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Abstract

This article aims at proposing a method to stochastically analyze values streams taking into 

consideration the effect of critical uncertainty sources on lead time. The proposed method 

combines value stream mapping (VSM) and Monte Carlo simulation to identify improvement 

opportunities. To illustrate this approach, we carried out a case study in the special nutrition 

value stream of a Brazilian public hospital. Results show that the proposed method allows the 

identification of improvement opportunities that would not be considered in the classical 

deterministic VSM approach. Further, the integration of the stochastic analysis enables the 

determination of a more realistic lead time, which supports a more assertive planning and 
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scheduling of the value stream. The proposed method addresses a fundamental gap in 

traditional VSM without adding much complexity to the analysis procedure, which is a 

common practical issue in previous works that integrated other stochastic methods into VSM. 

Keywords: Value stream mapping, Monte Carlo simulation, Uncertainty sources.

1. Introduction

Value stream analysis of an organization allows the identification of opportunities for 

improvement (Karim and Biswas, 2016). Among the most used tools to support this analysis, 

value stream mapping (VSM) conducts the systemic identification of improvement 

opportunities through the analysis of the relationship between information and material flows 

(Rother and Shook, 1999; Sakthi Nagaraj et al., 2019). The importance of such relationship for 

companies’ performance is often neglected, culminating in the implementation of departmental 

improvements whose benefits are not observed in the organization as a whole (Abdelhadi and 

Shakoor, 2014).

VSM provides a framework that supports continuous improvement initiatives, guiding them 

towards the greatest impacts for the company (Duggan, 2012). VSM is versatile and examples 

of its application are found in processing industries (Abdulmalek and Rajgopal, 2007), product 

development (Tyagi et al., 2015), civil construction (Aziz et al., 2017), healthcare (Xie and 

Peng, 2012; Wang et al., 2014; Wang et al., 2015; Tortorella et al., 2017), and in global 

commodity distribution chains (Badri et al., 2017). The large quantity of evidence on VSM 

application denotes its importance for the establishment of an integrated continuous 

improvement approach (Belokar et al., 2012; Dotoli et al., 2012). However, it is relevant to 

note some limitations related to the use of this tool. Typically, the conduction of VSM is based 

on a deterministic perspective. This can be observed in the works from Dickson et al. (2009), 
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Tyagi et al. (2015) and Tortorella et al. (2017), which did not consider the probabilistic aspects 

related to production processes. Throughout a value stream, there are several uncertainty 

sources (e.g. inventories, processing and setup times) that add variability to the flow 

(Standridge and Marvel, 2006; Seth et al., 2017; Shou et al., 2020) and negatively affect 

management activities. 

This becomes particularly critical in the case of healthcare organizations, for example, as this 

variability might have a direct impact on the quality of the service provided to patients (Xie 

and Peng, 2012). The search for efficiency improvements in healthcare value streams is 

primarily addressed by the use of VSM in its traditional form (Wang et al., 2015), not 

accounting for the stochasticity inherent to the flows under investigation (Bhuvanesh Kumar 

and Parameshwaran, 2018). This fact is also observed in other industry sectors besides 

healthcare, such as manufacturing and services, featuring both a practical and theoretical 

opportunity to integrate stochastic methods into VSM.

This article aims at proposing a method to stochastically analyze value streams taking into 

consideration the effect of critical uncertainty sources on lead time. The proposed method 

combines VSM and Monte Carlo simulation to identify improvement opportunities. Monte 

Carlo simulation was chosen due to its adaptability to different applications (Brandimarte, 

2014). Because collecting data from every single uncertainty source existing in a value stream 

may be unfeasible from a practical standpoint, our method integrated a multicriteria decision-

making tool to rank and prioritize the most critical uncertainties, hence, considering them in 

the stochastic analysis. To illustrate this approach, we carried out a case study in the special 

nutrition value stream of a Brazilian public hospital. The proposed method allows the 

identification of improvement opportunities that would not be considered in the traditional 

deterministic VSM approach. Further, the integration of the stochastic analysis enables the 

determination of a more realistic lead time, which supports a more assertive planning and 
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scheduling of the value stream (Luz et al., 2020), without adding much complexity in practical 

terms. This work builds on De Souza et al.’s (2018) study by incorporating a structured 

procedure to prioritize the uncertainty sources and enhancing the data collection process, which 

enabled more robust results.

2. Literature review

2.1. Value stream analysis and uncertainty

Among the existing practices in lean manufacturing, VSM is a method used to apply lean 

principles by examining business processes (Mcmanus et al., 2002; Lödding and Koch, 2020), 

culminating in waste reduction in a systemic manner (Duggan, 2012). VSM favors a more 

holistic perspective of the organization (Seyedhosseini et al., 2015; Ben Fredj-Ben Alaya, 

2016), highlighting wastes that can be eliminated in a relatively short period of time (Rother 

and Shook, 1999).

