’s genotype at a variant, 
which enhances the speed of per-column access by more than 20 times (single thread, 
compared with BCFTools). Third, a unique sorting algorithm based on GTBTree makes it 
easy to sort variants of various sizes and degrees of disorder in less than 4 GB of memory 
by coordinates and without external disk space. Fourth, a file merging algorithm based on 
the minimum heap of sample sizes can quickly merge multiple large-scale genotypes in 
GTB format. Finally, we designed a cyclic locking model (CLM) for parallel decompres-
sion and downstream analysis, which can help users to design and perform parallelized 
computing efficiently. Thanks to the data structure and algorithms, GBC performs well 
for extracting, concatenating, merging, and splitting large-scale genotypes.

Efficient compression of large‑scale genotypes by GBC

A series of experiments were carried out to investigate the performance of the algo-
rithms of GBC systematically. We first compared the compression ratio of the GBC with 
the other four widely used block-based methods for fast-accessing genotypes, including 
BCFTools, BGT, PBWT, and GTC. According to Danek et al. [12], GTC had the largest 
compression ratio among the four methods. However, Fig. 3a and b showed that GBC 
had the best compression ratio on the typical public datasets (UKBB, 1000GP3, and 
SG10K), over 10% higher than GTC. For example, GBC only needed 631.03 MB of disk 
space to store the UKBB dataset with 469,835 subjects and 70,581 variants, while GTC 
needed 701.45 MB. Besides, we also compared GBC to the other two genotype compres-
sion methods for data archiving (GTShark, Genozip). The two methods’ compression 
ratios were around 1.7 to 1.27 times higher than that of GBC for unphased genotypes 
(in UKBB exome chr4 dataset: GBC: 0.62 GB, GTShark: 0.51 GB, Genozip: 0.49 GB; in 
1000GP3 and SG10K datasets: GBC: 3.68 GB, GTShark: 2.51 GB, Genozip: 2.54 GB, see 
details in Additional file 1: Table S1). However, accessing the compressed genotypes by 
the two methods is much slower than GBC (see details in the section about data-access 
performance). In sum, GBC provided a competitive compression ratio, although its pri-
mary goal is not to save the storage space of archived genotypes.

Then, we investigated the compression and decompression speed of the GBC using 
simulated and real genotypes. Figure  3c shows the compression and decompres-
sion speeds of GBC, as well as those of the alternative tools, on simulated datasets. 
We found that the GBC was much faster than GTC, which had the highest compres-
sion ratio among the four block-based genotype compression tools. The speed ratio of 
GBC to GTC grew exponentially as the sample size increased. For instance, GBC was 
over 1000 times faster than GTC in a simulated sample with 500,000 subjects. GBC 
took 0.80 min and 3.87 min to compress the genotype datasets with 30,000 variants of 
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Fig. 3 The performance comparison among GBC and alternative methods (details in Additional file 1: Tables 
S1-S5). a The basic performance of different methods on the UKBB exome chr4 dataset. The “standardized 
performance ratio” was obtained by scaling the GBC’s result to 1 and all other results against the GBC’s result. 
b The basic performance of different methods on the 1000GP3 and SG10K. c The compression speed (upper 
region) and decompression speed (lower region) of GBC and other alternative methods with the increase 
of sample size on simulated datasets. d The significant improvement of compression and decompression 
speed under multi-threads on the 1000GP3 dataset. e Retrieved the genotypes of random variants for all 
the subjects on the SG10K dataset. The option of accessing genotypes of variants in multiple regions at 
a time is only provided by BCFtools, GBC, and Genozip. Thus, the time cost was estimated by the access 
time of individual sites for methods including GTC, PBWT, and BGT. Genozip throws an exception when 
accessing 994,485 and 9,944,848 variants. f Retrieved a range of continuous variants for all the subjects on 
the Simulation 5000 K and SG10K-chr2 (the genotypes on chromosome 2 of the SG10K dataset) datasets. 
BGT, PBWT, GTC, and Genozip failed to compress the simulation 5000 K dataset. g Retrieved all the variants 
for a specified subset of subjects on the SG10K-chr2 dataset. h Retrieved all the variants for a specified subset 
of subjects on the Simulation 500 K dataset. i Filtered out the variants by alternative allele frequency on the 
SG10K-chr2 dataset. j Retrieved continuous variants and random variants in ordered and unordered SG10K 
dataset separately. k The comparison of LD coefficients computational speed between GBC and other 
popular tools on the 1000GP3 and SG10K datasets. l GBC speeds up follow-up computation (calculating the 
pair-wise linkage disequilibrium coefficients as an example) through I/O optimization. m Concatenate the 
chromosome-separated files within each dataset. n Split compressed archives by chromosome. o Merge 
multiple compressed archives with non-overlapping subjects. p Retrieve all the genotypes for a specified 
subset of subjects and rebuild the compressed archives. We tested the time cost of fetching different sizes 
of subject subsets on the simulation 500 K dataset. q Sort the variants by coordinate. We used several 
disordered simulated data with 100,000 subjects for evaluating the time cost and measured the range of 
speed ratio of GBC to BCFtools according to the disordered degree of datasets
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100,000 and 500,000 subjects, respectively, while GTC spent 180 min and 4964.19 min 
doing this. In the real dataset testing, GBC was 454.73 times faster than GTC in com-
pressing the UKBB [3] genotypes of 32,626 variants on chromosome 10 of 487,409 sub-
jects. Besides, for the imputed genotypes of 4,562,904 variants on chromosome 10 of 
487,409 UKBB subjects, GBC took 549.02 min (single-thread model) for the compres-
sion, while CTC failed after 3 weeks of running. Note that PBWT had memory overflow 
(> 100 GB memory), GTC had timeout (> 1 week) when compressing more than 500,000 
subjects, and Genozip threw an exception when processing the datasets with 5,000,000 
subjects. Compared to the two data-archiving methods (GTShark, Genozip), GBC was 2 
to 5 times faster in compressing the testing datasets. This comparison showed that GBC 
had the superior speed to compress large-scale genotype datasets. Moreover, in terms 
of decompression speed, GBC was also approximately 1.8 times faster than others when 
decompressing the data to be BGZ format (Fig. 3c, lower region). Note that it is more 
reasonable to describe the speed difference in decompression with BGZ format, as it 
reduces the influence of the slow disk output speed. Finally, GBC can be several times 
faster under multi-threads for compression and decompression (Fig. 3d).

