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A substantial amount of research has been carried out in Explainable Artificial Intelligence (XAI) models,
especially in those which explain the deep architectures of neural networks. A number of XAI approaches
have been proposed to achieve trust in Artificial Intelligence (AI) models as well as provide explainability
of specific decisions made within these models. Among these approaches, global interpretation methods
have emerged as the prominent methods of explainability because they have the strength to explain
every feature and the structure of the model. This survey attempts to provide a comprehensive review
of global interpretation methods that completely explain the behaviour of the AI models. We present a
taxonomy of the available global interpretations models and systematically highlight the critical features
and algorithms that differentiate them from local as well as hybrid models of explainability. Through
examples and case studies from the literature, we evaluate the strengths and weaknesses of the global
interpretation models and assess challenges when these methods are put into practice. We conclude
the paper by providing the future directions of research in how the existing challenges in global interpre-
tation methods could be addressed and what values and opportunities could be realized by the resolution
of these challenges.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Machine Learning (ML) has been central to AI research, as it has
the ability to find patterns and categorise things. Deep Learning
(DL) is the subset of ML that is mainly involved in the construction
of the deep architectures known as deep neural networks (DNNs).
From the past few years, the DNNs architectures have been fre-
quently used in many computer-vision tasks such as action recog-
nition [1], motion tracking [2], and object detection [3]. These tasks
are performed by using various deep architectures such as convo-
lutional neural networks (CNN) [4], deep Boltzmann machines [5],
and deep belief networks [6]. DNNs have been extensively used in
numerous critical applications such as audio processing [7], auton-
omous vehicles and robots [8], autism spectrum disorder [9–11],
signal analysis [12,13] ophthalmology [14–16], cyber-security
[17] and healthcare [18–20]. The DNNs use high performance com-
putational resources to train multiple hidden layers and millions or
billions of parameters that vigorously perform many crucial tasks
with the best accuracy. However, the computation process of these
DNNs models is opaque to human beings, so generally, these DNNs
models are referred to as black box models [21]. We cannot explain
the decision making process of these deep neural architectures
leading to serious questions on the trust and transparency of these
models.

The lack of transparency within deep neural architectures
restricts the deployment of such models especially in healthcare
and safety critical applications where a small possibility of the
wrong decision could damage human life [22]. Therefore, an
understandable explanation of the set of instructions behind every
decision made by DL models is highly in demand. Many research
papers have been published in the past few years that discussed
the explainability issue of AI models. The explainability of the
black box models has received so much importance in recent years
that eXplainable Artificial Intelligence (XAI) has emerged as a
specific domain within AI [23].
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The purpose of XAI is to develop a simple, clear but logically
explainable model that describes the inner functionalities of the
black box models. The explanations produced by XAI should be
understandable by human beings while maintaining high perfor-
mance in terms of prediction accuracy. The generalised additive
models (GAM) were initially introduced to explain the black box
nature of the ML models by using a smooth function [24]. Later,
a visual (tree-like graph) algorithm, decision-tree, was developed
to provide a conditional and individual explanation of decisions
[25,26]. Individual Conditional Expectation (ICE) explained the
change in predictions with respect to the features [27]. A limited
version of ICE, the Partial Dependence Plot (PDP) [28], has been ini-
tially put into practice to globally explain the nature and effect of
only one or two features of the model prediction. The classification
models such as k-NN and SVM were explained by a set of explana-
tion vectors but these techniques could only explain the outcome
of one instance [29].

The above discussion indicates that initially modest-size ML
models were explained by using different explainability meth-
ods. However, a significant number of models use DNNs that
have attained much importance in high-risk applications. The
DNN models with high accuracy demand a better explanation
that would lead us to produce more responsible and trustworthy
AI systems [30]. Many local and visualisation techniques have
been recently developed that help the AI experts to understand
the decision procedure of the DNN model [31]. For example,
De Graaf and Van Mulken [32] proposed a solution that imitates
the intermediate process, connects the decision with the given
piece of information, and is understandable by end-users. This
approach however only provides a local explanation of the learn-
ing model.

This survey paper aims to provide a detailed state of the
explainability methods available to AI researchers and practition-
ers as well as highlights the strengths and weaknesses of the global
XAI methods that have been developed in the past ten years. Our
contributions can be summarised as follows:

1. A comprehensive overview of the existing approaches used to
globally explain the black box models of DNNs. have been
described, particularly a critique of the visual and local XAI
methods used in the global explanation of the black box mod-
els of DNNs has been provided. The latest and highly cited
research papers are picked that have been published in
renowned journals and conferences over the past ten years
and highlight recent developments in explaining the global
XAI approaches.

2. In order to systematically analyse the global XAI methods, a
taxonomy has been introduced on the basis of ante-hoc and
post hoc approaches, which provides clear recommendations
on when to use a particular approach.

3. This paper highlights gaps in the global XAI methods and offers
a way forward for the future direction of work by proposing a
deterministic XAI model that will help to explain and address
the existing gaps.

The structure of this paper is summarised as follows. Section 2
categorises terminologies that have been frequently and inter-
changeably used in the field of XAI. The knowledge of the XAI ter-
minologies enables us to understand the three dimensions of XAI
methods that have been critically evaluated in Section 3. Section 4
presents a comprehensive review and taxonomy of the available
methods for the global interpretation of DNNs. Section 5 provides
a summary of available Global XAI methods. Lastly, Section 6 con-
cludes the papers with current research gaps and future
directions.
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2. Terminologies

One of the major issues while discussing XAI is the use of termi-
nologies that are used interchangeably and complicate the under-
standing of concepts. Before diving into the deep ocean of the XAI
field, we attempt to clarify the differences between the commonly
used XAI concepts and terminologies and try to present a consis-
tent version of (Fig. 1) their similarities and differences.

� White box: If there is complete information about the architec-
ture and parameters of a model, it is known as the ‘‘white-
box” model. This type of model is considered immensely helpful
for endorsing trust, however, most of the time the amount of
information is not adequate enough to explain the logical ratio-
nale behind the decisions.

� Transparent box: If a model can explain its design, parameters,
or algorithm on its own and this justification is good enough
for the end-user, then the model is named as the
‘‘transparent-box” model. One can check, evaluate, and improve
the predictions by this transparency.

� Black box: A model with hidden and veiled architecture and
parameters leads to an unknown process of decision-making,
resulting into a ‘‘black-box” model. Generally, the DL models
are black box models because their deep architecture makes
them opaque [21]. Next, we define the three key terms that
have been used as substitutes for one another in the XAI field.
Hence, it becomes more difficult to differentiate these ideas.

� Understandability: It refers to the understanding of the model’s
characteristics, features, and function without knowing the
internal process and procedure involved in the decision making
[33]. This term provides an answer to the question ‘‘How the AI
model works?.”

� Explainability: It involves explaining the internal process and
answering the question ‘‘How does the black box model of AI
make certain decisions?.”

