
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcie20

Journal of the Chinese Institute of Engineers

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcie20

A review of chewing detection for automated
dietary monitoring

Yanxin Wei, Khairun Nisa’ Minhad, Nur Asmiza Selamat, Sawal Hamid Md Ali,
Mohammad Arif Sobhan Bhuiyan, Kelvin Jian Aun Ooi & Siti Balqis Samdin

To cite this article: Yanxin Wei, Khairun Nisa’ Minhad, Nur Asmiza Selamat, Sawal Hamid Md
Ali, Mohammad Arif Sobhan Bhuiyan, Kelvin Jian Aun Ooi & Siti Balqis Samdin (2022): A review of
chewing detection for automated dietary monitoring, Journal of the Chinese Institute of Engineers,
DOI: 10.1080/02533839.2022.2053791

To link to this article:  https://doi.org/10.1080/02533839.2022.2053791

Published online: 06 Apr 2022.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tcie20
https://www.tandfonline.com/loi/tcie20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02533839.2022.2053791
https://doi.org/10.1080/02533839.2022.2053791
https://www.tandfonline.com/action/authorSubmission?journalCode=tcie20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcie20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02533839.2022.2053791
https://www.tandfonline.com/doi/mlt/10.1080/02533839.2022.2053791
http://crossmark.crossref.org/dialog/?doi=10.1080/02533839.2022.2053791&domain=pdf&date_stamp=2022-04-06
http://crossmark.crossref.org/dialog/?doi=10.1080/02533839.2022.2053791&domain=pdf&date_stamp=2022-04-06


A review of chewing detection for automated dietary monitoring
Yanxin Weia, Khairun Nisa’ Minhad a, Nur Asmiza Selamatb,c, Sawal Hamid Md Alib, Mohammad Arif Sobhan Bhuiyana, 
Kelvin Jian Aun Ooid and Siti Balqis Samdina

aDepartment of Electrical and Electronic Engineering, Xiamen University Malaysia, Sepang, Malaysia; bDepartment of Electrical, Electronic and 
Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia; cDepartment of Electrical 
Engineering, Faculty of Electrical Engineering, Universiti Teknikal Malaysia, Melaka, Malaysia; dDepartment of Physics, Xiamen University Malaysia, 
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ABSTRACT
A healthy dietary lifestyle prevents diseases and leads to good physical conditions. Poor dietary habits, such 
as eating disorders, emotional eating and excessive unhealthy food consumption, may cause health 
complications. People’s eating habits are monitored through automated dietary monitoring (ADM), which 
is considered a part of our daily life. In this study, the Google Scholar database from the last 5 years was 
considered. Articles that reported chewing activity characteristics and various wearable sensors used to 
detect chewing activities automatically were reviewed. Key challenges, including chew count, various food 
types, food classification and a large number of samples, were identified for further chewing data analysis. 
The chewing signal’s highest reported classification accuracy value was 99.85%, which was obtained using 
a piezoelectric contactless sensor and multistage linear SVM with a decision tree classifier. The decision tree 
approach was more robust and its classification accuracy (75%–93.3%) was higher than those of the Viterbi 
algorithm-based finite-state grammar approach, which yielded 26%–97% classification accuracy. This 
review served as a comparative study and basis for developing efficient ADM systems.
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1. Introduction

Food intake is the main source of human nutrition and necessary 
to maintain life. Monitoring daily food intake behavior directly 
affects human health (Bell et al. 2020). Understanding food intake 
behaviors helps in the diagnosis and treatment of eating disor-
ders, such as bulimia, binge eating and anorexia. The balance 
between basal metabolic energy consumption and food energy 
intake is an important factor in maintaining body weight stability 
(Fontana, Farooq, and Sazonov 2020, 2014). The imbalance 
between these two components can lead to weight changes, 
which may result in abnormal weight loss or increase. For many 
people, hunger and malnutrition are still problems.

Obesity has surpassed hunger as a major global health threat. 
Excessive food intake may be a significant cause of obesity. 
Individuals who are overweight and have obesity receive highly 
valued health services. In 2016, the WHO reported that 39% of 
adults aged over 18 years were overweight, and 13% of adults 
aged over 18 years had obesity (Selamat and Md Ali 2020). For 
these reasons, personal eating behavior must be monitored to 
manage people’s health. Various methods have been used to 
explain diet by recording chewing. Free-living automated dietary 
monitoring (ADM) is proposed to detect dietary events in diet 
management accurately (Papapanagiotou et al. 2017).

