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3 Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania; ipop@math.ubbcluj.ro
* Correspondence: iskandarwaini@utem.edu.my

Abstract: This study examines the Blasius flow with Cu-Al2O3 hybrid nanoparticles over a moving
plate. Additionally, the effects of viscous dissipation and radiation are considered. Similarity
transformation is employed to convert the respective model into similarity equations. The results are
generated by using bvp4c in MATLAB. Findings reveal that two solutions are attained when both
the free stream and the plate move in opposite directions. Moreover, the domains of the velocity
ratio parameter are extended when suction is available. Besides, the upsurge of radiation and hybrid
nanoparticles lead to the heat transfer enhancement. The rise in radiation heat energy incorporated in
radiation parameter leads to the development of fluid temperature as well as the thermal boundary
layer. Meanwhile, hybrid nanoparticles offer good thermal characteristics because of synergistic
effects. However, the effects reduce with the rise in Eckert number. The first solution is stable and
acceptable based on the temporal stability analysis. Furthermore, the critical/separation values
of the physical parameters are also reported. With these findings, the optimized productivity will
be achieved as well as the processes on certain products can be planned according to the desire
output. This significant preliminary study provides future insight to the engineers and scientist on the
real applications.

Keywords: Blasius problem; convective heat transfer; hybrid nanofluid; dual solutions;
temporal stability

MSC: 76D10; 76M55; 34B15

1. Introduction

In fluid dynamics, the flowing fluid over a fixed plate is a very well-known phe-
nomenon in the boundary layer flow problem. This type of flow was introduced by
Blasius [1]. Moreover, the flow over a moving plate in a quiescent fluid was pioneered
by Sakiadis [2]. Then, the studies on these types of flows gained much attention from the
researcher since they have important applications in industrial and engineering such as
continuous casting, plastic extrusion, crystal growing, and glass fibre drawing [3]. The
Blasius flow with radiation effect was examined by Bataller [4] and then continued by
Aziz [5], Ishak et al. [6], and Ramesh et al. [7]. Next, Ishak et al. [8] studied the Blasius
flow with constant surface heat flux. Moreover, the Blasius flow with the effect of various
nanoparticles was reported by Ahmad et al. [9], Bachok et al. [10], and Makinde [11]. Be-
sides, the simultaneous impact of entropy generation, radiation, and viscous dissipation
has been reported by Afridi and Qasim [12]. They found that the local Nusselt number
decreases for larger Eckert number and heating parameter and enhances with the rise of
radiation parameter.
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Choi and Eastman [13] were the first to introduce the high performance of heat transfer
fluid called “nanofluid”. Mono nanofluid refers to a combination of a base fluid with a
single nano-sized particles. To improve it further, a hybrid nanofluid is invented which
consists of two distinct types of nanoparticles. Because of that, many related applications
such as coolant in machining are considering hybrid nanofluid. Lately, the numerical
analysis of hybrid nanofluids have been discussed by many researchers and have become a
new hot topic in this field as studied by Takabi and Salehi [14]. Furthermore, Olatundun
and Makinde [15] examined the Blasius flow with hybrid nanoparticles subjected to a
convectively heated surface. They found that the heat transfer rate produced by hybrid
nanofluid is higher than that of nanofluid. Moreover, the stability of the dual solutions of
the hybrid nanofluid flow over a shrinking sheet was examined by Waini et al. [16]. Recently,
several such studies with different physical aspects have been reported in Refs. [17–23].
The other study on particle suspension in fluid is reported by Abdelsalam and Zaher [24].

The heat transfer effect which visible in the high-temperature operating system, like
solar power, rocket combustion chambers, hypersonic flights, and cooling system is physi-
cally influenced by the thermal/solar radiation. Being introduced by Rosseland [25], the
radiation impact is widely studied. Khashi’ie et al. [26] observed the heat transfer increment
with for the stretching flow with radiation. In addition, Waini et al. [27] found the heat
transfer enhancement when considering sensor surface with thermal radiation. Further
discussions are available in Refs. [28–34].