� Interpretability: It entails the understanding of the internal func-
tionality and characteristics of the model. This terminology pro-
vides a meaningful, clear, and logical reason(s) for the specific
decision in a manner that is understandable to the targeted cli-
ent. This term answers the question ‘‘What is the decision of the
AI model and Why?.” Research communities often can classify
the explanation of AI models into the following three categories
based on usage and scope.

� The Complete Explanation includes all potential features and
facts while explaining the decision of AI models, while in Com-
pact Explanation the decisions of the AI models can be explained
by a limited number of factors. Mostly available XAI methods
for the black box of DNNs models provide the compact explana-
tion of DNN models for some particular instances [27].

� Some explanation approaches only explain the limited number
of neural networks, for example, the explanation of the linear
model by the regression weights. The limited ability to explain
a certain type of black box model is known asModel Specific. The
other approach is Model Agnostic which can explain each cate-
gory of ML models. The model agnostic explanation tools are
preferable because of their flexibility, however, they have no
access to the inner information of the model [34].

� The Ante-hoc explanation scheme can capture all information
from the input layer to the hidden and output layers of the
given model [35] however, the Post-hoc scheme only highlights
the route of a particular outcome. For example, the decision-
tree method can explain the whole model but the LIME method
can only explain the process behind the particular outcome of a
ML model [36]. Hence, similar to the model-agnostic approach,
the post hoc methods are more flexible and easier to apply on



Fig. 1. Classification of XAI methods and their terminology map.
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different models than the ante-hoc schemes. Many other terms
have been frequently used interchangeably instead of XAI. Some
prominently famous terminologies are mentioned and
explained below.

� Ethical AI and Responsible AI: Both terms are very much associ-
ated with the XAI field. An AI model is said to be ‘‘ethical” if it
does not break any defined rule or regulation by its user during
the whole decision-making process. The implementation of ‘‘re-
sponsible AI” in real-world applications demands privacy, fair-
ness, and ethics together with the explanation of the AI model
[37].

� Trustworthy AI and Safe AI: An AI model is said to be ‘‘Trustwor-
thy” if a user can anticipate the performance of the model pos-
itively. Trustworthiness is one of the primary goals of the XAI
that would lead to another goal called Safe AI. The ‘‘Safe AI”
has the potential to control the chances of unexpected decisions
to minimise the risk of unintended harm during the interaction
of systems and humans [38].

The answer to the question ‘‘How can you accurately explains
the black box of AI model?” should be given by introducing an
evaluation criterion for explainable methods. The following two
are the main evaluation criteria for the validation of explainable
methods.

� Qualitative Evaluation: In this evaluation, the measure of XAI
methods depends on the satisfaction of end-user inquisitive-
ness, safety, understanding, and usability [39]. This evaluation
has importance as it provides the feedback of explainable meth-
ods from the point of view of human understanding and
usability.

� Quantitative Evaluation: This is used if the evaluation measure
emphasises the performance of the explainer that how closely
the explainer mimics the black box model [40]. This approach
can validate the explainable methods by quantitatively evaluat-
ing the outcomes of the AI model for all or some specific tasks.
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3. Dimensions of XAI Problem

As discussed earlier that for critical tasks, just predictions from
AI models are not enough. These models should be able to explain
the whole functionality of the black box model that would eventu-
ally help to explain every reason behind each prediction (Global
interpretation) or at least explain the reason behind a single pre-
diction (Local interpretation). An explanation process can be
divided into two parts (i) Extract information (ii) Exhibit informa-
tion. The exhibition of information has extraordinary importance
as it could directly connect the system with the novices as a client
[33]. Besides the above two dimensions of explaining the black box
model, another approach is also in demand which visually inspects
the model and explains the reason behind the prediction.

Various high-performed approaches and methods for explain-
able AI have been developed in the past ten years. Mostly complex
and deep architectures of neural networks would have a post hoc
explanation that interprets certain predictions. However, there
are few ante-hoc methods with the limited capacity of explaining
the simple and small-sized AI models. The following section logi-
cally differentiates these approaches and discusses some promi-
nent methods developed in the past decade.
3.1. Outcome Explanation or Local Interpretation

The outcome explanation, also referred to an instant-wise
explanation, aims to explain the reasons behind a single prediction
using a specific set of input–output (Fig. 2). Although this explana-
tion is not considered suitable for the non-experts, most methods
of outcome explanation would help the AI experts to scrutinize
many edge cases of ML models. The understanding of decision
routes for the edge cases such as prediction of an autonomous
vehicle to react to an unusual behaviour of cyclist, pedestrian or
any object on road, are becoming more important to validate the
response of vehicle in every situation [36].



Fig. 2. Three dimensions (Global, Local and Visual) of XAI methods. Visual interpretation source paper [58].
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Precisely, an explainable function, say ”OE” is generated that
explains the given mapping NN : DðXAÞ ! OðYAÞ for a particular
instance A in the real-valued matrices (or vector). Note that in
the above mathematical mapping, NN is the neural network apply-
ing to dataset D to produce O output. Initially, the outcome expla-
nation methods established a framework to understand the
significance of features and their relations by using feature impor-
tance matrices, heatmaps, Bayesian and rule-based techniques.
This understanding has been further improved by designing game
theory and graph-based models and attribution maps [41]. Activa-
tion maximisation (AM) [42] is an outcome explainer method that
explains the convolutional neural network (CNN) by highlighting
layer-wise feature importance. This method was introduced by
Erhan et al. in 2010 suggesting an optimisation problem to max-
imise the unit activation by considering the input patterns. For

fixed parameters, the activation mapping of ith unit from jth layer,
Zi;jðX;/Þ can be defined as following:

X� ¼ argmaxðX;X¼qÞZi;jðX;/Þ ð1Þ
In 2013, Simonyan [43] presented saliency maps, which is

another way of explaining the output by summarising the pixel
importance of the input image. This approach uses a perturbation
method and computes the gradient of input images to create resul-
tant feature maps. By modifying the input data, perturbation-based
methods discover the changes in output of the DNN model, where
gradient-based methods can detect very tiny changes in the input
data. Pixels in an image, words in text, or columns in a table can be
perturbed by applying an occlusion mask, blurring or replacing
parts of images, replacing a word with a synonym in text, or shuf-
fling or inserting rows/columns in tables. It is important to choose
these changes in input data very carefully to get better results.
These maps can be sharpened by SmoothGrad that randomly per-
turbs the input and presents the result as the average of the resul-
tant maps. Layer-Wise Relevance BackPropagation (LRP) [44] is an
outcome explanation method for the DNNs introduced in 2015.
This method decomposes the output of the DNN model and finds
out the relevance scores of each feature in the given input data.
The LRP method is widely used to explain outcome predictions of
many DNN models such as Convolution Neural Network (CNN)
and Recurrent Neural Network (RNN) from the past few years.
However, many new researchers use this technique to prune the
network system by understanding the attribution of each layer
[45]. A method, called Class Activation Mapping (CAM), creates
heat maps that highlight those parts of input which are responsible
for an outcome [46]. Based on this theory, Gradient- weight Class
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Activation Mapping (Grad-CAM) was developed that highlights the
key features of the last convolutional layer of CNN by using gradi-
ent information [47].

