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Abstract— A rich model-based motion vector (MV) steganalysis
benefiting from both temporal and spatial correlations of MVs
is proposed in this paper. The proposed steganalysis method has
a substantially superior detection accuracy than the previous
methods, even the targeted ones. The improvement in detection
accuracy lies in several novel approaches introduced in this
paper. First, it is shown that there is a strong correlation, not
only spatially but also temporally, among neighbouring MVs for
longer distances. Therefore, temporal MV dependency alongside
the spatial dependency is utilized for rigorous MV steganalysis.
Second, unlike the filters previously used, which were heuristi-
cally designed against a specific MV steganography, a diverse
set of many filters, which can capture aberrations introduced
by various MV steganography methods is used. The variety and
also the number of the filter kernels are substantially more than
that of used in the previous ones. Besides that, filters up to fifth
order are employed whereas the previous methods use at most
second order filters. As a result of these, the proposed system
captures various decorrelations in a wide spatio-temporal range
and provides a better cover model. The proposed method is tested
against the most prominent MV steganalysis and steganography
methods. To the best knowledge of the authors, the experiments
section has the most comprehensive tests in MV steganalysis field,
including five stego and seven steganalysis methods. Test results
show that the proposed method yields around 20% detection
accuracy increase in low payloads and 5% in higher payloads.

Index Terms— Steganalysis, video, motion

vector, comparison.

steganography,

I. INTRODUCTION

TEGANOGRAPHY is an art of covert communication.
S The purpose of the sender, steganographer, is to hide the
existence of communication by embedding the secret message
into a carrier object and sending this innocent looking message
carrier to the receiver without evoking any suspicion. The
observant who has right to eavesdrop and investigate the
carrier object and who is also trying to detect the existence
of the secret message is called steganalyzer [1]-[3]. The
message carrying and clean objects are called stego and

Manuscript received July 6, 2015; accepted April 26, 2016. Date of
publication May 11, 2016; date of current version June 1, 2016. This work
was supported by the Engineering and Physical Sciences Research Council
through the CSIT 2 Project under Grant EP/N508664/1. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Charles Boncelet.

K. Tasdemir is with the Department of Computer Engineering, Abdullah
Giil University, Kayseri 38080, Turkey (e-mail: kasim.tasdemir@agu.edu.tr).

F. Kurugollu and S. Sezer are with the Institute of Electronics,
Communications and Information Technology, Queen’s University Belfast,
Belfast BT3 9DT U.K. (e-mail: f.kurugollu@qub.ac.uk; s.sezer@qub.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2016.2567073

cover respectively. Steganalyzer’s job is to distinguish stego
from cover. In digital steganography, the message carrier
object can be of any digital medium such as image, sound,
video, electronic documents, etc. Each digital medium has its
own advantages. When the data size and the variety of ways
to embed message are considered, video has advantages over
others. Despite these advantages of video, until lately, majority
of steganalysis researches has focused on images because of
its popularity, ease of implementation and ease of sharing
them on the Internet. However, by escalation of number of
Internet users and advancements in networking infrastructures
the number of videos shared online has increased almost 800%
over last 6 years [4], [5]. This explosive growth of online
video makes it an appealing channel for covert communication
using steganography. Consequently, this fact has drawn more
researchers in the area of video steganalysis.

Video codecs have more sophisticated system than does
images. The secret message can be embedded into not only
pixel or DCT domains but also codec specific attributes, e.g.,
motion vectors (MVs), macro block (MB) intra-prediction
types, etc. In this study, we focus on detection of the embedded
message into MV patterns using motion vector (MV) steganog-
raphy methods.

Since the research on image steganalysis iS more mature,
a sensible approach to the video steganalysis problem would
be to import and adapt the promising tools from image
steganalysis side. A recent trend in image steganalysis is
rich model based steganalysis. Fridrich and Kodovsky [6]
proposed this model for a steganalytic system against spatial
image steganography. Later, Kodovsky et al. adapted it for
JPEG images [7]. The distinctive attribute of the rich model
based methods is that it can capture many weak traces of
steganography. Therefore, a more precise cover model can
be obtained. However, Spatial Rich Model (SRM) [6] or
Cartesian Calibrated JPEG Rich Model (CC-JRM) [7] methods
cannot be directly applied to MV patterns because MVs are
distinctly different from image pixels and this difference is
rather fundamental. Firstly, source of pixel values of natural
images is related to a static scene affected by illumination
conditions as well as reflectance properties of objects whereas
that of MVs is motion of the objects or the camera. Hence,
the behaviour of the MVs are different. Secondly, MVs are
vectors and image pixel values are scalar numbers. Thirdly,
MVs have temporal information as well. Hence, any image
steganalysis method requires significant modifications before
it is applied to MV based steganalysis.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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In the light of the aforementioned findings, we designed
a rich model based universal steganalytic system against
MYV steganography. The improved detection accuracy of the
proposed algorithm lies in its five novel contributions:

o The temporal correlation of close and distant frames are
incorporated in the system.

o Higher order filters are employed. Filters up to 5th order
are used whereas previous methods use up to 2nd order
filters at most.

o Rich variety and quantity of the filters (28 filter kernels)
give the proposed method the ability to capture depen-
dencies in a wide spatio-temporal range.

o The previous methods are based on a narrow assumption
on MV modification method of stego algorithms such
as adding and subtracting one MV value. This question-
able assumption makes them rather targeted steganalysis.
We do not target a specific stego algorithm.

o Previous methods used heuristic approaches, i.e., they do
not benefit the theoretical or experimental advancements
in image steganalysis. In this work, we adapt rich model
based steganalysis, whose competence has been already
confirmed for JPEG [7] and raw images [6], for use by
video steganalysis.

The paper is structured as follows. The previous MV
steganography and steganalysis methods are alluded briefly
in Section II. The proposed MV steganalysis method is
introduced and described in Section III. Section IV contains
a comprehensive comparative tests of MV steganalysis and
steganography methods. Section IV also has several sub-
sections where we discuss the advantages and handicaps of
the methods tested. Moreover, the reasons why the proposed
method has a better detection accuracy are discussed along
with its drawbacks. Besides, the best settings for the proposed
method is provided through several tests in the same section.
Finally, the paper is concluded in Section V.

Everywhere in the paper, capital-case boldface symbols are
used for matrices and higher dimensional arrays and lowercase
boldface symbols represent vectors.

The terms spatial and temporal are widely used throughout
the paper but we need to clarify a possible ambiguity here.
Spatial do not refer to pixel values. Since we deal with MVs,
spatial should be associated with MV values belonging to the
same time instant, i.e., the same frame.

To facilitate the comprehension of the paper, we use a
naming convention based on the first author names instead
of numbering the methods. The previous method [8] by
Deng et al., which uses reconstructed MVs, is named as
DengRec and the method [9] by the same authors, which
incorporates center of mass (COM), is named as DengCom.
The other steganography and steganalysis methods [10]-[19]
are named respectively as Xu, Fang, He, Zhang, Aly, CaoStego,
Su, Cao, AoSO, Tasdemir, Accordion unfolding SRM (ASRM).

