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Abstract Deployment and maintenance of current data

center networks is costly and prone to errors. In order

to avoid manual configuration, many of them require

centralized administrators which constitute a clear bot-

tleneck, while distributed approaches do not guarantee

sufficient flexibility or robustness. This paper describes

and evaluates GA3 (Generalized Automatic Address

Assignment), a discovery protocol that assigns mul-

tiple unique labels to all the switches in a hierarchi-

cal network, without any modification of hosts or the

standard Ethernet frames. Labeling is distributed and

uses probes. These labels can be leveraged for short-

est path routing without tables, as in the case of the

Torii protocol, but GA3 also allows other label-based

routing protocols (such as PortLand or ALIAS). Ad-

ditionally, GA3 can detect miswirings in the network.
Furthermore, control traffic is only necessary upon net-

work deployment rather than periodically. Simulation

results showed a reduced convergence time of less than

2 seconds and 100kB/s of bandwidth (to send the GA3

frames) in the worst case for popular data center top-

ologies, which outperforms other similar protocols.
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1 Introduction

Data Center Networks (DCNs), which constitute the

main pillar of most major Internet services, are in-

creasingly relying on Ethernet and flat layer-two net-

works due to the excellent price/performance ratio and

ease of configuration. However, legacy Ethernet layer-

two networks do not scale. To solve this, the most com-

mon approach is to assign globally unique, topologically

meaningful host labels [1] that the network applies in-

ternally for forwarding. Labeling simultaneously yields

the key benefits of IP addressing (hierarchical address

assignments for simpler forwarding tables) and of MAC

addressing (no need for manual configuration).

Following this criterion, a network designer must

consider a vast number of topology families and ar-
chitectures [2], which usually have their own labeling

and routing protocols. These solutions are often very

specific and relatively inflexible because they are de-

signed with a fixed topology. However, a network ad-

ministrator might need to expand or reorganize the

topology or cope with network failures, which can hap-

pen frequently as the amount of network equipment

increases [3] and cause service interruptions that may

have severe consequences. Furthermore, topological flex-

ibility can improve traffic optimization and simplify

network management [4], and even non-regular topol-

ogies might show high performance benefits [5].

Therefore, a key concern in DCNs is automatic con-

figuration in the face of a dynamically changing topol-

ogy [6]. Unfortunately, distributed proposals lack this

desirable feature and SDN-based solutions still present

scaling limitations [7]. Currently, only ALIAS [1,6] sat-

isfies these requirements, but it has several limitations:

an appreciable amount of traffic is required maintain la-
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eGA3 frame (data)

Fields available to characterize the eGA3 frame

   6 bytes                                  6 bytes                         4 bytes           2 bytes

Destination Address           Source Address               VLAN tag          Type/
                                                                                                    Length

Fig. 1 GA3 frame format

beling and it lacks the capacity to detect possible topol-

ogy miswirings.

In this paper, we present GA3, a generalized label-

ing protocol for DCNs. GA3 was originally designed for

the Torii routing protocol [8], but it has been extended

to cover a wider range of DCN topologies. GA3 is a new

labeling paradigm that explores and labels the network

rapidly and flexibly, thus reducing message load since

messages are only exchanged in the set up rather than

periodically.

The structure of this paper is as follows: In Section

2, we describe GA3, and assess it in Section 3. In Sec-

tion 4, we discuss related work, and in Section 5 we

summarize and conclude the paper.

2 GA3

GA3 is a fully distributed protocol for address assign-

ment, labeling switches in hierarchical networks, in-

cluding DCNs. It uses probe frames that explore and

inform all the nodes of a topology, following the All-

Path locking mechanism [9] to avoid loops. GA3 frames

(Fig. 1) are common Ethernet frames that reuse the

source MAC address field to disseminate this informa-

tion. GA3 frames can be distinguished by: either a spe-

cific multicast address as destination MAC address, a

VLAN tag or specific Ethertype. The frame contains

6 bytes in data, where we save the first 4 bits to dif-

ferentiate up to 16 types of frame (including Hello or

SetHLMAC, which assigns the labels), leaving 44 bits

available for use within GA3.

2.1 Address assignment

GA3 assigns Hierarchical Local MAC (HLMAC) ad-

dresses (as defined in Torii [8]) carried within probe

frames that explore the entire network, starting from

the core switches.