Furthermore, the viscous dissipation effect due to frictional heating is very significant
to be considered because it has a direct impact on the heat transfer rate. The viscous dissi-
pation converts the fluid’s kinetic energy to thermal energy and is commonly exemplified
by the Eckert number which defines as the kinetic energy ratio of flow to heat transition
enthalpy driving force. It seems that the viscous dissipation effect on natural convective
flow was initiated by Gebhart [35]. The study of viscous dissipation on flow over various
surfaces was considered by researchers, such as the flow over a disk [36,37], wedge [38,39],
and cylinder [40,41]. Moreover, the flow over a stretching/shrinking sheet was studied
by Mittal et al. [42] Koriko et al. [43], Gajjela and Nandkeolyar [44], Aly and Pop [45],
Lund et al. [46], and Zainal et al. [47].

Upon the fulfillment of the research gap by the existing studies, this study examines
the thermal and flow behavior of Blasius hybrid nanofluid past a moving flat plate with
radiation and viscous dissipation effects. The hybrid nanofluid is composed by scattering
a couple of distinct nanoparticles which are Al2O3 (alumina) and Cu (copper). Different
from the work reported by Olatundun and Makinde [15], the present study considers the
plate moving in the flowing fluid. The contribution of this study is not only limited to
the discovery of non-unique solutions up to the separation value, but also highlight the
stability analysis procedure. For the future benchmark, this preliminary study is important
for the real industrial processes and applications. The present findings may provide idea to
the engineers and scientist regarding the important and significant factors/parameters for
their desired/optimized output.

2. Mathematical Formulation

For the physical model, the uniform upstream velocity U∞ moves in the x-axis di-
rection as shown in Figure 1. Moreover, the plate is assumed to have a uniform velocity,
u = Uw. Besides, the flow is subjected to the radiative heat flux qr, which is applied normal
to the surface in the positive y-direction. Additionally, the effect of the viscous dissipation is
considered. Moreover, there is an assumption that the stable hybrid nanofluid is considered,
which implies the exclusion of nanoparticle sedimentation/aggregation. The nanoparticles
are assumed to have a uniform size with a spherical shape. It is assumed that both the base
fluid and the nanoparticles are in a thermal equilibrium state, and they flow at the same
velocity; see Khashi’ie et al. [48].
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Figure 1. The flow configuration of the fluid and the plate move in the (a) same direction and
(b) opposite directions.

Accordingly, the hybrid nanofluid equations are (see [9,12,15]):

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

=
µhn f

ρhn f

∂2u
∂y2 , (2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 +

µhn f(
ρCp

)
hn f

(
∂u
∂y

)2
− 1(

ρCp
)

hn f

∂qr

∂y
, (3)

subject to:
u = Uw, v = vw(x), T = Tw at y = 0,

u→ U∞, T → T∞ as y→ ∞,
(4)

where (u, v) is the corresponding velocities in (x, y) axes, and vw(x) is the mass flux velocity.
Furthermore, the temperature is given by T with constant free stream and wall temperatures
denoted as T∞ and Tw, respectively. Additionally, the expression of the radiative heat flux
is [31]:

qr = −
4σ∗

3k∗
∂T4

∂y
, (5)
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where σ∗ and k∗ are the Stefan-Boltzmann constant and Rosseland mean absorption co-
efficient, respectively. Following Rosseland [25], T4 ∼= 4 T3

∞ T − 3T4
∞, which transforms

Equation (3) to:

u
∂T
∂x

+ v
∂T
∂y

=
1

(ρCp)hn f

[
khn f +

16σ∗T3
∞

3k∗

]
∂2T
∂y2 +

µhn f(
ρCp

)
hn f

(
∂u
∂y

)2
. (6)

Furthermore, Table 1 gives the characteristics of the Al2O3, Cu and water [32]. Note
that, ϕ1 and ϕ2 denote Al2O3, and Cu nanoparticles, respectively, where ϕhn f = ϕ1 + ϕ2.
Meanwhile, Table 2 provides the hybrid nanofluid correlations [14].

Table 1. Physical properties of the respective base fluid and nanoparticles.

Properties
Base Fluid Nanoparticles

Water Cu Al2O3

ρ
(
kg/m3) 997.1 8933 3970

Cp (J/kgK) 4179 385 765
k (W/mK) 0.613 400 40

Prandtl number, Pr 6.2

Table 2. Thermophysical properties of hybrid nanofluid.

