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Abstract: The flow of fluids over the boundaries of a rotating disc has many practical uses, including
boundary-layer control and separation. Therefore, the aim of this study is to discuss the impact of
unsteady magnetohydrodynamics (MHD) hybrid ferrofluid flow over a stretching/shrinking rotating
disk. The time-dependent mathematical model is transformed into a set of ordinary differential
equations (ODE’s) by using similarity variables. The bvp4c method in the MATLAB platform is
utilised in order to solve the present model. Since the occurrence of more than one solution is
presentable, an analysis of solution stabilities is conducted. Both solutions were surprisingly found
to be stable. Meanwhile, the skin friction coefficient, heat transfer rate—in cooperation with velocity—
and temperature profile distributions are examined for the progressing parameters. The findings
reveal that the unsteadiness parameter causes the boundary layer thickness of the velocity and
temperature distribution profile to decrease. A higher value of magnetic and mass flux parameter
lowers the skin friction coefficient. In contrast, the addition of the unsteadiness parameter yields
a supportive effect on the heat transfer rate. An increment of the magnetic parameter up to 30%
reduces the skin friction coefficient by 15.98% and enhances the heat transfer rate approximately up
to 1.88%, significantly. In contrast, the heat transfer is rapidly enhanced by improving the mass flux
parameter by almost 20%.

Keywords: hybrid ferrofluid; magnetohydrodynamics; rotating disk; stability analysis; unsteady flow

MSC: 76D10; 76M55; 34B15

1. Introduction

Convective transport has had a noteworthy impact io many real applications such as
energy-producing plants, energy distribution systems, and environmental problems [1].
The convective transport can be induced by diffusion and advection where the diffusion
refers to the random Brownian motion, whereas the advection refers to the transportation
of heat by a larger-scale motion. Due to the substance of its theory and concepts, the ideas
of convective transport have been extended to many fluid models that cover Newtonian
and non-Newtonian fluid types. Additionally, the model of Eyring Powell fluid has been
investigated by Al Jabali et al. [2] and Khalil et al. [3], whereas the Jeffrey model was
considered by Shehzad et al. [4] and Kasim et al. [5]. Other interesting models such as
viscoelastic can be found in Kasim et al. [6]. Additional previously studied models include
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the viscous model [7], Casson model [8], and micropolar model [9]. The development of the
fluid flow modelling is continued with the discovery of the upgraded thermal fluid. In the
late 20th century, nanofluids were introduced in an effort to host the concept of the diffusion
of nanoscale particles into fluids. The presence of nanofluids has been shown to increase
the capacity for thermal conductivity. A pioneering study on nanofluids was conducted
by Choi and Eastman [10]. Since then, this field of research has continued to receive high
attention from researchers both experimentally and theoretically. This situation can be
seen from the increase in publications every year where the contribution is based on the
analysis of the fluid characteristics induced by the different geometries such as rectangular
enclosure [11–13], stretching/shrinking sheet [14–17], thin needle [18,19], rotating disk [20],
asymmetric wavy channel [21], vertical plate [22], and moving inclined [23]. These inves-
tigations also involve several significant effects including chemical reactions, magnetic
fields, viscous dissipation circumstance, Dufour and Soret consequence, activation energy,
and Joule heating. Simulations investigating the convective transport and heat transfer in
cryogenic fuel tanks have been documented in refs. [24,25] where the improved algorithms
determining the output were proposed. The analysis of heat transfer characteristics in a
thermal energy storage system using single and multi-phase cooled heat sinks is presented
in Alireza [26] where the evolution of the experimental, numerical, and computational
efforts on energy storage was presented in detail.