Before explaining the assignment method, let us ex-

plain the terminology:

– HLMAC addresses are composed of three different

elements:

– Prefix : The first field of the HLMAC, which iden-

tifies the core or root (1. in the case of 1.2.3.4.)

– Suffix : The following fields, excluding the last

one, which identify the branch or path toward

a switch in the network (2.3. in the case of

1.2.3.4.)

– Coordinate: The last field, which identifies the

device (4. in the case of 1.2.3.4.)

– HLMAC addresses have a priority level, which indi-

cates what address has preference and helps decide

if a GA3 frame should be flooded.

Addresses are compared field by field (excluding the

prefix) and the first one that is different determines

the priority. The lower the value, the higher the pri-

ority. For example, 1.2.3. has higher priority than

1.2.4., 1.2.3.4. (omitted values after the dot are

zeroes), or even 1.3.; however, it has lower priority

than 1.2.2., 1.1.2.3., or 1.1.

– HLMAC addresses have a hierarchy level, which is

the number of values that the address contains (mi-

nus the prefix). For example, 1. has a hierarchy level

0 (core switch), while 1.2.3.4. has a hierarchy level

3. Hosts obtain HLMAC addresses with the highest

hierarchy level in the topology.

In particular, GA3 considers one byte per hierarchy

level; for instance, 1.2.3. uses 3 bytes: one for 1,

another for 2, and another one for 3. This is the

most common and standard behavior, as stated in

[10], which is why it is used in GA3.

Below, we present increasingly complex examples

to illustrate how GA3 creates the HLMAC addresses,

transmits them, and assigns them throughout the net-

work.

2.1.1 Basic address assignment example

The process starts at the core switch with the highest

HLMAC priority. It broadcasts a SetHLMAC contain-

ing its own HLMAC address plus a coordinate. This co-

ordinate can be the port number from which it is being

sent or an equivalent, but it must be unique per switch.

The process is repeated for all the switches that receive

the SetHLMAC message. For example, in Fig. 2.a, S1

is the core switch and contains the HLMAC 1., so it

sends a SetHLMAC containing HLMAC 1.9. because

it is sent from port 9. S3 receives it and associates that

address with the incoming port. After this, it broad-

casts the frame through ports 7 and 6 (adding those

coordinates respectively), and switches S5 and S6 as-

sign addresses 1.9.7. and 1.9.6. to their input ports,

respectively. Note the assigned HLMAC is the chain of

designated port IDs traversed in the descending path

from the core switch to the device.

Synchronization of suffixes from multiple cores
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1./11. 2.
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7 6 67
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1.9.7.
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1.9.6. 2.9.6.
11.9.6
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1.12.
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Fig. 2 Basic address assignment example

A new core with new branches has been added sym-

metrically in Fig. 2.b. The initial presumption might

be that the process is exactly the same, once per core.

However, this would cause switches to be given HLMAC

addresses that cannot be inferred from the others just

by changing the prefix (required by some routing proto-

cols), because the suffix depends on the IDs of the ports

traversed, and these might have different values. For

example, S5 could obtain 1.9.7. and 2.10.5., which

have different suffixes.

To synchronize the suffixes, GA3 learns labels and

floods only if the HLMAC priority from the SetHLMAC

frame is the highest received so far. Therefore, S5 and

S6 continue flooding the network, sending SetHLMAC

messages with values 1.9.7.5. and 1.9.6.6., respec-

tively, to S4. Then, S4 sends children of these HLMAC

addresses to S2, which receives addresses starting from

1.9. S4 still does not know if it is a child of S5 or S6,

or if its HLMAC 2.10. is correct. However, S2 does

know that it is a core switch and it will not assign

the HLMAC addresses received from S4; but it will use

them to synchronize port numbering: since S2 is 2.,

it knows that the following hierarchy levels from that

branch should start with 9 (eliminating the 1 from the

received 1.9.).

When S2 propagates its children HLMAC addresses,

it knows that the HLMAC to be sent should be 2.9.

(instead of the original 2.10.) thanks to the SetHLMAC

copy that arrived from S1. S4 then associates 2.9. with

its port of origin and sends 2.9.7. and 2.9.6. to S5

and S6, respectively. S4 knows it should use the values

7 and 6, because it previously received 1.9.7.5 and

1.9.6.6., and since its hierarchy level is 2, it can re-

move the 1.9. and obtain the corresponding values.