Thermophysical Properties Correlations

Thermal conductivity
khn f
k f

=

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f +2(ϕ1kn1+ϕ2kn2)−2ϕhn f k f

ϕ1kn1+ϕ2kn2
ϕhn f

+2k f−(ϕ1kn1+ϕ2kn2)+ϕhn f k f

Heat capacity
(ρCp)hn f = (1− ϕhn f )(ρCp) f + ϕ1(ρCp)n1 + ϕ2(ρCp)n2

Density ρhn f = (1− ϕhn f )ρ f + ϕ1ρn1 + ϕ2ρn2

Dynamic viscosity µhn f =
µ f

(1−ϕhn f )
2.5

Now, consider the dimensionless variables (see [9,15]):

ψ =
√

U∞ν f x f (η), θ(η) =
T − T∞

Tw − T∞
, η = y

√
U∞

ν f x
, (7)

where u = ∂ψ/∂y and v = −∂ψ/∂x such that

u = U∞ f ′(η), v = −1
2

√
U∞ ν f

x
[

f (η)− η f ′(η)
]
. (8)

From Equation (8), by setting η = 0, one obtains:

vw(x) = −1
2

√
U∞ ν f

x
S, (9)

where ν f represents the base fluid kinematic viscosity. Additionally, f (0) = S is the
suction/injection parameter which determines the permeability of the surface. Here, S < 0
(injection) and S > 0 (suction) represent the permeable cases while S = 0 represents an
impermeable case.

On using Equations (7) and (8), Equation (1) is identically fulfilled. Now, Equations (2)
and (6) reduce to:

µhn f /µ f

ρhn f /ρ f
f ′′′ +

1
2

f f ′′ = 0, (10)
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1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
θ′′ +

1
2

f θ′ + Ec
µhn f /µ f(

ρCp
)

hn f /
(
ρCp

)
f

f
′′2 = 0, (11)

subject to:
f (0) = S, f ′(0) = λ, θ(0) = 1,

f ′(η)→ 1, θ(η)→ 0 as η → ∞,
(12)

where primes indicate the differentiation with respect to η. Moreover, Pr and Ec are the
Prandtl and the Eckert numbers, respectively, while R and λ are the radiation and the
velocity ratio parameters, which are defined as:

Pr =

(
µCp

)
f

k f
, Ec =

U2
∞(

Cp
)

f (Tw − T∞)
, R =

4σ∗T3
∞

k∗k f
, λ =

Uw

U∞
. (13)

Here, λ = 0 is for the static plate, while λ < 0 (λ > 0) indicates the plate and the fluid
move in the opposite (same) direction. It is worth mentioning that when ϕhn f = S = λ = 0,
Equation (10) reduces to the classical Blasius flow.

The skin friction coefficient C f and the local Nusselt number Nux are given as [49]:

C f =
µhn f

ρ f U2
∞

(
∂u
∂y

)
y=0

, Nux =
x

k f (Tw − T∞)

(
−khn f

(
∂T
∂y

)
y=0

+ (qr)y=0

)
. (14)

Using (7) and (14), one receives:

Re1/2
x C f =

µhn f

µ f
f ′′ (0), Re−1/2

x Nux = −
(

khn f

k f
+

4
3

R

)
θ′(0), (15)

which with the local Reynolds number is Rex = U∞x/ν f .

3. Stability Analysis

This analysis is important to verify the stability of the obtained solutions [50–52].
Based on Equation (9), the semi-similar variables are:

ψ =
√

U∞ν f x f (η, τ), θ(η, τ) =
T − T∞

Tw − T∞
, η = y

√
U∞

ν f x
, τ =

Ut
x

, (16)

with u = ∂ψ/∂y and v = −∂ψ/∂x which are defined as

u = U∞
∂ f
∂η

(η, τ), v = −1
2

√
U∞ ν f

x

[
f (η, τ)− η

∂ f
∂η

(η, τ)− 2τ
∂ f
∂τ

(η, τ)

]
. (17)

The transformed equations by applying Equations (16) and (17) into Equations (2) and (3)
are:

µhn f /µ f

ρhn f /ρ f

∂3 f
∂η3 +

1
2

f
∂2 f
∂η2 −

∂2 f
∂η ∂τ

+ τ

(
∂ f
∂η

∂2 f
∂η ∂τ

− ∂ f
∂τ

∂2 f
∂η2

)
= 0, (18)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
∂2θ

∂η2 +
1
2

f
∂θ

∂η
+ Ec

µhn f /µ f(
ρCp

)
hn f /

(
ρCp

)
f

(
∂2 f
∂η2

)2

− ∂θ

∂τ
+ τ

(
∂ f
∂η

∂θ

∂τ
− ∂ f

∂τ

∂θ

∂η

)
= 0, (19)

subject to:

f (0, τ)− 2τ
∂ f
∂τ (0, τ) = S, ∂ f

∂η (0, τ) = λ, θ(0, τ) = 1,

∂ f
∂η (η, τ)→ 0, θ(η, τ)→ 0 as η → ∞.

(20)
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Then, the disturbance is applied to the steady solution f = f0(η) and θ = θ0(η) of
Equations (10) and (11) by employing the following relations [52]:

f (η, τ) = f0(η) + e−γτ F(η, τ), θ(η, τ) = θ0(η) + e−γτG(η, τ), (21)

where F(η, τ) and G(η, τ) are arbitrary functions and relatively small compared to
f0(η) and θ0(η), and γ denotes the eigenvalue. Substituting Equation (21) into
Equations (18) and (19) yields

µhn f /µ f

ρhn f /ρ f

∂3F
∂η3 +

1
2

(
f0

∂2F
∂η2 + f ′′0 F

)
+ γ

∂F
∂η
− ∂2F

∂η∂τ
+ τ

(
γ f ′′0 F− γ f ′0

∂F
∂η
− f ′′0

∂F
∂τ

+ f ′0
∂2F

∂η∂τ

)
= 0, (22)

1
Pr

1
(ρCp)hn f /(ρCp) f

( khn f
k f

+ 4
3 R
)

∂2G
∂η2 + 1

2

(
f0

∂G
∂η + θ′0F

)
+ 2Ec

µhn f /µ f

(ρCp)hn f /(ρCp) f
f ′′0

∂2F
∂η2 + γG− ∂G

∂τ +

τ
(

γθ′0F− γ f ′0G + f ′0
∂G
∂τ − θ′0

∂F
∂τ

)
= 0

(23)

The boundary conditions become

F(0, τ)− 2τ
(

∂F
∂τ (0, τ)− γF(0, τ)

)
= 0, ∂F

∂η (0, τ) = 0, G(0, τ) = 0,
∂F
∂η (η, τ)→ 0, G(η, τ)→ 0 as η → ∞.

(24)

By setting τ = 0 implies F(η, τ) = F0(η) and G(η, τ) = G0(η) [37]. After linearization,
the eigenvalue problems become

µhn f /µ f

ρhn f /ρ f
F′′′ +

1
2
(

f0F′′0 + f ′′0 F0
)
+ γF′ = 0, (25)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

R

)
G′′0 +

1
2
(

f0G′0 + θ′0F0
)
+ 2Ec

µhn f /µ f(
ρCp

)
hn f /

(
ρCp

)
f

f ′′0 F′′0 + γG0 = 0, (26)

subject to:
F0(0) = 0, F′0(0) = 0, G0(0) = 0,

F′0(η)→ 0, G0(η)→ 0 as η → ∞.
(27)

To obtain γ in Equations (25) and (26), F′′ (0) = 1 is employed to replace
F′0(η)→ 0 as η → ∞ [53].

4. Results and Discussion

Equations (10)–(12) are programmed in the bvp4c solver and then, numerically com-
puted. The 3-stage Lobatto IIIa formula is embedded in the bvp4c application [54]. Further,
the total composition of Al2O3 and Cu concentrations are considered as 1% of Al2O3
(ϕ1 = 1%) and 1% of Cu (ϕ2 = 1%).