Local Interpretable Model Explanation (LIME) was presented in
the year 2016 to explain the outcomes of DNN models that would
be interpretable in common man language [40]. The ultimate idea
is to fit a surrogate model such as Linear regression or Ridge
regression [48] on the perturb input dataset and generate the local
explanation. A binary vector x�0;1 used to assure the absence and
presence of superpixels that would be captured with the help of
LIME from the input image. Different versions of the LIME method
have been developed to explain the various kind of models. For
example, Sound-LIME (SLIME) is the extended version of the LIME
method used to explain the deep voice detector’s predictions by
time–frequency and temporal segmentation [49], Modified Per-
turbed Sampling operation (MPS-LIME) uses clique operation for
picking superpixels that reduce the run time because of the low
number of perturbed samples [50] and KL-LIME uses Kullback Lei-
bler divergence to explain the prediction of Bayesian model [51]. A
similar method known as Shapley Additive explanation (SHAP) was
proposed by Lundberg and Lee to enlighten the importance of
the individual part of input data while explaining the prediction
[52]. As described in Eq. 2, SHAP explains the prediction by sug-
gesting an additive model with M simplified and alliance features,

where z0 � {0,1}M is alliance vector, and /k� R is the kth feature
attribution.

gðzÞ0 ¼ /0 þ
XM
k¼1

/kðz0kÞ ð2Þ

The contribution of each feature with the sum of bias is repre-
sented as gðzÞ0Þ in the above equation. Similar to the LIME method,
SHAP also has different versions such as Low-Order SHAP, Kernel-
SHAP, and Deep-SHAP [53]. Due to the better performance of SHAP
as compared to the other methods, there is an extensive use of this
approach in the medical field [54].
3.2. Visual Explanation or Model Inspection

The inspection approach aims to provide the textual or visual
explanation of many ML models that would help to understand
the reason for the model’s prediction (Fig. 2). A survey paper on
the DNN visualisation techniques published in 2017 mentioned
that most researchers use pixels to display their research outcomes
[55].
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This paper classifies the inspection methods in four categories
based on feature importance (i) Visual explanation with Activation
Maximisation (AM) (ii) Visual explanation with Partial Dependence
Plot (PDP) (iii) Visual explanation with Decision Tree (iv) Visual
explanation with Sensitive Analysis.

As discussed earlier that the area or pixels responsible for the
decision can be highlighted by using the Activation Maximisation
(AM) technique. Yosinki et al. proposed tools for visual explanation
and interpretation of the DNNs such as CNN. One of them explains
the computation process at the intermediate layers of CNN and the
other tool highlights the active part or feature of each CNN layer
during the training process [56]. Another similar method discussed
in [57], traces back the computation process to detect those parts
of the image responsible for neuron activation. The Deconvolu-
tional approach is used to visualise the intermediate layers of the
simple CNN model [58]. Many methods and their variants were
proposed in different papers for a visual explanation of DNN [59–
61]. Partial Dependence Plot (PDP) is a manner to visualise the rela-
tionship between different neurons in the feature space. In [27,62]
extension of PDP was applied on the tabular dataset which was
able to evaluate and visualise the interaction between the neurons
and the relationship between the feature and prediction.

A relevant method known as Tree View uses the Decision Tree to
visually explain the connection between the decomposed K- clus-
ter of model features [63]. The Quantitative Input Influence (QII) is
another method that captures the information about the input fea-
tures and used decision tree approach to explain the prediction
[64]. The uncertainty of the input–output pair can be studied under
the measure of sensitivity. Initially, the Sensitivity Analysis (SA)was
used to understand the mechanism of a neural network on the
basis of sensitivity and the Neural Interpretation Diagram (NID)
was used to confiscate the non-essential parts and connection of
the neural network [65]. Based on sensitivity analysis, the Gaussian
Process Classification (GDP) explain and visualise the local outcome
by the explanation vector x [29] and the Variable Effect Character-
istic curve (VEC) draws the bar plots between the features and their
response based on the importance of features [66].

The above discussion indicates that some explanation methods
prefer to use different visual tools such as heatmaps and salience
masks to display the information. During this type of explanation,
two dimensions have been used for the interpretation of the black
box model, namely local interpretation, and global interpretation.
As the main focus of this survey, is the global interpretation meth-
ods so next section has a detailed discussion on this state of the art.

3.3. Model Explanation or Global Interpretation

One way to give details about the black box of the AI models is
the global interpretation. This type of explanation describes the
complete logic of all the outcomes by mimicking the behaviour
of the black box model (Fig. 2). The inside view of a model would
help to understand the nature of model features and their correla-
tions that leads to the outcomes. Many model explanation meth-
ods divide the whole model into parts to make it easier for the
explanation. Tree-based and Rule-based models are inherently
fully explainable. The black box models consisting of the neural
network were initially explained by approximating a single tree
[67,68] and rule extraction [69]. In [70], an approach REFNE has
been introduced to interpret generated instances from the trained
neural network by extracting symbolic rules.

In recent years, the approaches that explain any type of AI
model (agnostic) are in high demand. The Generalised Additive
Model (GAM) is the first attempt toward the model-agnostic
approach that explains regression splines, tree-ensembles, and
single-trees by highlighting the contribution of each feature [71].
Same researchers refined this method in [72] and a case study on
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health care was published in 2015 as the application of refining
GAM [73]. GoldenEye is an iterative method that explains the
model by grouping those features whose interaction produces
results [74].

The Feature Importance Ranking Measure (FIRM) is another
method that finds the most relevant features by correlating the
structure of features [75]. FIRM is the extension of the method
called Positional Oligomiter Importance Matrices (POIMS) that
uses a scoring system to rank and visualise each K-mer [76]. The
extended version of FIRM, named, Measure of Feature Importance
(MFI) is the non-linear classifier that detects those unobtrusive fea-
tures whose interaction with other features impacts the outcomes
[77].

Before discussing the global interpretation method, the Table 1
provides a quick view on the interpretation tools that are used to
explain the AI models at the global level. Based on the model usage
and type, we also interpret these tools to create white-box or to
enhance the fairness in AI models. The next section synthesises
the global model explanation methods, proposed in the past ten
years.

4. Methods for Model Explanation

The AI explanation methods can be categorised (Fig. 1) on
Scope: Does the XAI method explain the whole model or only a cer-
tain outcome (local or global)? Approach: What is the focus of the
algorithm, input data, or model parameters (backpropagation or
perturbation)? Usage: The developed method can explain any type
of model architecture or just be applicable to the specific architec-
ture (post hoc or ante-hoc)? This paper focuses only on global
interpretation methods based on model usage (Fig. 3).