In the case that S2 starts sending the SetHLMAC

before receiving the synchronization information, it would

send 2.10. and the process would continue until reach-

ing the edge switches. However, whenever S4 received

1.9.7.5. or 1.9.6.6., it would acknowledge them as

having a higher priority level than any other starting

S2
S1

S4
S3

S6
S5

1.9.
1.9.7.
1.9.6.

2.10. 1.9.7.3.1.9.7.3.2.
2.9.

2.9.7.
2.9.6.

1.12. 2.9.4.

11.9.
11.9.7.
11.9.6.

Fig. 3 Sequence diagram of the basic address assignment
example

from 2. and would therefore continue flooding them

until reaching S2, which would then restart the process

using 2.9. instead of 2.10.

Lastly, S5 and S6 have HLMAC addresses 1.9.7.,

2.9.7. and 1.9.6., 2.9.6., which can be deduced

from the others simply by changing the prefix (i.e. suf-

fixes and coordinates are the same per switch).

Duplicated paths from a common core

We illustrate the last part of the process in Fig. 2.c.

In this example, we have added another link between

switches S1 and S4. Now, switches S3, S4, S5, and S6

have two paths to reach S1. At first, S1 sends a Set-

HLMAC with the value 1.9. through one port and

1.12. through the other, because it does not know if

both ports are linked to a common pod or not. How-

ever, this behavior would once again create HLMAC

addresses with different suffixes (not inferable); there-

fore, S1 should send SetHLMAC messages that only

vary in their prefix to links with commons pods. To do

this, S1 creates virtual prefixes (or virtual cores), e.g.

1. has 11., 21., etc.

The typical scenario of a virtual core is the fol-

lowing: S1 sends SetHLMAC messages through both

ports and eventually these will reach each other at some

switch in the network. Since any address starting from

1.9. has a higher priority than 1.12., the SetHLMAC

containing 1.9. and children will continue its propa-

gation while the ones from 1.12. will be discarded.

Eventually, a copy arrives at S1 again in some ports (in

this case, in the link connected to S4) and this notifies

S1 that both the link from S1-S3 and S1-S4 share a

common pod (otherwise no copy would have arrived),

and therefore S1 again sends a new SetHLMAC to S4

but this time containing 11.9. instead of 1.12.



4 Elisa Rojas et al.

Finally, S5 obtains 1.9.7., 11.9.7. and 2.9.7.,

and S6 obtains 1.9.6., 11.9.6. and 2.9.6.

Fig. 3 illustrates a summary of this example in the

form of a sequence diagram, which helps us understand

the temporal exchange of messages from Fig. 2. The

first SetHLMAC goes from S1 to S3 and contains 1.9.,

while the last messages go from S4 to S5 and S6.

S1 S2

S3 S4 S5 S6 S7

S8 S9 S10 S11 S12

Pod 1 Pod 2

Core

2
3

1

61 2 3

1
5 7
3

  1. 2.

4

1.1. 1.5.

1.1.2. 1.5.3.

1.1.1.
1.5.6.

1.5.4.

2
8
4

S1 S2

S3 S4 S5 S6 S7

S8 S9 S10 S11 S12

Pod 1 Pod 2

Core

2
2

2

11 1 4

1
1 1
3

  1./11./21. 2.

4

1.1. 11.1.

1.1.2. 11.1.2.
1.1.1.

11.1.1.
11.1.4.

1
8
4

6
4
5

7

6
4
5

7

S1 S2

S3 S4 S5 S6 S7

S8 S9 S10 S11 S12

Pod 1 Pod 2

Core

2
2

2

11 1 4

1
1 1
3

  1./11./21. 2./12.

4

1.1. 11.1.

1.1.2. 11.1.2.
1.1.1.

11.1.1.
11.1.4.

1
3
3

4
4
5

5

1.3.
11.3.
21.3.

1.3.
11.3.
21.3.