The values of −θ′(0) when ϕhn f = λ = R = Ec = 0 with different values of Pr are
compared with Bataller [4] as shown in Table 3. Meanwhile, Table 4 shows the comparison
of the skin friction coefficient Re1/2

x C f and the local Nusselt number Re−1/2
x Nux with

Ahmad et al. [9] when ϕ2 = λ = R = Ec = 0 and Pr = 6.2 with several ϕ1. From these
tables, the results are satisfactory to that mentioned literature. Moreover, the values of
Re−1/2

x Nux are also provided in Table 4 and show an increasing pattern as ϕ1 increases.
Additionally, the values Re1/2

x C f and Re−1/2
x Nux with different values of λ, R, Ec and S

when ϕhn f = 2% and Pr = 6.2 are provided in Table 5 for future reference.
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Table 3. Values of −θ′(0) when ϕhn f = λ = R = Ec = 0 with different values of Pr.

Pr. Bataller [4] Present Results

0.7 0.29268 0.29268
5 0.57669 0.57669

6.2 0.62007
10 0.72814 0.72814
50 1.24729 1.24729

100 1.57183 1.57183

Table 4. Values of Re1/2
x C f and Re−1/2

x Nux when ϕ2 = λ = R = Ec = 0 and Pr = 6.2 with
different ϕ1.

ϕ1
Ahmad et al. [9] Present Results

Re1/2
x Cf Re1/2

x Cf Re−1/2
x Nux

0 0.3321 0.33206 0.62007
0.002 0.3339 0.33388 0.62241
0.004 0.3357 0.33571 0.62475
0.008 0.3394 0.33938 0.62943
0.01 0.3412 0.34123 0.63177

Table 5. Values Re1/2
x C f and Re−1/2

x Nux with different values of λ, R, Ec, and S when Pr = 6.2 and
ϕhn f = 2%.

λ R Ec S
First Solution Second Solution

Re1/2
x Cf Re−1/2

x Nux Re1/2
x Cf Re−1/2

x Nux

−0.35 0 0 0 0.19675 0.05461 0.13639 0.01126
−0.3 0.27241 0.18844 0.06483 0.00031
−0.25 0.30670 0.28935 0.03467 0.00001
−0.2 0.32856 0.37636 0.01695 0.00000
−0.1 0.35216 0.52430 0.00148 0.00000
−0.3 0.5 0.27241 0.34743 0.06483 0.00660

1 0.27241 0.49699 0.06483 0.02676
1.5 0.27241 0.63822 0.06483 0.06050
2 0.27241 0.77255 0.06483 0.10416
3 0.27241 1.02468 0.06483 0.20909
1 0.01 0.27241 0.48806 0.06483 0.02565

0.03 0.27241 0.47018 0.06483 0.02342
0.05 0.27241 0.45231 0.06483 0.02119
0.1 0.27241 0.40762 0.06483 0.01561
0.2 0.27241 0.31824 0.06483 0.00445
0.1 −0.1 0.18325 0.18495 0.09451 0.04133

0.1 0.34471 0.62723 0.05293 0.00862
0.2 0.41264 0.85529 0.04630 0.00545
0.3 0.47877 1.09161 0.04235 0.00370
0.5 0.60909 1.58414 0.03902 0.00174

The variations of the local Nusselt number Re−1/2
x Nux against R when λ = −0.3,

S = Ec = 0, andPr = 6.2 for various ϕhn f are presented in Figure 2. The increment in
the values of Re−1/2

x Nux on both solutions are observed with the rising values of R and
ϕhn f . The rise in radiation heat energy incorporated in radiation parameters leads to the
development of fluid temperature, as well as the thermal boundary layer; Meanwhile, the
rising values of ϕhn f contribute to the increment of Re−1/2

x Nux. This is consistent with the
fact that the hybrid nanofluid offers better thermal characteristics as compared to the base
fluid and nanofluid containing single nanoparticles as a result of synergistic effects.
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Figure 2. Variation of the local Nusselt number Re−1/2
x Nux with R for several values of ϕhn f .

Moreover, the effect of R and Ec on Re−1/2
x Nux when λ = −0.3, S = 0, Pr = 6.2 and

ϕhn f = 2% can be observed in Figure 3. The values of Re−1/2
x Nux on both solutions decline

with the rise of Ec. Physically, the Eckert number is the ratio of the kinetic energy flow to
the boundary layer’s enthalpy difference. By opposing fluid stresses, the Eckert number
aids in the conversion of kinetic energy into internal energy. As a result, the enthalpy
difference effect lessens due to the high intensity of kinetic energy. Thus, the thickness of
the thermal layer increases which implies the increase in the fluid temperature. Therefore,
the upshot of Ec lead to a decrease in the temperature gradient and consequently reduce
the heat transfer.