Rapid accessing of the compressed genotypes by GBC

The time cost of accessing the compressed genotypes is very important for subsequent 
analyses. GTB format and GBC functions were primarily proposed to facilitate fast and 
flexible access to compressed genotypes. First, we compared the genotype access time of 
several alternative methods in extracting 0.01%, 0.1%, 1%, and 10% of the variants from 
the SG10K [14] dataset. We found that GBC was more than one order of magnitude 
times faster than others (Fig. 3e). Note that when retrieving multiple sporadic variants 
in a GTB file, GBC only needs to scan the file once, while PBWT, BGT, and GTC can 
only retrieve one variant in a file scan. Second, GBC was 2.07 times faster than the best 
of the other peer methods (i.e., BGT) when accessing a set of consecutive variants on 
the same chromosome (Fig. 3f ). Moreover, GBC can also quickly retrieve the genotype 
data given a set of subjects. Its superior speed over other methods became increasingly 
striking as the sample size in compressed datasets increased. For example, when extract-
ing genotypes in a single subject, GBC was 1.59 times faster than GTC on small-scale 
datasets, while it was 5.16 times faster on large-scale datasets (Fig. 3g, h). We indicated 
that all forms of data access would eventually approach the speed of decompressing all 
data as the number of genotypes to be extracted increases. However, GBC was still 1.8 
times faster than the fastest method (GTC) on large sample sizes (Fig. 3c, lower region). 
Besides, GBC was also 1.25 times as fast as other methods when filtering out variants 
within a specified allele frequency range (Fig. 3i). We noted that Genozip and GTShark 
were much slower than GBC. For example, GTShark took 47,377.98 s to extract geno-
types of a subject from a simulated genotype dataset of 100,000 variants of 5 million 
subjects, while GBC only needed 135.10 s. While GTShark only supports extracting gen-
otypes of a single subject from the compressed dataset, Genozip can extract genotypes 
of multiple subjects or genotypes in multiple genomic regions from compressed data-
sets. However, in a simulated genotype dataset with 500,000 subjects and 30,000 vari-
ants, Genozip was 845.89 times slower than GBC in accessing the genotypes of a single 
subject (Fig. 3g, h, GBC’s 5.34 s vs Genozip’s 4518.75 s). Genozip was even 4576.7 times 
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slower than GBC in accessing 9948 out of 99,448,478 variants in a dataset with 4810 
real subjects in a test (Fig. 3e, GBC’s 10.27 s vs Genozip’s 46,998.60 s). Especially, GBC 
is by far the only method that enables fast retrieval in datasets with unsorted variants 
(while others only work for ordered variants). The time cost on the unordered datasets 
was similar to that of the ordered datasets (Fig. 3j). Last but not least, GBC is the tool 
that supports querying data in parallel. The query speed of GBC under multiple threads 
could be several times faster than that of a single thread (Fig. 3e-i), which suggests the 
great potential of GBC to accelerate parallel calculations.

Significant improvement in the performance of downstream computation by GTB format

The genotype access and calculation can be carried out quickly and efficiently  based 
on the GTB format, which speeds up follow-up analyses based on genotypes. Here, we 
showed the advantage of calculating the pair-wise linkage disequilibrium (LD) coeffi-
cients with GTB format. At the algorithmic level, GBC used bitwise operations to maxi-
mize computational speed, which is similar to PLINK [2] and KGGSeq [15]. However, 
GBC accessed genotypes for computation based on the GTB format rather than the vcf.
gz format like other tools (such as PLINK, VCFtools [1], PopLDdecay [16]). Taking the 
1000GP3 and SG10K datasets as an example, the results (Fig. 3k) showed that GBC was 
3.75 times faster than PLINK(V1.9) in calculating LD from GTB data and compressed 
VCF data under a single thread, respectively. Especially, GBC was even 20.3 times faster 
than PLINK(V1.9) when both tools used eight threads. Here, we emphasized that the 
speed advantage of GBC is largely due to the faster genotype retrieving process and the 
cyclic-locked parallelization. Although the latest research indicated that GPU-based 
computing could significantly improve the speed of LD calculation [17], GBC mainly 
focused on optimizing the computational speed at the I/O level (Fig. 3l). The GTB for-
mat and GBC functions have largely relieved the limitation of I/O by optimizing the I/O 
frequency and load in genotype blocks. Therefore, we believe that many tools would per-
form better if they were built on GBC to access and parse large-scale genotype data.

Convenient management of large‑scale compressed files by GBC

Convenient management of large-scale compressed files is also critical for genetic and 
genomic studies. We compared GBC with the current popular tool BCFtools [8] for 
managing compressed genotype data (PBWT, BGT, and GTC do not support these func-
tions). BCFtools handles compressed BCF in BGZ formats, while GBC manages com-
pressed GTBs. When concatenating genotype files with the same number of subjects, we 
found that GBC was 2421.3 times (Fig. 3m) faster than BCFtools. When splitting geno-
types by chromosome, it was 4157.6 times (Fig. 3n) as fast as BCFtools. Besides, GBC 
was 4.87 times faster than BCFtools on merging genotypes files with non-overlapping 
subjects under four threads (Fig. 3o). For retrieving the genotypes of 500,000 subjects, 
the speed of GBC was further increased by 5.8 times because of the advanced GTB 
structure (Fig. 3p) compared to the BGZ format (Fig. 3h). In terms of the sorting speed, 
GBC was always approximately 3 to 9 times faster than BCFtools for 100,000 subjects 
under a single thread (Fig. 3q). The less disordered the data, the better performance the 
GBC would have. Particularly, GBC can accomplish the sorting directly in 4 GB of mem-
ory, while the BCFtools may need large external disk space (Additional file 2: Fig. S1). 
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For instance, BCFTools cannot sort larger datasets (e.g., 100,000 subjects and 1,000,000 
variants) in 64 GB of memory. Similar to the data access performance, we believe that 
the speed difference between GBC and BCFtools will be more pronounced as sample 
sizes increase. These results illustrated that the GTB structure could also facilitate fast 
management of large-scale genotypes.