Although it was conceived in the context of automotive industry, traditional VSM works well 

in situations where the value stream is unidirectional (Braglia et al., 2009). However, this tool 

becomes unrealistic for organizations with a high variety and low volume of products. Further, 

VSM does not contemplate variabilities derived from uncertainty sources intrinsic to the flow 

(DeSouza et al., 2018). Belokar et al. (2012) add that uncertainty is one of the main difficulties 

for the effectiveness of a planning process, influencing aspects such as processing and setup 

time (Abdulmalek and Rajgopal, 2007; Seth et al., 2017). 

Different uncertainty sources can be found in the same value stream, such as: equipment, 

process, product, service, customer, people, suppliers, etc. (Villarreal et al., 2016). The use of 

stochastic methods that consider uncertainties and the entailed variability may be an alternative 

to assertively analyze value streams in these situations. In this sense, Table 1 consolidates the 
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stochastic methods applied to value stream analysis and presents the advantages and 

disadvantages of each one. In general, the adoption of stochastic methods enables the 

assessment of the effect of variability on the value stream performance, identifying other 

wastes that would not be evidenced based on traditional VSM (Zammori et al., 2011). 

Overall, literature analysis shows that as the scope of the value stream mapping increases the 

modeling of the value streams in a stochastic manner becomes more difficult. In most cases, it 

is hard to deal with a larger number of variables and uncertainties, which ends up increasing 

the mathematical and computational complexity (Seyedhosseini and Ebrahimi-Taleghani, 

2015). Thus, the application of more sophisticated stochastic analysis methods is more likely 

to occur in extended value streams. This fact corroborates to indications from Deif (2012), 

which emphasized the importance of an adequate assessment of the extended value stream to 

support more assertive decisions for the business. In case of value stream analysis within the 

company boundaries (door-to-door stream), the versatility of Monte Carlo simulation for the 

treatment of uncertainties inherent in the production processes stands out (Aamer, 2017; Luz 

et al., 2020). In fact, De Souza et al. (2018) have proposed Monte Carlo integration into VSM. 

However, the proposed method fell short in the prioritization of the uncertainty sources to be 

considered in the stochastic simulation, especially when there is a large number of uncertainties 

in the value stream. Our research expands on De Souza et al.’s (2018) proposition, addressing 

the main methodological drawbacks pointed by the authors.

INSERT TABLE 1 ABOUT HERE

2.2. Monte Carlo simulation
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According to Corrado and Theophilo (2004; p. 54), the “Monte Carlo method is a technique 

that uses random number generation to assign values to the variables of the system to be 

investigated.” Its use is beneficial as a technique for solving problems that involve uncertainty. 

The application of simulation in management problems requires the translation or modeling in 

mathematical terms of the physical operating system under investigation. This method allows 

the simulation of any process with a course that depends on random factors (Gentle, 2003; 

Pattanayak et al., 2019).

The versatility of the Monte Carlo simulation is evidenced by how research has been developed 

in areas such as hydrology (Vrugt et al., 2013), economic risk analysis (Arnold et al., 2015; 

Abdo and Flaus, 2016), medical sciences (Yang et al., 2015; Kramer et al., 2018), and 

ecological vulnerability assessments (Song et al., 2015). The Monte Carlo simulation 

demonstrates its usefulness in the treatment of uncertainty conditions present in varied areas of 

knowledge (De Souza et al., 2018). Specifically, for the value stream analysis, some authors 

(e.g. Deleris et al., 2004; Aamer, 2017) have already used Monte Carlo simulation in the 

treatment of uncertainties. However, these studies focused their analyses on specific 

uncertainty situations along the value streams, such as a risk analysis associated with failures 

in the delivery of supplies and the processing capacity of a distribution center. 

The use of Monte Carlo simulation as an alternative to verify the effects of variability along 

the value stream comprises a promising approach. It enables the verification of different 

scenarios, changing key factors such as levels of variability or probability distribution functions 

from some uncertainty sources (Arnold et al., 2015). This is particularly important in the search 

for a greater understanding of uncertainty sources that are often poorly addressed in the 

literature, such as the interference of human factors for value stream performance (Xie and 

Peng, 2012).
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2.3. Multi-Attribute Utility Theory

Multicriteria decision support or multicriteria decision making is a set of methods and 

techniques to help and support people and organizations to make decisions under the influence 

of a variety of criteria, and is firmly rooted in an alternative concept optimization where several 

criteria characterize the most satisfactory alternative (Kailiponi 2010). A multicriteria decision 

problem consists of a situation in which there are at least two alternatives of action to choose 

from, and this choice is driven by the desire to attend to multiple objectives. These alternatives 

often conflict with each other, so the decision-making processes that involve a high degree of 

complexity are not based on just one criterion (Alshamrani et al. 2018). The preferences of 

decision makers need to be precise, providing specific weights for each of the criteria and 

requiring stronger assumptions at each level. 