The hybrid nanofluid offers a higher heat transfer rate in comparison to conventional
nanofluid. This fluid is widely used in several applications and mainly can be found in
heat exchangers activities, vehicle brake systems, solar industries, and also in refrigerator
production [27]. The earlier studies which applied the hybrid nanoparticles in their inves-
tigations were Turcu et al. [28] and Jana et al. [29]. The composition of Cu-Al2O3/water
was successfully studied by Suresh et al. [30] in discovering fluid with good thermal con-
ductivity. The input stated, that despite having low thermal conductivity, Al2O3 offers a
good chemical motionlessness in alumina which compromises a stable composition. A
further study on combining Al2O3 with supplementary nanoparticles was established by
Singh and Sarkar [31], Farhana et al. [32], and Takabi and Salehi [33]. Some other interest-
ing publications on the development of the theoretical study of hybrid nanofluid can be
viewed in refs. [34–42] where the investigations were performed using different particles,
approaches, and various surfaces. Furthermore, some other publications reviewing the
progress of hybrid nanofluids are documented in refs. [43–46].

Taking advantage of the progress of nanotechnology, scientists first created ferrofluid
to counter the problem of logistics of bringing rocket fuel. The idea of this innovation is
based on how to direct the fluid in space, and it is supported by the concept of the magnetic
fluid can be well-ordered by a magnetic field. Then, the liquid fuel is mixed with the
ferrofluid in the system together with the external magnetic field. The liquid with particles
of Fe3O4 in nanometres size that happened in conventional base fluids is referred to as
ferro-nanofluids or sometimes it is just called ferrofluid. Similar to nanofluids, ferrofluid
also has high thermal conductivities and a great heat transfer rate, which is very important
in device production. In fact, this technological fluid can be found in the production of
hard drives where it is used to seal the interior of devices in order to avoid dust or external
source damage to the delicate plate.

Due to the importance and many applications, interest in investigating ferrofluid
came into demand for both experimental and simulated procedures. Khan et al. [47]
provided a solution for heat transfer analysis of ferrofluid in the presence of viscous
dissipation and concluded that kerosene-based ferrofluids developed high skin friction
and Nusselt numbers compared to water-based ferrofluids. The investigation of ferrofluid,
later on, was extended by other researchers by considering different surfaces. For instance,
Qasim et al. [48] consider the stretching cylinder as the surface where the fluid is moving
while Mehrez and Cafsi [49] proposed the flow in a rectangular channel. Further research
on the topic of ferrofluid has been proposed by Sekar and Raju [50] and Hamid et al. [51]
where the ferrofluid is considered together with dust particles and was studied as a two-
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phase flow. Goshayeshi et al. [52] considered the effect of particle size and types in their
investigation while Rashad [53] investigated the anisotropic impact on the flow field. In
the same year, the same author documented the analysis of ferrofluid under thermal
radiation and MHD circumstances [54]. The demand for investigating ferrofluid led to the
development of new ideas and this progress is detailed out in refs. [55–61].

The interest in innovating the effective fluid has led to the discovery of hybrid ferroflu-
ids where the investigations have involved multiple nanoparticles scattered in ferrofluid.
Chu et al. [62] provided a solution for hybrid ferrofluids along with multi-wall carbon
nanotubes (MWCNT) in a cavity for natural convection by applying a finite element scheme.
It is revealed that the hybridization of ferrite nanoparticles uplifts in a physical thermos to
see the studied flow. In the same year, Kumar et al. [63] proposed an investigation under
the topic of MHD hybrid ferrofluid together with the effect of irregular heat source/sink
towards the flow of the radiative thin film. The output declared from the hybrid ferrofluid
intensifies the heat transfer rate in comparison with the conventional ferrofluid. A very
recent study on this topic was presented by Anuar et al. [64] where their study of hybrid
ferrofluid (CoFe2O4–Fe3O4/water) was focused on exponentially deformable sheets in
stagnation point region. Apart from these mentioned studies, other interesting reports on
hybrid ferrofluids can be found in refs. [65–67]. One real application that can be highlighted
from the uses of hybrid ferrofluids is that it can be used as seeds for acid mine drainage
(AMD) treatment. The use of a hybrid ferrofluid will provide a sustainable remedy for
wastewater treatment, especially for AMD since the presence of AMD will cause severe
destruction to the environment and predominantly disturb human life, aquatic organisms,
animals, and also plants. The special properties of hybrid ferrofluids are unique magnetized
characteristics with additional low toxicity and strong capacity for contaminant removal,
which have led to enhancing the chemical reactivities [68].