II. PREVIOUS METHODS
Currently, there are limited number of MV steganogra-
phy [10]-[12], [14], [20]-[27] and MV steganalysis algo-
rithms [8], [9], [13], [15]-[18], [28].
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MYV steganography algorithms can be categorized into two
groups according to their MV modification strategies such as
magnitude modifying and phase modifying. Magnitude mod-
ifying stego algorithms add or subtract 1 from the magnitude
value of the candidate MV component/s. On the other hand,
phase modifying stegonography algorithms divide cartesian
coordinate system into imaginary sections each of which
corresponds to bit 0 or 1. Then, the candidate MVs are rotated
so that they are positioned in an appropriate section which
is in agreement with the secret message bit. Although phase
modifying stego algorithms evidently cause more degradations
in MV patterns than magnitude modifying stego algorithms,
they are, however, surprisingly more secure against previous
MYV steganalysis methods. The reason is that the vast majority
of the previous MV steganalysis algorithms design their fea-
tures by assuming that the magnitudes of message carrier MV
components are slightly modified [8], [9], [13], [17], [18], [29].
For example, the most recent MV steganalysis method,
AoSO [17], investigates whether the current MV is shrunk
or enlarged by 1. It, therefore, fails to detect phase modifying
stego algorithms.

Video has temporal information as well as spatial. In this
study, it is shown that temporal dependency is as strong as
spatial dependency in MVs. Therefore, in order to design a
robust steganalytic system temporal dependency should also be
taken into account. There are some methods which considers
temporal dependency [9], [15], [19], [20], [28] and some
other which does not [8], [16]-[18]. However, none of the
previous methods considers temporally neighbouring frames
further than one next or previous frames. It is also shown
that temporal correlation of the MVs remains for temporal
distances more than next five frames, depending on the content
of the video. Thus, it is conjectured that considering longer
distant frames will result in better accuracy in steganalysis.

Although there are also slightly related video steganography
methods which do not directly modify MVs but interfere
motion estimation process such as [27], they are not taken into
account in this work since only the methods which specifically
changes the MVs are considered.

General approach of MV steganalysis algorithms is mod-
elling stego disturbance on MV patterns and generating fea-
tures representing this disturbance. Then a machine learning
classifier is trained with these features and it is used to classify
a given video into stego or cover classes. Conventionally in
MYV steganalysis works, the disturbance due to embedding is
modelled as additive independent noise on MV magnitudes.
Majority of MV steganalysis algorithms are based on this
assumption [8], [9], [13], [17], [18], [29]. Even if using this
distribution could be effective against LSB steganography,
this model cannot be used to detect phase modifying stego
algorithms as the MV is moved more than one unit distance.
This fact will be also demonstrated in the test section experi-
mentally (Section IV).

Most of MV steganalysis algorithms employ high-pass
spatial filters to extract the features. Earlier methods use first
order spatial filters but then the following methods integrated
second order spatial filters as well. Then, Ye et al. [28] showed
that using temporal filters contributes to the accuracy which
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agrees what is shown in Fig. 2. In this study, the order of filters
is risen up to five in both spatial and temporal domain in order
to capture the decorrelation in the underlying distribution of
motion vectors due to embedding in a wide range.

Another approach to MV steganalysis problem is to obtain
a cover model rather than modelling the stego message distur-
bance. The methods in this category [8], [16], [17] try to find
the original MV by different means such as re-compressing
and decompressing the video or using neighbouring MVs etc.

The very first MV steganalysis algorithm [13] and the
following methods [9], [15] investigate the first order statistics
of corruptions caused by LSB embedding.!

Cao et al. states that expected values of MVs of a re-
compressed video are equal to that of the cover video [16].
In other words, they state that we can recover the original MV
with a high probability by decompressing and compressing a
stego video. By using this assumption, their method utilises
the distance between MVs before and after re-compression.
However there is a problem with this assumption. In a realistic
scenario the search algorithm used in the motion estimation
stage is unknown to the steganalyzer. It is stated in [17] that
Cao’s method suffers if a different search algorithm is used
in the second compression. This statement is investigated and
confirmed in Section IV-D.

Another MV steganalysis method based on MV recovery
has been presented in [8]. In this method, a lost MV recovery
algorithm using polynomial kernel regression on 8 neighbour-
ing MVs is proposed. Then this lost MV recovery method is
employed for estimation of the cover MVs.

A targeted MV steganalysis for LSB steganography has
been proposed by Tasdemir er al. [18]. It is stated that
flat areas, which are common in MV patterns, are highly
corrupted by LSB embedding. The statement is supported by
a theoretical proof. Their features are based on the corruptions
on flat areas. Despite the fact that it accurately models LSB
corruption on MVs, it cannot be used against phase modifying
MYV steganography methods.

The most recent MV steganalysis algorithm, AoSO [17],
performs a local MV search around current MV in a one-
pixel wide search window. It is reported that if the new MV
is found in the same position of the current MV, then it is
more likely to be a cover video. It is more likely to be a stego
if the optimum MV is found one-pixel close to the current
MV. However, it is not clear whether half pel®> or quarter pel
resolution is taken into account. That is, if quarter pel search
window width is used, then the stego MV will be % pixel away
from the current MV. Half pel resolution is adopted in our
AoSO implementation since it is the typical setting in a real
scenario. AoSO has also several other pitfalls. Even if AoSO’s
assumption is true, when phase modifying stego algorithms
are used, MVs are always going to be the local minimum
because motion estimation is performed in a large region.
Therefore, AoSO’s one-pixel wide search window will miss it.
Another problem is with B-type MBs. These MBs have both

'In this brief review, only the related part of the methods are introduced.
The readers are referred to the original publications for further details.

2pel is a technical term used in video coding standards. It is a measure for
the pixel distance.
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forward and backward MVs, which points to future and past
frames. When searching for a new MYV, the residual error is
calculated by extracting current MB from the average of future
MB and the past MB. Therefore their aggregate residual error
is minimum rather than individual residual errors. Because of
that, intuitively the optimum forward MV and backward MV
should have been searched simultaneously in AoSO [17].

III. PROPOSED SPATIO-TEMPORAL RICH MODEL (STRM)

In this section, first a new term, motion vector plane,
is defined and then the proposed Spatial-Temporal Rich
Model (STRM) for video steganalysis is presented in
Section III-B by pointing out the contributions over SRM and
other previous MV based steganalysis methods.