(a)

(c)

(b)

Fig. 4 Extended address assignment example

2.1.2 Extended address assignment example

Let us nos consider Fig. 4: a topology with two cores,

two pods1 and five hosts. S1 (core 1) starts sending

1 A pod is a group of switches that share connectivity via
links not coming from a core. S4 and S5 belong to the same

two SetHLMAC messages through ports 1 and 5 and

assigns 1.1. and 1.5. to S3 and S4, respectively. Once

received, S3 and S4 send SetHLMAC messages to S8,

S9, and S10. S10 only obtains one HLMAC, 1.5.4.,

but S8 and S9 obtain two: one from S3 and one from

S4, assigned to two different ports. For example, S8

associates 1.1.2. with one port and 1.5.3. with the

other and because the former has a higher priority, it

will generate and send a SetHLMAC to S4, while the

latter will not (see Fig. 4.a)2. A similar logic is applied

at S9, which forwards a child SetHLMAC of 1.1.1. to

S4, but no child of 1.5.6. to S3 as its priority is lower.

Therefore, children of 1.1. arrive at S4 and eventually

return to S1. The same happens with children of 1.1.

arriving at S5.

The next step is that S1 creates two new virtual core

prefixes and sends 11.1. to S4 and 21.1. to S5. These

SetHLMAC messages propagate until reaching the edge

switches, which receive new HLMAC addresses with

suffix synchronization (updating port IDs). Fig. 4.b shows

the resulting addresses with changes marked in red.

In the meantime, a copy of the SetHLMAC also

arrives at the second pod, at S3 as 1.3., and differ-

ent children flood the pod until reaching S2 (core 2),

which also updates different port IDs in S2 and S7 (see

Fig. 4.c). Apart from 1.3., two other SetHLMAC with

addresses 11.3. and 21.3. will also arrive at S3 after

S1 generates the new virtual core prefixes.

The final address assignment at edge level for hosts

is shown in Fig. 4.c. Note that all hosts have up to five

addresses except for H3, which has four because there

is no connection between switches S3 and S10.

Multiple virtual core prefixes

A core creates a new virtual prefix per path to a com-

mon switch. Depending on the duplicated paths from

a core to a switch, the number of virtual core prefixes

can grow exponentially; however, this number can easily

be reduced by not propagating all HLMAC addresses,

which implies not generating all different paths avail-

able. By default, GA3 explores all possible paths be-

tween pairs of devices, so decreasing the number of HL-

MAC addresses propagated reduces messaging, which

is particularly desirable in networks containing a high

number of cores.

For example, if we add a link between S1 and S7

in Fig. 4.c, S1 will have multiple paths in the first pod

and in the second. In this case, S1 sends HLMAC ad-

dresses with prefixes 1., 11., and 21. to both S6 and

pod; but not S5 and S6, as they are only connected through
the core S1.
2 It might happen that 1.5.4. arrives earlier than 1.1.2.

and is then propagated to S3, but it would subsequently be
stopped at S3, which has a higher priority: 1.1.
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S7. Eventually, the loop is discovered and one set of

addresses will have a higher priority than the other,

so S1 generates virtual cores. How many? Ideally, one

virtual prefix per original prefix, which makes a total

of six. However, the core might also decide not to cre-

ate so many new prefixes (by setting a parameter B).

The network administrator should define B looking for a

tradeoff between the number of available paths required

and the amount of messages exchanged.

2.1.3 Pseudocode

We summarize the study of GA3 in a pseudocode, which

explains the actions that a switch takes after receiv-

ing a SetHLMAC message. A switch contains a list

of core prefixes, a list of ports and a priority (prio),

which is the highest of the prio values in the port list.

Each switch port contains a physical (phy) value (man-

ufacturer MAC), a logical (id) value, a list of assigned

HLMAC addresses and a priority (prio), which is the as-

signed HLMAC with the highest priority, without the

prefix. The hierarchy level (hier) is the length of the

prio value (number of bytes).

1 r ec e i ve mes sage (SetHLMAC, input por t )
2 {
3 port = switch . por t s [ i nput por t ]
4
5 i f ( port . h i e r >= SetHLMAC. h i e r ) :
6
7 #port : update HLMAC l i s t
8 i f port . p r i o . s u f f i x ( ) != SetHLMAC. s u f f i x ( ) :
9 port .HLMAC. c l e a r ( )