As mentioned previously, the study on fluid flow normally deviates from its geome-
tries. The pioneering study on infinite rotating disk was performed by Von Kármán [69]
where the flow is taken as a viscous flow in which the disk rotates through uniform angular
velocity. The Navier–Stokes equations representing the mathematical model are reduced to
ordinary differential equations by adopting the similarity variables. The ideas from Von
Kármán’s work have been extended by Fang [70] where the investigation was focused on
the flow over the stretchable rotating disk and later Fang and Zhang [71] extend to two
infinite stretchable disks. Turkyilmazoglu [72] considered the presence of a magnetic field
together with viscous dissipation and joule heating in the investigation after considering
the unsteady flow over a rotating disk with outer radial flow [73]. The unsteady flow
over a decelerating rotating sphere was then established by Turkyilmazoglu [74]. Another
analysis of flow over a rotating disk was documented in refs. [75–78]. The study of flow
over a rotating disk is still in demand due to its available applications in industries and
engineering activities such as the viscometers instrument, turbines industries, rotating disk
electrodes, mechanical devices, and Brake rotors [79,80].

Motivated by the studies available in the literature and fulfilling the gap in the study
of hybrid ferrofluids, this study discusses the investigation on the unsteady flow of hybrid
ferrofluid flow over a rotating disk. It is worth mentioning that the non-unique solutions
are available but are restricted to pertinent parameters and the stability analysis affirms the
physical solution.

2. Mathematical Formulation

Consider the unsteady flow of hybrid ferrofluids with different base fluids (Fe3O4-
CoFe2O4/H2O-EG and Fe3O4-CoFe2O4/H2O) induced by a rotating disk as illustrated in
Figure 1 with the imposition of suction/injection effect. The disk rotates with the velocity,
v = vw while being stretched/shrunk with velocity, u = uw. Moreover, it is considered
that the suction/injection effect is embedded with the mass flux velocity, w = ww. The
constant surface and ambient temperatures are symbolized as Tw and T∞, respectively. A
further assumption is that the magnetic field is applied normally to the disk such that
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B∗ = B0/
√

1− ct with constant magnetic strength B0 (see Appendix A for the derivation
of magnetic field).
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Thus, the governing equations in cylindrical coordinates (r, ϑ, 0) are [77,80,81]:

∂

∂r
(ru) +

∂

∂z
(rw) = 0, (1)

∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂r
− v2

r
= − 1

ρhn f

∂p
∂r

+
µhn f

ρhn f

(
∂2u
∂r2 +

1
r

∂u
∂r

+
∂2u
∂z2 −

u
r2

)
−

σhn f

ρhn f
B∗2u, (2)

∂v
∂t

+ u
∂v
∂r

+ w
∂v
∂z

+
uv
r

=
µhn f

ρhn f

(
∂2v
∂r2 +

1
r

∂v
∂r

+
∂2 v
∂z2 −

v
r2

)
−

σhn f

ρhn f
B∗2v, (3)

∂w
∂t

+ u
∂w
∂r

+ w
∂w
∂z

= − 1
ρhn f

∂p
∂z

+
µhn f

ρhn f

(
∂2w
∂r2 +

1
r

∂w
∂r

+
∂2w
∂z2

)
, (4)

∂T
∂t

+ u
∂T
∂r

+ w
∂T
∂z

=
khn f(

ρCp
)

hn f

(
∂2T
∂r2 +

1
r

∂T
∂r

+
∂2 T
∂z2

)
, (5)

subject to:
u = λuw, v = vw, w = ww, T = Tw at z = 0 (6)

u→ 0, v→ 0, w→ 0, T → T∞ as z→ ∞ (7)

where (u, v, w) are the velocities for (r, ϑ, 0) directions while T is the temperature. It
is further assumed that uw = Ωr/(1− ct), vw = Ωr/(1− ct) where t and Ω are the
respective time and angular velocity (constant), accordingly. Furthermore, c represents
the unsteadiness strength (constant) while ww = −w0/

√
1− ct is the mass velocity with

constant w0. Moreover, λ = 0 represents a static disk while λ > 0, λ < 0 stand for the
stretching/shrinking disk, respectively.

