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Artificial intelligence (AI)-based techniques are increasingly being explored as an emerging ancillary technique for im-
proving accuracy and reproducibility of histopathological diagnosis. Renal cell carcinoma (RCC) is a malignancy re-
sponsible for 2% of cancer deaths worldwide. Given that RCC is a heterogenous disease, accurate histopathological
classification is essential to separate aggressive subtypes from indolent ones and benign mimickers. There are early
promising results using AI for RCC classification to distinguish between 2 and 3 subtypes of RCC. However, it is not
clear how an AI-based model designed for multiple subtypes of RCCs, and benign mimickers would perform which
is a scenario closer to the real practice of pathology. A computational model was created using 252 whole slide images
(WSI) (clear cell RCC: 56, papillary RCC: 81, chromophobe RCC: 51, clear cell papillary RCC: 39, and, metanephric ad-
enoma: 6). 298,071 patches were used to develop the AI-based image classifier. 298,071 patches (350 × 350-pixel)
were used to develop the AI-based image classifier. The model was applied to a secondary dataset and demonstrated
that 47/55 (85%) WSIs were correctly classified. This computational model showed excellent results except to distin-
guish clear cell RCC from clear cell papillary RCC. Further validation using multi-institutional large datasets and pro-
spective studies are needed to determine the potential to translation to clinical practice.

Introduction

Renal cell carcinoma (RCC) is the seventh most common type of malig-
nancy worldwide, accounting for approximately 2% of cancer diagnoses
and deaths.1 The diagnosis of RCC is multifaceted. In the developing
world, most cases of RCC are detected incidentally in radiology studies.
Symptomatic cases present one or more symptoms (e.g., hematuria,
flank/back pain, palpable mass, weight loss, and leukocytosis) which
prompts radiology studies and detection of a renal mass.2 However, not
all renal parenchymalmasses in radiology studies represent RCC. Confirma-
tion requires evaluation of a tissue sample by histopathology which is the
gold-standard diagnostic technique. Histopathology allows distinction be-
tween RCC and benign renal neoplasms and enables subclassification and
grading of RCC, essential for stratifying prognosis and making treatment
decisions. Among the 4 most prevalent subtypes of RCC, clear cell renal
cell carcinoma (ccRCC) is the most common and has the worst prognosis
compared to papillary renal cell carcinoma (pRCC), chromophobe renal

cell carcinoma (chRCC), and clear cell papillary renal cell carcinoma
(ccpRCC).3 Histopathological classification weighs heavily on recognition
of morphologic patterns seen in the hematoxylin and eosin (H&E)-stained
tissue section. In many cases, a confident diagnosis can be rendered based
on the identification of specificmorphologic patterns by a pathologist with-
out the need for additional studies or referring the case for expert consulta-
tion. However, some places in the world experience a shortage of
pathologists, a limited number of experts in genitourinary pathology for
consultations and limited or no availability of ancillary studies such as
immunohistochemistry.4,5 With the advent of digital pathology, glass slides
can be digitized into whole slide images (WSI) which are amenable to
image analysis techniques.6 AI-based image analysis techniques, more spe-
cifically convolutional neural networks, can recognize complex patterns
andmatch them to specific categories enabling automated image classifica-
tion in multiple health care and non-health care domains.7–11 There are
multiple publications exploring the use of AI for the diagnosis of RCC
with promising results. However, the experimentation design is limited to
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classification between 2 and 3 different subtypes of RCC.12–15 We aim to
create a computationmodel that can distinguish betweenmultiple subtypes
of RCC (ccRCC, pRCC, chRCC, and ccpRCC) and benign renal neoplasms
(oncocytoma and metanephric adenoma) which is a scenario that would
have greater utility for potential translation into clinical practice. We eval-
uated the performance of the computational model on a WSI validation
dataset and created a platform to allow the pathologist to correlate the AI
results on WSIs.

Materials and methods

Dataset creation including annotation and patch extraction preprocessing pipe-
line

The project was approved by Institutional Review Boards (IRB). Ne-
phrectomy specimens with the following diagnosis were selected: clear
cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC),
chromophobe renal cell carcinoma (chRCC), clear cell papillary renal cell
carcinoma (ccpRCC), oncocytoma, andmetanephric adenoma. The original
diagnoses were rendered by pathologists with expertise in genitourinary
pathology. All pathology reports and histology slides were reviewed by a
pathologist with expertise in genitourinary pathology (DG) who selected
representative H&E slides. Cases with more than one type of renal neo-
plasmwere excluded. Slideswere digitized intoWSI using Philips IntelliSite
Pathology Solution (Philips, the Netherlands) and corresponding 100x
magnification TIFF files were downloaded and converted to JPEG.
Protected health information was removed to anonymize the files. All
areas containing tumor in each image were annotated by a pathologist
(DG). Annotation consisted of creating a binary image overlay using
Photoshop (Adobe, San Jose, CA). A python script was created to extract
350 × 350-pixel image patches from the areas of annotation. (Fig. 1).