Eating behavior is assessed by self-reports, such as question-
naires, which are unreliable to a large extent because people tend 
to underestimate their food intake (Zhang and Amft 2020). 
Therefore, this method cannot be used for analysis and further 
operations.

The development of mobile computing technology, 
computer networks and wearable sensors has provided 
tools for establishing a reliable, objective and noninvasive 
monitoring system for nutrition and diet habits. However, 
to date, a device that can automatically detect eating 
behavior under free-living conditions is not commercially 
available. The behavioral indicators of eating behaviors 
need to be defined to develop automatic food intake 
monitoring

Food intake involves a process through which an individual 
performs a hand-to-mouth movement, biting, chewing and 
swallowing. Hence, all dietary activities start and end in 
a given temporal relation. This work aims to propose 
a method for evaluating chewing activities and meeting the 
need for ADM. This project focuses on helping people plan their 
food consumption better. Users can comprehend their food 
intake per day and make suitable arrangements for planning. 
Chewing activity detection is a small part of ADM, but it is 
fundamental in dietary activities.

Figure 1 depicts the two main parts of this work, namely, 
detectors and sensors. Important characteristic chewing pat-
terns, such as motion, chewing velocity and jaw kinematics to 
food hardness, are presented. The features of chewing and the 
collection and processing of chewing signals are demonstrated. 
Different kinds of sensors, which are significant parts of the 
project, are identified (Hossain, Imtiaz, and Sazonov 2020; 
Nakamura et al. 2021).
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2. Food intake and chewing activities

The basis of obesity and eating disorder treatments is monitor-
ing food intake, which can be planned and managed by dietary 
controls. Therefore, food intake monitoring is important for 
understanding, identifying and modifying the food intake pat-
terns of individuals.

2.1. Food intake monitoring

In the past, tracking real-time food intake and eating behavior was 
a long-term attempt. The first questionnaire assessment was used 
in the 1940s. Some coaches and clinicians still choose to self- 
report and obtain advice on healthy eating choices (Zhang and 
Amft 2020). With the popularity and development of smart-
phones, various methods, such as diet-diary applications, have 
improved.

The network function of smartphones also gives this 
method more functions, such as real-time self-monitoring and 
doctors’ quick responses. Wohler et al. developed a food intake 
survey system that functions on a Motorola Q9h smartphone to 
record and analyze daily eating. A similar system is proposed to 
focus on calorie intake by taking notes. This method depends 
on memory, which is impractical for some people, especially 
users with memory impairment or disabilities (Mamud et al. 
2021; Tsai et al. 2007). In recent years, various methods have 
been studied by using many devices, including sensing meth-
ods, such as visual, glottis, inertial, acoustic, piezoelectric, elec-
tromyography and capacitive sensors.

2.2. Chewing activities and characteristics

Chewing is a dynamic process that involves regular 
motions, including simultaneous movements of the jaws, 
tongue and cheeks and the use of molars to crush the 
bolus. After the food enters the mouth, it is subjected to 
a series of chewing until the bolus is swallowed. The 

regularity of chewing is generated through a central pat-
tern generator (CPG), which activates the motor drives that 
coordinate the movement of the facial muscles, tongue 
and jaw. All these behaviors constitute an individual’s 
chewing pattern. The chewing function adjusts itself 
according to food characteristics; for example, the hard-
ness of food affects chewing activity (Tonni et al. 2020).

The effect of food hardness on the number of chewing 
cycles is significant throughout the chewing process, from 
the beginning of food intake to the end of the first swal-
lowing cycle. It involves tongue pull-back movement 
(TPM), which moves food from the front of the mouth to 
the back of the canines to allow chewing with maximum 
jaw opening (San et al. 2020). TPM is followed by tongue 
squeeze-back motions (TSM), which push food to the phar-
ynx for swallowing. These movements show that chewing 
cycles, TPM and TSM increase from soft food to hard food.

Chewing efficiency is the number of chewing cycles up 
to half the initial particle size. Chewing performance is the 
median particle size obtained after chewing a certain num-
ber of times (Tewksbury et al. 2018). Chewing habits show 
that slow and less effective chewing leads to changes in 
food texture. Subjects who chew more efficiently tend to 
chew the product in less time.