The thermophysical properties of the base fluids (water and water–ethylene glycol),
magnetite, and cobalt ferrite nanoparticles are described in Table 1 [66]. Meanwhile, the
correlations for hybrid nanofluid are shown in Table 2 [33].
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Table 1. Physical properties of the respective base fluid and nanoparticles.

Properties
Base Fluid Nanoparticles

Water Water–Ethylene Glycol Magnetite Cobalt Ferrite

ρ
(
kg/m3) 997.1 1057 5180 4908

Cp (J/kgK) 4179 3287 670 700
k (W/mK) 0.613 0.424 9.8 3.6

σ (S/m) 0.05 0.005 0.74 × 106 1.1 × 107

Prandtl number, (Pr) 6.2 30 - -

Table 2. Thermophysical properties of hybrid nanofluid.

Thermophysical
Properties Correlations

Thermal conductivity khn f
k f

=

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f +2(ϕ1kn1+ϕ2kn2)−2ϕhn f k f

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f−(ϕ1kn1+ϕ2kn2)+ϕhn f k f

Electrical conductivity σhn f
σf

=

ϕ1σn1+ϕ2σn2
ϕhn f

+2σf +2(ϕ1σn1+ϕ2σn2)−2ϕhn f σf

ϕ1σn1+ϕ2σn2
ϕhn f

+2σf−(ϕ1σn1+ϕ2σn2)+ϕhn f σf

Heat capacity (ρCp)hn f =
(

1− ϕhn f

)
(ρCp) f + ϕ1(ρCp)n1 + ϕ2(ρCp)n2

Density ρhn f =
(

1− ϕhn f

)
ρ f + ϕ1ρn1 + ϕ2ρn2

Dynamic viscosity µhn f =
µ f

(1−ϕhn f )
2.5

Now, consider the following similarity transformations [77,80,81]:

u =
Ωr

1− ct
f ′(η), v =

Ωr
1− ct

g(η), w = −
2
√

Ων f
√

1− ct
f (η), θ(η) =

T − T∞

Tw − T∞
, η =

√
Ω
ν f

z√
1− ct

. (8)

Equation (1) is fully satisfied by considering the similarity variables in Equation (8).
Furthermore, the reduced Equations (2)–(5) are:

µhn f /µ f

ρhn f /ρ f
f ′′′ + 2 f f ′′ − f ′2 + g2 − S

(
f ′ +

1
2

η f ′′
)
−

σhn f /σf

ρhn f /ρ f
M f ′ = 0, (9)

µhn f /µ f

ρhn f /ρ f
g′′ + 2 f g′ − 2 f ′g− S

(
g +

1
2

ηg′
)
−

σhn f /σf

ρhn f /ρ f
Mg = 0, (10)

1
Pr

khn f /k f(
ρCp

)
hn f /

(
ρCp

)
f

θ′′ + 2 f θ′ − 1
2

Sηθ′ = 0, (11)

subject to:

f (0) =
B
2

, f ′(0) = λ, g(0) = 1, θ(0) = 1, (12)

f ′(η)→ 0, g(η)→ 0, θ(η)→ 0, as η → ∞ (13)

The parameters relevant to this problem are the unsteadiness parameter S = c/Ω,
Prandtl number Pr =

(
µCp

)
f /k f , suction/injection parameter B = w0/

√
Ων f , and mag-

netic parameter M = B2
0σf /ρ f Ω. Meanwhile, the skin friction coefficients are C f (radial

direction) and Cg (azimuthal direction), and the local Nusselt number for evaluating heat
transfer performance is Nur (see Waini et al. [81]):

C f =
µhn f

ρ f u2
w

(
∂u
∂z

)
z=0

, Cg =
µhn f

ρ f v2
w

(
∂v
∂z

)
z=0

, Nur = −
rkhn f

k f (Tw − T∞)

(
∂T
∂z

)
z=0

(14)
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Using Equations (8) and (13), one obtains (see Waini et al. [81]):

Re1/2
r C f =

µhn f

µ f
f ′′ (0), Re1/2

r Cg =
µhn f

µ f
g′(0), Re−1/2

r Nur = −
khn f

k f
θ′(0), (15)

where Rer = uwr/ν f is the local Reynolds number.