Discussion
In recent years, numerous genome-wide genotypes of large-scale samples for dissecting 
genetic mechanisms of phenotypes have grown explosively, raising a heavy computational 
burden. Many methods were developed to address this issue by advanced algorithms 
compressing large-scale genotypes. However, efficient usage of large-scale genotype data 
is far more than compression. In the present study, we proposed a comprehensive solu-
tion for the management and computation of large-scale genotypes. First, we designed 
a unified data structure, GTB, to store any type of genotype data flexibly (phased or not, 
biallelic or multiallelic, human or non-human) into highly addressable byte-encoding 
blocks in a single file. We showed that the novel blocking structure facilitated rapid access 
to compressed genotypes compared to the existing genotype compression methods 
[9–12]. The single-file strategy also solved the management inefficiency of the multi-file 
strategy adopted by most compression methods [9–12]. Moreover, we developed multiple 
advanced algorithms based on the GTB format to improve the speed and save RAM for 
genotypes’ computation and management. All of them are implemented in our integrated 
software toolkit, GBC. To our knowledge, GBC may be the only tool that can compress 
and manage whole-genome genotypes of millions of human subjects in an ordinary com-
puter with around 4 GB RAM. Furthermore, its I/O optimized framework for different 
types of parallel tasks (e.g., I/O intensive tasks and computing-intensive tasks) process-
ing genotype blocks also enhance the efficiency of large-scale genotypes. Two commonly 
used and user-friendly interfaces are also provided, a command line tool (installation-
free) and a Java-API library. Thus, GBC is suitable for a wide range of users, enabling pro-
fessional researchers and amateurs to use it even on personal laptops easily.

The success of GBC showed that compression and rapid access of genotype data could 
be well balanced with subtle data structure and advanced algorithms. The data compres-
sion ratio and access speed interfere with each other. GBC does not aim to improve the 
compression ratio exclusively. Therefore, GBC may have a lower compression ratio than 
the methods for a frozen compression of genotypes which would be very inefficient for 
genotype access in subsequent analysis (e.g., GTShark [5], Genozip [6], VCFShark [7]). 
Besides the storage space, the speed of access and analysis is also critical for analyses 
with large-scale genotype data (e.g., UKBB [3] and TOPMed project [18]). GBC aims to 
improve both in a balanced way. While GBC achieves the fastest compression, decom-
pression, query, and manipulation of compressed data among the tools that support fast 
retrieval, it also has a highly competitive compression ratio to the compared tools in real 
testing datasets. For example, among the four compared tools, GTC, the tool with the 
closest compression ratio to GBC, is much slower (more than 1283 times than GBC in 
compressing large-scale datasets with ~ 500,000 subjects). While some other tools are 
much faster than GTC, they are inferior to GBC in compression ratio. The GTB format 
and GBC functions have largely overcome the limitation of I/O by the I/O optimization. 
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These are particularly beneficial for developing and applying genomic tools or platforms 
that  analyze large-scale genotype data. For instance, sequential access to genotypes 
in GTB files is 5.78 times faster than that in vcf.gz format on 1000GP3, while random 
access to genotypes of a variant is estimated to be more than 71.56 times faster. Further-
more, the LD calculation speed has been improved by 20.3 times under eight threads 
due to the efficient I/O, compared to PLINK(V1.9).

It should be noted that the GTB format is not intended to replace VCF. VCF’s text for-
mat that denotes genotypes with various attributes is human-readable and convenient, 
making it widely used in the genetic and genomic community. Despite being inefficient 
for computing large-scale genotypes, VCF remains essential for sharing and exchang-
ing called variants in the community. Nevertheless, GBC provides efficient functions to 
transform VCF to the GTB format, which has a much more efficient design to optimize 
access and computation of large-scale genotypes. GBC also includes a complete quality 
control procedure to ensure high-quality genotypes are compressed, with those failing 
to meet quality criteria being set as missing values. In the performance comparison of 
this paper, we removed all quality metrics to make a fair comparison with similar tools 
(which cannot store the quality metrics of genotypes, e.g., BGT [10] and GTC [12]). 
However, the flexible structure of GTB allows it to store extra data directly, including ID, 
INFO, and Genotype Metrics in VCF. This flexibility meets the general analysis require-
ments of a large-scale genotype dataset, which may include other data.

Conclusions
Here, we developed a new toolkit, GBC, for efficient storage, access, management, and 
computation of extremely large-scale genotypes and verified its validity by various scales 
of genotypes. Most existing tools had no fast-accessible compression format and no effi-
cient usage of RAM or I/O-optimized parallel computing for large-scale genotype data. 
In contrast, GBC provides a novel GTB data structure, speed-raising algorithms, and an 
I/O-optimized parallel framework with reusable RAM. The computing burden of GBC 
is so substantially reduced that whole-genome genotypes of millions of subjects can be 
rapidly compressed and accessed in small RAM under a fully parallelized model. We also 
showed that many commonly used software tools were very slow or required too much 
RAM to process the same amount of large-scale genotypes. Several extensions to GBC 
are under consideration for further development, including more efficient functions for 
large-scale genomic computations (e.g., the population PCA [19]) based on its paralleli-
zation and low memory consumption advantages. The ability of fast access to genotypes 
with low RAM consumption under the optimized parallel framework also makes GTB 
and GBC attractive for cloud computation. In sum, GTB and GBC will benefit genetics 
and precision medicine studies, whose genotype resources are growing dramatically.