In this sense, Multi-Attribute Utility Theory (MAUT) can be used to measure the attractiveness 

of alternatives with respect to multiple attributes (Aqlan et al. 2017). To solve the ranking 

problem, an additive aggregation method is usually used, which is considered as a 

compensatory method, in which the evaluation of alternative methods takes into account the 

trade-offs between standards or compensation in methodology (Alshamrani et al. 2018). The 

advantage of MAUT compared to other methods is that it provides a more comprehensive 

assessment and allows comparison of several alternative methods (Velasquez and Hester 

2013). Besides, MAUT is considered to be a transparent method that is easy to apply because 

decision-makers can manipulate their models, assign weights to assigned standards, and 

involve simple mathematical operations making it a widely understood, multi-standard method. 

Finally, another major advantage of MAUT is that it considers uncertainty in decision making 

(Kovačević et al. 2019).
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3. Research design

This research proposes a method to stochastically analyze values streams taking into 

consideration the effect of critical uncertainty sources prioritized by a multicriteria decision-

making tool. Hence, due to the exploratory nature of our research, a case study was conducted 

to illustrate the application of the proposed method, helping researchers and managers to better 

understand its implications (Childe, 2011). Case study research is a primary means of exploring 

field conditions, as long as conducted with rigor and objectivity (McCutcheon and Meredith, 

1993). Case studies seek to investigate a phenomenon within a real and contemporary context 

(Yin, 2007), relating variables and the links they have to each other. 

Although results from a single case study might be subject to bias, this research design was 

chosen due to its valuable utilization in contexts where authors seek to make a contribution by 

the illustration of a proposed method (Siggelkow, 2007). As suggested by Voss et al. (2002), 

we conducted this case study to investigate the main key variables that impose variability on 

the value stream studied. Our study, therefore, is a refinement of the current theory (Ketokivi 

and Choi, 2014) regarding the stochasticity inherent to value streams and ways to mitigate the 

effect of variability on the flow of information and materials.

The proposed method was illustrated in a case study conducted in the special nutrition value 

stream of a Brazilian public hospital. This hospital has started its lean manufacturing 

implementation four years ago and has developed several collaborative activities with some of 

the authors, which facilitated the contact and increased openness from senior management to 

develop the research. However, those initiatives were focused on specific departments, and did 

not involve the whole hospital. In this sense, individuals from the special nutrition department 

have not had any previous experience with lean manufacturing. 
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The special nutrition value stream was chosen due to its reasonable complexity level and 

representativeness to hospital’s cost (approximately 10% of the total costs). Special nutrition 

can be defined as any special purpose food with controlled nutrient intake, in an isolated or 

combined form, of defined or estimated composition formulated and prepared for use by probes 

or orally, whether industrialized or not (Petros and Engelmann, 2006). This kind of products 

can be used exclusively or partially to replace or supplement the oral feeding in malnourished 

or non-malnourished patients according to their nutritional needs in a hospital, outpatient or 

home regime, aiming at the synthesis or maintenance of tissues, organs, or systems. To conduct 

this case study, a team of fourteen leaders and professionals from the hospital was established, 

whose profiles can be seen in Table 2. 65% of them had more than five years of work 

experience in the hospital and 92% were female. 

INSERT TABLE 2 ABOUT HERE

4. Proposed method

The proposed method in our research is comprised by six main steps (see Figure 1). These steps 

are detailed in the subsequent subsections.
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Figure 1. Steps of the proposed method

4.1. Selection of organization and products family

Step 1 comprises the selection of the organization and product family. In terms of selection of 

the organization, a few requirements are recommended, such as top management commitment 

to lean implementation (Holden, 2010), willingness to share operational and strategic data 

(Teichgraber and Bucourt, 2012), and a history of active enrollment of employees in process 

improvement initiatives (Barraza and Lingham, 2008). Regarding the product family with 

which VSM will be applied, historical operational and financial indicators should be analyzed 

so that a rationale for its selection is established. Duggan (2012) suggests that the product 

family definition should be performed with the aid of a matrix of products and processes. The 

aim is to determine product families with similar processing needs, which simplifies the 

mapping activity to be performed in step 2. A minimum value of 80% of process similarity is 

considered satisfactory for determining the product family (Rother and Shook, 1999). Finally, 

an improvement team should be put together, including employees knowledgeable about the 
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targeted department’s processes (Tortorella et al., 2018). Because the value stream analysis 

would be facilitated by the authors, it is not mandatory that team members have prior 

experience with lean manufacturing. This fact ensures that beginner organizations can also 

benefit from this method as long as they have specialized support to implement it. 