10 port .HLMAC. append (SetHLMAC. hlmac )
11
12 #port : update prio
13 i f port . p r i o < SetHLMAC. pr i o :
14 port . p r i o = SetHLMAC. pr i o
15
16 #switch : update prio
17 i f switch . p r i o < SetHLMAC. pr i o :
18 switch . p r i o = SetHLMAC. pr i o
19 f l o od (SetHLMAC, input por t ) #forward
20
21 #ports : update ids
22 por t s = [ ]
23 for p in switch . port :
24 i f p . h i e r > switch . h i e r &&
25 (p . h ie r−switch . h ier<=2 | | switch . core ) :
26 p . id = p . pr i o [ switch . h i e r ]
27 i f p . id in port s && switch . core != nu l l :
28 switch . core . append ( new core )
29 s t a r t c o r e ( new core , p) #re s t a r t core
30 else
31 por t s . append (p . id )
32 }
33
34 f l o od (msg , input ) #forward SetHLMAC
35 {
36 for port in switch . por t s :
37 i f port != input :
38 send (msg + port . id , port . phy )
39 }
40
41 s t a r t c o r e ( core , port ) #star tup or v i r t u a l
42 {
43 send ( core + port . id , port . phy )
44 }

2.2 Protocol features

Having described GA3 address assignment, in this sec-

tion we will now focus on the different properties of the

protocol.

2.2.1 Label robustness

GA3 assigns addresses upon deployment of the network,

but it does not need to repeat the process. Changes in

the network only invoke local changes in the addressing,

yielding high adaptability, fast recovery, and very low

bandwidth required for the exchange of GA3 messages.

If a link goes down or is removed from the network,

only the adjacent nodes need to delete the addresses

associated with the affected ports. Similarly, in the case

of switches, these affect a set of links and again only

the adjacent nodes delete the assigned addresses. If a

link or a switch goes up or is added to the network,

neighbors will discover them (via Hello messages) and

send a SetHLMAC message only through the recently

activated ports. This message propagates locally until

finding an already assigned, higher priority HLMAC,

allocating new HLMAC addresses along its route.

Thus, no global reformulation of addresses is re-

quired, increasing system scalability and reducing main-

tenance.

2.2.2 Miswiring triggers

The G3A procedure is not only capable of assigning or-

dered HLMAC addresses, but can also recognize topol-

ogy patterns and raise alerts when this is not the de-

sired topology, that is, it can recognize different types

of possible miswirings or faulty ports:

– Loops in a pod:

If a core switch receives an upstream SetHLMAC

that contains a HLMAC address assignment with

its same core prefix, this indicates that this core

switch has two or more links to a common pod, one

of the pods is not completely isolated, or there are

no pods at all.

As already mentioned, this generates what is called

a virtual core and does not represent a miswiring

per se. However, if the network administrator was

setting up a fat-tree [11] topology, which has well-

defined pods with just a single link to core switches,

then this would indeed indicate a topology deploy-

ment error.

– Irregular core assignment:

If an edge switch does not have all the possible HL-

MAC addresses after address assignment, the topol-

ogy is not symmetric or the network is not optimal.
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– Peer links:

If a switch has a pair of addresses that only dif-

fers in one hierarchical level after an update, this

indicates that peer links exist in the network, i.e.

links that directly connect switches in the same hi-

erarchy level (for example, a link between two core

switches), which could be considered misconfigura-

tion for data center topologies.

Switches could report this information individually

at switch level or to a centralized manager, so the net-

work administrator would be able to check the deploy-

ment and determine whether the setup is correct.

2.3 Trade-off between convergence time and

exchanged data

The actual number of messages in a deployment de-

pends on an extra parameter: the GA3-clock. A GA3-

clock equal to zero means that SetHLMAC messages

are all flooded at the same time, while any other value

represents an extra delay when forwarding the frame in

different ports, using the ports with lower ID first. For

example, if a switch floods the frame through ports 1,

2 and 3, GA3-clock=0 sends all the frames at the same

time and GA3-clock=X sends through port 1 at time 0,

port 2 at time X, and port 3 at time 2*X. Additionally,

this delay can be weighted based on the hierarchical

level of the switch (increasing it at core and decreasing

it at edge level).

Any value higher than zero for the GA3-clock re-

duces the total number of messages in the network: the

higher the value, the lower the number of messages ex-

changed. Suffix synchronization is performed prior to

sending other messages and thus, GA3 avoids resend-

ing extra messages.