Methods
Compress genotypes into a highly addressable Genotype Block (GTB) format

The structure of GTB

We designed a novel Genotype Block (GTB) format to store the compressed large-
scale genotypes in a file. GTB consisted of 6 main decoupled parts (Fig. 1a, Additional 
file 3: Note 1). The first part is the magic code, which stores the software parameters for 
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building the current GTB file using 2 bytes, including the maximum size of each block 
after decompression (for pre-allocated memory when decompressing blocks), whether 
the file is ordered or not, the specified compressor, the state of genotype (phased or 
unphased), the maximum number of sites per block, and the compression level. The sec-
ond part is the block numbers, which stores the number of sub-blocks in the current 
GTB file as a 3-byte integer. The third part is the version of the reference genome for 
variants positions and so on (i.e., the meta-information in VCF). As an extension, other 
necessary comment fields in the VCF can be concatenated using an intermediate separa-
tor (e.g., “\t”) and stored in this part. The fourth section is the sample information, which 
contains the sample sequence length and the sample data. The fifth part is the genotype 
sub-blocks. Each sub-block contains three compulsory sub-parts, including genotype 
data, position data, and allele data. In addition, other fields from VCF can also be con-
catenated as optional sub-parts. Finally, the sixth part is the abstract block information, 
which contains the parameters necessary to access the genotype sub-blocks quickly (i.e., 
index information).

Here is a typical process for generating a GTB file. GBC first writes 5 bytes of place-
holder information for magic code and block numbers at the beginning of compression. 
The meta information and subject information are added subsequently. Next, the data 
entity and abstract information for each block are written to the disk and memory syn-
chronously to ensure that the order of records in memory is the same as those written 
to the file in the hard disk. After all the blocks are compressed, their abstract informa-
tion in the memory is written to the end of the GTB file. Finally, the file pointer returns 
to the head of the file, and GTB modifies the placeholder information according to the 
compression results, including block size, compressor parameters, the state of genotype 
(phased or unphased), and whether the file is in order (whether all the block-coordinates 
in current GTB file are non-overlap). In brief, a GTB file is essentially made up of highly 
addressable and independent blocks of compressed genotypes.

Chunking inputs and splitting each chunk into blocks

The processed VCF file is sliced into t chunks (if the multi-threading mode is ena-
bled and t threads are specified) with approximately even physical sizes. Under 
each thread, the read-in variants of each chunk are divided into multiple blocks of 
consecutive entries. Briefly, the block construction is terminated if (a) the num-
ber of variants in the block reaches the maximum size, (b) a different chromosome 
occurs, and (c) it reaches the end of the file. The maximum size of variants N  in 
each block is set automatically, which is mainly dependent on the sample size M as 
N ∈ {2n|2n ×M ≤ 231 − 2, 7 ≤ n ≤ 14 and n ∈ N

∗} . GBC can store 128 variants of 
16,777,215 subjects or 16,384 variants of 131,071 subjects in each block at most. This 
strategy allows the personal laptop to deal with large datasets conveniently because 
a block always occupies small memory during the analysis. The blocks from different 
chunks are parallelly processed independently under the multi-threaded mode, improv-
ing compression speed. Besides, we have adopted nine commonly used quality control 
strategies (described in KGGSeq [15]) in GBC to filter out genotypes and variants with 
poor quality. The quality control (QC) is executed by default after read-in, and only gen-
otypes and variants that pass the QC are stored in the blocks. The blocks also allow the 
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decompressing algorithm only to process a small fraction of all the data for queries (fast 
access to the compressed data).

Maximized byte‑encoded of genotype (MBEG)

Conventional genotype array storage in text format (e.g., 0|1) takes up much redun-
dant information space. Therefore, a more efficient and compatible strategy is needed to 
encode the genotypes with less space to enhance the information density (containing as 
much information as possible in the same byte length). Here, we propose a novel byte-
based lossless encoding strategy to store genotypes, which helps reduce memory bur-
den and accelerate the compression process. It has two steps, and step 2 is specifically 
designed for biallelic genotypes.

Step 1 A byte-based encoding strategy of genotype (byte-encoded genotype, 
BEG, Fig.  1b) is proposed to encode genotypes. Let a variant v has nv different alleles 
nv ∈ [2, 15] . The byte codes of a genotype of the variant can be calculated. The non-miss-
ing phased genotype “ a | b ” ( a, b ≥ 0 ) will be encoded as:

The missing genotype “ .|. ”, is encoded to 0. For an unphased genotype “ a/b ”, it is also 
encoded formula (1) after being transformed to “ min{a, b} | max{a, b} ”. For the sake of 
unification, a genotype “ a ” of a variant in a male’s chromosome X and Y is converted 
into “ a | a ” and is encoded by the above formula. Note that the strategy ensures coherent 
genotype encoding values of variants with different allele numbers.

Step 2 However, the BEG array (BEGs) still has unused information space and may 
reduce the compression efficiency in a project with large samples. Because a biallelic 
variant has 4 (unphased) ~ 5 (phased) possible genotypes and the majority of variants in 
human genomes are biallelic, we further combine 3 (phased) ~ 4 (unphased) consecutive 
BEG codes into a single byte for biallelic variants as follow:

Conversions (2) and (3) are designed for phased and unphased BEGs, respectively. If the 
number of BEG for a variant is not enough to make a group of three or four, the inad-
equate part is called incomplete MBEG (e.g., one variant of 1000 subjects with phased 
genotypes will form 334 groups, and two nulls to make up the last group), and the null 
BEG

i will be set to the same as the previous one according to BEG i = BEG
i−1 (if i ≥ 1 ). 