4.1. Ante-hoc methods

Ante-hoc methods are mostly model-specific and this might be
seen as a drawback because they consider only a limited number of
models. In many papers, this explanation is also known as intrinsic
explanation. Hence by definition, model intrinsic explanation
methods depend on a certain design and cannot be used again
for any other architectures. This section provides a detailed discus-
sion on those ante-hoc methods which have been established in
the past ten years. A quick view of ante-hoc methods are given
in Table 2 and Table 4 that summarise information about type of
data, frameworks and methodologies, as well as their merits and
demerits.

Definition 1. Let the DNN represent as a function F : RD1?RDk with
an input x �RD1 . Another representation of x could be ante-hoc
explanation, eXpðF; xÞ �RT such that T6D1.
4.1.1. Bayesian Case Model (BCM)
Studies show that just revealing of rules behind the decisions of

AI models are not enough for achieving user’s confidence, the
example-based reasoning and interpretation improve the level of
confidence significantly. The case-based reasoning (CBR) is consid-
ered exemplar-based modelling that involves the most effective
tactics such as matching and prototyping as humans like to look
at examples rather than recommendations. For example, the natu-
ralistic studies mentioned that the decision-makers in a fire service
use recognition-primed decision making that matches new situa-
tions with similar cases and decides appropriate manoeuvres to
handle the situation [87]. Therefore, with the knowledge of CBR
new situations can be represented successfully by analysing the
previous situations.



Table 1
Global Interpretation Tools to create White-box (W) or to enhance Fairness (F) in AI models.

Model type (Scope) Year Data type Category Interpretation tools

Ante-hoc (Model Specific) 2010 Tabular F Fairness-Comparison[78]
2015 Tabular W Interpret ML [73]
2016 Tabular W Slim [79]
2019 Tabular W AI-360 [80]
2019 Tabular F ML-Fairness Gym [81]

Post-hoc (Model Agnostic) 2017 Tabular F AIF-360 [82] and Fair Classification [83]
2018 Tabular F Fair Learning [84]
2018 Tabular F AI-360 Gerry Fair [85]

Fig. 3. Workflow of Post-hoc and Ante-hoc Global XAI methods.

Table 2
Summary of research papers published in the past ten years for the Global explanation (Ante-hoc) of AI models

Model usage (type) Year Methods Data type Methodologies Explanation medium Frameworks XAI evaluation

Ante-hoc (Model-Specific) 2014 BCM [75] Any Perturbation-based Multimedia Python (PYMC) Qualitative
2015 GAM [76] Tabular Perturbation-based Graphics (heatmaps) R (PyGAM) Qualitative
2015 BRL [86] Tabular Rule-based Textual Python Quantitative
2020 NAM [70] Image Cluster-based Graphics (heatmaps) Pytorch Quantitative

Fig. 4. Ante-hoc explanation by Bayesian Case Model.
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A new CBR based unsupervised Bayesian model, ‘Bayesian Case
Model (BCM)’ [86], was introduced in 2014 that learns about the
notable features to create prototypes that produce accurate and
interpretable outcomes on the standard datasets. To understand
the generative process of BCM, some mathematical notations used
in the BCM flow diagram (see Fig. 4(a)) such as xi ,i ¼ 1;2; . . . ;N
random mixture over cluster with N observations and S known
170
clusters. For ith observation, pi denotes the mixture weight over a

cluster and xij indicates observation for jth feature as each observa-
tion has F features. Each xij comes from a cluster denoted as zij and
Z is the full set of the clusters formed by the observation-feature
pair. All hyperparameters such as k;a; q and c are fixed that speci-
fies how much we can copy a prototype to make explanations. B.
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Kim and her team members divide the explanatory process of BCM
into three parts:

(i) Prototype ðpsÞ: is a classic observation in x that is used to rep-
resent a cluster say s. For some i and element j; psj ¼ xij that
maximizes pðpsjws; z; xÞ, where ws is a feature indicator that
we discussed below as a next step of BCM explanatory
process.

(ii) Feature indicator ðwsÞ: is a binary vector ws � f0;1gQ of size Q
that activates the important features to characterize clusters
and prototypes. This vector also indicates the presence of
feature j in subspace s.

(iii) Feature outcome distribution ð/sÞ: /sj is a vector that explains
the discrete probability distribution of possible outcomes for
feature j of length Uj, where Uj is the number of possible
outcomes.

Fig. 4 demonstrates a graphical representation of the discrete
mixture of BCM and Latent Dirichlet Allocation (LDA) method.
The authors of the paper [86] used the dataset of a mixture of smi-
ley faces to demonstrate each part of BCM and compare its inter-
pretability accuracy with another method called LDA. The feature
set (colours, shapes, and types of mouths and eyes) produces three
clusters and each cluster has two features. The instance of BCM
with the fixed value of hyperparameters produces 240 smiley
faces. However, LDA and BCM represent their outcomes very differ-
ently but note that in both approaches selection of important fea-
tures is the same for each cluster (Fig. 4(b)). It is also worth
mentioning that the interpretability of BCM was also verified by
performing the human subject experiment in which participants
need to understand the formation of clusters for the recipe dataset
without any training. In order to evaluate the effectiveness of the
learning process, twenty-four participants were divided into two
groups and asked to complete the BCM and LDA questionnaires
consisting of eight questions each. As an explanation, LDA provided
a cluster of top ingredients for each recipe, while BCM presented
prototype ingredients without noting the recipe name or subspace.
The number of top ingredients from LDA is set as the number of
ingredients from BCM prototype and perform Gibbs sampling for
LDA until the ground-truth clusters become identifiable. Results
show that the explanation run-through BCM achieved higher accu-
racy (85.9%) than LDA (71.3%) which uses the same Gibbs sampling
inference scheme as BCM.

4.1.2. Generalised Additive Model (GAM)
For many years, the Generative Additive Model (GAM) has been

used to explain many ML models however, there is a trade-off
between the accuracy and intelligibility of these models. In 2015,
Caruana et al. introduced an intelligible model by integrating stan-

dard GAMs and another model called GA2Ms. to improve accuracy
[88]. Let’s assume a training dataset of size N, denoted as
D ¼ ðxk; ykÞN1 , where xk is the feature set with p features and yk is
the response. If G is the link function then the pairwise interaction
of GAM is written as

GðE½y�Þ ¼ c0 þ
X
l

f lðxkÞ þ
X
k–l

f klðxk; xlÞ ð3Þ

To make the model intelligible the contribution of each feature
can be determined by inspecting f l , where E½f l� ¼ 0. Eq. (3) helps to
understand the strategic flow of the above-paired model as fol-
lows: (i) build the finest GAMs model (ii) detect all possible pairs
of interaction (iii) rank all top n-potential pairs. The evolution of
any interpretable approach in ML can be assumed more valuable
if its performance is validated on critical tasks such as healthcare.