A. Motion Vector Planes

Each MV has x and y components. If the macroblock is
of type B, its corresponding MVs have four components,
ie., x and y for both backward and forward predictions.
MYV patterns of a B frame is distinctly different than that of
P frame. Therefore, MVs should be grouped according to their
frame types. This technique was used before by [9] and [15]
as well. In our method, we group components of MVs together
according to their frame type and carry out feature extraction
on these groups individually. Or more precisely, same type of
directional components (x or y) of MVs of the frames with
same frame type (B or P) and same prediction type (forward or
backward predicted) are grouped together. It would be useful
to introduce a new term here. Each MV matrices of a frame
with same prediction type and same component is named as
MYV plane. For example, a typical B frame would have 4 MV
planes (forward predicted x and y components, backward pre-
dicted x and y components). Let V € {—W, ... W} represent
a MV component where W is the search window width in
motion estimation (ME). Then, all sets of MVs in a video is
denoted as MV = (MV; ;) € {Uce{xjy}jde{fjb}V(C°d)}MXN
where ¢ denotes the direction of the component (x or y),
d stands for the prediction direction ( f and b are abbreviations
for forward prediction and backward prediction). Spatial and
temporal coordinate of the corresponding MB is represented
by (i, j) and k respectively. The symbols M and N are used for
row and column size of 2D macroblock array in a frame. (For
example, a CIF video is of size 322 x288 pixels. Then, it would
have M = (288/16) = 18 and N = (322/16) = 22, if the
MB size? is 16 x 16). MV plane is 2D matrix slice of MV at a
specific frame, type and coordinate, V,((f"dl) = (Vifj:’,il:’zlzd‘) €
(=W, ..., W}M*N Formal definition of a MV plane block is

V]((Cl>d1),k=(n_2,n—1,n,n+1,n+2) M

where n is an arbitrary number corresponding to the
order of frame of the current MV plane and Vl((cl’dl) €
{(—W, ..., W}MXNX5 Feature extractions will be carried out
on the MV plane blocks as explained in Section III. The reason
why five MV planes are taken into account will be explained
at the end of this subsection.

3MB size can vary according to the codec used. MPEG-1/2 is used in the
examples.
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Temporally and spatially neighbouring pixel correlation of consequent 100 frames of a video. (a) Three frames of video foreman (25 fps). Correlation

of (b) Horizontal and vertical, (c) diagonal and minor-diagonal neighbouring pixels.

Horizontal-Vertical

Correlation

Diagonal-Minor Diagonal

corr coef

Horizontal-Vertical

Correlation

Fig. 2.

Diagonal-Minor Diagonal

Correlation

Correlations of spatially and temporally neighbouring MVs of a slow and fast video. The first column shows Screenshots of a fast moving video

Jfootball (25 fps) (above) and a slow moving video container (25 fps) (below). The second column depicts the Pearson correlation of horizontally and vertically
neighbouring MVs while the third Column illustrates that of diagonally and minor diagonally neighbouring MVs.

MVs have different characteristics than image pixels
because of two major reasons. First, their sources are distinct.
MVs are associated with the motion of the objects or the
camera where image pixels are effected from intensity and
colour of the reflected light. Secondly, the number of pixels
in a frame is much higher than that of MVs. For example, there
are typically 256 times more pixels than MVs in a MPEG1/2
video. Or more precisely, (number of pixels)/(number of MVs)
ratio in MPEGI1/2 video is in 128-256 range. This ratio
is between 8-256 in a H.264, 8-4096 in a HEVC video.
These differences give both advantages and disadvantages over
images in terms of steganalysis. The disadvantage of MVs is
that they have weaker correlation compared with pixel values.
Fig. 1 shows that the correlation of temporally and spatially

neighbouring pixels remains over 0.75 for around 10 pixel
distances whereas that of MVs, see Fig. 2, quickly drops
below 0.6 after only one MB distance. Therefore, a cover
model of MVs based on neighbouring MVs would not be
as accurate as for that of image pixels. Hence, detection
rates obtained in image steganalysis is practically unattainable
for MV steganalysis if only spatial dependency in a frame
is exploited. Unlike images, however, MVs have temporal
correlation. Thus temporal dependency can be used in order
to reveal any aberrations in MVs. In order to decide on the
temporal and spatial coverage of the system to be designed,
first, correlations of MVs of two videos for different spatial
and temporal neighbouring distances are investigated as illus-
trated in Fig. 2. A fast moving video football (above) and a
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slow moving video container (below) are used in the test to
highlight the difference. Axes of the plots on second and third
row correspond to temporal and spatial neighbouring distance
of compared MVs. The vertical axis is Pearson correlation
coefficient. Pearson correlation coefficient is calculated for up
to six spatial and five temporal MV neighbouring distance.
It is evident from the Fig. 2 that there exist a temporal
correlation as well as a spatial one in MVs of a video. The
strength of the correlation is highly related with both spatio-
temporal distance and content of the video. If the video has
steadily slow moving objects (see Fig. 2b), its MVs have
smaller values and are more susceptible to be suppressed
by noise. Therefore, spatial correlation falls down quicker
in a slow video. However, temporal correlation retains its
strength for a longer period of time because the moving object,
which is the source of the salient MVs, remains its position
in the scene longer. On the contrary, MV correlation of a
fast moving video (see Fig. 2a) exhibits opposite behaviour
where spatial correlation is stronger than temporal one. In this
case, lower temporal correlation is expected because objects
change their position quicker. The spatial correlation comes
from larger MV magnitudes and the bulk moving regions
which is common in fast videos. Fig. 2 also shows that major,
minor diagonal or horizontal, vertical neighbouring MVs have
similar correlations. In short, incorporating both spatial and
temporal dependencies in a MV steganalysis for around five
neighbouring distances is essential for a reliable detection
because the correlation between MVs of the MBs closer than
five spatio-temporal MB distance remains strong even in a fast
video.

B. Proposed Method

In the proposed method, features are derived from the
predictions of MVs from their neighbourhood. More formally
the residual at i’* row and j* column R;; € RM*N jg
defined as:

_ Oy (erdy) (c1,dy)
Rij = Vij(Viyl iy 1) — Vil a 2
where I7ij () is a predictor of cVi(?l’fll‘) using neighbourhood
of Vi(jl ],:111) and ¢ € N is residual order. Before calculating the

co-occurrence matrix, residuals R need to be truncated by a
quantization step g > 0:

R;j
R;j < truncr { round 7 3)

The quantization reduces the range of residuals allowing
co-occurrence matrices describe them within a small range
[=T,...T]. Calculation of co-occurrence matrix is carried out
as described in [6].

High-pass filters up to 5 order are employed. Not only
their horizontally and vertically rotated versions but also their
diagonally rotated versions are used. As shown in Fig. 2
even diagonal correlation of MVs are slightly less stronger
than horizontal and vertical ones, it is still strong enough to
incorporate in video steganalysis. Therefore, we also bring
diagonal versions of the filters into the proposed method as
in [6].
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Fig. 3. Utilizing rich filters on both spatial and temporal domain in the
proposed method. (a) MV plane block, (b) current MV block, which is
the one in the middle, (c) horizontal-temporal cross section of MV block,
and (d) vertical-temporal cross section of MV block.

