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ABSTRACT
Gears are crucial mechanical components and considerably used in consumer and industrial
machinery. Gears can be grouped into five types namely spur, helical, rack and pinion, worm
and bevel. Spur gear has been selected as a case model in this study mainly because it is one of
the basic types of gear which can be easily constructed and fabricated. Spur gear tooth is
designed using S and C-shaped transition curves. These curves are constructed using the G2

parametric Said-Ball cubic curve and clothoid templates. The result demonstrates that the
C-shaped gear model which consists of the natural frequency of0.7408 Hz and low onaverage
and standard deviation of 1.00E-3 mm and 8.072E-3 mm offers the most affordable displace-
ment when compared with S-shaped and existing gear models.
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1. Introduction

Radzevich (2012) defined gears or represented curves
area set of geometric shapes confined by uniform teeth.
Srikanth, Jeevanantham, and Nirmal (2014) stated that
teeth may also be shown as the progressive projections
connected in the rotating shafts. Hirani (2014) and
Stadtfeld (2001) noted that the invaluable function of
gears is to transmit the force or torque but it is also
beneficial in a rotary motion and power production.
Yahaya (2015) also stated that gears and transmission
are two inseparable terminologies. Gears comprise two
basic forms namely circular and noncircular forms.
Circular form design uses a particular circle while the
noncircular form is otherwise (Dejnozkova andDokladal
2004). The circular types are spur, helical, rack and
pinion, worm and bevel gearswhereasconical and ellipti-
cal gears are the common types of noncircular.
Matsuura, Hashimoto, and Okuno (2013) discovered
that an involute or known as evolvent curves has been
appreciably used in circular form design since the seven-
teenth century. This statement is in rhyme with Dooner
(2012) where Euler (1707–1783) and Huygens (1629–-
1695) invent the use of the involute curve in gears.
Besides, noncircular gears or NCG utilise an evolute
curve in designing its tooth profile. To gain a better
understanding of involute and evolute curves, Fang
et al. (2010) and Belyaev (2004) generally defined these
curves as the creation of path or locus by some points
known from tangent definition and centre of curvature.

Relatively, sound and noise are the output responses
generated from an inseparable terminology of gear and

transmission. These particular responses result from
vibration between gear teeth as discussed by Palermo
et al. (2010). By reviewing these responses, gear sound is
pleasantly considered in comparison with the noise.
Zhou, Sun, and Tao (2014) and Åkerblom (2001)
showed noise as a transmission error that occurred at
certain frequencies which may also contribute to a high
level of vibration. A number of studies have focused on
gear noise reduction (Paul and Bhole 2010; Ognjanović
and Kostić 2012; Tuma 2009). Michalski, Pawlus, and
Żelasko (2011)emphasised that tooth shape and surface,
tooth size and thickness, gear material, the number of
teeth and pressure angle are influencing gear noise.
Sankar, Raj, and Nataraj (2010), Beghini, Presicce, and
Santus (2006) and Åkerblom (2001) also stressed that
tooth shape modification could be viewed as one of the
considerable factors in gear noise reduction. Involute
and evolute curves have been applied by Xianzhang
(2011) as a preferable method for tooth shape
modification.

However, the applicability of these curves in
improving tooth shape is still insufficient. Babu and
Tsegaw (2009) remarked that these curves especially
involute types only focus on the approximation con-
cepts or methods to increase their efficaciousness.
Chebyshev approximation theory and interpolation
technique are used by Higuchi et al. (2007), Yan,
Wang, and Zhou (2014) and Wu, Yin, and Zhao
(2013) to enable these involute curves to represent an
equation or a polynomial form (useful for its shape
preservation) while Reyes, Rebolledo, and Sanchez
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(2008) employed the tracing points method in con-
structing this curve. The intention of using these two
methods is to have an aesthetic appearance (beauty
and interactivity) in involute curve design.The separa-
tion technique between geometry definition and tool
selection has been introduced by Kapelevich and
Kleiss (2002) that is known as the direct design
method in involute spur and helical gears.
Kapelevich (2000) also identified the use of asymme-
trical tooth profiles in the involute curve that offers
a significant value where the vibration effect can be
minimised. The smooth contact of involute gears can
be generated using partial and ordinary differential
equations as well as ease-off topology (related to the
surface) (Litvin et al. 2005; Kolivand 2014). Numerous
methods are also utilised in designing the profile of
involute gear such as B-spline curve, non-uniform
rational B-splines (NURBS) and sweep surface genera-
tion as described by Barone (2001) and Barbieri,
Zippo, and Pellicano (2014). These methods enable
the tooth shape design to be controlled more easily.
Xiao et al. (2014) revealed an involute gear is also
engaged withneurosciencesuch as neural network
and genetic algorithm. Thus, the above description