The performance of GA2Ms. has been validated by discussing two
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healthcare problems: 30-day hospital readmission and pneumonia
risk. In the 30-day hospital readmission, a large dataset was used
with 3956 features such as patient 313 history, doctor’s prescrip-
tion, notes and recommended lab reports. The intelligible model
provides a risk score and sorts the important features according
to the doctor’s requirement. On the other side, the dataset involved
in a pneumonia case study is much smaller than the 30-day hospi-
tal readmission task and only 46 features participate in predicting
the death rate from this lung disease. The GA2Ms model predicts
the death rate by learning and editing all possible patterns that
would be abandoned even in complex ML models. Hence the com-

bination of standard GAMs and GA2Ms. are more understandable
because the unambiguousness of the model outcome can be visu-

alised by a heat map. The above studies conclude that the GA2Ms.
balanced the trade-off between accuracy and interpretation very
well and show practicable accuracy as compared to many MLmod-
els [72].

In 2018, a method called CONTENT [89] has been introduced
that produces context vectors by transforming the patient’s elec-
tronic health record into the clinical concept embedding. This
method presented the refined but complex hidden knowledge in
the context vector by distilling the complex relationship between
risk factors present in the patient’s record and readmission predic-
tions. Primarily, the distillation technique transfers knowledge
from an accurate but complex model to a fast and simple model
that have same level accuracy. The distillation approach was also
used to explain ICU outcomes by highlighting the important
learned features that transfer from complex model to simple
model. Many other medical applications such as diabetes classifi-
cation and breast cancer used knowledge distillation approach to
build the interpretation prediction models [90]

4.1.3. Bayes Rule List (BRL)
Mostly rule-based models like decision lists and decision trees

are inherently interpretable and many other explainable
approaches used them as a part of their algorithms. In 2015, pre-
dictive models were introduced that are based on the idea of a
decision list and are known as ’Bayes Rule List (BRL)’ [91]. The
model of the decision list consists of a series of rule statements
such as ‘if-then’ which automatically explains many obvious rea-
sons behind every prediction. BRL is an associative classification
method that starts the process by producing the posterior distribu-
tion over permutations of ’if-then’ large but pre-minded set of rules
say,R. If a data set has N observations fxn; yng and let r represent as
rð:Þ : xn 2 X?yn 2f0;1g. Let R be a rule set define as

RðxÞ ¼ 1 9 r 2 R; rðxÞ ¼ 1
0 otherwise

�
ð4Þ

With Rð:Þ classifier, x is classified as positive if it obeys at least one
rule defined in Eq. 4. It is assumed that the interpretability of rules
is associated with the number of conditions or length L of rules that
are derived from a set of pre-mined rules R. R = [L

l¼1 Rl as R is
divided into maximum length L that a user allows. In a generative
BRL model, the decision list and rules are defined with words like
‘if’, ‘else if’, and ‘else’, accumulation of such words gradually clarifies
the rules which make the model understandable. An accurate deci-
sion list can be derived when a pre-minded set of rules is suffi-
ciently expressive. MarketScan Medicaid Multi-State Database
(MDCD) data of 11.1 million patients were used to explain stroke
chances using the BRL method. Besides extracted features (atrial
fibrillation condition, gender, age), additional information was col-
lected such as medicines and other medical conditions. This infor-
mation was used to generate binary predictor variables that
confirm the presence or absence of drugs and conditions. The priori
distribution helps to add, edit features and rules to create a sample



Table 3
The trustworthy set of rules for predicting future stroke [82].

Rules and conditions Chances of
strokes

Credible
intervals

If and Hemiplegia Age > 60 then 58.9% 53.8%-63.8%
else if Cerebrovascular disorder then 47.8% 44.8%-50.7%
else if Transient ischaemic attack then 23.8% 19.5%-28.4%

else if Occlusion and stenosis of the carotid
artery without infarction

then 15.8% 12.2%-19.6%

else if The altered state of consciousness then 16.0% 12.2%-20.2%
else if Age > 70 then 4.6% 3.9%-5.4%

else 8.7% 7.9%-9.6%

Table 4
Potential merits and demerits of Global (Ante-hoc) XAI methods.

Ante-
hoc

methods

Merits Demerits

BCM � Ability to capture good
information to improve
predictions.

� Results are easy to explain.
� Can achieve more accuracy
than LDA.

� Can not handle uncer-
tainty with prior
probability.

� No correct way to choose a
prior.

� High computational cost.
GAM � Able to deal with non-linear

and non-monotonic rela-
tionships between the
response and the predictor
variables.

� Can deal categorical
predictions.

� Computational complexity
with a high propensity of
overfitting.

� Python package is not
available.

BRL � Can handle both continuous
and discrete data.

� Easy to interpret by high-
lighting relevant features.

� Fast, robust, and used to
make real-time predictions.

� Rules focus on classifica-
tion and almost com-
pletely neglects
regression.

� Bad in describing linear
relationships.

� Only deal categorical
features.

NAM � Can learn arbitrarily com-
plex relationships between
input feature and the
output.

� Flexible, scalable, and easy
to extend.

� Can explain result to larger
community.

� Great chances of overfit-
ting with the standard
initializer.

� Produce inconsistent
results with Relu activa-
tion function.
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rule list then BRL tries to optimise these rules. Table 3 highlights the
small set of trustworthy rules to predict future chances of stroke.
The first three rules are based on other medical disorders such as
hemiplegia, cerebrovascular, and transient ischaemic, the chances
of strokes seem remarkably high. In the last three columns, vascular
disease, and age play an important role to predict the future risk of
stroke and chances are comparatively low.

The BRL method is trustworthy because it applies to real med-
ical data where risk is too high as patients with heart disease are so
vulnerable. To assure BRL performance and level of accuracy, it was
compared with CHADS2 score system to predict chances of stroke
in a patient with atrial fibrillation condition. In 2017, the scalability
of the BRL method was enhanced by using improved theoretical
bounds and tuned language libraries [92]. Hence, the optimised,
concise, and reliable rules list generated by the BRL method allows
to communicate with the domain experts and implement ML mod-
els in other fields such as industry, science, and engineering.

4.1.4. Neural Additive Model (NAM)
A combination of intelligibility of GAMs and expressivity of

DNN yields a novel class of model, called ‘Neural Additive Model
(NAMs)’ [93]. One can introduce the Neural Additive Model
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(NAMs) as an improved, accurate and scalable version of GAMs.
NAMs can train multiple DNNs and learn a linear combination
for each single input feature. The architecture of NAMs for binary
classification is explained in Fig. 5.

The generalisation of the NAMs method can be achieved by
parameterising the function f l , see Eq. 5, in the presence of various
hidden layers and neurons. Because of the failure of the ReLU acti-
vation function, researchers introduced exp-cantered (ExU) hidden
units that help NAMs to learn jagged functions with standard ini-
tialisation. This new class of model should learn jagged functions
to handle abrupt changes in the datasets relating to real-world
problems.