SRM is only applicable to 2D data. However, MV infor-
mation of a video has at least 3 dimensions considering the
time, or the temporal, dimension. This problem is alleviated
by using accordion unfolding transformation proposed in [19].
In this study, instead of transforming 3D data into 2D as
in [19], rich filters are applied on horizontal cross sections,
vertical cross sections and spatial cross section (current MV
plane) of MV plane blocks as demonstrated in Fig. 3. First,
a MV plane block, which is formally defined in Eq. 1,
is formed by concatenation of consequent MV planes. The
yielding MV plane block for a CIF sized MPEG2 video is
illustrated in Fig. 3a. Then, the MV plane block in Fig. 3a is
sliced in spatial (Fig. 3b), horizontal-temporal (Fig. 3c) and
vertical-temporal (Fig. 3d) directions. Each filter is applied
to both spatial MV plane, which is the current MV plane, the
horizontal-temporal cross sections, and vertical-temporal cross
sections. In the figure, the yellow arrows show the surfaces that
the filters are applied to.

The horizontal-temporal slicing operation is explained
in Algorithm 1. It takes six arguments: V, k, ¢, d, ¢ and 7.
The arguments k, ¢ and d respectively stand for current
MYV plane number in the group, component type (x or y), and
prediction type (forward or backward). V is a five dimensional
matrix which contains all MV information of either all B
or all P frames of the video (As stated before, B and P
frames are grouped into two separate sets). The first two
dimensions of V stands for the MV position (row and column
number). The third dimension shows the frame number in the
group. The fourth dimension of V is ¢, which indicates if the
element is x or y component of the MV. Similarly, the fifth
index, d, shows whether it is forward or backward prediction.
MVs which has same prediction direction and which are the
same type of components (x or y) are stored in a variable V.
It is a 3D MV plane block, depicted in Fig. 3a, which has
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Algorithm 1 Pseudocode for horizontal-temporal slicing oper-
ation and co-occurrence matrix extraction.
1: procedure HORIZONTAL-TEMPORAL SLICING( V, k, c,

d, q,T)
2: V<« V51 ¢,d) > MV plane block is formed.
3: for i=1 to M do
4: for j=1 to N do _
5: HT]j, end+1:end+5] < Vi, j,k-2:k+2]
6: end for
7: Residuals <— Apply Rich Filters to HT.
8: end for
9: Residuals < Quantize Residuals with ¢
10: Residuals < Truncate Residuals with T’

return Calculate Co-occurrence matrices from the
Residuals
end procedure

—_
—

,_.
»

all either x or y components of MVs of same prediction
direction. The other two arguments, ¢ and 7', are the required
parameters of quantisation and truncation stages. First, first
rows of two previous, current and two next MV planes are
concatenated to form a 2D matrix, which is named HT. Then,
residuals are extracted from HT. This process is repeated
for each row of the MV plane block. Then, the residuals
are quantised with a scalar g. Subsequently, the quantised
residuals are truncated with parameter 7. Finally, features,
the co-occurrence matrices, are calculated from the quantised
and truncated residuals. Vertical-Temporal slicing and feature
extraction is performed similarly.

The spatial slice of a MV plane block has horizontal and
vertical statistical symmetry as in images. That is, we expect to
have similar statistics of MVs if the slice is rotated 90°. How-
ever, unlike Fig. 3b, the temporal cross sections Fig. 3¢ and 3d
do not have statistical symmetry in all 4 directions because
a spatial slice contains intra-dependencies of MVs in a frame
whereas temporal cross sections exhibits inter-dependencies of
MVs among frames. They have symmetry from left to right
or top to bottom individually. Hence, vertical and horizontal
co-occurrence matrices cannot be added for temporal cross
sections; the resulting feature vector size increases in temporal
cross sections. Therefore, spatial and temporal cross sections
yield different size of feature sets.

Individual and collective performance of feature vectors
extracted from spatial, horizontal-temporal (HT), vertical-
temporal (VT) cross sections are shown in Fig. 4. Fig. 4
is obtained by applying the proposed algorithm only with
spatial, VT and HT features to all of the data set used in
Section IV and then averaging the results. It is evident from
Fig. 4 that temporal data contributes more than spatial data
but the collection of all features provides the best results.

1) Structure of the Feature Vector: For an easier interpre-
tation of how the filters given in [6] are adopted, one of
these filters is taken as an example and feature extraction
from MV planes is demonstrated in this section. Let’s take
the following second order minmax filter as an example:

Rij =min{X; j 1 —2X; j+Xijr1, Xi—1,j —2Xi j+Xip1,5}
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Fig. 4. Effect of sub-feature sets given in Eq. 8. Features obtained from
HT and VT cross sections give a better model than does spatial features.
Combining the three sub-feature set gives the best accuracy.

“)

where X; ; is the image pixel value at ith row, jth column.
As this is horizontal-vertical (HV) symmetrical filter, there is
no need to calculate the residuals of 90° rotated version of the
this filter. This filter is applied to spatial (HV cross section)
(Fig. 3b), horizontal-temporal cross section (Fig. 3c), vertical-
temporal cross section (Fig. 3d) of the current MV plane block.
Structures of these filters are as follows:

Rspatiali’](-{k = min{V:}-d_1 — 2V-C’-dk + V ]+1 o
,d
Vo ik =2V jk + V&S ]k}
ie{2,....M—1}, je{2,. — 1}, k € {n} (5)
d ,d
Rhtc k—mm{ij —2ij+Vj+1k,

d
V‘cjk—l -2V ]k+ Vi ]k+1}

l,,

ief{l,.... M}, je{2,....,.N—1}, ke{n—1,n,n+ 1}
(6)
thljk—mm{V ljk_2V1k+V+1]k’
Vit = Vit Vi)
ie{2,....M—1}, je{l,...,N}, ke{n—1,n,n+ 1}
(7

where n is the current MV plane number, ¢ € {x, y} and
d € f{forward predicted, backward predicted}. Residual sub-
scripts spatial, ht and vt indicates that these residuals are
obtained from the cross sections spatial, horizontal-temporal
and vertical-temporal. Then, the residuals are quantized as in
Eq. 3. It is found that quantizing with various quantization
values does not noticeably improve accuracy (See Table I).
Thus, we only take g = 1 in order to reduce the feature size.