4.2. Value stream mapping of the current state

In step 2, the current state map is drawn for the chosen product family, taking all processes and 

activities into account, from the moment the product is stored in the warehouse until it is 

delivered to customers. The current state map allows the estimation of the total lead time and 

processing times of each operation required to deliver the value to customers (Rother and 

Shook, 1999; Duggan, 2012). This mapping is conducted by the multidisciplinary team defined 

in step 1. The current state map evaluates processes in relation to waste elimination 

opportunities (Dickson et al. 2009; Vinodh et al. 2011; Swallmeh et al. 2014), which can be 

prioritized based on their impact on the lead time of the product family. 

4.3. Identification and ranking of uncertainty sources present in the value stream

Step 3 identifies and ranks the uncertainty sources in the value stream according to their impact 

on five criteria: (a) lead time, (b) value-added time, (c) number of scheduling points, (d) non 

value-added time and (e) number of people involved in the value stream (Seth and Gupta, 

2012). For that, the utilization of the multi-criteria method Multi Attribute Utility Theory 

(MAUT) can be used, as it measures the attractiveness of alternatives (i.e. uncertainty sources) 

with respect to multiple attributes (Aqlan et al., 2017). The advantage of MAUT is that it 

provides a more comprehensive assessment that is easy to apply, since decision-makers can 

manipulate their models and assign weights involving simple mathematical operations (see 
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Figure 2). It is worth mentioning that the uncertainty sources derive from the analysis of the 

current state map (step 2). 

Figure 2. Schematization of the MAUT

Leaders of the value stream under analysis are interviewed to assign weights wi (ranging from 

0 – ‘no important’ to 10 – ‘highly important’) to criteria and values to each pairwise relationship 

vik (varying from 1 – ‘weak’ to 3 – ‘strong’) between criterion i and uncertainty source k. The 

final criticality score fk for each uncertainty source is given by the expression (Cinelli et al., 

2014):

                                                                                                 fk =  ∑wivik (i = 1,…,5)

(1)

To determine the most critical uncertainty sources, fk values are standardized. Uncertainty 

sources whose standardized values are greater than 1.0 are considered extremely critical 

Page 15 of 50

URL: http://mc.manuscriptcentral.com/tppc E-mail: ppc@plymouth.ac.uk

Production Planning & Control

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

13

(Tortorella and Fogliatto, 2014) and, hence, have their variability considered in the following 

steps. 

4.4. Data collection and analysis

Step 4 comprises the data collection related to the critical uncertainty sources determined in 

step 3. This aims at verifying the variability of the uncertainty sources throughout a minimum 

period of analysis (De Souza et al., 2018), allowing the identification of the respective 

probability distribution and parameters that best describe the data. For that, Oracle Crystal 

Ball® software is used as a supporting tool. The probability distributions and their parameters 

are used as inputs in the next step.

4.5. Monte Carlo simulation

Step 5 encompasses the Monte Carlo simulation, in which probability distributions are inputted 

and variability of the lead time is verified (Aamer, 2017). Random data are generated based on 

probability distributions of each critical uncertainty source, bootstrapping observations to ten 

thousand iterations (considering a 95% confidence interval) (Kentel and Aral, 2005). The 

bootstrapped dataset allows the determination of the variability of the productive capacity of 

value stream processes. As total lead time is mainly defined by the inventory level, the 

variability of each intermediate stock sm is calculated based on the differences of productive 

capacities between supplier and customer processes at point m of the value stream, and given 

by: 

                                    (2)sm =  s0m + csm ― ccm

Where:
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s0m = initial stock obtained from the deterministic current state map at point m of the value 

stream;

csm = productive capacity of the supplier process of the stock located before point m of the 

value stream; and

ccm = productive capacity of the customer process of the stock located after point m of the value 

stream.

Particularly for the stock at the last point m of the value stream (i.e. before customers delivery), 

the consumption of this stock is directly affected by customers’ daily demand d. Hence, the 

variable ccm is substituted by d in this case. The total lead time (lt) is then obtained from the 

following expression:

               (3)𝑙𝑡 =
∑𝑠𝑚 + 𝑠𝑙

𝑑 + ∑𝑝𝑡𝑛

Where:

ptn = process time of process n of the value stream indicated as days/part.

4.6. Value stream mapping of the future state and improvement plans

Step 6 aims at mapping the future state and elaborating an improvement plan. Designing the 

future state clearly defines the improvement opportunities that will lead to waste elimination 

(Womack and Jones, 1996). The same multidisciplinary team is used for this step, enabling a 

shared vision of the value stream as a whole (Larson, 2013). The design of the future state map 

is based on four principles: (a) increasing system flexibility to allow rapid adaptation to 

changes in demand, (b) eliminating waste, (c) minimizing stock, and (d) increasing the 

efficiency of information and material flows (Rother and Shook, 1999). A threshold of one 

year is established as a horizon for implementing the future state, so that the improvement ideas 
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need to be feasible within this timeframe. Finally, an improvement plan is consolidated, 

specifying goals, activities, and people in charge of actions.