In human genomes, the storage space with the maximized byte-encoded genotype array 
(MBEGs) will be reduced by nearly 11/12 or 15/16, compared to the common text for-
mat in VCF. Finally, BEG and MBEG can be pre-calculated and stored in an encoding 
table with o(1) access time. The encoding table can be loaded in memory for fast encod-
ing or decoding by direct mapping without computing. For instance, the encoding value 

(1)a | b →
(a+ 1)2 − b , a ≥ b

b2 + a+ 1 , a < b

(2)
[
BEG

0
, BEG

1
, BEG

2

]
→ 52 · BEG

0
+ 5 · BEG

1
+ BEG

2

(3)
[
BEG

0
, BEG

1
, BEG

2
, BEG

3

]
→ 43 · BEG

0
+ 42 · BEG

1
+ 4 · BEG

2
+ BEG

3
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of genotype a | b is the element in row a and column b of the encoding table (Fig. 1b). 
The complete coding table of BEG and MBEG can be found in Additional file 1: Table S6.

Approximate minimum discrepancy ordering of variants (AMDO)

The diverse genotype of different variants in a block (especially for the non-con-
servative region) will result in dispersive genotype distributions (Fig.  2d), harming 
the genotype compression ratio. Thus, we propose an algorithm named approximate 
minimum discrepancy ordering (AMDO) to sort all variants within a block based on 
both the allele frequency and genotype distribution. AMDO provides an o(nm) time 
complexity in the fast sorting process (compared to GTC with at least o(nm2) time 
complexity), and significantly improves the compression ratio.

AMDO starts with extracting the genotype accumulated down-sampling features. 
Supposing that each block contains M variants and N  subjects, a zero-count matrix 
is denoted as C = [cmn]M×N  , where cmn is the count of reference alleles (namely 0 
alleles) of the mth variant for the nth subject. Then, the genotype vector of a variant 
m Cm = [cm0, cm1, · · · , cm(N−1)] is merged into a shorter s-element vector,

where C(l)
m,i covers a maximum of l = ⎡N/s⎤ consecutive genotypes, and s is 24 by 

default. Each element C(l)
m,i in the vector is defined as an accumulated count, i.e.:

The accumulation helps discriminate genotype distribution effectively. For exam-
ple, according to (5), two zero-count vectors [0,1,1,2] and [2,1,1,0] have different 
accumulated counts, 7 and 9, respectively, although they have the same alternative 
allele counts.

All the variants in a block are divided into two groups, i.e., the biallelic and the 
multiallelic groups. In the biallelic variants group, the order of the variant vi and 
the biallelic variant vj is defined as the dictionary order of C(l)

i  and C(l)
j  , which are 

described below:

• If ∃k0 ∈ [0, s − 1], ∀k ∈ [0, k0 − 1] , such that C(l)
i,k0

< C
(l)
j,k0

 , C(l)
i,k = C

(l)
j,k  , then vi > vj;

• If ∃k0 ∈ [0, s − 1], ∀k ∈ [0, k0 − 1] , such that C(l)
i,k0

> C
(l)
j,k0

 , C(l)
i,k = C

(l)
j,k  , then vi < vj;

• If ∀k ∈ [0, s − 1] , such that C(l)
i,k = C

(l)
j,k  , then vi = vj.

On the contrary, the order will be inverted for multiallelic variants, which helps 
maximize the length of similar genotype vectors. Finally, the corresponding infor-
mation of positions, alleles, and MBEGs for variants are sorted according to the 
ordered variants ( I = [m0,m1, · · · ,mM−1]).

(4)C
(l)
m =

[
C
(l)
m,0,C

(l)
m,1, · · · ,C

(l)
m,s−1

]

(5)C
(l)
m,i =

min {N −1, (i+1)l−1}�

j=1.l

j�

k=i.l

cmk =






(i+1)l−1�

j=i·l

�
(i + 1)l − j

�
cmj , i < s − 1

N−1�

j=i·l

�
N − j

�
cmj , i = s − 1
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Merge data stream after compressing with advanced compressors

All the sorted MBEG and BEG codes in each block are further compressed by 
advanced compressors. Popular compression algorithms (e.g., Gzip, LZMA, and zlib) 
can achieve a compression ratio of 100 or more on genotypes. By default, we chose the 
ZSTD (short for Zstandard [20], https:// github. com/ faceb ook/ zstd) because it pro-
vides the fastest speed with a similar compression ratio among the widely used com-
pression algorithms. In detail, the byte codes of each variant are concatenated into a 
byte array B1 directly. Next, the position of each variant is converted into 4 bytes, and 
then all variants’ positions are concatenated into a byte array B2 . Finally, the alleles 
of all variants are concatenated into another byte array B3 with a “/” delimiter. Then, 
these concatenated data B1,B2 and B3 are compressed by the latest ZSTD to produce 
B̂1, B̂2 and B̂3 , respectively. The data entity is a long vector composed of three sections 
of compressed data, including encoded genotypes, positions, and alleles. Two types of 
information of each packed block, including abstract information and data entity, are 
subsequently written to the GTB file. The abstract information includes the chromo-
some number (1 byte), minimum and maximum positions (4 bytes each), number of 
biallelic variants (2 bytes  each), number of multiallelic variants (2 bytes), length of 
B̂1 (4 bytes), length of B̂2 (3 bytes), length of B̂3 (4 bytes), and magic code (1 byte) in 
a block. For other fields at the variant level (e.g., ID, INFO, Genotype Metrics), they 
are concatenated and compressed in the same way, then stored in the optional fields 
(Fig. 1a).

GBC can be integrated with different compression algorithms. ZSTD and LZMA 
algorithms have been embedded to compress each genotype block. We also reserve 
two types of compressors for developers to extend in the future.

Memory control benefits to the efficiency of GBC on large‑scale data

Saving memory is critical for large-scale projects, determining whether a user can 
easily compress the genotype data on ordinary desktops or servers. GBC overcomes 
the high memory load in processing large-scale datasets through three strategies. 
First, it has sufficient reusable buffers (also called context structures). Once the buff-
ers are created, they can be re-used throughout the whole process of the task. Second, 
it adaptively adjusts the variant counts per block. The number of variants ( N  ) con-
tained in each block is set according to the subject size ( M ) automatically, as a block 
can store 231 − 2 genotypes (approximately 2  GB size) at most. Third, it estimates 
memory usage during compression. The memory required is estimated based on the 
compression boundary estimation model (see details below).