The GA3-clock is especially important in this field

because discovery and label assignment are usually car-

ried out by protocols with periodical retransmission in-

tervals. These protocols (such as LLDP [12]) exchange

data messages between neighbors and their performance

depends on their periodicity. However, GA3 can either

depend on a clock or be completely independent from

it: if the GA3-clock equals zero, the convergence time

will only depend on the number of hops in the network

and the transmission rate of the links. Thus, network

administrators can always configure the GA3-clock as

a trade-off.

3 Evaluation

In this section report an analytical evaluation and a

simulation-based evaluation of GA3, implemented in

Python. In both cases, we compared the number of mes-

sages generated by GA3 and ALIAS, which we believe

to be the closest proposal to date to our own work. In

addition, we took PortLand [13] and VL2 [14] (with

Dc = Da = k) as examples of common data center

topologies. The reason for this is that the fat-tree from

PortLand inspired some of the data center deployments

in Google [15], while VL2 is one of the most famous

designs from Microsoft [16]. Many other surveys, such

as [17,18], consider both topologies as representative of

data center network architectures.

3.1 Analytical evaluation

We analyzed GA3 in the range between “near best” and

“near worst” cases, given that the number of messages

generated by GA3 depends on the GA3-clock. Note

that GA3 only generates messages when the network is

initialized, whereas ALIAS produces them periodically

(i.e. the process is repeated indefinitely depending on

the period parameter defined in ALIAS, whereas GA3

only needs one execution). Finally, let us define C as

core, A as aggregation, and E as edge switches.

GA3 in PortLand

Near best: In this case, we assumed that upward mes-

sages with the highest priority arrive first at A and

it forwards the messages to C, then the lower priority

messages arrive and are not forwarded. The first core

sends one SetHLMAC. This message arrives at A and

is forwarded down by the first A to the E through its

k/2 ports (one message per port) to reach all the k/2

edges of the first pod. The total number of messages

going down in that pod is: DOWN = 1 + k/2

Let us calculate the upward messages in that pod,

which enable GA3 to synchronize the suffixes. Every

edge node has k/2 links to A and sends messages by

all ports except the one that received the downward

message, so k/2 − 1. Multiplied by k/2 edge nodes per

pod: UPE = k/2 ∗ (k/2 − 1) = k2/4 − k/2. Apart from

E, A also sends k/2 (one per port) messages upward,

except the node that receives the frame from the core,

which sends k/2 − 1, i.e.: UPA = k/2 − 1 + (k − 1) ∗
(k/2 − 1). Therefore, the messages produced in a pod

from one SetHLMAC: TOTALPOD = 3k2/4 − k + 1

If the first core repeats this process for its k ports

and there are k2/4 cores in the network, the total is:

EPbest = k ∗ k2

4
∗ (

3k2

4
− k + 1) =

3k5

16
− k4

4
+

k3

4
(1)

Near worst: In this case, we assumed that upward

messages are received the other way round: from the

lowest to the highest priority, so that every message
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Topology GA3 “near worst” GA3 “near best” GA3 Hellos ALIAS (periodical)

PortLand 3k5

16
− k4

4
+ k3

4
k6

16
− k5

8
+ k4

4
4k2 5k3

24

VL2 B ∗ (5k3

4
− k2

2
) B ∗ (k4

4
− k3

2
) 7k2 14k2

Table 1 Comparison of number of messages (GA3 vs ALIAS)

needs to be re-forwarded. This behavior only affects the

number of upward messages, because now A resends all

the k/2 frames received from E, i.e.: UPA = k/2 − 1 +

k/2∗(k−1)∗(k/2−1). Therefore, the messages produced

in a pod from one SetHLMAC: TOTALPOD = k3/4 −
k2/2 + k

If the first core repeats this process for its k ports

and there are k2/4 cores in the network, the total is:

EPworst = k ∗ k2

4
∗ (

k3

4
− k2

2
+ k) =

k6

16
− k5

8
+

k4

4
(2)

GA3 in VL2

Near best: Similarly to PortLand, we assumed that

the highest priority messages arrive first. Following the

same reasoning, the number of messages produced from

one SetHLMAC sent from one core is: TOTALPOD =

1 + k/2 + 2k − 2 = 5k/2 − 1

If the first core repeats this process for its 2 loops in

the pod, B loops by core, and there are k/2 pods and

k/2 cores in the network, the total number of messages

is:

EV best = 2 ∗B ∗ k

2
∗ k

2
∗ (

5k

2
− 1) = B ∗ (

5k3

4
− k2

2
)(3)