The unit function for ExU hidden units can be calculated with
input (x), bias (b) and, weight (w) parameters as:

huðxÞ ¼ f ðew � ðx� bÞÞ ð5Þ
NAM explains the contribution of each feature from every neu-

ral network by calculating the average value of the shape function
as a positive and a negative value. Positive values increase the class
probability while negative value reduces the chances. The visuali-
sation of shape function by a shape plot can help to understand the
model and allow to edit the model as well as the dataset before the
final implementation. The interpretation by the NAM method is
beneficial for DL as they used several hidden layers and units. From
these hidden layers and hidden units, one can compute more com-
plex but accurate shape functions and allow subnets to learn non-
linear functions that are required to improve the accuracy of the
model’s intelligibility.

4.2. Post-hoc methods

The existing and pre-trained AI models can be more valuable if
the interpretation of their decision path is understandable along
with the accuracy. The post hoc explanation methods required an
algorithm to look inside the black box of any DNNs architecture
without losing its accuracy. Due to this key advantage of post
hoc methods, this approach is also known as ‘‘model-agnostic”. A
quick view of post hoc methods are given in Table 5 and Table 6
that summarise information about type of data, frameworks and
methodologies, as well as their merits and demerits.

Definition 2. Let the DNN represent as a function F : RD1?RDk . The
post hoc explanation, eXpðFÞ, consist of two functions G1 and G2

where G1 : Rd1?Rd2 represents F such that d1 6D1 and d2 6Dk and

G2 : RD1?Rd1 maps the original input to the valid inputs of the
function G1.
4.2.1. Global Interpretation from local interpretation methods (LIME,
LRP, SHAP)

Recently, some researchers extended the existing ideas of local
explanation of AI models and deployed them in a way so that they
can be used for global or model explanation. This section discusses
such methods that have been initially introduced as the local inter-
pretation methods. Originally, a novel explanation method, ‘Local
Interpretable Model Explanation (LIME)’, was introduced to explain
prediction yield by a single instance. However, to solve real-
world problems such as predictions about medical diagnosis, the
explanation of a single prediction would not make these models
trustworthy. To make the user more confident while using these
models, researchers introduced the extended version of LIME
called ‘Submodular Pick (SP-LIME) [40]. SP-LIME is used to under-
stand the single data instances to understand the global correla-
tions of models.



Fig. 5. The Neural Additive Model for binary classification.

Table 5
Summary of research papers published in the past ten years for the Global explanation (Post-hoc) of AI models

Model usage (type) Year Methods Data type Methodologies Explanation medium Frameworks XAI evaluation

Post-hoc (Model-Agnostic) 2016 SP-LIME[40] Any Perturbation-based Graphics Python/R Qualitative
2015 LRP [86] Image Gradient-based Graphics (heatmaps) Caffe Quantitative
2017 SHAP [52] Any Perturbation-based Multimedia Python (XGBoost) Quantitative
2019 SpRAy [53] Image Gradient-based Graphics Caffe Quantitative
2019 GAA [72] Image Perturbation-based Multimedia Multi- dimensional Quantitative
2019 ACE [94] Image Concept-based Graphics TensorFlow Qualitative

Table 6
Potential merits and demerits of Global (Post-hoc) XAI method.

Post-
hoc

Methods

Merits Demerits

SP-LIME � Fast implementation and
less robust.

� Easy to interpret by expert
and non-expert.

� Inherently generate an
explanation for local
instances.

� Do not guarantee the opti-
mal solution.

SHAP � Fast implementation.
� Contrastive explanations.
� Consistent interpretation.

� Slow computation.
� Shapley values can be
misinterpreted.

SpRay � Detect any kind of anomaly.
� Ability to explain complex
DNNs by highlighting
important feature
(heatmaps).

� Low computation and stor-
age cost.

� Only qualitatively evalua-
tion is available.

� Heatmaps are sensitive to
specific features.

GAA � Can represent Nonlinear
relationship.

� Provides tunable subpopu-
lation granularity.

� Easy to implement.

� Computationally expen-
sive due to large number
of features.

ACE � Generate meaningful,im-
portant, and coherent con-
cept to explain DNNs.

� Need lot of image segmen-
tation processes while
generating explanation for
image dataset.

� Can not generate explana-
tion for the complex
concept.
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Fig. 6(a) describes the idea of the SP-LIME algorithm which pro-
vides the global explanation by fetching important features from
each instance. If the given set of instances are I, we can choose B
‘Budget’ as the required number of explanations. Firstly, we can
run the LIME algorithm for the available set of instances and save
the explanation of each instant into the ‘explanation matrix’ say L.
The explanation matrix helps to extract the important features of
the given model. The greedy optimisation technique is applied to
the new matrix of size IB generated by the SP-LIME algorithm
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which chooses the minimum number of inputs and extracts the
maximum number of important features.

The behaviour of the SP-LIME is similar to surrogate models as
it extracts useful information and independent explanation from
the LIME method. SP-LIME would be preferable over LIME because
it provides a non-redundant and global view of the model to trust
those models. There is another method, called ‘Layer-wise Rele-
vance BackPropagation (LRP)’, which was initially used to explain
the single instance of prediction [94]. The decomposition of predic-
tion helps to calculate the relevance score for every individual
input feature. Many deep architectures of the neural network such
as CNNs and RNNs use the backpropagation and update the rele-
vance scores to explain the single prediction by generating heat
maps. Recently, LRP utilises these heat maps as input for their glo-
bal explanation algorithm. Network pruning is another way to use
LRP that helps to reduce the memory cost of the AI model without
sacrificing accuracy [45]. The relevance score generated by LRP
highlights the least important features that are eventually
removed from the model to prune it.

In [49], the ‘SHapley Additive ExPlanation (SHAP)’ method calcu-
lates Shapley values and explains the prediction on behalf of fea-
ture contribution towards a certain output. The calculation of
Shapley value is based on the concept of coalition game theory,
where a prediction is treated as ‘payoff, and the value of each fea-
ture is assumed ‘player’. Shapley values state the fair distribution
of payoff (prediction) among the players (features). The mathemat-
ical formulation for computing contribution of each feature is
given as:

gðzÞ0 ¼ /0 þ
XM
j¼1

/jz
0
j ð6Þ

Where g is the explanation model, /j is feature attribution for

jth feature, z0 2 ½0;1�M and M is the maximum size of the coalition.
Different versions of SHAP like KernelSHAP, LinearSHAP, and Deep-
SHAP were introduced to explain the individual prediction for var-
ious types of datasets. In [95], a framework, called TreeExplainer,
was introduced as an extension of SHAP for trees. The algorithm



Fig. 6. Global explanation from Local interpretation SP-LIME and SHAP methods.
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behind TreeExplainer finds the local interpretation for trees by
computing the Shapley values, then structures them in such a
way so that the model can explain the features at the global level.
Without loss of consistency and accuracy, the extended version of
SHAP, TreeExplainer, provides a quick local explanation for trees in
polynomial times. The global interpretations include interaction
and clustering values, summary and dependence plots, and feature
importance (Fig. 6(b)). With SHAP, the global interpretation of the
model becomes easier due to the fast computing ability of Shapley
values.
4.2.2. Spectral Relevance Activation (SpRAy)
The SpRAy technique for explaining the AI models at the global

level was introduced by Lapuschkin in 2019 [54]. This technique is
based on the LRP method which explains the model for an instance.
To view insight into the model and explain the decision-making
process, a spectral clustering algorithm was applied to the local
explanations of the model produced by the LRP method. The
results produced by the LRP method help to spot and analyse those
attributions which appear frequently with spatial structure. This
spatial analysis would help the SpRAy method to identify any
anomaly in the model.