5. Results and discussion

5.1. Current state mapping

Meetings aimed at mapping the current state of this product family were held from March to 

May 2018 and had an average duration of two hours. During this period, five meetings were 

facilitated by the authors so that there was a complete understanding of the current state of the 

value stream. Products included in this family are particularly difficult to manage due to their 

high perishability. The family consisted of 37 items including probes, infant formulas, and 

supplements that had an average monthly demand of 1,823 units. Seven products corresponded 

to approximately 80% of family costs (approximately US$ 40,000.00/year). These products 

were provided to many sectors of the hospital, grouped into two broad categories: inpatients 

(e.g. medical, surgical, pediatric, obstetric and intensive care units) and outpatients (e.g. 

hemodialysis unit). Results for the current state map (obtained from a deterministic standpoint) 

indicated a total lead time of approximately 30 days (27.7 days), as shown in Figure 3. The 

total processing time ranged between 180 (best-case scenario) and 305 minutes (worst-case 

scenario), corresponding to 0.45% and 0.76% of value-added time (VAT), respectively. It is 

worth mentioning that to map the value stream under study, we have considered only the icons 

that were properly needed. Further, due to the complexity of the mapped value stream, we 

included the essential icons for the correct understanding of how the flow of materials and 

information occur.

Specifically, for the information flow, disturbances and the absence of standardized procedures 

for communication between parties involved were evident. This could be observed, for 
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example, by the existence of five different methods to obtain products’ demand information; 

they were: (a) doctors’ prescription using a printed form, (b) doctors’ prescription via 

electronic form, (c) nutritionists’ prescription by a printed form, (d) nutritionists’ prescription 

by electronic form, and (e) emergency requests for preparation via phone calls or emails. This 

led to redundancy of information, which required verification and consolidation efforts. In 

addition, five scheduling points were identified, in which information sharing was randomly 

carried out. In this sense, there was a potential lack of information which could entail 

inefficiencies on the material flow.
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Figure 3. Current state map of the special nutrition value stream
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Regarding the material flow, none of the sectors involved in the value stream had clear 

inventory management policies. The need for product replenishment was based on employees’ 

experience and it was not consistent. There were four intermediate stocks throughout the value 

stream (m = 4). These stocks were poorly controlled, hindering the traceability of products. 

Another important aspect was the lack of a visual system for managing information. Finally, 

the analysis of the current state map together with previous situations experienced by the 

multidisciplinary team indicated seven main uncertainty sources; they were: (a) demand, (b) 

supplier lead time, (c) product quality, (d) processing time, (e) natural disasters, (f) 

infrastructure, and (g) government policies. 

5.2. Criticality and variability of uncertainty sources

To determine the criticality of uncertainty sources, we interviewed three leaders of the 

hospital’s steering committee: the first one was part of the hospital administration, the second 

was the head of the nutrition and diet sector, and the third was the head of the neonatal nutrition 

sector. These leaders were chosen due to their vast experience with the analyzed value stream 

(38, 18 and 11 years, respectively). Interviews were conducted individually in September 2019 

and lasted 30 minutes each. Final values for both criteria weights (wi) and relationship 

intensities (vik) were determined by the average of responses, as displayed in Table 3. In 

general, leaders attributed greater weight to the criterion ‘lead time’. Further, based on the 

differentiation index, the most critical uncertainty sources were ‘demand’ and ‘processing 

time’, which were then considered in the Monte Carlo simulation. These results were somewhat 

expected by the researchers, as the discussions during the current state map meetings frequently 

emphasized the difficulty in assertively predicting the demand, and the variation of processing 

times due differences in employees’ skills. 
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INSERT TABLE 3 ABOUT HERE

To collect data on the variability of demand and processing times, a period of 30 subsequent 

days was considered. Although this period is relatively short, a dataset larger than 25 or 30 

observations is considered reasonable to describe the probability function of a certain process 

(Hogg et al., 2010). Data from demand was gathered from the daily patients’ prescriptions used 

to schedule the nutrition department. With respect to processing times, data for each one of the 

four main processes (i.e. receiving, lactary storage, preparation and product administration) 

was collected in loco by one of the researchers during the 30 days. Every day processes were 

timed 30 times, which allowed us to check for process variability with the same employee and 

variability among employees. Based on these data, probability distributions were generated for 

processing times and patients’ daily demand (see Appendix A), which are synthetized in Table 

4. Because daily demand was considered one of the critical uncertainty sources in the value 

stream, we have carefully analyzed its variation so that a more robust future state map could 

be drawn. As takt time is mostly a deterministic parameter (Rother and Shook, 1999), and we 

wanted to comprehend the effect of stochasticity on the value stream performance, we decided 

to approach the probability distribution of daily demand as our parameter. However, as the 

daily availability in the hospital is pretty much fixed (i.e. 24 hours per day), this probability 

distribution of daily demand could be used as proxy for takt time. In this sense, we argue that 

in this stochastic scenario, takt time would be more accurately represented by the probability 

distribution of daily demand.