shows that an involute curve is a non-parametric
form because of theseassociatedmethods. Figure 1
shows an example of an involute curve.

Mathematically, parametric form increases the
degree of freedom (DOF) (or known as a set of inde-
pendent parameters) (Martinsson et al. 2007). DOF is
the most desirableparameterin shape design. Prvan
(1997) claimed that smooth curves are only presenta-
ble when using this form and this claim is also sup-
ported by Kouibia and Pasadas (2000). The parametric
form is widely applied for plane curves representation
particularly in computer-aided design (CAD) or in
geometric modelling. A flexible CAD model is also
developed once the parametric form used to provide
the modifications on the model is prepared easily
(Alpers 2006).On top of that, this study focused on
the use of parametric form in tooth shape design,
especially for spur gear model.

Said-Ball cubic curve (SBCC) was a parametric
form applied throughout this study. Said (1990)
revealed that SBCC is a third-degree (cubic) polyno-
mial curve that permits an inflection point and is also
highly suitable for G2 (curvature) blending application
curves. Moreover, the procedures of controlling shape

Figure 1. Involute curve design.
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or preserving curves become more effective because
SBCC basis functions consist of two shape parameters,
λ0 and λ1. Figure 2 shows these parameters’ effective-
ness. Meanwhile, Farin (2002) remarked that cubic
Bézier curve (CBC) does not have any shape para-
meter. Therefore, the adjustment of control points is
only applicable to its shape control of curve when
applying this CBC. Ahmad (2009) reviewed the
appearances of SBCC such as positivity curve, convex
hull features, and geometric mapping suitability.
Other uniqueness of shape parameters in SBCC can
also represent several basis functions, namely, cubic
Ball, CBC, and cubic Trimmer if the shape values are
2, 3 and 4.

Five cases of clothoid templates become a method
of designing this parameterised curve by Baass (1984).
Highway design was the first application using these
templates which consisted of appearances such as the
quality enhancement, users comfort, and safe driving
and also the natural alignments which are designed to
be in harmony with its surrounding areas. However,
surprisingly, the outcomes are disastrous because of
horizontal alignment (traditional approach) usage as
shown by Baass (1984). Figure 3 shows the highway
designed alignment models usingclothoid templates.

German Autobahn is a successful road network that
deploys the clothoid templates (Zeller 2007). Vermeij
(2000) asserted that clothoid curves were also usable in
designing high-speed tracks, especially in railway
designs. Shen et al. (2013) are in support of this state-
ment in which they focused on a numerical study of
cubic parabolas on the railway transition curves. These
curves have the ability to identify the appropriatesu-
perelevationrate. The description of clothoid tem-
plates is proclaimed as follows: (1) To connect
between a straight line and circle; (2) to connect

between two circles with a C-transition (broken
back); (3) to connect between two circles with an
S-transition; (4) to connect between two straight
lines and finally, (5) to connect between two circles
with a C-transition (spiral) (Baass 1984; Walton and
Meek 1996, 1999). Thus, the third and fifth cases of

Figure 2. The influence of shape parameters in SBCC design.

Figure 3. Highway design of alignment model using clothoid
templates (Walton and Meek 1989).
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clothoid templates are adopted by the dint of having
a curve or profile similarity compared with an involute
curve (existing profile) as shown in Figure 1.