Supposing a byte array of length s , whose original and estimated compressed sizes are 
Rs and Es respectively. For small-scale data (length < 4 kB), the file’s head information 
(e.g., hash code, magic code, etc.) is larger than the genotype data in the compressed 
data. Thus, we set a fixed upper boundary β , which indicates the minimum memory 
required for compression. For large-scale data, the genotypes are the main part of the 
compressed data. Therefore, a good compression algorithm should ensure that the size 
of the compressed data will not exceed α(< inf) times of the original size. Here, the α is 
the main factor in the compression efficiency of large-scale data, which is estimated as:

https://github.com/facebook/zstd
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In practice, we estimated α,β by large-scale random data simulation experiments as 
follows because the real values are unknown:

For large-scale data, β can often be omitted. Thus, we defined β̂ = 512, 1024, 1536, · · · , 
and the minimum α̂ is obtained through grid search. By the estimation and cal-
culation of our GBC, the compression boundary estimation model of ZSTD is 
EZSTD
s = max{1.0014 · s, 7168} , while LZMA is ELZMA

s = max{1.0167 · s, 7680} , and 
Gzip is EGzip

s = max{1.0031 · s, 7680}. Among the three algorithms, ZSTD takes the 
least amount of time in boundary estimation, indicating that ZSTD has a fairly fast com-
pression speed, which enables GBC to rapidly create GTB files for downstream analyses.

Specify contig file to support non‑human species genome compression

By default, GBC supports the genotype compression of human beings. It can also 
encode and compress genotypes of other haplotypic and diploid species. For non-human 
genomes, GBC only requires a different contig file(see Additional file  3: Note 3) to 
declare the label of the assigned chromosome (e.g., chrX, chrY, chrMT) and its ploidy. A 
contig file has “#chromosome,ploidy,length” as the header line, and then each line rep-
resents one chromosome. The option “--contig < file > ” is used as parameter input when 
compressing. Since only 1 byte is reserved for storing chromosome numbers in GTB 
format, we require that the number of chromosomes in the input contig file does not 
exceed 256.

Input multiple VCF files for compression

One or multiple VCF files can be merged into a single GTB file. For a single input file, 
GBC reads the file directly. For an input of multiple files, GBC first treats the file with 
the largest sample size as the major file and uses it to build the sample primary indexes. 
Other input files will be handled in turns after matching the sample indexes of the major 
file. In the matching process, the genotypes of missing subjects will be set as “.|.” sub-
sequently to ensure that all the input files can be compressed together consistently in 
subsequent steps.

Fast access and manage genotypes in the highly addressable GTB format

Parse GTB file and create an index table for fast access

When one accesses or manages a GTB file, all data except the block entity data is 
instantly loaded into the memory to construct a GTBManager. The GTBManager con-
tains subject information, meta information, the basic status of the GTB (e.g., block size, 
compressor parameters), and the GTBTree (an index table for fast access, built from 
block abstract information). Throughout the program’s lifetime, the GTBManager of the 

(6)Es = max
{
α̂ · s, β̂

}

(7)arg min
α̂,β̂

I(ES < RS)+ α̂ +
β̂

10× 10242
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read-in GTB files is always in the cache, which helps speed up multiple accesses to the 
data from the same files.

Here is the creation process of GTBTree. First, a GTBNode is built from the abstract 
information and the range of entity positions of a block (calculated by accumulating 
original lengths of compressed positions, alleles, and genotypes data). Then, all GTB-
Nodes of the same chromosome are grouped. Finally, the GTBNodes of all chromosomes 
are collected to form the GTBTree. Because the compressed blocks may be out of order, 
we sort the GTBTree according to the minimum and maximum positions of each block’s 
chromosome. Then, the address of a variant is determined jointly by three indexes: the 
GTB file’s ID (if multiple GTB datasets were input), GTBNode, and the index within the 
block. Therefore, searching for a variant with a given position can be done by looking 
up the GTBNode(s) based on the boundary coordinates of the blocks at first. Then, the 
candidate GTBNode(s) can decompress the position data to verify its location within a 
block. Noticeably, the index table enables fast data access even if the original file is out of 
order.

The addressing algorithm to access location‑specific genotypes

Accessing genotypes by column (i.e., subjects) is usually slower than by row (i.e., sites) 
because decompression involves all blocks. An addressing algorithm is developed to help 
quickly access a genotype from the MBEGs directly, which is implemented in two steps:

Step 1: Locating the start pointer of the mth variant In the MBEGs of a decompressed 
GTB block i , which contains bbiallelici  biallelic variants and bmultiallelic

i  multiallelic variants, 
the start pointer of the mth variant in the MBEGs is calculated as:

where l is determined by the state of genotypes (phased: l = 3 ; unphased: l = 4 ), and N  
is the number of subjects.

The address of the nth subject in the multiallelic encoding sequence is n , whereas in 
the biallelic encoding sequence, which is retrieved by triples (index, groupIndex, codeIn-
dex), where:

• index: The index of the nth subject in the GTB subject information, that is n.
• groupIndex: The index of the MBEG code containing the genotype of nth subject in 
the whole encoding sequence, calculated as ⎣n/l⎦.
• codeIndex: The index of the nth subject in the MBEG code containing the genotype 
of nth subject, calculated as n%l.

Step 2: Decoding the genotype of the nth subject The biallelic genotype for the mth vari-
ant of the nth subject is stored in the codeIndexth BEG of the 

(
Pm + groupIndex

)th 
MBEG , and the multiallelic genotype for the mth variant of the nth subject is stored in the 
(Pm + n)th BEG.