Two separate datasets with no overlapping cases were created. The first
dataset was used for AI-based patch classifier creation and the second
dataset was used to validate WSI tumor classification.

AI-based patch classifier development

The patch classifier was created using Google AutoML Vision which is a
commercial application programming interface (API) for the development
of AI-based image classifiers.16,17 This API is commercialized as a generic
solution to create custom classifiers for automated image categorization.
Given that generic images are different from pathology WSI in many as-
pects (e.g., WSIs commonly have gigabits in size), the preprocessing step
using a python script to extract patches from the WSIs is fundamental
to make images compatible with the API. The API receives as input the

AI-model creation patch datasets and creates an image classifier as output.
The classifier becomes hosted in a server and can be accessed via an API call
on the internet using access credentials (Fig. 2).

Model performance evaluation

The computational model performance is evaluated at the patch- and
WSI levels. The patch classifier performance is evaluated by the average
precision of the area under the precision-recall curve (AuPRC) which deter-
mines accuracy of the classification of an individual patch. An example of
patch classification is demonstrated in Fig. 2. Tumor classification on WSI
consists of the percentage of concordance between the final computational
model diagnosis based on the majority vote of aggregated classification of
all patches and the ground-truth histopathological diagnosis rendered by
a pathologist.

Visualization of results of WSI

A serverless web application was created to enable visualization of AI
results on the WSI validation dataset interactively and correlation with his-
tologic findings on WSI. The 100x magnification TIFF images were con-
verted into deep zoom image files (DZI). OpenSeaDragon library was
used to render the DZI-based whole slides images on a browser.18 A semi-
transparent overlay was created using cascading style sheets to allow visu-
alization of the AI-model results.19 The visualization includes classification
of each patch with the probability of the patch belonging to the predicated
label based on AI-based patch classifier results. The overlay can be toggled
off to allow correlation with underlying morphology.

Results

A total of 252 WSIs were used to create the AI-based patch classifier
(197WSIs) andWSI-level tumor classification dataset (55 WSIs). The num-
ber of WSIs per category is in Table 1.

AI-based patch classifier creation and performance

The AI-based patch classifier was created using Google AutoML API.16

The total number of non-overlapping patches used for AI-based patch clas-
sifier development was 298,071. The number of patches per category is
provided in Table 2. The patches were randomly split into training (75%),
testing (5%), and validation (20%) datasets and fed as input to the API.

After 1 h of training, the patch classifier showed an average precision
based on AuPRC of 76% (Fig. 3). The final patch classifier was trained for
8 h, and the final model's average precision based on AuPRC of 93% for

Fig. 1. Ground-truth annotation and extractions of patches. (A) JPEG image extracted from digital slide; (B) tumor selection (ground truth); (C) no overlap between patches
used for training and testing/validation datasets; and (D) patches.
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patch classification. At a 50% threshold, the precision was 88% and recall
86% (Fig. 3). The model showed the best performance to classify
oncocytoma (94%) and worst performance for ccpRCC (47%). The confu-
sion matrices of the 1- and 8-h models are in Fig. 3.

Whole slide image performance

The next step was to determine the model performance on the WSI val-
idation dataset whose images were not used to create the patch classifier.
The patch classifier was used to classify all patches with tumor in the
WSI. The number of tumor patches per WSI ranged from 35 to 2,508
patched (average 985). The ratio of the number of most frequent patch di-
agnosis was divided by the total number of patches. This ratio ranged from
0.44 to 1. In 37/55 (67%) cases, the predominant patch accounted formore
than 90% of all patches. The final tumor classification based on majority
vote correctly classified 47/55 (85%) cases (ccRCC 11/13, pRCC 14/15,
chRCC 10/11, ccpRCC 2/4, oncocytoma 8/9, and metanephric adenoma
2/3). All tumors that had a ratio above 0.77 were correctly classified. See
Table 3 with detailed results, Table 4 for WSI-level confusion matrix and
Fig. 4 shows a color-coded visual representation of the results.

Fig. 2. Google AutoML Vision (beta) training and inference: (A) naïve and (B) trained.