The effect of age on masticatory activity shows that older 
people compensate for the lower muscle contraction ampli-
tude by longer masticatory time and achieve the same total 
muscle work as younger people; young and older people exhi-
bit different chewing strategies and muscle activities.

3. Chewing signal processing

Manual recording based on a self-reported questionnaire 
leads to inaccurate data and loss of people’s interest in 
conducting food intake monitoring. Manual recording via 
a smartphone significantly depends on user records and 
memory.

Figure 1. Scope of the chewing detection review.
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3.1. Chewing signal data acquisitions

Electromyography (EMG) is a technique that records the elec-
trical activity causing muscles to contract during chewing. EMG 
can record muscle activities in the chewing process and pro-
vide information about the interaction between food and an 
individual during the entire chewing activity. However, the 
EMG standard practice has not been established, and issues 
remain (Ashiga et al. 2019).

Photoplethysmography (PPG) is a technique used to detect 
changes in reflected light levels due to alteration in venous 
blood characteristics. It is commonly utilized in smartwatches 
and activity monitors that measure the heart rate. A PPG signal 
is not completely noise-free. Sudden changes in ambient light-
ing can produce important artifacts and cause signal saturation 
(Papapanagiotou et al. 2017).

Electroencephalography (EEG) is an electrophysiological 
monitoring method that records the reaction of multiple elec-
trodes by touching the subject’s scalp and forehead; it includes 
a new technology involving passive or active biosensors that 
connect to multiple electrodes for measuring the voltage fluc-
tuation caused by ion current in the cerebral neuron synaptic 
region. EEG-based brain wave measurement requires specific 
equipment, software and larger test space, which means high 
cost (Songsamoe et al. 2019).

Proximity techniques refer to the utilization of proximity 
sensing devices to detect motion or change. Proximity sensors 
have comparatively high accuracy in detecting chewing perfor-
mance. They are usually composed of nine types of sensors, 
namely, inductive, capacitive, photoelectric, ultrasonic, piezo-
electric, infrared red photodetector, time of flight (ToF), VCSEL 
and organic crystal sensors. The details of these nine types of 
sensors are illustrated in Section 4.

3.2. Chewing detection protocol and experiments

Chewing protocols are designed as rules and processes deter-
mined to obtain experimental results similar to practical situa-
tions because of the diversity of occasions and situations 
related to food intake. Päßler and Fischer (2011) demonstrated 
that the chewing activities of 40 participants aged 15–77 years 
were recorded. The instructions to participants included eating 
seven types of food with 10 pieces and drinking 30 sips of pure 
water or juice. The seven food types were pudding, peanut, 
apple, chocolate, potato chip, carrot and walnut. Then, 17 hours 
of data were collected.

Zhang and Amft (2020) investigated eating food with differ-
ent hardness, where 10 pieces of raw carrots, cucumbers and 
bananas were offered, respectively. The participants were 
instructed to eat one piece at a time. Food was taken as follows: 
banana > cucumber > carrot, indicating the increase in food 
hardness. Moreover, they explored free-living eating monitor-
ing by using integrated smart eyeglasses. Each participant was 
required to record full-day life for 10 days while cooking, eating, 
walking, talking, sports, attending lectures, taking public trans-
portation, working in offices and taking eyeglasses off. Thomaz 
et al. invited 21 right-handed participants between the ages of 
20 and 43 years to discriminate eating and non-eating activities 
(Thomaz, Essa, and Gregory 2015). Food intake activities were 

experimentally recorded with an average of 31 min and 21s. 
A smartwatch was placed on the arm of each participant for 
recording. The food and drink of the subjects were not limited.

Selamat and Ali recorded 10 sets of a series of chewing 
activities involving eating carrots, bananas and apples within 
90, 30 and 30s, respectively (Selamat and Md Ali 2021). Resting 
periods of 15s were set at the beginning and end of the 
recording, and resting periods of 30s were allotted between 
food intakes. Hence, each data set contained 240s of recording, 
and this experiment protocol achieved more than 90% of clas-
sification accuracy.

3.3. Chewing data signal processing

Signal filtering is used to recover a signal from the observed 
noisy data while preserving its important features, such as 
smoothness. Low-pass filtering algorithm (LPFA), high-pass fil-
tering, Wiener filtering and other filtering methods are utilized 
to filter the signal.