In our proposed method, these filters are not only applied to
spatial (horizontal-vertical) cross section of MV plane block,
but also to its horizontal-temporal and vertical-temporal cross
sections. HT and VT co-occurrence matrices requires different
dimension reduction approach than that is used for images
because the residuals have different statistics in temporal and
spatial dimensions. It is assumed that natural images would
have the same statistics if the image is rotated by 90°. However
in our case, this assumption only can be used for spatial
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TABLE I

TESTING THE ACCURACY DIFFERENCES WHEN DIFFERENT
QUANTIZATION AND CO-OCCURRENCE MATRIX SIZES
ARE USED IN VARIOUS PAYLOAD RANGES. THE BEST

SETTINGS AREFOUNDTOBEg =1ANDT =2

Payload range  Ag—_(11.52) — Ag=1  Ar—g — Ar—1
0.0 - 0.1 6.95 87.93
0.1-0.2 5.05 36.33
02-03 -0.92 44.85
03-04 0.36 20.63
04-05 -7.59 16.48
0.5-0.6 -8.25 29.32
0.6 - 0.7 8.56 19.09
0.7-0.8 2.50 19.31
0.8 -09 -3.35 14.97
09-1.0 5.67 12.83

residuals such as eq. 5. There is only horizontal, vertical and
temporal symmetry individually in the statistics of a MV plane
block. Hence, it is necessary to take horizontal and vertical
co-occurrence matrices of HT and VT cross sections into
account individually. That is, there are two co-occurrence
matrices for each filter whether or not it is HV symmetrical. As
a result the total feature set size is 1275342 x ((7 x2) x 169+
(21 x 2) x 325) = 12753 4 16016 4+ 16016 = 44785 unlike
in SRM.

Our final feature vector is the collection of spatial, HT and
VT sub-feature vectors as follows:

44785 12753 16016 16016
r— —t— = =
Feombined * (Fspatial, Fue, Fy). (8)

Individual dimensions of the feature vectors in Eq. 8 are given
above each one. Contribution of each sub-feature vector and
the final feature vector Feombined 1S shown in Fig. 4. We have
employed all the filters given in [6] to spatial, HT and VT
cross sections of MV plane blocks but these filters are not
explicitly listed here for brevity.

IV. COMPARATIVE TESTS

The purpose of this section is twofold. The first one is
to demonstrate the contribution of the proposed method over
previous adversary methods and to investigate its performance
individually against current MV steganography methods. The
second one is to give a clear cross comparison by investigating
both the accuracy of MV steganalysis algorithms and also the
security of MV steganography algorithms in various payloads.
For an objective comparison, the most recent MV steganaly-
sis method AoSO [17] and other 3 steganalysis methods,
namely, DengRec [8], DengCom [9], Su et al. [15] are imple-
mented. The most prominent MV steganography methods
Xu et al. [10], Fang and Chang [11], He and Luo [12],
Pan et al. [23], and Aly [24] are also implemented for message
embedding by means of an open source library [30]. Some
steganalysis methods mentioned above are only applicable to
P frames only. If such methods were being tested, IPPP GOP
structure was used. IBPBI GOP structure is used for the rest.
Except GOP structures, 100 unique CIF sized videos each
containing 100 frames are encoded with the same settings.
Full parameter settings are as follows:

o Size: 352 x 88 (CIF) Coloured
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TABLE 11
TEST SETTINGS FOR STEGANOGRAPHY ALGORITHMS USED IN THE TESTS

Name | Threshold Number of Regions
Aly PEF min: 15db max: 60db
Xu 5 -
Pan 5 16
He 5 16
Fang 5 8
« Bitrate: 1152000 bit/s
o Framerate: 25 fps
o Mode: Progressive

o Chroma sub-sampling: 4:2:0

o Stream type: ISO/IEC 11172-2
o Aspect ratio: CCIR601 625 line
o Video format: PAL

o Intra DC precision: 8 bit

o P frame W: Horizontal: 13
o B frame W: Horizontal: 8
« Motion search algorithm:

o Motion search resolution: Half pel

The final data set was comprised of total 700 stego
and cover videos which makes 700000 frames on total
(550000 P type MV plane, 1000000 B type MV plane).
Settings of the steganography methods used in our tests are
given in Table II. Prediction Error Frame (PEF) limits for Aly’s
embedding method are set to 15db for minimum and to 60db
for maximum. Thresholds of other embedding methods are set
to 5 and number of regions are set to 16, 16 and 8 for Pan,
He and Fang respectively

In steganography, payload is the relative amount of infor-
mation embedded into the carrier object. When the amount
of the information in the object is higher, more degradation
in it is expected and steganalysis is expected to be easier.
Conventionally, payload can be determined by the sender in
image steganography methods. However, all MV steganog-
raphy algorithms allow user to alter the payload by only
choosing an appropriate MV threshold rather than payload
itself directly. Thus, a stego video data set with a predefined
payload cannot be generated in a realistic scenario. Therefore,
we carried out tests for various thresholds and split the test set
with respect to resulting payload range instead of modifying
the original stego algorithms to restrict them into a payload
range. Thus, different payload ranges include different amount
of data set, e.g., in our test set, payload range 0.0-0.1 has
substantially more samples than 0.5-0.6. This results in a
slight drop in detection accuracies of the tested steganalysis
algorithms especially in payload range 0.5-0.7.

The test results in the plots are left empty if there is less
than 10 samples in that payload range (For example, DengCom
has no test results for payload range 0.8-0.9). Tests are carried
out for ten different ranges of payloads. Nevertheless, the
conventional meaning of the term payload is slightly abused
here because of the reasons elaborated on presently.

The feature vectors of some steganalysis algorithms are
extracted from a wunit containing a group of frames. For
example, a unit contains 6 consequent same type of frames

Vertical: 13
Vertical: 8
Exhausted (full)
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TABLE IIT
OPTIMUM SETTINGS FOR PROPOSED STRM OBTAINED FROM TRAINING AGAINST 5 MV STEGO METHODS IN VARIOUS PAYLOAD RANGES ARE GIVEN

Payload 00-0.1 01-02 02-03 03-04 04-05 05-06 06-0.7 0.7-0.8 0.8-09 09-1.0
0OB (1073) 1455 110.0 104.1 72.5 65.4 47.8 339 28.5 31.0 7.6
Aly  Dgyp 1800 1200 800 850 775 775 600 400 400 1000
L 220 179 109 230 240 235 168 147 111 104
0O0B (1073) 258.4 79.2 61.9 40.5 559 109.5 50.3 15.2 18.2 3.8
Fang Dy 2000 800 800 500 400 250 400 300 400 300
L 197 145 359 391 500 500 319 339 152 74
0O0B (1073) 321.5 155.8 165.6 146.4 121.5 235.8 180.3 114.2 74.0 41.0
He Dgsyp 1600 925 325 325 219 250 263 300 200 338
L 179 360 471 500 320 500 500 500 289 500
0O0B (1073) 325.1 159.6 144.1 132.4 118.8 252.4 156.3 87.1 47.6 41.0
Pan Dy, 1800 925 600 300 350 262 250 325 350 300
L 168 255 500 500 500 500 500 500 290 304
0O0B (1073) 264.7 149.3 131.1 83.7 65.1 70.8 44.4 412 253 26.3
Xu  Dgyp 2400 950 487 450 300 225 200 200 575 300
L 207 325 500 500 273 500 500 145 494 478

in [15] where a unit contains 1 MV plane in [19]. This makes
it impossible to carry out a pairwise comparison because of
two reasons. Firstly, when a unit is classified as stego by a
steganalysis method, it does not say anything about individual
frames in that unit. Secondly, when comparing them in various
payload ranges there would be many gaps in the higher ranges,
since it is unlikely to have a unit with full embedding rate,
where all consequent 15 MV planes are fully embedded.
In order to overcome this problem, units are sorted with respect
to total amount of message bits they are carrying. We consider
the unit with the highest amount of message bits as the unit
with full payload even if it is not in the literal sense. Then, the
data set is split into 10 payload ranges starting from O to full
payload. Hence, the full payload in Fig. 5 means the maximum
payload that could be embedded in a unit of frame/frames in
the tests.