The algorithm of the SpRAy technique can be summarized as
follows. (i) Firstly it uses the LRP method and finds local relevance
maps that are used to explain every data instance. (ii) it then
makes the definite and visible solution, scales down the relevance
map to uniform size and shape (iii) it then evaluates the LRP rele-
vance maps by using Spectral Cluster (SC) analysis to design clus-
ters for the local explanations (iv) and finally it uses eigen maps
analysis to compute eigen gap among two successive clusters
and return relevant cluster to the user. Lastly, as an optional step,
the user can visualise these clusters by using t-Stochastic Neigh-
bour Embedding (t-SNE).
Fig. 7. The four strategies of SpRAy
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The paper [54] explains the SpRAy algorithm by implementing
on the horse images of the PASCAL VOC dataset. Fig. 7 shows the
following four different prediction strategies to classify horses. (i)
spot the presence of rider and horse (ii) highlight the existence
of source codes on portraits-based images (iii) identify some back-
ground elements (iv) and highlight tags on landscape-oriented
images. On this large dataset, the SpRAy method acts as a semi-
automated tool that can also detect any kind of anomaly such as
misuses of source tags in horse images. Hence, without human
intrusion, the combination of LRP and SpRAy methods enables
the user to identify the strategies behind prediction and visualises
them with the aid of heat maps.

4.2.3. Global Attribution Analysis (GAA)
Although the discussed global interpretation techniques explain

the decisions by summarising local attributions or providing a set
of rules, these methods failed to learn about the non-linear interac-
tions of features across subpopulations during the training process.
A technique called ‘Global Attribution Analysis (GAA)’ has been
introduced in 2019 that produces explanation even for subpopula-
tion by generating global attribution [96]. Each global attribution
explains the specific part of the model that leads to the global
explanation of the model. Fig. 8 shows the workflow of the GAA
method. Firstly, the information about the local features is col-
lected by employing some local interpretation methods such as
LIME, DeepLIFT and, Integrated Gradient. At this stage, every local
attribution highlights the significant features for a single predic-
tion and treats these attributions as weighted conjoined rankings.
To avoid anomalies, these local attribution vectors are normalised
by

jdwj � 1
ð
X
i

jdwðiÞj
ð7Þ
method to classify horses [54].



Fig. 8. Algorithm for Global Attribution Analysis for global interpretation.
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In Eq. 7, dw is a weighted attribution vector and � is used to rep-
resent the Hadamard product. Next, the following two options are
used to compare these normalised attributions and quantify simi-
larities among them: (i) Kendall’s Tau rank distance [97] (ii) Spear-
man’s Rho square rank distance [98]. After this comparison, the
GAA method uses a clustering algorithm, K-medoid [99], to make
clusters of similar attributions and identify global attribution pat-
terns. Hence, GAA allows us to look and find out differences among
explanations of subpopulations. Fig. 8 depicts each step of GAA
algorithms. In addition, GAA also offers a tuneable granularity to
get information about the preferred number of subpopulations.

4.2.4. Automatic Concept-based Explanation (ACE)
A concept-based method, called ‘Automatic Concept-Based

Explanation (ACE),’ has been discussed in [100] that is used to
globally explain the trained classification models such as CNN
and Inception-V3. ACE suggests only those concepts for the expla-
nations that are indispensable and coherent for a model’s predic-
tion as well as meaningful and understandable for humans.

The authors of the paper explained the ACE algorithm step by
step (Fig. 9). They pick a trained classifier with a set of images as
input data. In step one, the method extracts all concepts present
in the images in the form of segments (groups of pixels). The
method then applies different levels of resolution techniques to
fully capture the hierarchy of concepts. Usually, three levels of res-
olution are considered enough to capture colours, texture, objects,
or even their parts.

In the second step, ACE picks those segments that represent the
same concepts and puts them in a group. To measure similarity
among segments, the Euclidean distance (say d) can be used, this
distance also helps to remove the concepts with low similarity
and maintain the coherency of the model. All these steps can be
Fig. 9. Step by step Automatic Concept
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understood by the visual source provided in [101]. Lastly, the
method uses any method like TCAV [102] to highlight important
concepts by computing concept-based importance scores. This
method is only performed on the image datasets as it is easy to
group pixels in a meaningful way, this could be a big drawback
of ACE.
5. Summary

We summarize the taxonomy that has been discussed in the
previous sections and is visually depicted in Fig. 10. Among the
explainable methods discussed above, not all kinds of data can
be processed. There are methods that take into account numerical,
binary, and categorical data, which are tabular, while others gener-
ate explanations by highlighting data that is comprised of pixels,
which are images. Fig. 10 illustrates those objects that are
explained within the development process to provide global expla-
nations. Some methods focus on accessing the internal representa-
tion, such as layers, features, or vectors, and others explain how the
model is trained. In this paper, we include only those explanators
that certainly contribute to explaining the decision-route gener-
ated by the above-described explainable models. (i) Saliency Map
(SM): is an efficient way to visually highlight and mask the causes
of certain outcomes [103]. (ii) Decision Tree (DT): is easily under-
standable, also known as single tree approximation, and primarily
used for the global explanation [104]. (iii) Partial Dependence Plot
(PDP): plot the relationship between the outcome of the black
box and the input [105]. (iv) Decision Rule (DR): is the most human
understandable explanation technique that is used to transform
the decision tree into a set of rules [96]. (v) Prototype Selection
(PS): consists of returning the outcome with a set of similar
based Explanation algorithm. [101].



Fig. 10. Explanatory Taxonomy of Data and Model Driven Global Explainable methods.

Table 7
Potential merits and demerits of interpretable Explanators.

Explanators Merits Demerits

Saliency Map � Highlight important pixels.
� Faster computation.

� Only qualitative evaluation is available.
� Insensitive to model and data.

Decision Tree � Easy to explain.
� Need less effort for data preparation.

� Fail to deal with linear relationships.
� Difficult and expensive to interpret deeper tree.

Partial Dependence Plot � Easy to understand and interpret.
� Easy to implement.

� Deal with maximum two features.
� Hidden Heterogeneous effect.

Decision Rule � Select only the relevant features.
� Cost efficient.

� Difficult and tedious to list all the rules.
� Fail to describe linear relationship.

Prototype Selection � Easy detection of missing functionality.
� Detect error at early stage.

� Expensive.
� Higher number of features or clusters.

Feature Importance � East interpretation.
� Highly compressed and insight model globally.