Signal normalization compensates for differences in signal 
amplitudes amongst subjects. Normalization helps make the 
signal consistent without losing signal information. Ferriday 
et al. showed that the intake data generated from the filtered 
weight loss data are normalized by subtracting the first signal 
value from the whole time series (Ferriday et al. 2016).

Signal segmentation is one of the fundamental problems of 
digital signal processing in various information, prediction and 
control systems. Sazonov et al. divided chewing signals into 
decision epochs, which are non-overlapping windows of fixed 
duration in a chewing signal. A decision epoch is defined as 
food intake detection time resolution; a shorter one leads to 
a higher temporal resolution and a shorter time to determine 
food intake (Sazonov and Fontana 2012). Feature extraction is 
used to transform high-dimensional feature information into 
a low-dimensional feature by mapping or to transform and 
compress feature information. Farooq et al. divided all detected 
signals into non-overlapping epochs for feature computation 
and chose the appropriate epoch size to detect short snacking 
episodes. Moreover, Farooq and Sazonov (2016b) computed 
the set of 68 times and frequency features for each epoch. 
The feature set includes time and frequency domain features. 
Time domain features are related to time statistics of epoch 
data and crossing characteristics. Frequency domain features 
are based on the spectrum’s peak frequency and standard 
deviation.

Signal classification is used to discriminate signal data with 
different features and properties. Neural network (Liu et al. 
2012; Bahador et al. 2021), artificial neural network (Bell et al. 
2020), convolutional neural network (Turan and Erzin 2018), 
k-nearest neighbor, random forest (Fontana, Farooq, and 
Sazonov 2013; Chen et al. 2020) and support vector machine 
(SVM) (Farooq and Sazonov 2016a) are the widely used algo-
rithms in signal classification. Farooq and Sazonov (2016b) used 
a linear SVM for classification after data are reduced to four 
different classes, including eating while walking, walking, 
sedentary and eating while sitting. Table 1 summarizes the 
performance of the selected classifiers reported in a previous 
work.
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3.4. Chewing performance measurement and data 
analysis

In performance measurement, statistical evidence is utilized to 
determine progress toward specifically defined objectives. 
Zhang and Amft (2020) measured performance via leave-one- 
participant-out (LOPO) cross-validation. They selected the best 
combination of parameters based on the performance of train-
ing data and used the test data to estimate the performance of 
the algorithm. In measuring the performance of signal detec-
tion systems and classification methods, precision, recall and 
accuracy are the most common parameters used. True positive 
(TP) is the number of epochs correctly classified as ‘chewing’. 
False positive (FP) is the number of epochs incorrectly classified 
as ‘chewing’ by the model. False negative (FN) is the number of 
times that the model fails to classify an epoch as a ‘chewing’ 
epoch. In Figure 1, the processed chewing data can be used to 
detect food intake and further classify food type. 

Precision ¼
TP

TPþ FP
; (1) 

Recall ¼
TP

TPþ FN
; (2) 

Accuracy ¼
Precisionþ Recall

2
: (3) 

In food intake detection, the general process and patterns of 
chewing events can be determined by grouping and labeling the 
chewing data; algorithms can be created and improved on the 
basis of these patterns to identify the food intake activities. 
Papapanagiotou et al. (2017) integrated the selected chewing 
events for the time range of 0.1–0.8 s during which these chew-
ing events adjoin each other. The time interval between two 
chewing events is an important parameter. Hence, the start and 
the end of a chewing event must be defined. In this case, chew-
ing events likely form chewing bouts and then combine to be 
detected as one eating behavior. Under this situation, a snacking 
event can be easily differentiated from chewing events.

Chewing data can also be used for food type classification. 
Päßler, Wolff, and Fischer (2012) completed the classification of 
eight kinds of food and drink. They used the Viterbi algorithm- 

based finite-state grammar to evaluate them in two tracks. One 
of them is for training model participants, and the other is for 
new participants. Päßler et al. obtained accuracy levels varying 
from 74% to 97% and yielded an overall performance of 66% 
accuracy for the test set. Bi et al. (2016) detected the events by 
HMM and then extracted the time domain, frequency domain 
and nonlinear features. For classification, they used a decision 
tree (DT). Bi et al. also chose seven types of food for perfor-
mance measurement and found that the food type detection 
accuracy varies from 75.5% to 93.3%, with an average accuracy 
of 84.9%. The food type classification based on chewing data is 
summarized in Table 2.