Table 1
Number of WSIs per category used to create all the datasets.

Pathology Cases

Clear cell renal cell carcinoma 56
Papillary renal cell carcinoma 81
Chromophobe renal cell carcinoma 51
Clear cell papillary renal cell carcinoma 19
Oncocytoma 39
Metanephric adenoma 6
Total 252

Table 2
Number of patches per category used to create the patch classifier on Google
AutoML vision API.

Pathology Patches

Clear cell renal cell carcinoma 53,018
Papillary renal cell carcinoma 53,712
Chromophobe renal cell carcinoma 52,750
Clear cell papillary renal cell carcinoma 37,834
Oncocytoma 52,230
Metanephric adenoma 48,527
Total 298,071

Fig. 3. Patch classification performance metrics AuPRC and confusions matrices for models after 1 and 8 h of training. The confusion matrices show how often the model
classified each label correctly (in blue), and which labels were most often misclassified for that label (in orange).

D.D. Gondim et al. Journal of Pathology Informatics 14 (2023) 100299

3



Table 3
WSI-level validation. The most frequent patch label/all patches indicate the degree of
heterogeneity of the patch classification. Ratios above 0.999 were approximated to 1.

 

Case Diagnosis AI Classification Agreement 

Most frequent/all 

patches ratio 

1 clear cell RCC clear cell RCC TRUE 0.99 

2 clear cell RCC clear cell RCC TRUE 0.99 

3 clear cell RCC clear cell RCC TRUE 0.99 

4 clear cell RCC clear cell RCC TRUE 0.98 

5 clear cell RCC clear cell RCC TRUE 0.96 

6 clear cell RCC clear cell RCC TRUE 0.96 

7 clear cell RCC clear cell RCC TRUE 0.93 

8 clear cell RCC clear cell RCC TRUE 0.92 

9 clear cell RCC clear cell RCC TRUE 0.89 

10 clear cell RCC clear cell RCC TRUE 0.85 

11 clear cell RCC clear cell RCC TRUE 0.84 

12 clear cell RCC clear cell papillary RCC FALSE 0.54 

13 clear cell RCC papillary RCC FALSE 0.55 

14 papillary RCC papillary RCC TRUE 1.00 

15 papillary RCC papillary RCC TRUE 1.00 

16 papillary RCC papillary RCC TRUE 1.00 

17 papillary RCC papillary RCC TRUE 1.00 

18 papillary RCC papillary RCC TRUE 1.00 

19 papillary RCC papillary RCC TRUE 0.99 

20 papillary RCC papillary RCC TRUE 0.99 

21 papillary RCC papillary RCC TRUE 0.98 

22 papillary RCC papillary RCC TRUE 0.97 

23 papillary RCC papillary RCC TRUE 0.97 

24 papillary RCC papillary RCC TRUE 0.97

25 papillary RCC papillary RCC TRUE 0.96

26 papillary RCC papillary RCC TRUE 0.95

27 papillary RCC papillary RCC TRUE 0.93

28 papillary RCC clear cell RCC FALSE 0.44

29 chromophobe RCC chromophobe RCC TRUE 1.00

30 chromophobe RCC chromophobe RCC TRUE 1.00

31 chromophobe RCC chromophobe RCC TRUE 0.99

32 chromophobe RCC chromophobe RCC TRUE 0.99

33 chromophobe RCC chromophobe RCC TRUE 0.99

34 chromophobe RCC chromophobe RCC TRUE 0.98

35 chromophobe RCC chromophobe RCC TRUE 0.94

36 chromophobe RCC chromophobe RCC TRUE 0.90

37 chromophobe RCC chromophobe RCC TRUE 0.85

38 chromophobe RCC chromophobe RCC TRUE 0.74

39 chromophobe RCC clear cell RCC FALSE 0.67

40 clear cell papillary RCC clear cell papillary RCC TRUE 0.99

41 clear cell papillary RCC clear cell papillary RCC TRUE 0.54

42 clear cell papillary RCC clear cell RCC FALSE 0.64

43 clear cell papillary RCC clear cell RCC FALSE 0.60

44 oncocytoma oncocytoma TRUE 1.00

45 oncocytoma oncocytoma TRUE 0.99

46 oncocytoma oncocytoma TRUE 0.99

47 oncocytoma oncocytoma TRUE 0.99

48 oncocytoma oncocytoma TRUE 0.98

49 oncocytoma oncocytoma TRUE 0.98

50 oncocytoma oncocytoma TRUE 0.84

51 oncocytoma oncocytoma TRUE 0.75

52 oncocytoma papillary RCC FALSE 0.46

53 metanephric adenoma metanephric adenoma TRUE 1.00

54 metanephric adenoma metanephric adenoma TRUE 0.97

55 metanephric adenoma papillary RCC FALSE 0.77
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Evaluation of random sample of patches by a pathologist