The present study was to apply the parameterised
curves (S and C-shaped transition curves) in spur gear
design. These curves were designed using the third
and fifth cases of clothoid templates and SBCC. The
paper also proposed a spur gear model using fre-
quency and transient modes analyses. Thus far, no
comprehensive study has been conducted on the sub-
ject. In Section 2, the SBCCis reviewed including the
definitions of notations and convections. The design
of S and C-shaped transition curves is presented in
Section 3 whereas the use of S and C-shaped transition
curves in designing the spur gear model is included in
Section 4. Numerous examples are also shown through
the sections. Section 5 focuses on analysing of the
proposed model using frequency and transient
modes analyses. A short description of conclusions
and recommendations for further study are remarked
in Section 6.

2. Said-Ball cubic curve

Said-Ball cubic curve (SBCC), one of the new basis
functions, was firstly introduced in Computer-Aided
Geometric Design (CAGD) by Said (1990). Ali, Said,
andMajid (1996) revisited the work of Said (1990) and
offered a simple method to acquire the basis functions
and its related developments. Consider a third-degree
polynomial with its first-order derivative:

zðtÞ ¼ a0 þ ta1 þ t2a2 þ t3a3 (1)

z0ðtÞ ¼ a1 þ 2ta2 þ 3t2a3 (2)

witht 2 ½0; 1�: The endpoint and tangent conditions
are given as:

zð0Þ ¼ P0; zð1Þ ¼ P3; z0ð0Þ ¼ τ0; z0ð1Þ ¼ τ1: (3)

A blend with (1), (2) and (3) will construct

a0 ¼ P0; a0 þ a1 þ a2 þ a3 ¼ P3; a1
¼ τ0; a1 þ 2a2 þ 3a3 ¼ τ1: (4)

Simultaneous equation is used in (4) to yield

a2 ¼ 3P3 � τ1 � 3P0 � 2τ0; a3
¼ 2P0 þ τ0 � 2P3 þ τ1: (5)

Substitute (5) into (1) and re-write it using Hermite
form to obtain

zðtÞ ¼ ð1� 3t2 þ 2t3ÞP0 þ tð1� tÞ2τ0 þ t2ðt � 1Þτ1
þt2ð3� 2tÞP3

(6)

Meanwhile, tangent condition can also be defined
through

τ0 ¼ λ0ðP1 � P0Þ; τ1 ¼ λ1ðP3 � P2Þ (7)

The following form is produced when (6) and (7) are
firmly fixed together:

Figure 4. An S-shaped transition curve using SBCC.
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zðtÞ ¼ ð1� 3t2 þ 2t3 � λ0tð1� tÞ2ÞP0 þ λ0tð1� tÞ2P1
þλ1t

2ð1� tÞP2 þðt2ð3� 2tÞ � λ1t
2ð1� tÞÞP3

(8)

Long division method and some simplifications in (8)
are also used to express

zðtÞ ¼ ϕ0ðtÞP0 þ ϕ1ðtÞP1 þ ϕ2ðtÞP2 þ ϕ3ðtÞP3 (9)

with

ϕ0ðtÞ ¼ ð1� tÞ2ð1þ ð2� λ0ÞtÞ;ϕ1ðtÞ ¼ λ0ð1� tÞ2t;
ϕ2ðtÞ ¼ λ1ð1� tÞt2;ϕ3ðtÞ ¼ t2ð1þ ð2� λ1Þð1� tÞÞ:

(10)

and P0; P1; P2; P3 are the control points where as
ϕ0ðtÞ;ϕ1ðtÞ;ϕ2ðtÞ;ϕ3ðtÞ are the basic functions of
this curve. Moreover, SBCC looks more presentable
through the following form:

zðtÞ ¼ ð1� tÞ2ð1þ ð2� λ0ÞtÞP0 þ λ0ð1� tÞ2tP1
þλ1ð1� tÞt2P2 þt2ð1þ ð2� λ1Þð1� tÞÞP3

(11)

Relatively, the represented form in (11) is always
delivered along with some general notations and
convections. These general rules are useful in
smoothing a plane curve. The Euclidean system
consists of the vectors namely A ¼ <Ax;Ay > and
B ¼ <Bx;By > : The dot and cross products of these

vectors are denoted such as A � B and AB̂; respectively.
Juhász (1998) and Artin (1957) expanded these products
exemplifying that