Test videos are generated using raw image sequences [31].
Since some of the steganalysis methods works only for IPPP
or IBPB GOP structures, each image set is encoded two
times so that each cover video has its both IPPP and IBPB
GOP versions. Five stego algorithms are included in the
tests. Hence, each cover video has its corresponding stego
versions. A randomly generated secret message bit sequence
with independent and identical distribution is embedded to
each stego video. Then, MV planes are extracted from the
video set and sorted by their payload. There is always a cover
MYV plane corresponding to each stego MV plane in a payload
range. Training and test are performed for every payload range
individually in order to reveal the precise detection accuracy
of the MV steganalysis methods with respect to the amount of
the message embedded in the stego video. Half of the stego
videos in a payload range are used for training the steganalytic
systems and the other half is used for testing. The videos
with GOP sequence IPPP or IBPB are managed separately
in trainings and tests. When a steganalysis method is trained
with a stego and a cover video set of IPPP GOP structure, it
is also tested with a video set of same type of GOP structure,
IPPP. IBPB is used otherwise. Then the results are averaged.
All settings of training and tests are applied as explained in
the related publications.

In order to have a fair comparison of the MV steganalysis
methods [8], [9], [15], [19] with respect to various payload
ranges, they are trained half of the samples in that payload
range which are randomly selected. We trained our proposed
STRM against every payload range and every steganographic
method as well. We have used an ensemble classifier as it
is more convenient for larger data sets [6], [7], [32], [33].
Table III shows the optimum settings for our method found
in the training stage. Out of bag error (OOB) shows the error
obtained from cross validation during the training. L stands
for optimum number of learners and Dy,; shows optimum
subspace dimension for that L. For a detailed descriptions
see [6]. The table shows that the system has less training
error in higher payloads. As we expect, OOB and Dy
decreases as the payload increases for any steganographic
method. When the payload is high, the expected corruption in a
MYV plane is also high. This corruption reduces the chances of
a stego evading from the ensemble classifier. We should also
point out that the computational bundle is lower for higher
payloads because corresponding number of learners and the
subspace dimensionality is remarkably lower in contrast to
other payloads.

All test results are shown in Fig. 5. The tests are repeated
for 10 times. Thus, each data point in Fig. 5 is the average
of 10 train-test results. Each plot in Fig. 5 shows the accu-
racy vs payload plots of all steganalysis algorithms against
every steganography algorithm given in the title of the graph.
Accuracy Py is calculated as:

Pys=1—(Pr+ Py) 9)

where Pr and Py are experimental probability of false
detection and miss detection respectively. We tested our pro-

posed spatial only features and spatial + temporal features
combined (STRM) in order to observe the contribution of
temporal features. The tests also include our previous method
accordion unfolding ASRM [19], which is the closest rival of
proposed STRM.

In short, Fig. 5 shows that proposed STRM method has
an outstanding accuracy in contrast to previous adversary
methods against any steganography methods tested. The test
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results given in Fig. 5 merit an elaborate discussion. More
detailed discussions are given in the following subsections.

A. Performance of the Proposed STRM Steganalysis Scheme

As it is shown in Fig. 5, overall accuracy of rich model
based steganalysis methods (ASRM, STRM) are higher than
the others. However, the gap between the accuracies of pre-
vious and rich model based methods differs according to
used stego method in tests and the embedding ratio range.
Rich model based methods have substantially better detection
accuracy against LSB based steganographic methods [10], [24]
and the phase modifying method, Fang and Chang [11], in
any payload range. MV phase modifying methods [12], [23]
is less detectable by rich model based steganalysis and oth-
ers in mid and lower payload ranges. Actually, rich model
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Seven steganalysis methods are tested against MV steganography methods: (a) Xu, (b) Aly, (c) He, (d) Pan, (e) Fang.

which use only spatial features falls behind Deng’s recon-
struction based steganalysis against He and Luo [12] and
Pan et al. [23] for lower payloads. Nevertheless, the proposed
STRM algorithm succeeds both spatial only rich model and
our previous Accordion Unfolding SRM (ASRM) method in
every test. The major reason for this is the larger spatial
and temporal coverage of the proposed method. Moreover,
unlike ASRM, STRM can capture both horizontal and vertical
correlations in same manner. In ASRM, MV plane block is
accordion unfolded either in vertical or horizontal direction.
There is, however, a slight drop in payload (0.5 — 0.6)
range. This aberration in the graph is due to underfitting
of the machine learning stage, which is a result of having
less number of samples in that range (it was discussed in
Section IV). The accuracy of rich model based steganalysis
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methods goes beyond 90% after about 0.2 embedding rate
against Aly, Xu and Fang. This shows that if the payload is
higher than 0.2, the proposed system can reliably detect LSB
based steganographic methods as well as phase modifying
based ones which divides the region into less than 8 sections.

If only spatial SRM and spatio-temporal rich model are
considered in Fig. 5, it is noticed that there is an ample
amount of increase in accuracy thanks to the temporal features.
Temporal features give extra around 5% accuracy in mid and
high payloads, 20% in low payloads against Aly and Xu.
These results conform with our investigation on the correlation
between MV plane of current frame and that of temporally
neighbouring frames depicted in Fig. 2.

B. Comparison of Motion Vector Steganalysis Methods

Results show that STRM and ASRM are better in terms
of overall classification accuracy. However, this order changes
for some specific cases. For instance, when the payload is
greater than 0.5, Su’s method has better accuracy than AoSO
against Xu. On the other hand, DengRec acquires the top
place only at payload range (0.5 — 0.6) against Pan and He.
These fluctuations comes from the employed machine learning
algorithm and settings. As we stated before the number of
samples vary in payload ranges. Some methods, especially
the proposed STRM method, are more prone to underfitting
problem for insufficient number of samples. For example,
DengCom extract features from 15 frames. Thus, its data
set size is 15 times smaller than AoSO’s. Thus, DengCom
requires more sample frames than AoSO does for a better
training. As seen in Fig. 5c,d,e, insufficient number of samples
at payload range (0.5 — 0.6) cause a slanting drop in accuracy
for our method as well.