The coefficients of variation (CV) represent the variability imposed on the value stream by 

each uncertainty source. Results showed that the ‘lactary storage’ process is the one that 
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relatively inserts the greatest amount variation to the value stream (CV = 36.36%). However, 

this variation is not far from the others, suggesting that none of them could be neglected in the 

improvement activities. Curiously, although ‘preparation’ is the one with the highest 

processing time mean, it is not the one that presents the greatest variation (CV = 29.46%). In a 

deterministic analysis of the value stream, managers would likely focus their efforts on 

reducing processing times means, neglecting the variability imposed by ‘lactary storage’ 

process, for instance.

These probability distribution parameters were used to bootstrap both processing times and 

patients’ daily demand into 10,000 random points. Particularly using processing times, 

processes’ productive capacities were calculated by dividing the available daily time (24 

hours/day) by the respective process time. Then, values of sm (m = 1, …, 4) and lt were 

determined using Equations (2) and (3). It is worth mentioning that values for s0m are displayed 

in Figure 3.

INSERT TABLE 4 ABOUT HERE

5.3. Simulation results

Regarding the results for the simulation of stocks’ variability (see Appendix B), Table 5 

consolidates the main parameters obtained. Among the four stocks, s1 (located after material 

receiving) presented the highest mean value (975 units) and CV (28.92%). These results 

suggest that not only the nominal value of this stock is relevant, but it also presents a large 

variation throughout the month, which is also an improvement opportunity. This outcome 

would not be evidenced in a deterministic value stream analysis. Thus, when analyzing from a 

stochastic perspective, the largest stock presents the greater variability and countermeasures 
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should be adopted to mitigate its impact to the total lead time of the value stream. Such outcome 

converges to indications from Anzanello et al. (2017), although their research has focused on 

the context of a vendor managed inventory policy. 

INSERT TABLE 5 ABOUT HERE

Finally, the variation of the total lead time is presented in Figure 4. While the lead time 

indicated through the deterministic analysis of the value stream was 27.7 days, the stochastic 

analysis showed that the probability of achieving this value is approximately 47%, which 

corroborates the claim that the deterministic approach represents an unlikely condition of the 

value stream (Braglia et al. 2009; De Souza et al., 2018). Another result worth highlighting is 

that for a 99% probability of attendance, the lead time is 114% higher (59.28 days) than that 

obtained through the deterministic approach. This fact allows a more realistic understanding of 

the value stream performance, with particular importance for planning and scheduling of 

products delivery and service level. This result illustrates the traditional trade-off between 

inventory reduction and service levels widely discussed in the literature (Elsayed and Boucher, 

1994; Slack et al., 2013; Krajewski et al., 2013). In fact, a similar outcome was found by 

Frazzon et al. (2017); however, authors used a discrete simulation model to evidence the effect 

of processes stability on lead time and service level. 
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Figure 4. Simulation result for lead time (lt)

5.4. Future state design

Proceeding with the proposed method, the same team involved in the preparation of the current 

state map supported the design of the future state map. Meetings were held in November 2018 

and had an average duration of two hours. During this period, four meetings were conducted 

so that members could suggest improvements in the value stream loops. Based on the 

deterministic analysis, eleven improvement opportunities (white kaizen bursts in Figure 5) 

predominantly associated with the value stream loop between preparation and product 

administration were identified in both material (e.g. organization of the storage process, sizing 

and visualizing the lactary stock, among others) and information flows (e.g. standardization of 

electronic medical prescription). Seven additional improvement opportunities were raised from 

the stochastic analysis (grey kaizen bursts in Figure 5), mostly related to the value stream loop 

between receiving and lactary storage. In general, these improvements are focused on reducing 

the variability of the critical uncertainty sources, such as the standardization of processes times 
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and modelling of demand forecast. Our results not only examined of the impact of uncertainty 

sources on lead time, but also enabled the identification of the most prominent uncertainty 

sources according to their variability. This is fully aligned with lean’s constant and systematic 

search for variation reduction (Spear and Bowen, 1999; Black, 2007; Spear, 2008), 

complementing a major drawback in traditional VSM analysis. 

Due to the context of analysis (i.e. a healthcare organization), our findings complement the 

study developed by Borges et al. (2020), which used a computational simulation approach to 

consider the variability of healthcare suppliers and customers as inputs to verify the 

effectiveness of the proposed inventory policies and service level achievement. This fact also 

raises attention to the specific benefits that healthcare organizations may obtain by 

incorporating the proposed method into their value stream analyses. As healthcare 

organizations are generally characterized by a higher level of complexity (Kannampallil et al., 

2011; Long et al., 2018) in which systemic improvements are much harder to address (Ferreira 

and Saurin, 2019; Alemsan et al., 2020), the proposed method may find a particular relevance 

when applied to this kind of context.
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Figure 5. Future state map (grey kaizen bursts were identified from the stochastic analysis)
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6. Conclusion

This article proposed a method for the stochastic analysis of value streams considering the most 

critical uncertainty sources based on a multicriteria decision-making tool. The method 

integrates Monte Carlo simulation into VSM, and it is illustrated through a single case study in 

a healthcare organization, more specifically in the special nutrition value stream. Such 

illustration allowed a better understanding of the effects of stochasticity on the value stream 

performance, which is usually neglected or underrated in most value stream analyses. Although 

the incorporation of stochastic methods into VSM has already been a topic of previous studies, 

the methodological complexity somewhat undermines their practical utilization. Thus, we 

argue that implications of the proposed method are valid for both theory and practice, which 

are subsequently discussed.