A � B ¼ Ak k Bk k cosðθÞ ¼ AxBx þ AyBy;

AB̂ ¼ Ak k Bk k sinðθÞ ¼ AxBy � AyBx;
(12)

and where θ (or angle) is normally measured in anti-
clockwise direction. Consider zðtÞ defined as in (11),
hence, its velocity (tangent) will be denoted by z0ðtÞ
and the norm (speed) equals to

z0ðtÞk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0ðtÞÞ2 þ ðy0ðtÞÞ2

q
: (13)

Equation (13) is essentially associated to compute the
arc length of a curve known as

SðtÞ ¼
ðb
a
z0ðtÞk kdt: (14)

Barnett (1985) claimed that the curve is regular
(smooth) when using the parametric form and z0ðtÞ ¼
0 consequently, the studies such as by Hoschek and
Lasser (1993) and Faux and Pratt (1988) ensure the
existence of curvature along the curve as follows

κðtÞ ¼ z0ðtÞẑ00ðtÞ
z0ðtÞk k3 : (15)

κ0ðtÞ ¼ φðtÞ
z0ðtÞk k5 ; (16)

with

φðtÞ ¼ z0ðtÞk k2 d
dt

fz0ðtÞẑ00ðtÞg
� 3fz0ðtÞẑ00ðtÞgfz0ðtÞ � z00ðtÞg:

Equation (16) is an indicator to classify the plane curve
into either spiral or transition feature when fulfiling
certain conditions (will be further elaborated in
Section 3). Jacobsen et al. (2006) supported this state-
ment where they found that the aesthetic appearance
between the curves can be seen upon the completion
of plane curve classification. Costa (2002) agreed that
the curve is productively smoothed because of the
order derivatives used in (16). Besides, Lin (2009)
also ensured that the order derivatives affect the
shape of curves to be smoother and aesthetically pleas-
ing. After knowing the SBCC with its related notations
and convections, the descriptions of this paper con-
tinue on the design of transition curves.

3. Transition curve design

3.1. S-shaped transition curve using the third case
of clothoid templates

Habib and Sakai (2003) revisited the work of Walton
and Meek (1999) by giving the most desirable control
points such as

P0 ¼ c0 þ r0ðcos α; sin αÞ; P1 ¼ P0 þ hð� sin α; cos αÞ
P3 ¼ c1 � r1ðcos α; sin αÞ; P2 ¼ P3 � kð� sin α; cos αÞ

(17)

wherec0 and c1knownas the centre points of circles ψ0

and ψ1, r0 and r1 are the radii of circles ψ0 and ψ1,
h and k are the lengths or norms of P1; P0k k and
P3; P2k k, respectively, whereasα documented as an
angle of circles rotated in anti-clockwise. These con-
trol points are unique only for an S-type (third case).

The adjustment of control points in (17) is essential
to increase the degree of freedom and its applicability
to construct

P0 ¼ c0 � r0ðcos α; sin αÞ; P1 ¼ P0 � hð� sin α; cos αÞ
P3 ¼ c1 þ r1ðcos β; sin βÞ; P2 ¼ P3 þ kð� sin β; cos βÞ

(18)

where the angles of circles ψ0 and ψ1are typified by α
and β and also rotated in anti-clockwise. Other para-
meters are similar to (17). Moreover, the values of
h and kare determined using the curvature continuity
in (19). Figure 4 shows an S-shaped curve using SBCC.

κðt ¼ 0Þ ¼ � 1
r0
; κðt ¼ 1Þ ¼ 1

r1
: (19)
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3.2. C-shaped transition curve using the fifth case
of clothoid templates

Baass (1984) found that the fifth case will produce
a type of C-shaped transition curve as a single spiral.
This finding is also supported by several studies by
Habib and Sakai (2005) and Walton and Meek (1996)
which focused on the G2 spiral transition curve design
between two circles. Relatively, the transition and
spiral curve designsuse different segments. Figure 5
shows the designs of transition and spiral curves. It
showed that three segments were applied for the
C-shaped transition curve whereas only two segments
were required in designing a C spiral curve (Walton,
Meek, and Ali 2003).