� Expensive.
� Time consuming.
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instances [106]. (vi) Feature Importance (FI): is an effective but sim-
ple explanation solution that highlights and returns weights and
features with a high magnitude [107]. In Table 7, these methods
have been summarized with their advantages and disadvantages.

Perturbation-based Global explainable methods: The summary
provided in Table 2 and 5 shows that most global explainable
methods are based on the perturbation algorithm. Perturbation
mainly focuses on perturbing the set of features (e.g. pixels) of
the given input data by masking, occlusion, or filling operations.
After finding a set of perturbations, a new set of predictions can
be obtained by using the parameters of DNNs. To determine the
significance of different features, these predictions are compared
with the original data and an explanation is generated with the
predefined set of explanation rules. Generally, Global methods
such as BCM [77], GAM [87], SP-LIME [40], GAA [93], and, SHAP
[52] use only forward pass to understand the neurons’ activities
and impact of each feature to demonstrate models’ attributions.
Perturbation methods provide a visual explanation (heatmaps, sal-
iency maps) to explain the influencing features of images, videos,
and natural language as input but only few of them have been eval-
uated at the qualitative human experiment level. Perturbation or
Concept-based explanations are Data Driven Explanations that com-
pletely relies on input data for generating explanation. As only
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small change in input data can impact the Data Driven explanation
so this approach does not need to understand the inner functional-
ity of model [108].

Gradient-based Global explainable methods: On the contrary,
gradient-based methods, understand the neurons’ activities by
doing more than one forward pass and use partial derivatives of
activation to generate attribution representation during backprop-
agation. Naturally, gradient-based methods such as LRP [91] and
SpRay [53] generates the human understandable visual explana-
tion but there is no discussion and evaluation of these methods
at the qualitative level to gain trust on the AI models especially
for applications such as medical surgeries and autonomous vehi-
cles. Correlation-based algorithms compute correlation scores
rather than gradients by using the backpropagation technique.
Under the set of constraints, correlation-based methods such as
DeepLIFT [109] generate reasonable explanations. DeepLIFT calcu-
lates the scores based on a comparison between the values of acti-
vated neurons and the reference values. In some cases, DeepLIFT
may consider both negative and positive values to observe the
effect of each neuron. The Gradient-based explanation falls on
theModel Driven Explanation category that analyse internal compo-
nents such as weights and neurons to generate explanation [110].
Besides the above two methodologies, some global explainable
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methods are based on the defined rules [91], concepts [97], and
clusters [72] approach. The major drawback of most of the dis-
cussed global explanation methods is the dearth of human subject
experiments. Arguments, reasoning, and explanations are more
effective if they help the end-user to build a true picture of the
entire model process. There are two ways to keep humans in a loop
while evaluating the explainable methods. First, a random selec-
tion of lay people (without technical or domain knowledge) inter-
acting with explanation tools and providing their responses/
feedback through the designed questionnaire by AI experts. Sec-
ondly, domain experts providing their opinions on the explanation
tools and using domain knowledge to verify their consistency. Dif-
ferent free libraries and frameworks such as Python, R, Caffe,
Pytorch, Keras and TensorFlow are available to generate textual,
visual, audio, and video explanations depending on the type of
dataset and the demand of the end-user.
6. Conclusion and Open Challenges with Future Directions

It can be observed that in the past decade, many researchers
primarily paid attention to the development of global interpreta-
tion methods, even though they utilised many existing local or
visual explanation methods for the complete model interpretation
[111,112]. Although with sufficient accuracy, the local interpreta-
tion methods of AI can improve the user’s trust, these methods
never reveal the complete structure of the AI model. Therefore,
it is considered as the biggest drawback of the local interpretation
methods. This paper presents a brief history of global XAI meth-

ods from the mid of 20th century to 21th century, then a taxonomy
of the global interpretation AI methods produced in the past ten
years is presented. This, also provides answers to questions such
as why the complete explainability and interpretability of AI
models are so important and how the vague understanding of
AI models and relating technologies would affect the human life?
There is an inadequate illustration of some terminologies that are
commonly but interchangeably used in the XAI field. The expla-
nation of these terminologies in this paper will help the readers
in understanding XAI methods. This survey will provide a detailed
insight into the recent developments on global XAI methods,
existing challenges, and the possible path towards trustworthy
XAI methods that would be understandable by a human. The cen-
tral focus of this survey paper is around answering the question:
how XAI methods can be completely explained for their structure
and decision routes? There is considerable work done in the past
ten years on the global interpretation methods that have been
highlighted and summarized in this paper and this area of
research has been continuously evolved by introducing new and
novel approaches. The key findings can be summarized as
follows:

1. Mostly the existing interpretation methods explain the
decision-making process of the DNNs by using local or visual
approaches. However, these approaches are inadequate to
explain the full architecture of the DNNs as the local methods
generate an explanation just by following the decision route
for one single instance at a time. While knowing the rationale
for all possible outcomes, the global interpretation methods
can explain the complete architecture of DNNs.

2. Existing global interpretation methods such as Global Attribu-
tion Analysis (GAA) explain the model at the global level by
using some existing local interpretation methods such as LIME,
integrated gradient, and DeepLIFT. These methods become
computationally expensive as the number of features and
parameters are quite high in the deep architectures of neural
networks.
177
3. Some existing approaches such as surrogate models (LIME)
approximate the black box model to explain the decisions.
These interpretation models may be close to the black box
model for one subset of a dataset but diverge widely for other
subsets.

4. The existing global interpretation methods have been used to
explain DNNs for the data types such as images and tabular,
there is no global interpretation method for text datasets that
can illuminate the decision rationale executed by DNNs.

While deliberating the existing research gaps in the state of the
art of global XAI methods, we have a significant opportunity to dis-
cuss and establish some future research goals and directions for
academic researchers.

� The DNNs have model-free architecture and the existing global
interpretation methods produced an explanation by approxi-
mating the black box model of DNNs. To make model-
oriented architecture one needs to introduce a mathematical
model that should explain each decision of the black box model
of DNN deterministically and represent and govern the learning
evolution happening in each iteration.

� The existing approaches are expensive in terms of computation
complexity because of the stochastic behaviour and perfor-
mance of many DNNs models. The deterministic explanation
approach would explain the model with low computational cost
and make the interpretation more accurate no matter how
many times we execute this model.

The proposed future directions demand developing novel deter-
ministic models that can highlight the influencing features and
mathematically figure out the contribution of each part in the
decision-making process. Consequently, the proposed determinis-
tic explainable model will reduce the computational cost as it
can provide desirable outcomes in fewer iterations. Moreover,
the DNNs will become more trustworthy and reliable for risky
applications as we would have a controlled learning process within
DNNs. In the end, it is worth mentioning that interpretation meth-
ods should be built under some constraints such as data privacy
and model confidentiality because explainability may lead to
revealing some sensitive information about the model unless the
experimentation and execution is carried out in a protected and
compliant environment.
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