With respect to theoretical implications, the integration of the stochastic analysis enables the 

understanding of the impact of the uncertainty sources on value stream performance, leading 

to the determination of a more realistic lead time. This supports a more assertive planning and 

scheduling of the value stream, as well as the identification of improvement opportunities that 

would otherwise be neglected with the deterministic analysis. Hence, the proposed method 

addresses a fundamental gap in traditional VSM (Luz et al., 2020), especially contributing to 

the analysis of value streams whose processes and products present a high variability. Our 

research complements the method and validates the findings from De Souza et al. (2018), 

adding evidence to the benefits from integrating Monte Carlo into VSM supported by a 

multicriteria decision-making tool. To the best of our knowledge, no previous work has 

systematically encompassed all three concepts (i.e. stochasticity, value stream analysis and 

multicriteria decision-making), resulting in the methodological contribution of our research. 
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This work also presents practical contributions. Our study provides managers and practitioners 

guidance for the analysis of value streams considering the stochastic nature of its elements. 

Through the proposed method, managers can more easily identify other improvements 

opportunities that would not be observed in a deterministic analysis. Because these 

improvement opportunities are focused on variability reduction, managers can address issues 

that might cause significant disruptions in the value stream, hence, anticipating future 

difficulties. The combination of VSM with Monte Carlo simulation enables a better 

visualization of value streams, helping to adjust the production plan and customers deliveries’ 

orders based on an expected service level, which is related to the probability function of the 

lead time. In addition, these guidelines allow the prioritization of managerial efforts that bring 

greater benefits to lean implementation in the context of the company in which they operate. 

This is especially relevant in the context of healthcare organizations, which usually struggle 

with high complexity levels and lack systemic approaches for their continuous improvement. 

Thus, this study presents an original contribution to a relevant issue for companies undergoing 

a lean implementation, but without adding much practical difficulty to the method. This 

increases the odds of its widespread utilization by managers and practitioners.

Although this research was thoroughly conducted, it is worth highlighting some limitations. 

First, the illustration of this method occurred in a healthcare organization, and its results should 

be used with caution in other organizational contexts. In addition, despite presenting a ranking 

for the uncertainty sources indicated by hospital leaders, this data is somewhat biased on their 

perceptions. This limitation may generate incompatible results in other contexts because the 

level of understanding and sensitivity to existing uncertainty sources may vary depending on 

the organization. In this sense, future studies could expand the utilization of the proposed 

method in order to verify the possibility of replication and, hence, generalization of our 

findings. We encourage, for instance, the utilization of Kingman’s formula (Kingman, 1961) 
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in conjunction with a stochastic value streams analysis. Greater mathematical rigor in the use 

of this approach can bring benefits with regards to the problems of sequencing in the value 

stream. Such a combined approach is welcome for the investigation of industrial and service 

contexts that add significant variability to the value streams analysis. Another limitation is 

related to the use of the Monte Carlo simulation, as other stochastic methods could have similar 

or complementary results. A comparative study between stochastic methods feasible to 

integrate into VSM could be developed so that a better stochastic method is determined. 

Finally, regarding data collection, a 30-day data history was used. Although this timeframe is 

considered satisfactory, it may not allow the observation of seasonal issues in the uncertainty 

sources, thereby limiting the analysis. Future research could expand the data collection period, 

especially in contexts where seasonality might be an important issue for the value stream 

analysis, such as agribusinesses. 
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APPENDIX A – Distributions used in the simulation 
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APPENDIX B – Stocks simulation 

Simulation result for stock (s1)

 

Simulation result for stock (s2)
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Simulation result for stock (s3)

Simulation result for stock (s4)
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Figure 1. Steps of the proposed method

Figure 2. Schematization of the MAUT
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Figure 3. Current state map
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Figure 4. Simulation result for the total lead time (lt)
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Figure 5. Future state map (grey kaizen bursts were identified from the stochastic analysis)
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Table 1. Stochastic methods for value stream analysis – advantages and disadvantages
Stochastic method Advantages Disadvantages Uncertainty 

source addressed Authors

Stochastic Simulation It allows the individual study of each component of the 
system, reducing uncertainty in decisions.

System modeling and data analysis can be very time and 
resource consuming.