(8)Pm =

{
m · ⌈N

l
⌉ ,m < bbiallelici

bbiallelici · ⌈N
l
⌉ +

(
m− bbiallelici

)
· N , else
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The I/O optimized parallel framework for reading through GTB

While compression based on the GTB structure can facilitate parallel computing, the 
common bottleneck (often neglected) is disk I/O. Hard disks can have high bandwidth 
when reading or writing sequentially, but the addressing time (latency) is expensive. In 
many cases, multiple threads will not fasten the disk I/O and even make it worse (e.g., 
reading/writing a single 4-GB file to disk is much faster than multiple files with a total 
size of 4 GB). Based on the GTB structure, we used the producer/consumer model to 
coordinate the reading threads in GBC (see Additional file  2: Fig. S1a). The producer 
is responsible for mapping the requested variants onto GTB nodes and then adding 
involved GTB nodes into a task queue (a thread-safe collection in which multiple threads 
are added and data are updated concurrently). The consumers are the threads that read 
the tasks from the task queue, then load block entity data separately from the file and 
process the data (e.g., decompression). The model enables GBC to speed up analyses in 
two ways. First, the threads can be started before users process the file, which saves the 
time overhead of threads creating and recycling. Second, users can instantiate multiple 
consumers (i.e., number of threads) if the mapping speed of the producer is faster than 
the processing speed of the consumer(s). In addition, because the GTB structure packs 
genotypes of multiple variants into one block with  remarkable compression ratios, it 
requires fewer I/O requests when retrieving multiple variants through multiple reading 
threads.

The cyclic locking model‑based parallel algorithms to optimize decompression

Computing large-scale genotype data (such as decompression and LD calculation) often 
generates significant output data using multiple threads. Maintaining the order of the 
output data is a critical issue for massively parallel processing. The most common way to 
keep the order is using temporary files to store data and finally splice them into a single 
file. However, it usually takes up extra space and extra I/O costs, affecting the efficiency 
of parallel computing. Therefore, we propose an algorithm for parallel output and derive 
a theory for optimization.

The order problem in multiple threads is solved by a cyclic locking model (CLM, see 
Additional file 2: Fig. S1b and Fig. S1c) for decompression in which the current thread 
holds the lock of the next thread sequentially. When a reusable thread finishes decom-
pression, it stays in memory to wait to write genotypes into disks until the previous 
thread has released its lock. The thread releases the lock of the next thread once it fin-
ishes writing the current data to disk. In detail, in a parallel decompression process with 
t threads, thread#0 holds the lock of thread#1, thread#1 holds the lock of thread#2, …, 
and thread#(t − 1 ) holds the lock of thread#0. Only the lock of thread#0 is released at 
the beginning of decompression. Any other thread cannot write to the disk because their 
previous threads do not release the lock. After thread#0 finishes the writing, it releases 
the lock of thread#1. The program continues this loop to decompress all the data. There-
fore, CLM ensures that the decompressed data are output in the order of the GTB nodes.

It is known that the actual efficiency of parallelism usually depends on the device’s 
computing resources (such as memory, CPU cores, CPU clock speed, and I/O speed). 
Here, we estimate the theoretical processing time of parallel computation for CLM to 
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derive an optimal number of threads. Assume that the source file (the file size is S ) is 
split into k tasks with approximately the same time overhead (the k depends on the avail-
able memory). Denote the average output time of each task as to , and the average pro-
cessing time as tp . The time required to complete the task under n threads in parallel can 
be calculated as:

where tε is the time cost of thread switching (unavoidable); to and tp depend on k and the 
processing speed of the device. Thus, we can replace to = 1

vo
· S
k and tp = 1

vp
· S
k in the 

above equation:

Here, vo and vp denotes the output speed and computation speed when processing unit 
files ( S/k ), and they can be estimated by the parameters of the benchmark device. Next, 
we use the overall efficiency of multi-threading to measure the benefits of multi-thread-
ing as:

Generally, the parallelism will be efficient when n ∈ N =

{
n|n ≤ ⌈

tp
to
⌉ + 1

}
 , while it is 

inefficient when n > maxN  . Being inefficient means that thread switching and resource 
contention will increase time overhead. We showed multiple cases in Additional file 2: 
Fig. S1b and Fig. S1c and in Additional file 3 (I/O intensive task and computing-intensive 
task). The result indicated that the CLM algorithm is efficient for all parallel computing 
scenarios that require output data because maxN ≥ 2 (see Additional file  2: Fig. 
S1d ~ Fig. S1g). Therefore, given the memory and CPU cores, the CLM theoretical esti-
mation can help find the best file-splitting task number ( k ) and thread number n on a 
device.

In addition, because the slow disk I/O speed will limit the ability of the parallel decom-
pression algorithm, GBC also provides a way to directly decompress the data to BGZ 
format. Based on CLM, we have also developed a Java version of the parallel-bgzip com-
pression algorithm, which has now been integrated into GBC as an auxiliary function.

Sort GTB by variants’ coordinates using a two‑level index table

Large-scale genotype files (number of subjects and sites) are difficult to load into mem-
ory for directly sorting by variants’ coordinates. It is typical to use the temporary disk/
memory space for sorting (e.g., BCFtools). In detail, the whole file is split into several 
chunks, and each chunk is sorted separately before being combined. However, BCFTools 
cannot sort very large datasets (e.g., VCF with 100,000 subjects and 1,000,000 variants) 
in 64  GB of memory. Thus, We propose a novel GTB-based sorting method to direct 
sort arbitrary scale genotype files within 4 GB of memory. The following is the sorting 
procedure on a chromosome (see Additional file 2: Fig. S2a):

(9)
tntotal = ⌈ kn⌉

(
to + tp

)
+ ((k − 1) mod n)to +max

{(
(n− 1)to − tp

)
, 0
}(

⌈ kn⌉ − 1
)
+ kntε

(10)
tntotal = ⌈ kn⌉

(
1
vo

+ 1
vp

)
S
k
+ ((k − 1) mod n) S

kvo
+max

{(
(n−1)S
kvo

− S
kvp

)
, 0
}(

⌈ kn⌉ − 1
)
+ kntε

(11)En =
k(to+tp)

tntotal
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Step 1: Construct a two-level index table of variants within the chromosome. The 
index table contains the positions and indexes of variants (chromosome position, 
GTBNode index, index within the block).
Step 2: Sort the index table by position.
Step 3: Move consecutive variants into a new GTB (balanced with the sample size) 
and sort the variants within the new block according to the GTBNode Index.
Step 4: The old blocks are decompressed sequentially by GBC, and the genotype data 
are expanded into BEGs by order of the variants in the new block.
Step 5: Perform compression (see the procedure in Fig. 2c~f ) when all the genotypes 
of a new block have been added.