Figure 3. Variation of the local Nusselt number Re−1/2
x Nux with R for several values of Ec.
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Figure 13. Temperature profile θ(η) for several values of Ec.

The variations of γ against λ when S = −0.1, and ϕhn f = 2% are depicted in Figure 14.
It is noted that e−γτ → ∞ when γ < 0, whereas e−γτ → 0 when γ > 0 as time evolves
(τ → ∞). The case γ > 0 shows that the disturbance is diminished as time passes, which
indicates the flow is stable over time. On the other hand, the flow is unstable in the long
run for the case γ < 0. Even the unstable solution may deprive of physical significance,
they are still of interest since this solution is also a solution to the differential equation. This
solution may appear in other situations, where its existence is more appreciated.

Figure 14. The smallest eigenvalue γ against λ.
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5. Conclusions

The heat transfer enhancement in the Blasius flow of a hybrid nanofluid over a moving
plate with viscous dissipation and radiation effects are studied in this paper. Different from
the classical Blasius flow which considered a viscous fluid flow over a static flat plate, in
this study, both the fluid and the plate move either in the same or in the opposite directions.
The numerical results indicate that two solutions exist when the plate and the free stream
move in the opposite directions, while unique solution is obtained when they move in
the same direction. The solutions exist up to a certain critical value, beyond which the
separation occurs, thus no solution is possible. The findings of this study are summarized
as follows:

• Two solutions are attained when λ < 0 (when the plate and the free stream move in
the opposite directions), while the solution is unique when λ ≥ 0 (when the plate and
the free stream move in the same directions).

• The critical value λc is expanded by the addition of the suction/injection parameter
which implies the retardation in boundary layer separation.

• The enhancement in the heat transfer rate is observed with the increase of ϕhn f and
radiation parameter R.

• The increase of Eckert number Ec lowers the heat transfer rate.
• The increase of R and Ec lead to an increase in θ(η) while opposite behaviour with the

upsurge of ϕhn f .
• The first solution is physically reliable and stable based on the temporal stability analysis.

These original results are important to other researchers in the selection of (i) the
relevant parameters to optimize the heat transfer process and, (ii) the right parameters to
generate all available solutions so that no misjudgment on flow and heat transfer features.
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Nomenclature

C f skin friction coefficient
Cp specific heat at constant pressure (Jkg−1K−1)
(ρCp) heat capacitance of the fluid (JK−1m−3)
Ec Eckert number
f dimensionless stream function
F, G arbitrary functions
k fluid thermal conductivity (Wm−1K−1)
k∗ coefficient for Rosseland mean absorption (m−1)
Nux local Nusselt number
Pr Prandtl number
qr radiative heat flux (Wm−2)
R thermal radiation parameter
S mass flux parameter
Rex local Reynolds number
t time (s)
T fluid temperature (K)
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T∞ ambient temperature (K)
Tw surface temperature (K)
u, v velocity component in the x- and y- directions (ms−1)
vw mass flux velocity (ms−1)
Uw constant velocity of the surface (ms−1)
U∞ constant velocity of the free stream (ms−1)
x, y Cartesian coordinates (m)
Greek symbols
γ eigenvalue
λ velocity ratio parameter
τ dimensionless time variable
η similarity variable
θ dimensionless temperature
µ dynamic viscosity (kgm−1s−1)
ν kinematic viscosity of the fluid (m2s−1)
ρ density of the fluid (kgm−3)
σ∗ Stefan-Boltzmann constant (Wm−2K−4)
ψ stream function
ϕ1 nanoparticle volume fractions for Al2O3 (alumina)
ϕ2 nanoparticle volume fractions for Cu (copper)
ϕhn f hybrid nanoparticles volume fractions
Subscripts
f base fluid
hn f hybrid nanofluid
n1 solid component for Al2O3 (alumina)
n2 solid component for Cu (copper)
Superscript
′ differentiation with respect to η
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