The control points are stated as in Habib and Sakai
(2003)

P0 ¼ c0 þ r0ðcos α; sin αÞ; P1 ¼ P0 þ hð� sin α; cos αÞ
P3 ¼ c1 � r1ðcos β;� sin βÞ; P2 ¼ P3 þ kðsin β; cos βÞ

(20)

The notations in (20) create a C-shaped transition
curve that is applicable to the second case of clothoid

templates (Baass 1984; Walton and Meek 1996, 1999).
The design of fifth case template begins with the mod-
ifications of (20) where

P0 ¼ c0 � r0ðcos β; sin βÞ; P1 ¼ P0 þ kðsin β;� cos βÞ
P3 ¼ c1 þ r1ðcos α; sin αÞ; P2 ¼ P3 � hð� sin α; cos αÞ

(21)

with c0, r0, β as the centre point, radius and angle
of circle, ψ0 whereas the centre point, radius and
angle in circle, ψ1 are denoted by c1, r1 and α.
Parameters ofh and k are the length or norm of
P3; P2k k and P1; P0k k, respectively.
The segments used in (21) are also redefined by

letting

P1 ¼ P2: (22)

Then, either h or k will be eliminated. If h is chosen,
the expression in (22) will be simplified using a vector,
< cos α; sin α> to obtain

k ¼ ððc1 � c0Þ � < cos α; sin α> Þ þ r1 þ r0 cos½α� β�
sin½β� α� :

(23)

Figure 5. (a) Transition and (b) spiral curves segmentations.
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New control points that satisfy the fifth case template
are given by

P0 ¼ c0 � r0ðcos β; sin βÞ;
P1 ¼ P0 þ kðsin β;� cos βÞ;
P3 ¼ c1 þ r1ðcos α; sin αÞ:

(24)

The following curvature continuity is applied for con-
necting a C-shaped curve between the two circles:

κðt ¼ 0Þ ¼ 1
r0
; κðt ¼ 1Þ ¼ 1

r1
: (25)

This continuity also calculates shape parameters
values, λ0 and λ1 in (11). Figure 6 shows a C-shaped
curve using SBCC.

4. Spur gear design model

4.1. S-shaped transition curve in spur gear tooth
design

The design model commences with the geometric
definition of clothoidtemplates constructed by adapt-
ing from Hwang and Hsieh (2007) study. This geome-
try is applied as a basic model in designing spur gear
tooth. Figure 7 shows the geometry.

The tooth design process becomes easier when
using the segmentation method. Two segments are

needed to create the tooth using the S-shaped tran-
sition curve. This is because the S-shaped curve
contains the starting point at the tangent of the
base circle and the ending point at the tangent of
the outside circle. For the first segment, the inputs
consist ofc0 = (−0.398, 0.689), c1 = (0, 0.795), α =
0.6667π radian, β= 0.5π radian, r0 = r1 = 0.206
whereas in the second segment, the inputs arec0 =
(0.398, 0.689), c1 = (0, 0.795), α = 0.3333π radian,
β= 0.5π radian. Moreover, h and kare roughly equal
to 0.2779 and 0.3780 using the above equations.
Besides, the values of h and k are the same for
both segments because of the symmetrical reason.
Figure 8 displays the spur gear tooth design with its
solid model using the S-shaped curve.

Figure 6. C-shaped transition curve using SBCC.

Figure 7. Geometric definition in clothoid templates.
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4.2. C-shaped transition curve in spur gear tooth
design

The elements in the fifth case template will be
emerged by adapting Figure 7. The small circles
are subsequently affixed to the big circles. Four
segments are suitable for the tooth design using
this case. Segment one consists of c0 = (−0.398,
0.689), c1 = (−0.247, 0.725), α = 0.05556π radian,
β= 0.6667π radian, r0 = 0.206 and r1 = 0.05.
Moreover, k= 0.1431 whereasλ0 and λ1are equal to
2.7695 and 0.3619, respectively. Segment two
containsc0 = (0, 0.795), c1 = (−0.247, 0.725), β=
1.5π with k and shape parameters, λ0, λ1are com-
puted as 0.2449, 2.1279 and 0.5343, respectively.
Both segments possess a symmetrical curve or
also known as mirroring or balancing the segments
three and four. Du Sautoy (2009) supported this
statement by stressing that the segments three and
four have the same shape as compared with seg-
ments one and two. Figure 9 illustrates the spur
gear tooth design with its solid model using
a C-shaped curve.