Surprisingly, AoSO do not perform better than previous
steganalysis methods against Xu and Aly. One possible reason
is that half pel resolution is used in motion estimation stage of
tests, which is more common than full pel resolution in a real
scenario. Locally optimal MV search is bounded to a 3 x 3
half pel sized search box in AoSO method. Not surprisingly,
A0SO fails against phase modifying stego methods because
it is not designed to catch such aberrations in MV patterns.
It is only supposed to work if the MV has not been changed
more than 1 pel. The feature vector depends on only PEF by
reorientation of a MV only by 1 pel. Nevertheless, Pan, He and
Fang methods rotate the MV much further than 1 pel distance.
Even the extensive modification makes these stego methods
conducive to be easily detected, the limitation of the features of
A0SO precludes it from discerning the abnormality. Threfore,
A0SO cannot be used against phase based MV steganography
algorithms.

DengRec, which uses reconstructed MVs to form a cover
model, is the most competitive accuracy plot among the
other methods. Nevertheless, it should be noted that only full
search is used in motion estimation stage of construction and
reconstruction of the videos. As reported in [17], the accuracy
of video steganalysis methods relying on reconstructed MVs
drastically declines if a different MV search technique is used
in ME stage. This is also tested and shown in Section IV-D.
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C. Comparison of Motion Vector Steganography Methods

The first finding that the tests reveal about stego methods
is the superiority of MV phase based stego systems over MV
magnitude based ones. As it is evident from Fig. 5a and 5b,
Aly’s and Xu’s methods are the most vulnerable MV stego
methods among others. Instead of the phases of MVs, they
alter the magnitudes of MVs to embed the secret message.
The MV phase altering methods, He and Pan, divide the
cartesian coordinate into 16 regions where Fang divides it into
8 regions. Fig.5c,d,e shows that 16 regions are more secure
than 8 regions. If the number of regions is 8, STRM can detect
these methods with over a 90% accuracy after payload 0.2 as
seen in Fig. 5e. It should be pointed out that a steganalytic
system could be designed to reveal the corruptions in MV
phase patterns but none of the current adversary methods takes
MYV phases into account.

The difference of Pan from He is that it uses coset syndrome
coding to reduce the number of MV changes. However, coset
syndrome coding did not provide a considerable extra security
for Pan as they are virtually same in terms of security. The
performance of both methods can be compared in Fig. 5c,d.

The most degradation in MV patterns is caused by Aly’s
algorithm because it alters the zero MVs as well as nonzero
ones. Typically, MV patterns have wide clusters of zero MVs.
Distortions in these regions can readily detected. Another
drawback of Aly is when a MB is chosen as a candidate,
all corresponding MVs are altered, no matter what their mag-
nitudes are. When a message is embedded into a B frame, all
four MV planes are effected at the same degree. Occasionally,
some MV planes of cover videos are zero matrices. After
message embedding using Aly, they are highly corrupted and
makes the video vulnerable to detection.

D. Comparison to Reconstructed Motion
Vectors Based Steganalysis

Cao et al.’s steganalysis method differs from others. Stego
video is decompressed and compressed back again in order
to retrieve the original MVs. However, there is a problem
with this approach. Motion estimation used in the first com-
pression is not known to the steganalyzer. If the second
motion estimation method is the same, recovered MVs are
most likely to be same as untampered ones. It is stated
in [17] that if a different motion estimation method used in
second compression, the accuracy of Cao et al.’s steganalysis
method deteriorate sharply. Thus, the proposed STRM is
compared with Cao er al.’s separate from the tests given
in Fig. 5. First, both methods are tested when the first motion
estimation (ME1) is as same as the second one (ME2).
Four different ME methods are incorporated in the tests:
Enhanced Predictive Zonal Search (EPZS) [34], Diamond
Search (DIA) [35], Hexagon-based Search (HEX) [36] and
Exhaustive or Full Search (ESA).

The same raw image sequence used in the previous test is
compressed using various motion estimation methods (ME1)
and a random message is embedded into them using Xu,
Aly, Fang, He and Pan steganography methods using an open
source library [37]. Then, the video set is decompressed
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TABLE IV

DETECTION ACCURACIES OF CAO AND STRM ARE COMPARED
WHEN ME1 = ME2 = EPZS AND ME1 = ME2 = DIA

EPZS, EPZS DIA, DIA

Payload Range  Mag Pha Mag Pha
0.0 - 03 0.871 0.828 0.855 0.743
Cao 0.3 -0.6 0948 0.957 0902 0.872
0.6 -1.0 0912  0.943 0.885 0.903
0.0-0.3 0.853 0.808 0.830 0.784
STRM 0.3 -0.6 0949 0.867 0948 0.852
0.6 - 1.0 0968 0.922 0960 0.918

TABLE V

DETECTION ACCURACIES OF CAO AND STRM ARE COMPARED WHEN
MEI1 = EPZS # ME2 = DIA AND ME1 = DIA # ME2 = EPZS

EPZS, DIA DIA, EPZS

Payload Range  Mag Pha Mag Pha
0.0-03 0.661 0.636  0.587 0.587
Cao 03 -0.6 0.719  0.760 0.626  0.709
0.6 -1.0 0.756  0.719  0.725 0.654
0.0-03 0.853 0.808 0.830 0.784
STRM 0.3 - 0.6 0949 0.867 0948 0.852
0.6-1.0 0.968 0.922 0960 0.918

TABLE VI

DETECTION ACCURACIES OF CAO AND STRM ARE COMPARED WHEN
MEIl = HEX # ME2 = ESA AND ME1 = ESA # ME2 = HEX

HEX, ESA ESA, HEX
Payload Range  Mag Pha Mag Pha
0.0-0.3 0.585 0.533  0.530 0.506
Cao 03 -0.6 0.617 0.648 0.619 0.647
0.6 - 1.0 0.755 0.746  0.656  0.708
0.0-0.3 0.765 0.756 0.842 0.783
STRM 0.3 -0.6 0915 0.861 0933 0.914
0.6 - 1.0 0955 0914 0970 0.975

and re-compressed with the second motion estimation
method (ME2). Stego methods employed are seperated into
two groups, i.e., Phase Modifying (Pha) and Magnitude Mod-
ifying (Mag). Xu, Aly belongs to the group Mag and Pan,
He, Fang belongs to the group Pha. The tests are carried out
for three levels of payload ranges. Table IV,V,VI shows the
test results when ME1 = ME2 and when ME1 # M E2. The
top row shows the motion estimation used during message
embedding and the motion estimation used in re-compression
stage. As our STRM algorithm does not requires any
re-compression, the second ME (ME2) is only relevant to rows
belonging to Cao et al.’s method.

Table IV shows that Cao er al. has better performance
than STRM in low payloads and especially against phase
modifying stego methods when ME1 = ME2. However, as
it is shown in Table V and Table VI, when ME1 # ME2 the
accuracy of Cao et al. drastically drops. These tests show that
Cao et al’s steganalysis method is not practical when the
ME]1 is unknown. Moreover, STRM still has the best detection
accuracy when various motion estimation methods are used.

There is a slight increase in the accuracy of STRM when
ME1 = ESA. The reason is that MV is the most precise
one standing for the true motion magnitude and phase. Thus,
neighbouring MVs are more likely to point to the same
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direction and with the same strength. According to our tests,
the best practice for a steganographer is not to use the full
search in ME stage of the compression.