3. Stability Analysis

The dual solutions are examined to test their stability by employing stability analy-
sis [82,83]. Firstly, consider the following variables:

u = Ωr
1−ct

∂ f
∂η (η, τ), v = Ωr

1−ct g(η, τ), w = − 2
√

Ων f√
1−ct

f (η, τ), θ(η, τ) = T−T∞
Tw−T∞

,

η =
√

Ω
ν f

z√
1−ct

, τ = Ωr
1−ct t

(16)

where τ is the time variable. Substituting Equation (16) into Equations (2)–(5),

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 + 2 f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+ g2 − S

(
∂ f
∂η

+
1
2

η
∂2 f
∂η2

)
− (1 + Sτ)

∂2 f
∂η∂η

−
σhn f /σf

ρhn f /ρ f
M

∂ f
∂η

= 0, (17)

µhn f /µ f

ρhn f /ρ f

∂2g
∂η2 + 2 f

∂g
∂η
− 2

∂ f
∂η

g− S
(

g +
1
2

η
∂g
∂η

)
− (1 + Sτ)

∂2g
∂η∂η

−
σhn f /σf

ρhn f /ρ f
Mg = 0, (18)

1
Pr

khn f /k f(
ρCp

)
hn f /

(
ρCp

)
f

∂2θ

∂η2 + 2 f
∂θ

∂η
− 1

2
Sη

∂θ

∂η
− (1 + Sτ)

∂θ

∂τ
= 0, (19)

subject to:

f (0, τ) =
B
2

,
∂ f
∂η

(0, τ) = λ, g(0, τ) = 1, θ(0, τ) = 1, (20)

∂ f
∂η

(η, τ)→ 0, g(η, τ)→ 0, θ(η, τ)→ 0 as η → ∞ (21)

The perturbation function as suggested by early reference is [83]:

f (η, τ) = f0(η) + e−ατ F(η, τ),
g(η, τ) = g0(η) + e−ατG(η, τ),
θ(η, τ) = θ0(η) + e−ατ H(η, τ)

(22)

where F(η, τ), G(η, τ), and H(η, τ) are arbitrary functions and relatively smaller than
f0(η), g0(η), and θ0(η), while α is the corresponding eigenvalue. Equation (22) is applied
into Equations (17)–(21) and by setting τ = 0, F(η, τ) = F0(η), G(η, τ) = G0(η), and
H(η, τ) = H0(η), the linearized equations are

µhn f /µ f

ρhn f /ρ f
F′′′0 + 2

(
f0F′′0 + f ′′0 F0

)
− 2 f ′0F′0 + 2g0G0 − S

(
F′0 +

1
2

ηF′′0

)
+ αF′0 −

σhn f /σf

ρhn f /ρ f
MF′0 = 0, (23)

µhn f /µ f

ρhn f /ρ f
G′′0 + 2

(
f0G′0 + g′0F0

)
− 2
(

f ′0G0 + g0F′0
)
− S

(
G0 +

1
2

ηG′0

)
+ αG0 −

σhn f /σf

ρhn f /ρ f
MG0 = 0, (24)

1
Pr

khn f /k f(
ρCp

)
hn f /

(
ρCp

)
f

H′′0 + 2
(

f0H′0 + θ′0F0
)
− 1

2
SηH′ + αH0 = 0 (25)

subject to:
F0(0) = 0, F′0(0) = 0, G0(0) = 0, H0(0) = 0, (26)

F′0(η)→ 0, G0(η)→ 0, H0(η)→ 0 as η → ∞. (27)
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The set of eigenvalues α are obtained from Equations (23)–(25) if F′0(η)→ 0 as η → ∞
in Equation (27) is replaced by F′′ (0) = 1 [84].