The next section discusses the Dynamic response
analysis of two models, S and C-shaped curves upon
a completion of the spur gear solid model.

5. Dynamic response analysis

5.1. Normal modes analysis

Normal modes analysis was carried out to identify the
natural frequency existed in particular models likeS
and C-shaped curves. McConnell (1995) defined this
natural frequency as the frequency which naturally
vibrated after the motions are applied in the model
or system. Natural frequency also occurs because of
a model or system oscillation from the original posi-
tion to anew position. This oscillation process takes
more time without any outside interference such as
damping. These positions change naturally. In general,
natural frequency can be expressed through

fn ¼ 1
2π

ffiffiffi
k

p
(26)

wherem is the mass (kg) and k is the stiffness coeffi-
cient (N/m) (Blake 1961). Figure 10 shows the existing
natural frequencies between the models and 10 modes
implementations. As a result, S-shaped and the exist-
ing design (EM) have produced the highest natural
frequency compared with the C-shaped model.

Figure 10 also depicts that the graph pattern of
S-shaped and existing models is identical or in other

Figure 8. (a) Spur gear tooth design and (b) its solid model using S-shaped transition curve.

Figure 9. (a) Spur gear tooth design and (b) its solid model using aC-shaped transition curve.
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words, the existence of natural frequencies very simi-
lar. On average, the C transition model generated
0.7408 Hz whereas the S transition and EM produced
0.7926 Hz and 0.7769 Hz, respectively.

5.2. Frequency response analysis

Structural responses of the models in the frequency
domain with the damping effect can be determined
using the frequency response analysis. Numerous
models or systems, for example, noise, vibration,
rotary machinery, and transmission are predictable
through this analysis. The frequency response analysis
measures the outputs namely displacement, stress and
force. However, displacement (δ) is very significant for
the analysis because it is a the common vibration

parameter to be computed (Klubnik 2008). The
modal method is suitable for this frequency analysis
because its solution is more reliable than the direct
method. Fundamentally, the modal frequency
response analysis originates from the following
equation:

½Mn�f€αng þ ½Cn�f _αng þ ½Kn�fαng ¼ flnðtÞg (27)

where½Mn�f€αng is the matrix of mass, ½Cn�f _αng is the
matrix of damping, ½Kn�fαngis the matrix of stiffness
and flnðtÞg is the loading vector (Komzsik 2009).
However, the damping coefficient has been utilised
in this modal frequency analysis (Table 1). Zehe,
Gordon, and McBride (2002) asserted that stainless
Steel Grade 304 or also known as AISI 304 has been
widely used in numerous applications, namely, in gear
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1.20

1.40

1.60

1.80

1 10

f n
(H

z)

Mode
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S-Shaped Model

C-Shaped Model

Figure 10. The natural frequencies amongst the models.

Table 1. AISI 304 and its characteristics (Peckner and Bernstein 1977).
Modulus of Elasticity Yield Strength Ultimate Strength Poisson Ratio Density Damping Coefficient

195 GPa 215 MPa 505 MPa 0.29 8 gcc−1 0.003

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

0.1 2.5 62.5

δ
)

m
m(

f (Hz)

Existing Model

S-Shaped Model

C-Shaped Model

Figure 11. Modal frequency analysis in all models.
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material. Table 1 shows the mechanical properties of
AISI 304. Moreover, these properties are useful for this
modal frequency analysis.