4. Chewing detection using wearable sensors

Chewing activity detection is greatly influenced by the type of 
wearable sensors. Chewing wearable sensors can be roughly 
divided into two parts, namely, contact and contactless sensors.

4.1. Contact sensors

An electrode sensor is based on the current detecting 
function of electrodes, which can be used as two ends of 
input or output current in a conductive medium. In 
a sensing system, electrodes are typically utilized in sen-
sors to detect and collect the signal of EMG, EEG and other 
biosignals by skin contact. Zhang and Amft (2020) pro-
posed a novel design of smart eyeglasses for food intake 
monitoring by using frame-integrated EMG electrodes; the 
personalized eyeglass frames provided skin contact for dry 
stainless-steel electrodes. BioRadio is a multichannel and 
wireless monitoring device for detecting and capturing 
physiological signals, such as electrical activities from the 
heart, brain and muscle. It is a versatile, wearable, pro-
grammable and easy-to-use tool. The biosignals that 
BioRadio can capture are ECG, EEG, EMG, EOG, PPG and 
heart rate (BioRadio). BIOPAC is a company that provides 
various kinds of elements and systems related to exploring 
life sciences. It has a wide range of products, such as 
accelerometers for MRI, active EMG electrodes, Ag-AgCl 
electrodes and more (BIOPAC). A comparison of contact 
sensors is shown in Table 3.

Table 1. Summary of classifiers.

Reference
Detection 
method Classifier Performance

(Liu et al. 2012) Acoustic 
sensor

(MLF) NN+ELM Accuracy: 
82.51%

(Fontana, 
Farooq, and 
Sazonov 
2020)

Jaw motion 
sensor & 
accelerator

ANN Accuracy: 
86.86%

(Turan and 
Erzin 2018)

Acoustic 
sensor

CNN Accuracy: 
78.3% 

F1: 77.8%
(Fontana, 

Farooq, and 
Sazonov 
2013)

AIM Random Forest Accuracy: 
73.2%

(Farooq and 
Sazonov 
2016a)

Piezoelectric 
sensor & 
accelerator

Single Multiclass Linear SVM 
& Multi-stage Linear SVM + 
Decision Tree

F1: 99.85%

Table 2. Summaries of food type classification based on chewing data.

Reference Classifier Food Accuracy

(Päßler, Wolff, and 
Fischer 2012)

Viterbi algorithm-based 
finite-state grammar

Carrot 
Apple 
Walnut 
Peanut 
Chocolate 
Potato chip 
Drink

97.0% 
90.0% 
74.0% 
76.0% 
86.0% 
92.0% 
26.0%

(Bi et al. 2016) Decision Tree (DT) Cookie 
Apple 
Walnut 
Peanut 
Carrot 
Chip 
Water

87.7% 
86.3% 
83.4% 
75.5% 
84.9% 
82.9% 
93.3%
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4.2. Contactless sensors

The inductive sensor comprises of four parts, namely, 
a Schmitt trigger, an oscillator, an output amplifier and 
a ferrite core with a coil (Kinney 2001). The oscillator 
produces a symmetric oscillating magnetic field radiated 
from an induction end ferrite core and a coil array. When 
a metal target enters this magnetic field, a small indepen-
dent current known as eddy current is generated on the 
metal surface. It changes the magnetic resistance (natural 
frequency) of the magnetic circuit and reduces the oscilla-
tion amplitude. As more metals enter the induction field, 
the oscillation amplitude contracts and eventually col-
lapses. When the target finally moves out of range of the 
sensor, the circuit begins to oscillate again, and the 
Schmidt trigger returns the sensor to the previous output.

Two conductive plates with different potentials are placed 
on the sensor head and positioned as an open circuit capaci-
tance (Kinney 2001). Air acts as an insulator. When stationary, 
the two plates have minimal capacitance. These plates are 
connected to Schmitt triggers, oscillators and output amplifiers. 
When the target enters the sensing region, the capacitances of 
the two boards increase, thereby changing the amplitude of 
the oscillator and the state of the Schmitt trigger to generate 
the output signal.