4. Results and Discussion

Discussions of the obtained results are provided in this section. The bvp4c solver was
used for the computation. This solver occupies a finite difference method that employs
the three-stage Lobatto IIIa formula, see Shampine et al. [85,86]. The present results were
validated by conducting a comparison with previously published data. In this respect,
Table 3 provides the validation of test values when ϕhn f = B = M = 0 with different
values of S, and an excellent agreement can be observed from the comparison. Therefore,
the present results are acceptable and accurate.

Table 3. Validation of numerical values when ϕhn f = B = M = 0 and different S.

S Present Fang and Tao [77] Waini et al. [81]

f ′′ (0) g′(0) f ′′ (0) g′(0) f ′′ (0) g′(0)

−1 0.719787 −0.236575 0.7198 -0.2366 0.719787 −0.236575

−2 0.931507 0.154981 0.9315 0.1550 0.931507 0.154981

−5 1.562797 1.360850 1.5627 1.3609 1.562797 1.360850

−10 2.600801 3.413860 2.6008 3.4139 2.600801 3.413860

Furthermore, the total composition of Al2O3 and Cu concentrations in this study are
considered as 1% of Fe3O4 (ϕ1 = 1%) and 1% of CoFe2O4 (ϕ2 = 1%). The Prandtl number
subject to the water base fluid is Pr = 6.2 and Pr = 30 for water–ethylene glycol. The dual
solution’s availability is possible, as displayed in Figures 2–13 when the parameters are
used within the allocated interval; unsteadiness decelerating parameter −1.2 ≤ S ≤ −1,
magnetic parameter 0 ≤ M ≤ 0.2, suction/injection parameter −0.2 ≤ B ≤ 0.2 while other
parameters are fixed such that φ1, φ2 = 1%

(
φhn f = 2%

)
and λ = 0.
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The new numerical results obtained from this present study are presented in Tables 4 and 5.
Here, the values of the physical quantities such as Re1/2

r C f , Re1/2
r Cg, and Re−1/2

r Nur are
obtained for varied values of M with different base fluids (H2O-EG and H2O). For the
first solution, the results show a decrement in these physical quantities as M increases.
Quantitatively, a 15.98% decrement is observed for the values of Re1/2

r C f when M increases
up to 30% (M = 0.3). Meanwhile, the reduction in Re1/2

r Cg is prominent with a 61.66%
decrement and the values of Re−1/2

r Nur decrease with 1.88%. However, a significant incre-
ment is observed for Re−1/2

r Nur when H2O-EG is considered with 107.60% compared to
H2O as the base fluid. Furthermore, the numerical results provided could be important
to other researchers for future reference. Interestingly, multiple solutions are obtained
under certain circumstances. To determine a realistic or stable solution, Table 6 shows the
smallest eigenvalues α that were obtained from the eigenvalue problems (see Section 3).
Surprisingly, both solutions give positive values (α > 0) that reveal the stability of both
solutions and the possibility of another solution with a negative eigenvalue [81].

Table 4. Values of Re1/2
r C f , Re1/2

r Cg, and Re−1/2
r Nur for Fe3O4-CoFe2O4/H2O-EG when

ϕhn f = 2%, B = 0, S = −1 and different values of M.

M
First Solution Second Solution

Re1/2
r Cf Re1/2

r Cg Re−1/2
r Nur Re1/2

r Cf Re1/2
r Cg Re−1/2

r Nur

0 0.765534 −0.251611 3.604480 0.512769 −0.088499 3.452206
0.1 0.722637 −0.302647 3.581163 0.478139 −0.136966 3.430586
0.2 0.681833 −0.354398 3.558560 0.446589 −0.185258 3.410523
0.3 0.643206 −0.406753 3.536762 0.418191 −0.233521 3.392171
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Table 5. Values of Re1/2
r C f , Re1/2

r Cg, and Re−1/2
r Nur for Fe3O4-CoFe2O4/H2O when ϕhn f = 2%,

B = 0, S = −1 and different values of M.