Figure 11 demonstrates the identified displacements
in all models. Besides that, the frequency domain used is
between the range of f∈ [0,250] with Δf = 2.5 Hz.
Figure 11 also depicts that the blue colour (C-shaped)
model has the minimum displacement (δmin = 3.48E-
7 mm) which does not occur in the S-shaped and EM
models. Meanwhile, the S-shapedmodel producesmax-
imum displacement where δmax = 1.95E-2 mm. On
average (δmean), the C-shaped model gives 1.00E-
3 mm, followed by EM, 1.09E-3 mm and lastly,
S-shaped is close to 1.15E-3 mm. From δmean, the
S-shaped yielded higher displacement compared with
the C-shaped model. Moreover, the high sound level
was generated because the displacement was high as this
statement was also supported by Bies and Hansen
(2009), Brand and Schwab (2005) and Quinn (1987).

5.3. Transient response analysis

The response on the structural response models or
systems with a real-time computing is the measure-
ment derived after applying the transient or known as
time analysis. The essentials of this analysis lookiden-
ticaltothe frequency analysis excluding the time
domain. The model of transient response analysis
contains

½Mn�f€αnðtÞg þ ½Cn�f _αnðtÞg þ ½Kn�fαnðtÞg ¼ flnðtÞg
(28)

where all elements in (28) are identical to (27), includ-
ing the independent variables, t (Hassan,
Thanigaiyarasu, and Ramamurti 2008; Gomm 1987).
The output parameter is still the same as δ in the time
domain, t∈ [0,1] with Δt = 0.05 s. Figure 12 depicts the

result of transient analysis in every model. Moreover,
the blue colour model yielded the lowest graph pattern
compared with others. Hence, surprisingly, the results
hada close affinity between the transient and frequency
analyses.

Figure 12 is being extensively discussed in the
study. The results yielded that t∈ [0,1] with Δt =
0.05 s and the length of data, n = 20. Table 2 shows
the statistical dispersion results between the models.

The δmean for C transition was 1.711E-2 mm,
S transition was 1.838E-2 mm whereas EM was
1.808E-2 mm. According to Table 2, the C transition
model portrayed the lowest displacement distribution
within these three models. Moreover, the computation
also focused on standard deviation (δμ) in every
model. The results ofδμ for the EM was 8.332E-
3 mm, S transition was 8.386E-3 mm and finally, δμ
of C transition equalled to 8.072E-3 mm.

Levy (2011) found that a low standard deviation
shows that the data points are very close to the mean
or average whereas a high standard deviation
expresses the data points which are spread out over
the range. Therefore, the data distribution of
C transition is definitely located to the nearest of its
δmean; however, the S transition is otherwise. This may
be attributed to the fact that δμ for C is smaller than
EM and S transition models. This discussion may also
answer any issue for the modal frequency analysis.

Based on the dynamic analyses, the C transition
yielded the smallest dynamic displacement when com-
pared with the S transition and EM models. Thus,

0
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Figure 12. Transient frequency analysis in all models.

Table 2. The statistical dispersion between the models.
Statistical
Items (mm) EM S Transition C Transition

δmean 1.808E-2 1.838E-2 1.711E-2
δμ 8.332E-3 8.386E-3 8.072E-3
δmax 2.706E-2 2.725E-2 2.632E-2
δmin 0.000 0.000 0.000
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a low vibration will transmit through the gear model.
This finding was supported by Bies and Hansen (2009)
who develop an engineering noise control in theory
and practice. Moreover, the noise or sound of gear will
be significantly reduced by the C transition model
utilisation.

6. Conclusion

In conclusion, this study utilises S and C-shaped transi-
tion curves to design spur gear teeth. These curves are
constructed using the G2 parametric Said-Ball cubic
curve and clothoid templates. The S and C-shaped tran-
sition curves have been successfully used in re-designing
a spur gear tooth model. The result shows that C-shaped
gearmodel offers themost affordable displacement when
compared with S-shaped and existing models because of
their curvature profiles and derivatives are smoother
when compared with S-shaped and EM (the use of fifth
case template). Moreover, it is also verified that tooth
profile modification is the main factor in reducing vibra-
tion in a very significant and consistent way.

For future study, unique features of C and
S-transition curves can be further advanced particularly
in acoustic response analysis. Once the transmission of
low vibration is produced, noise is insignificant. The
C and S-transition curves could also refine an aerody-
namic model such as a car, high-speed train, and bullet.
The velocity of the models or applications naturally
becomes increasingly fast while the pressure is then
depleted.
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