E. Choosing the Best Scheme for
Motion Vector Steganalysis

In this subsection, the results of several tests with various
settings which are carried out in order to find the best settings
for STRM against MV steganography are presented. The same
video data set in Section IV are used in the tests. The system
is trained with 3 different settings:

1) Quantization factor ¢ = 1,1.5,2 and co-occurrence

distance T = 2,

2y g=1land T =2,

3y g=1land T =1,

The average detection accuracy of the system for first, sec-
ond and third settings are noted as Ay—(1,1.5,2), Ag=(1) OF
Ar—>, Ar=1 respectively. It is revealed that using various
quantization scales does not improve the accuracy even it
does for images in [6]. The Table I exhibits the amount of
improvements by choosing different schemes. The amount
of increase in accuracy by choosing ¢ = (1,1.5,2) over
q =1 is listed in this table. It shows that the improvement is
rather insignificant. Indeed, the accuracy falls by significantly
for payload ranges (0.4-0.5, 0.5-0.6, 0.8-0.9). Therefore, the
quantisation factor, ¢ is fixed to 1 in our method. This setting
also reduces the feature vector dimension to a great extent
because feature array does not include the features calculated
when ¢ = 1.5 or ¢ = 2. Feature vector size of STRM is
reduced from 104013 to 44785 when only one quantization
is used. The co-occurrence distance 7' is another variable
that is tested. The feature vector size is trimmed enormously
by reducing 7 to 1. However, test results in Table I show
that contribution of larger T is considerably high. Conversely
setting 7 > 2 gives a feature vector size in millions, which
is practically impossible to train the classifier. Hence, we set
it to T = 2. After combining spatial, HT and VT features
with these settings the final feature vector dimension of STRM
becomes 44785.

F. Why STRM Is More Accurate and Possible
Shortcomings of the Proposed Method

There are five major reasons for why STRM has better

performance:

1) Utilizing spatio-temporal dependency: It is shown that
there is a temporal dependency in MV patterns which is
as strong as spatial dependency (See Fig. 2). Neverthe-
less, there are only limited number of MV steganalysis
methods take temporal dependency into account [9],
[13], [15], [28], [29].

2) Filters in higher orders: The previous methods inves-
tigate the correlation between frames which are no
further than 2 frames from each other. The filters in the
proposed STRM method covers up to 5 frame distance.
Larger size filters give larger coverage both spatially
and temporally. In this way, STRM can exploit the
correlation between any frames in two previous and two
next frame range.
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3) Diverse set of filters: We make use of the filters
employed in [6]. There are six classes of filters designed
for detecting different embedding distortions such as
edge discontinuities, distortions in smooth regions, dis-
tortions introduced by HUGO [38] like stego algorithms
etc. These diverse set of filters provide a wide spectrum
attack. Assembly of many weak features are more useful
than few number of strong features because the strong
features are only efficient against a certain type of stego
methods. As it is shown in Fig. 5, the filters designed
for LSB embedding suffers when they are tested against
phase modifying stego methods.

4) Importing an already confirmed method: Despite there
is a meticulous research is going on image steganaly-
sis, MV steganalysis methods are not inspired by the
advancements in image side.* We have tested many
image steganalysis methods on MV patterns. We found
that SRM provides a competitive detection accuracy
without any modification. SRM [6] and its variations [7]
have been already proven to be accurate against many
image steganography methods. However, it is first time
that SRM 1is adopted to detect MV stego methods.
We have modified the SRM algorithm in order to benefit
from temporal dependency as well. We have also showed
that image steganalysis methods could reveal the suspi-
cious corruptions on MV patterns as well as images by
a convenient adaptation.

5) Not targeting a specific embedding algorithm: All of the
MYV steganalysis methods assume that the embedding
distortion would change the MV by one pixel. However,
there are also phase modifying MV stego methods [11],
[12], [22], [23]. We showed that the steganalysis meth-
ods could not detect these stego methods as accurate as
they do LSB based stego methods. STRM does not target
either LSB or phase modifying or MV perturbing [14]
steganography. The resulting diverse set of rich features
can capture any aberrations in MV patterns caused by
message embedding.

On the other hand, memory requirement of the proposed
system is relatively high. Depending on the number of the
videos used in the test, training the data of size 44785x#MV
planes could be infeasible for a typical personal computer.
For example, in our implementation, the stego data set corre-
sponding to 0.0-0.1 payload range and embedded with Aly’s
steganography required 3.2905 GB of the memory. However,
this problem can be alleviated by a smarter implementation.
Ensemble classifier performs training and cross validation tests
on smaller dimensions. Therefore, only one chunk of the data
set can be read from the storage device at a time when required
by the ensemble classifier.

V. CONCLUSION

In this paper, we proposed a novel MV steganlaysis method
by forming a rich model which is a result of many diverse
high-pass filters. The filters can capture different types of
dependencies among MVs in a wide spatio-temporal range.

4Only exception to this is [9] and [13] are inspired by [39]
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In this way, a more descriptive model of MV patterns is
constructed. However, the feature vector size was too large for
training with SVM. Instead, we employed ensemble classifier
which is commonly used along side rich model.

We also showed that there is a strong correlation between
temporally and spatially neighbouring MVs. By using this fact,
we introduced a method to allow us to apply the filter to both
spatial and temporal MV domain. Thus, it could capture vari-
ous spatial and temporal dependencies in a longer range. Test
results showed that incorporating the temporal dependency
increased the detection accuracy of STRM by around 20% in
low payload ranges and 5% in high payload ranges. Moreover,
the proposed algorithm surpassed the previous methods in
terms of classification accuracy in almost any payload.

Also, our system does not require re-compression of the
stego video. The resulting steganalytic system outperformed
the previous re-compression based methods as well. It has been
demonstrated that the re-compression based MV steganalysis
system fails when a different MV search algorithm is used in
the second compression stage.

We have tested our MV steganalysis against 5 stego and
7 steganalysis methods. These large number of implementa-
tions make it the most comprehensive MV steganalysis test
section in the literature. That provided a clear comparison
of advantages and disadvantages of MV steganalysis and
steganography algorithms took place in the tests.

Test results also showed that phase modifying stego methods
are more secure than LSB based ones unless MV region is
divided into insufficient number of regions. In addition to the
MYV modification algorithm, motion estimation method also
effects the security of the stego video. The tests showed that
when motion estimation used in re-compression is not same as
the previously used ME, the methods based on reconstruction
of MVs fail. However, our STRM algorithm performs as
accurate as for any ME. Especially when full search is used,
the performance of the proposed STRM method attains its
maximum.

In the light of these findings, we can also add that a
steganographer should avoid these three approaches: using
full (exhaustive) search in motion estimation stage, employing
LSB rather than phase modification and dividing regions
into insufficient number of subregions. Otherwise, current
MYV steganography methods are readily detected by adversary
methods in mid-low and higher payloads.
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