Photoelectric sensors comprise an emitter light source 
(LED), a photodiode, or a phototransistor receiver to detect 
emitted light (Kinney 2001). Supporting electronic equip-
ment is also present to amplify receiver signals. The emitter 
transmits a beam of visible or infrared light to the receiver. 
Ultrasonic sensors can detect objects by using sound waves. 
In this case, color and transparency do not affect objects.

The standard configurations of ultrasonic sensors are retro-
reflective, diffuse versions and through beams. Ultrasonic dif-
fuse proximity sensors use sonic transducers, which emit 
a series of sonic pulses and then monitor them from reflected 
targets (Kinney 2001).

A piezoelectric sensor can be embedded in retractable 
necklaces to acquire the skin movements of the jaw and 
neck and record chewing and swallowing patterns. This 
kind of sensor is accurate in soft food detection. It is 
advantageous because of its strong immunity to environ-
mental noise. Hussain et al. proposed a data acquisition 
system consisting of a piezoelectric sensor embedded with 
a necklace, a simple microcontroller and a smartphone 
application. In this system, the piezoelectric sensor collects 
eating patterns that comprise chewing and swallow events 
and cooperate with other parts to achieve its tasks 
(Hussain et al. 2018).

An IR photodetector, which is an infrared proximity sensor, 
consists of infrared LED, PD and signal processing units. Its 
basic working principle involves an infrared LED that emits an 
infrared signal to objects that need detection. Some signals 
bounce back and become detected by a PD sensor. Then, 
photocurrent is produced. It is directly proportional to the 
degree of the closeness of the object and the magnitude of 
the detected infrared light (Chen et al. 2020; Wu 2013).

The function of ToF sensors is to detect the distance 
between a sensor and an object. This type of sensor measures 
the time of receiving light; irradiation is performed with an 
infrared ray transmitted from the sensor to the object and 
then goes back to the sensor to detect the distance to the 
object. Hence, ToF sensors can complete the distance measure-
ment without affecting the object’s reflectance. They have the 

Table 3. Contact sensor table of comparison.

Type Schematic diagram Sensing type Performance to detect chewing

Electrode 
(Zhang and Amft 2020)

Detect wave (like EMG) or voltage change Average recall: 94.0% 
Precision: 94.4%

BioRadio Multiple N/A

BIOPAC Multiple N/A
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advantages of small size and low price; however, its accuracy is 
low when the distance to the object is ≤10 mm (Tsuji and 
Kohama 2020).

A vertical cavity surface-emitting laser (VCSEL) is 
a surface-emitting semiconductor light source that emits 
laser beams in a direction perpendicular to its top surface. 
Individual VCSEL emitters are small, typically around 10 
microns in diameter; they are often grouped into 2D arrays 
that collectively generate a much higher output power level 
(VCSEL).

For organic crystal sensors, in 2018, Wang et al. proposed 
a novel type of ultrasensitive flexible proximity sensors in which 
the point is a small flexible organic monocrystal that serves as 
a proximity-sensing device. An organic monocrystal is free from 
disorders and defections. Thus, it is significantly suitable for 
a sensing mechanism study. Unlike conventional capacitive proxi-
mity sensors, electrodes in organic monocrystal sensors are 
located on both ends of the monocrystal to form a two-terminal 
planar device configuration. These sensors can accurately perceive 
external objects, such as fiber and human fingers (Wang et al. 
2018). The comparison of different contactless sensors is shown in 
Table 4.

5. Chewing detection design framework

The detection of chewing activities helps elucidate the food 
intake behavior and automatic dietary monitoring system. 
Based on this detection, a response system can be developed 
to mitigate the effect of behavioral changes in food consump-
tion. The process involves chewing activity detection, chewing 
signal data acquisition, chewing signal processing and wear-
able sensor selection. A framework is developed on the basis of 
the essential components of the chewing activities measured 
using the selected sensor. The general process flow of the 
automatic chewing detection framework is illustrated in 
Figure 2.

5.1. Chewing activity detecting system

In most human eating activities, people repeat putting food 
into the mouth by hand, which is the hand-to-mouth (HtM) 
gesture. Continuous collisions occur between the jaw and 
teeth. These two actions are the premise and essence of chew-
ing. A chewing activity detection system integrates a proximity 
sensor embedded in a VCNL4040 package, a microcontroller 
unit, a local microSD memory card and a 400 mAh lithium 

Figure 2. General process flow of automatic chewing detection.
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battery (Hussain et al. 2018). This system is designed to capture 
chewing-related signals. All these elements are embedded in 
a necklace.