A random sample of tumor patches of the WSI dataset that were classi-
fiedwithmore than 90%probability of belonging to the predicted labelwas
examined by a pathologist (DG). Examination of the sample patches re-
vealed typical diagnostic histopathological features (Fig. 5). Patches of
ccRCC showed small nests of clear cells and alveolar structures of clear
cells filled with blood (Fig. 5a). Patches of pRCC showed papillary projec-
tions longitudinally and tangentially cut either lined by cells with an
amphophilic cytoplasm (pRCC type 1 pattern) or eosinophilic cytoplasm
(pRCC type 2 pattern) (Fig. 5b). Patches of chRCC showed well-defined
plant-like cell borders, perinuclear halos, and a mixture of cells with abun-
dant pale cytoplasm and others with more scanty eosinophilic cytoplasm
(Fig. 5c). Patches of ccpRCC showed stubby papillae and tubulocystic struc-
tures lined by clear cells (Fig. 5d). Patches of oncocytoma showed nests of
eosinophilic cells embedded in fibrous or edematous stroma as well as
small cysts filled with blood or proteinaceous material (Fig. 5e). Patches
of metanephric adenoma showed compact tubular structures composed of
cells with a high nuclear to cytoplasmic ratio (Fig. 5f).

Evaluation of whole slide images and AI output by a pathologist

The web application used for correlation of histopathological evalua-
tion with AI results can be accessed through the provided interactive Sup-
plementary material. Overall, the model classifies patches containing
clear cells as either ccRCC or ccpRCC. Papillae were predominantly classi-
fied as pRCC or ccpRCC. However, no cases of ccpRCC were misclassified
as ccRCC or vice versa. There was no significant overlap between
oncocytoma and chRCC. A sole case of eosinophilic variant of chRCC was
present in the dataset (Table 3, case 37). This case was correctly classified
as chRCC (ratio, 0.85) on WSI. However, a subset of patches of this case
where the nests of eosinophilic cells were separated by hypocellular stroma
were misclassified as oncocytoma.

Discussion

AI-based models have been demonstrated to be viable technology for
automated image classification tasks in health care and non-health care
domains.7–11 The application of AI to histopathology diagnosis is a field
in rapid expansion and there has been a recent approval of commercial

software for detection and grading of prostate cancer in the clinical setting
by the FDA.20

To the best of our knowledge, this is the first study demonstrating a
computational model that can distinguish between 6 subtypes of renal
cell neoplasms with high accuracy, except the distinction between ccRCC
from ccpRCC. The other caveat is related to classification of metanephric
adenoma. Although there were only 3 metanephric adenomas in the WSI
validation dataset and 2 of the 3 were correctly classified, the results still
look promising because the 2 correctly classified cases had more than
1000 patches each and these patches were classified with a concordance
ratio of 0.97 and close to 1.0, respectively. A misclassified metanephric ad-
enoma had 77% of the patches classified as pRCC and approximately 20%
classified asmetanephric adenoma. Interestingly, themisclassified case had
a predominant papillary architecture which was not present in the other 2
cases of metanephric adenoma.

Prior research on AI for RCC classification was limited to a distinction
between 2 and 3 subtypes of RCC. Several investigators demonstrated AI-
based models able to separate ccRCC, pRCC, and chRCC with accuracy
above 90%.12,13,21 Benchmarking of various convolutional neural networks
is provided by Laleh et al.21 Gayhart et al showed results approaching be-
tween 96% and 100% accuracy to separate ccRCC from chRCC using
convolutional neural networks.14 A pyramidal deep learning pipeline was
demonstrated to distinguish between ccRCC and ccpRCC with high
accuracy.22,23 Such a pipeline has the potential to be complementary to
this model where all the cases with a final label of ccRCC or ccpRCC
could be fed into the other model that showed better accuracy separating
tumors with clear cells. Cheng et al demonstrated a computational model
with satisfactory performance distinguishing between ccRCC and TFE3
Xp11.2 translocation RCC, a rare type of RCC.15

We selected the 4most common subtypes of RCC (ccRCC, pRCC, chRCC,
and ccPRCC) because they encompass approximately 95% of RCCs. In addi-
tion, oncocytoma was included because it is a benign neoplasm that ac-
counts for 3%–7% of renal epithelial neoplasms and is diagnosed when
RCC can be excluded.24 Finally, the addition of metanephric adenoma, a
rare benign tumor, did not add much to the model coverage, but the addi-
tion of another class made the multilabel classification more challenging.
The coverage and accuracy of this model are closer to a system with poten-
tial clinical utility.