The purpose of sorting GTBNode Index (i.e., step 3) is to ensure that each old block 
will be decompressed at most once in the new block. The required memory is only 
equal to the size of each block because all threads share a single decompressor. We have 
shown that this algorithm makes the GBC 3 ~ 9 times faster (the “Results” section) than 
BCFtools under a single thread with no requirement for external disk space. Further-
more, the independence among the GTBs makes parallel sorting possible.

Merge multiple GTBs and identify inconsistent allele labels

Merging multiple genotype files is performed by recursively merging two files in a queue 
of length L(L ≥ 2) . A file that is merged at the ith time is decompressed and recom-
pressed L− i times. Thus, files containing more subjects should be placed at the back 
of the queue whenever possible. The minimum heap is used to optimize the merging 
process, and the node weights are the number of subjects in the file. The two files with 
the smallest weights in a heap are merged at first, and the merged file is added to the 
minimal heap. The process is repeated until only one file remains in the minimum heap 
(e.g., see Additional file 2: Fig. S2b).

The labeling of mismatched alleles can become a critical issue when merging geno-
types from different batches. Therefore, GBC designs three functions to identify incon-
sistent allele labels:

• Check for allele frequency: the difference between the allele frequency of vari-
ant 1 and the allele frequency of variant 2 is less than the threshold (i.e., ∣∣AF1 − AF2

∣∣ < 0.1 ). This will work for variants with minor allele frequencies much 
less than 0.5.

• Check for allele count: 2 × 2 column tables are constructed using the number of ref-
erence alleles at a variant of two batches to be merged. The chi-square tests are per-
formed. If the hypothesis test rejects the H0 hypothesis (i.e., the allele frequencies 
of the two variants are identical), then the variants in different batches cannot be 
considered potentially identical. Note that this will not be suitable for the scenario in 
that the two batches are used for cases and controls, respectively.

• Check for LD pattern: we first collect nearby variants of a given variant in which 
the absolute value of the genotypic correlation is over a threshold (say, 0.8) in 
two batches separately. Then, the positive signs of the correlation coefficients are 
counted in the two batches. If the numbers of signs are very different between the 
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two batches, the allele labels should be flipped; otherwise, the allele labels are not 
flipped. This function can be used for variants with minor allele frequencies close 
to 0.5.

Evaluation and comparison

Three publicly available datasets were used for performance testing in this study, 
1000GP3 [21], SG10K [14], and UKBB [3]. Besides, simulated datasets with various sam-
ple sizes (see Additional file  3: Note 2 and Additional file  1: Table  S1) were also used 
to investigate the tools’ speed systematically. Note that the execution (compression, 
decompression, access) time is usually positively correlated with the scale of data. We 
excluded the non-genotype data in the VCF format to make a fair comparison. The com-
pression ratio and speed of genotypes in phased and unphased were similar. So, in large-
scale datasets like UKBB, we only tested each data set in one phasing state (phased or 
unphased).

We mainly compared GBC with PBWT [9], BGT [10], and GTC [12] because they 
were designed for a similar purpose to GBC—compressing genotypes into a fast-
accessible format. GBC does not aim to exclusively achieve the highest compression 
ratio but an efficiently accessible compression. These tools have had different geno-
type formats, and “compression” refers to the conversion of genotypes to the formats 
designed by these tools. Another well-known tool, GQT [11], was excluded from the 
comparison tools due to its poor compression performance and inability to retrieve 
the specified variant and subject [12, 22]. Besides, we also excluded SeqArray [22] and 
GTRAC [23] from the list of comparison tools because SeqArray [22] is an R Library 
that does not provide standard command-line tools, and the output format of GTRAC 
[23] does not contain the standard VCF format. BCFTools [8], a popular method for 
fast accessing genotypes, is included in our comparison tool list. Although some lat-
est studies argued that the access performance of BCFTools is poor [10–12], it offers 
almost the most comprehensive genotype management functions by far (which other 
tools do not have). Finally, GTShark [5] and Genozip [6], which provide a high com-
pression ratio for genotype archiving, were also used to demonstrate the performance 
difference between fast-accessing and data-archiving methods. The versions and 
operating parameters of all software are shown in Additional file 3: Note 4.

The evaluation metrics for comparing basic compression performance include com-
pression ratio, compression speed, and decompression speed with different sample 
sizes. For the comparison of accessing the compressed genotypes, the evaluation met-
rics included the speed of subject extraction and variant extraction (accessing ran-
dom and contiguous variants, filtering by allele frequency). Then, for the performance 
of managing files, both GBC and BCFtools were used for compressed datasets, which 
avoided the interference of decompression and re-compression. Finally, GBC was 
compared with PLINK for the time overhead of population LD computation. Since 
both tools used bitwise operations, the time overhead of LD computation was linearly 
related to the sample size, which meaned that the performance in small-scale data can 
approximate the performance difference of LD computation in any sample scale.
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Additional information

System requirements

GBC was developed based on Oracle JDK 8. It is available on any computer device 
that supports or is compatible with Oracle JDK 8. Users are required to download and 
install the Oracle JDK or Open JDK firstly.

Computing environment

Experiments for UKBB datasets were run on the following configuration: 106  GB 
memory, Intel(R) Xeon(R) CPU X5560 @ 2.80 GHz 16 cores, and an SSD with sequen-
tial write speeds of up to 111 MB/s and sequential read speeds of up to 115 MB/s. All 
Other experiments were run on the following configuration: 32 GB 2933 MHz DDR4, 
Intel Core i7-10,700 2.9 GHz 8 cores, and a NvMe SSD with sequential write speeds 
of up to 1950 MB/s and sequential read speeds of up to 2400 MB/s.
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