The VCNL4040 package consists of a proximity sensor 
(PS), an ambient light sensor (ALS), a high-power infrared- 
LED and another component. It utilizes a photodiode, an 
amplifier and an analogue-to-digital conversion circuit, and 
it is integrated by CMOS technology. The 16-bit high- 
resolution ALS has an excellent sensing ability, which is 
suitable for detecting moving objects. A proximity sensor 
(PS) has an intelligent elimination function, effectively elim-
inating a crosstalk. The PS on the necklace pointing toward 
chin monitors the changes in signals during chewing. ALS’s 
reading drops when the HtM gesture is completed. The 
microcontroller unit (MCU) is used to save energy and con-
nected to the PS output of the VCNL4040 package. It col-
lects the PS output data through an I2C interface when the 
proximity sensor outputs a chewing activity signal. It enters 
the standby mode and runs at the lowest power consump-
tion when the PS stops the signal output. The chewing 
signal data collected by the MCU are transmitted to the 
local micro SD card embedded in the necklace. Moreover, 
a 400 mAh Li battery is added to support the whole system.

5.2. Chewing signal data acquisition and processing

Chewing signals are detected after the sensing system is used, 
whereas signal data are stored in a local micro SD card 
embedded in the necklace. In this step, signal data in the local 
micro SD card are exported and processed. Videos and audios 
from a wearable camera need to be extracted to help with 
labeling. For further signal segmentation, the signal is labeled 
roughly with ‘chewing’ (+1) and ‘nonchewing’ (−1) by determin-
ing the beginning and end of each chewing activity. If HtM 
gestures take longer than 0.25 s and shorter than 7.5 s, they are 
considered food intake activity associated with chewing.

The segment and meaningful features contributing to data 
analysis are specified and extracted for further analysis. The 
chewing detection process is presented in Figure 3. In the 
beginning, chewing and HtM signals are acquired by the detec-
tion system and subjected to first-stage labeling by using the 
recorded video and audio. Next, signal preprocessing, filtering 
and normalization are performed, followed by segmentation 
and feature extraction. The signal segmentation model is 
shown in Figure 4. The chewing signal is classified by linear 
SVM. Lastly, performance measurements are conducted to eval-
uate the proposed system.

Figure 3. Process flow of chewing signal processing.

Figure 4. Signal segmentation model.
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Table 4. Comparison of contactless sensors.

Type Schematic diagram Sensing type Performance to detect chewing

Inductive 
(Kinney 2001)

0.8–60 mm N/A

Capacitive 
(Kinney 2001)

3–60 mm 84.4% accuracy when embedded in neckband

Photoelectric 
(Kinney 2001)

1–60 mm N/A

Ultrasonic 
(Kinney 2001)

3–30 mm N/A

Piezoelectric 
(Hussain et al. 2018)

N/A F1-score of about 85% on solid and liquid foods

IR-Photodetector 
(Wu 2013)

2–10 cm 95.3% Accuracy

ToF 
(Tsuji and Kohama 2020)

Up to 400 cm Depends highly on the sensor orientation and affected by small movements. 
Precision: 91.2% 
Recall: 92.6%

VCSEL 20 cm N/A

(Continued)
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According to the Nyquist theorem, in analogue/digital signal 
conversion, when a sampling frequency is more than twice the 
maximum frequency in a signal, the sampled digital signal 
completely retains information in the original signal. For signal 
filtering, a low-pass filter with a cutoff frequency of 8 Hz is 
utilized to filter high-frequency noise because sampling fre-
quency in the VCNL4040 package is 20 Hz. Chewing signal 
normalization concerning the signal median is necessary to 
minimize signal variations in the subjects. Moreover, HtM ges-
ture signals are normalized in terms of their maximum value.