The 2016 World Health Organization classification documents 14 sub-
types of RCC and 4 emerging/provisional entities.25 An ideal classifier to

Table 4
WSI-level classification confusion matrix based on the majority vote of all classification of all tumor patches.

AI Classification

Pathology Clear cell RCC Papillary RCC Chromophobe 

RCC

Clear cell papillary 

RCC

Oncocytoma Metanephric 

adenoma

Clear cell RCC 11 1 1 2 0 0

Papillary RCC 1 14 0 0 0 0

Chromophobe RCC 1 0 10 0 0 0

Clear cell papillary RCC 2 0 0 2 0 0

Oncocytoma 0 1 0 0 8 0

Metanephric adenoma 0 1 0 0 0 2
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be deployed in the clinical settingwould be able to distinguishwith high ac-
curacy all subtypes of RCC, urothelial carcinoma, and non-RCC/non-
urothelial carcinoma categories. The challenge to create such a classifier
is to collect enough cases for each of the categories. The other 10 subtypes
of RCCs and emerging/provisional entities not included in this model, to-
gether represent less than 5% of RCCs. AI-based systems' performance
tends to correlate with the size of the datasets. There is a limited num-
ber of open datasets with WSIs of RCC subtypes and other types of renal
neoplasms. The Cancer Genome Atlas (TCGA) repository has datasets
with WSIs of ccRCC, pRCC, and chRCC that were used by other
investigators.12,13,21 But there are no large-scale datasets able to pro-
vide enough cases of rare subtypes of tumor to investigate more com-
prehensive computational approaches. To address the lack of data,
multi-institutional collaborations with focus on AI for pathology are
emerging. The BIGPICTURE project initiated in Europe aims to create
large-scale datasets of WSIs from academics, small enterprises, and
pharmaceutical companies to unlock the next generation of AI research
in pathology. In the US, the National Institutes of Health recently pro-
vided funding opportunities for projects to generate data for AI
research.26

Several limitations need to be considered. The WSI validation dataset
only included slides of nephrectomy specimens. Further investigation is
needed to determine the classification performance on biopsy specimens.
The increased incidence of pRCC cases is a result of data re-utilization
from a previous project. This methodology presents the advantage of en-
larging the dataset and undergoing evaluation and validation by multiple
pathologists. Despite this, it may also introduce a selection bias. However,
as the cases were processed within the same laboratory, the impact of the
bias may be unsubstantial.

Grading is a critical aspect in the evaluation of RCC. A random sample of
ccRCC cases was obtained and, as anticipated, most of the tumors analyzed
were grades 2 and 3. An analysis of grade subgroup performance was not
conducted due to the intricacy of the task. The presence of grade heteroge-
neitywithin a singleWSI is a common occurrence in RCC. Thefinal grade is
determined based on the areawith the highest grade; pixel-level annotation
was not available in our dataset to conduct detailed analysis. We acknowl-
edge that the model's performance may be impacted by an increase in the
number of high-grade tumors. One example of a misclassified ccRCC case
had dominant rhabdoid features, which was not a morphology adequately
represented in the training set.

The aggregate analysis of patches of the WSI dataset by majority vote is
a naïve technique to create a final diagnostic label, but nevertheless, it
showed promising results and is easy to interpret. Recurrent neural net-
works are an example of AI-based technique that can be used to optimize
the results of patch aggregation.27

In conclusion, we demonstrated the performance of an AI-based model
that showed potential for accuracy for automatic diagnosis of 6 subtypes of
neoplasms on WSI. However, large scale multi-institutional validations
studies are needed to verify the reproducibility of the system.
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Fig. 4. Color-coded representation of the WSI-level results. (A) Yellow: clear cell
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chromophobe renal cell carcinoma; (D) Green: clear cell papillary renal cell
carcinoma; (E) Pink: oncocytoma; and (F) Purple: metanephric adenoma.
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Fig. 5. Patches in agreementwith original diagnosis showingmore than 90% likelihood of belonging to these categories: (A) clear cell renal cell carcinoma; (B) papillary renal
cell carcinoma; (C) chromophobe renal cell carcinoma; (D) clear cell papillary cell carcinoma; (E) oncocytoma; and (F) metanephric adenoma.
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