M
First Solution Second Solution

Re1/2
r Cf Re1/2

r Cg Re−1/2
r Nur Re1/2

r Cf Re1/2
r Cg Re−1/2

r Nur

0 0.767572 −0.252281 1.755377 0.514134 −0.088735 1.617641
0.1 0.724783 −0.303179 1.737683 0.479588 −0.137073 1.599005
0.2 0.684071 −0.354788 1.720410 0.448097 −0.185238 1.581450
0.3 0.645516 −0.406997 1.703642 0.419732 −0.233372 1.565181

Table 6. Smallest eigenvalues when ϕhn f = 2%, B = M = 0, and various S for Fe3O4-CoFe2O4/H2O-EG.

S Smallest Eigenvalues

First Solution Second Solution

−1.1 6.0014 0.7442

−1.2 6.7395 0.8547

−1.3 6.9401 1.0462

The effects of magnetic M and unsteadiness S parameters on the physical quantities
(Re1/2

r C f , Re1/2
r Cg, and Re−1/2

r Nur) are elucidated in Figures 2–4. The declining behaviour
is noticed when a larger M value is considered. However, the opposite trend is shown
for stronger deceleration strength (S < 0). Physically, the Lorentz force is created when
the magnetic field is imposed on the boundary layer, and it is intensified for stronger
magnetic field strength. This force possesses the flow and increases the shear stress on the
surface, and consequently increases the thermal rate. It should be noted that the outcomes
of this study are contradicted by its physical phenomenon due to the interaction between
the magnetic field and the unsteadiness of the flow. This observation is supported by a
previous study, see Waini et al. [81], which stated that the unsteadiness condition creates
an obstacle to the flow and thermal behaviour of the fluid.

Figures 5–7 displayed the values of Re1/2
r C f , Re1/2

r Cg, and Re−1/2
r Nur for different

values of B (mass flux parameter). The quantities of Re1/2
r C f , and Re1/2

r Cg are lower for
B = 0.2 (suction case). Physically, the wall suction causes a higher drag force and torque on
the revolving disk and thus raising the shear stress. However, the opposite observation
was seen in this study (see Figures 5 and 6). This is due to the simultaneous effect of the
physical parameter on the flow. However, the behaviour is contradicted for Re−1/2

r Nur
where B = 0.2 (suction case) gives higher values of Re−1/2

r Nur.
Figures 8–10 are provided in order to investigate the impact of the different base

fluids (H2O and H2O-EG) on the flow and thermal behaviour. Here, H2O-EG contributes
to enhancing the values of Re1/2

r Cg, and Re−1/2
r Nur. Meanwhile, the values of Re1/2

r C f
decline. This observation can be explained from the values of their Prandtl number, Pr.
Note that H2O-EG has larger Pr, i.e., Pr = 30 if compared to H2O (Pr = 6.2). Larger Pr
means the convection process for the flow is dominant. As a result, fluid momentum, rather
than fluid conduction, is the best way to transmit heat. Additionally, the velocity and the
temperature profiles of Fe3O4-CoFe2O4/H2O-EG for several S are given in Figures 11–13.
The thickness of the respective boundary layers is lessened as S becomes smaller. This
implies that the gradient of these profiles near the wall is increased for stronger deceleration
strength (S < 0) and gives higher values of the shear stress and heat transfer on the wall,
as reported in Figures 4–6.