After signal normalization is completed, the signal 
needs to be divided into several epochs, which are non-
overlapping with one another. Epoch values are used to 
define the time revolution of chewing activity detection. 
The divided epochs may have parts of chewing and non-
chewing signals. Thus, these parts should be labeled 
‘chewing’ and ‘nonchewing’. Moreover, the 50% determi-
nation rule is applied to determine if an epoch should be 
categorized as ‘chewing’ or ‘nonchewing’ (Bell et al. 2020; 
Sazonov and Fontana 2012). An epoch with more than 50% 
of ‘chewing’ labels (+1) is categorized as ‘chewing’; other-
wise, it is treated as a ‘nonchewing’ epoch. The decision 
epoch feature vector is a combined set of scalar features 
extracted from each epoch’s filtered and unfiltered signals. 
The widely used features include the signal’s mean, max, 
number of zero crossings, the mean time between cross-
ings, the median time between crossings, the maximum 
and minimum time between crossings, the standard devia-
tion of time between crossings, the peak frequency and 
the standard deviation of the signal spectrum.

For classification, the obtained signal data are divided 
into two parts, namely, 70% as a training dataset and 30% 
as a test dataset. The training dataset is trained using the 
selected features and has ‘chewing’ and ‘nonchewing’ 
labels.

The SVM is a supervised learning algorithm that helps 
address classification and regression problems. SVM has 
two kinds, namely, linear SVM and nonlinear SVM. 
A linear SVM is a maximum margin classifier, which can 
formalize the notion of the best linear separator, whereas 
a nonlinear SVM extends the linear one with kernels. It 
presents data into a higher-dimensional space to make 
them linearly separable. In this project, a linear SVM is 
used to classify signals. The separating hyperplane created 
by the linear SVM is shown in Equation 4. 

w: x þ b ¼ 0; (4) 

where w is the weight vector, x is the data feature, and b is 
a scalar. This project is composed of many epochs labeled with 
‘chewing’ and ‘nonchewing’ and separated accordingly. 
Furthermore, the average classification accuracy is calculated 
using Equation 5 to identify the classification performance. 

x ¼
t
n
� 100; (5) 

where t is the number of instances classified correctly, and n is 
the total number of instances.

For the performance measurement of the proposed classifi-
cation model, the average precision and recall value result in 
the accuracy value, which is a significant parameter for evalu-
ating performance.

According to this review, the chewing signal obtained using 
a piezoelectric sensor and classified by single multiclass and 
multistage linear SVM with a decision tree classifier achieved 
the highest classification accuracy (99.85%). Overall, the deci-
sion tree approach (75.5% to 93.3% accuracy) performed better 
than the Viterbi algorithm-based finite-state grammar method 
(26% to 97% accuracy) in terms of recognizing the food type 
based on the chewing data. Ongoing research activities are 
essential in developing a robust and stable system in automatic 
dietary monitoring and chewing detection. Such a detection 
system may empower humans in food intake monitoring to 
help manage food consumption and provide beneficial 
guidance.

6. Conclusion

This study investigated various chewing signal detection 
approaches and their sensing tools. The scope of the review 
included chewing activity detection methods and chewing 
signal processing strategies as a part of automatic dietary 
monitoring. The general process flow for chewing detection 
was used to design the detecting sensing system, acquire 
a helpful chewing dataset and utilize the proper methods for 
signal filtering, segmentation, classification and performance 
measurement. Chewing detection based on noncontact sen-
sors in various applications showed potential for application in 
comfortable wearable sensors and high classification accuracy. 
In future studies, chewing data will be analyzed in relation to 
chew count and food classification. Various food types and 
many samples will be used to develop a robust automated 

Table 4. (Continued).

Type Schematic diagram Sensing type Performance to detect chewing

Organic Crystal 
(Wang et al. 2018)

Depend on the charge quantity Excellent reversibility and stability
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dietary monitoring system. The outcome of this research will 
enhance current food intake energy monitoring, analysis and 
estimation.
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Nomenclature

ADM Automated dietary monitoring
b Scalar
CPG Central pattern generator
EEG Electroencephalography
EGG Electroglottography
EMG Electromyography
HtM Hand-to-mouth movement
LOPO Leave-one-participant-out
LPFA Low-pass filtering algorithm
n Total number of instances
PPG Photoplethysmography
SpO2 Pulse oximetry
t Number of the instances that are classified correctly
ToF Time of flight
TPM Tongue pullback movements
TSM Tongue squeeze-back movements
VCSEL Vertical cavity surface-emitting laser
w Weight vector
Wtot Total muscle work
x Data
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