Demand; 
Processing 
Time/Cycle

Gurumurthy et al. 
(2011); Pujawan et 
al. (2015); Villarreal 
et al. (2016)

Fuzzy Logic Possibility of propagating the effect of uncertainties 
along the model considered. Model validation requires extensive testing. Demand Behrouzi et al. 

(2013)
Two-stage stochastic 
programming Greater precision of the model made. It requires prior knowledge of the probability distributions 

of the uncertain parameters.
Demand; 
Inventory

Badri et al. (2016); 
Badri et al. (2017)

Monte Carlo 
Simulation Simplicity in the treatment of variability. Less accuracy as the complexity of the problem treated 

increases.

Demand; Natural 
Disasters; 
Government 
Policies

Deleris et al. (2004); 
Aamer (2017); De 
Souza et al. (2018)

Optimization Models It does not require prior knowledge of the probability 
distributions of the uncertain parameters.

Depending on the complexity, the optimization model can 
be computationally intractable. Demand Mota et al. (2018)

Stochastic mixed 
linear programming Greater precision of the model made. It requires prior knowledge of the probability distributions 

of the uncertain parameters. Demand Shahparvari et al. 
(2018)

Stochastic dynamic 
programming Possibility of representing nonlinearities. It requires prior knowledge of the probability distributions 

of the uncertain parameters.

Demand; 
Processing 
Time/Cycle

Weston et al. (2009); 
Kenne et al. (2012)

Systems Dynamics Allows the use of feedback cycles. The greater the complexity of the system, the greater the 
need for data collection. Demand Deif (2012)

Multi-period 
stochastic planning 
model

It allows the creation of different scenarios based on 
different optimization criteria.

Increased complexity with increasing number of scenarios 
considered. Demand Al-Othman et al. 

(2008)

Multi-period mixed 
nonlinear 
programming

Increased robustness in the treatment of variability. High complexity for determining the programming model. Demand You et al. (2008)
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Table 2. Demographic profile of multidisciplinary team
Position Gender Age (years) Experience with Lean Manufacturing Company time (years) Functional area

Nutritionist Female 20-35 None 10 ICU-NEO, Pediatrics
Head of the nutrition unit Female above 50 None 21 Division of Nutrition and Dietetics
Head nurse Female 20-35 None 23 Inpatient nursing
Assistant Female 20-35 1-5 years 5 Materials planning / OPME
Nutritionist Female 20-35 None 11 Division of Nutrition and Dietetics
Nutrition assistant Female above 50 None 3.5 Division of Nutrition and Dietetics
Nurse Female 35-50 None 15 Pediatrics
Manager Female above 50 None 38 Management
Nurse Female 35-50 None 8 Materials Planning
Assistant Female 20-35 None 3 Hospital administration
Nutritionist Female above 50 None 15 Clinical Nutrition Unit
Nutritionist Female 20-35 None 2 Division of Nutrition and Dietetics
Storekeeper Male 35-50 None 3 Division of Nutrition and Dietetics
Head of infrastructure division Female 35-50 0-1 year 8 Management
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Table 3. MAUT method
Demand Supplier lead time Product quality Processing time Natural disasters Infrastructure Government policiesCriteria Weights %

vi1 vi2 vi3 vi4 vi5 vi6 vi7
Lead time 10.00 22.22 3.00 3.00 2.33 3.00 2.33 2.67 2.33
Value-added time 9.50 21.11 2.3 1.33 2.33 2.00 2.67 2.00 2.00
Nº of scheduling points 9.00 20.00 2.33 1.00 1.33 1.33 1.00 1.33 1.33
Non value-added time 8.50 18.89 1.67 1.33 1.00 2.00 2.00 2.00 2.00
Nº of people involved 8.00 17.78 1.67 1.33 1.00 2.67 1.33 1.00 1.33

Criticality scores 223.69 163.51 164.23 220.73 189.57 183.71 182.02
Differentiation Index 1.51 -1.16 -1.12 1.38 -0.002 -0.26 -0.34

Table 4. Parameters of the probability distributions for the uncertainty sources
Receiving Lactary storage Preparation Product administration Patient daily demand

Distribution Logistic Lognormal Lognormal Lognormal Beta
Parameters (hours) (hours) (hours) (hours) (units)
Local 0.21 0.31 0.00 0.08 -
Mean 0.87 0.44 1.12 0.19 43.44
Standard deviation 0.28 0.16 0.33 0.05 10.43
Maximum - - - - 67.46
Minimum - - - - 17.57
Alpha - - - - 2.61
Beta - - - - 2.42
CV 32.18% 36.36% 29.46% 26.31% 24.01%

Table 5. Stocks variation analysis
Stocks s1 s2 s3 s4

Initial Value (s0m) 1,549 123 9 2
Mean 975 149 74 169
Standard deviation 282 27 7 4
Minimum 287 67 35 81
Maximum 1,877 257 98 277
CV 28.92% 18.12% 9.46% 2.37%
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