5. Conclusions

In this numerical study, various effects of the controlling parameters in the unsteady
MHD hybrid ferrofluid flow and heat transfer over a rotating stretching/shrinking disk
are discussed. The physical properties of the fluid are affected by different values of the
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magnetic parameter, unsteadiness parameter, and the mass flux parameter which generate
an impact on the skin friction coefficient, heat transfer rate, velocity profile, and temperature
field. It is perceived that velocity profile and temperature field distributions decrease
when increasing the unsteadiness parameter. On the other hand, it is found that a highly
oscillating magnetic field forces the particles to rotate slower than the ferrofluid; therefore,
resulting in an increment of viscosity. Consequently, a deterioration in the flow speed is
observed as the value of the magnetic parameter increases up to 30%, thus decreasing the
skin friction coefficient by 15.98% and the heat transfer rate approximately up to 1.88%,
significantly. In contrast, the heat transfer is enhanced rapidly by improving the mass flux
parameter by almost 20%. Furthermore, the use of H2O-EG improves the thermal efficiency
of the system when compared to H2O as the base fluid. Finally, depending on the analysis
of solution stability, both solutions are surprisingly found to be stable.
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Nomenclature

B suction/injection parameter
B∗ magnetic field strength
B0 constant magnetic strength
c unsteadiness strength (constant)
C f skin friction coefficient (radial direction)
Cg skin friction coefficient (azimuthal direction)
Cp specific heat at constant pressure (J kg−1K−1)(
ρCp

)
heat capacitance of the fluid (J K−1m−3)

k fluid thermal conductivity (m W−1K−1)
M magnetic parameter
Nur local Nusselt number
Pr Prandtl number
S unsteadiness parameter
Rer local Reynolds number
t time (s)
T fluid temperature (K)
T∞ ambient temperature (K)
Tw surface temperature (K)
u, v, w velocity component in the (r, ϑ, 0) directions (m s−1)
uw velocity of the stretching/shrinking disk (m s−1)
vw velocity of the rotating disk (m s−1)
ww mass flux velocity (m s−1)
w0 constant
(r, ϑ, 0) cylindrical coordinates (m)
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Greek symbols
α eigenvalue
λ velocity ratio parameter
τ dimensionless time variable
η similarity variable
θ dimensionless temperature
µ dynamic viscosity (kg m−1s−1)
ν kinematic viscosity of the fluid (m2s−1)
ρ density of the fluid (kg m−3)
ψ stream function
ϕ1 nanoparticle volume fractions for magnetite
ϕ2 nanoparticle volume fractions for cobalt ferrite
ϕhn f hybrid nanoparticles volume fractions
Subscripts
f base fluid
hn f hybrid nanofluid
n1 solid component for magnetite
n2 solid component for cobalt ferrite
Superscript
′ differentiation with respect to η

Appendix A

The magnetic body force vector, F is defined by:

F = J× B

with the electric current vector, J:

J = σhn f (E + v× B),

where σhn f is the electric conductivity and E is the electric field vector. It is assumed that
the imposed magnetic field, B = 〈0, 0, B∗〉, acts in the z-direction that is normal for the
disk where the boundary layer is formed; the flow is confined to z > 0. Based on the flow
assumption due to a low Reynolds number, the induced magnetic field can be neglected.
Moreover, the electric field vector, E, is assumed to be zero, i.e., the electric and polarization
effects are neglected. Therefore,

J = σhn f (v× B) = σhn f [〈u, v, w〉 × 〈0, 0, B∗〉],

= σhn f

∣∣∣∣∣∣
i j k
u v w
0 0 B∗

∣∣∣∣∣∣,
= σhn f 〈B ∗ v, B ∗ u, 0〉,

where u, v, and w are the component velocities in the x, y, and z directions, respectively.
Then, the expression J× B can be written as,

J× B = σhn f [〈B ∗ v, B ∗ u, 0〉 × 〈0, 0, B∗〉],

= σhn f

∣∣∣∣∣∣
i j k

B ∗ v B ∗ u 0
0 0 B∗

∣∣∣∣∣∣,
= σhn f

〈
B ∗2 u, B ∗2 v, 0

〉
.
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Thus,

(J× B)x = σhn f B ∗2 u, (J× B)y = σhn f B ∗2 v, (J× B)z = 0,

where (J× B)x , (J× B)y, and (J× B)z are components of J × B in the x, y, and z
directions, respectively.
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