Near worst: Similarly to PortLand, we assumed that

upward messages are received the other way round,

which only affects the number of upward messages. Fol-

lowing the same reasoning, the number of messages

produced from one SetHLMAC sent from one core is:

TOTALPOD = k2/2 + k

If the first core repeats this process for its 2 loops in

the pod, B loops by core, and there are k/2 pods and

k/2 cores in the network, the total number of messages

is:

EV worst = 2 ∗B ∗ k

2
∗ k

2
∗ (

k2

2
+ k) = B ∗ (

k4

4
− k3

2
)(4)

ALIAS in PortLand

ALIAS sends two types of message periodically: pings

(to check if the link is connected to a host or a switch)

and TVM messages (to set the coordinates). The TVM

process can create collisions and the number of mes-

sages would then increase (the procedure would be re-

peated for some of the labels), but we are considering

the simplest case: counting only the initial TVM.

If every device (switches and hosts) in the network

sends a ping and only switches send TVM to their

neighbors, then the total number of messages is:

AP = 5k3/24 (5)

ALIAS in VL2

If the case of ALIAS, the reasoning is the same, but the

number of nodes in the network is different:

AV = 14k2 (6)

Table 1 shows a comparison between GA3 and ALIAS

of the number of messages needed for address assign-

ment. Although the magnitude for ALIAS is k2 and

while for GA3 it is up to k6, ALIAS is periodical and

GA3 is executed just once; therefore, after k5 repeti-

tions, ALIAS would exceed GA3.

3.2 Simulation-based evaluation

The GA3 address assignment simulator was designed

in Python (code available in [19]). The simulator gives

two outputs: the assigned HLMACs on each node for

the selected topology and the number of GA3 frames

exchanged.

Topology Simulation
Upper bound
(Worst case)

Lower bound
(Best case)

VL2 k=4 64 192 72
VL2 k=6 207 1296 252
Portland k=4 120 192 144
Portland k=6 1242 2268 1188
Irregular 117 — —

Table 2 Summary of simulation results (Number of GA3
messages)

We selected the following three-level hierarchical top-

ologies: VL2 with Da=Dc=k=4, VL2 with k=6 (Fig. 5),

Portland with k=4 (Fig. 6), Portland with k=6, and an

irregular hierarchical topology with a cross and a peer

link (Fig. 7). GA3 successfully assigned HLMAC ad-

dresses in the topology in one round after set up and

the number of messages was low.

The comparison is shown in Table 2. The simula-

tion results presented even lower values than the “near
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S1 S2 S3

S4 S5 S6 S7 S8 S9

S10 S11 S12 S13 S14 S15 S16 S17 S18--

Fig. 5 VL2 with Da=Dc=k=6

S2 S3S1 S4

S5 S6 S7 S8 S9 S10 S11 S12

S20S19S18S17S16S13 S14 S15

Fig. 6 Portland with k=4

S4 S5S3 S6

S2S1

S7

S9 S10S8 S11 S12

Fig. 7 Irregular hierarchical toplogy

best” cases because the simulator has the capacity to

disregard some virtual cores after creating a number of

multiple paths (explained in Section 3). This was not

considered in the equations, but values are in the same

range. If we consider a GA3-clock=1ms and a frame size

of 64B, the total time required in the worst case would

be < 2 seconds and less than 100kB/s, which indicates

a very low impact, especially considering the exchange

is performed only once after network deployment.

4 Related Work

The most similar work in the literature to GA3 is the

Decider/Chooser Protocol (DCP) from ALIAS [6], which

automates topology discovery and address assignment

for a wide range of hierarchical data center topologies.

However, it exchanges messages periodically, is unable

to detect miswirings and consumes more resources, as

we proved in the evaluation section.

Regarding topology discovery and address as-

signment, the Link Layer Discovery Protocol (LLDP)

[12] or other approaches based on SNMP [20] are neigh-

bor discovery protocols that assist in discovering the

physical topology. However, they do not have the ca-

pability to assign topological information or labels to

network devices. Sourcey [7] discovers and monitors

the network with server-only mechanisms, which re-

quires modifications of final hosts and standard frames.

Other proposals for data centers include: DAC [21],

Tree-conf [22] and GARDEN [23]; but both DAC and

Tree-conf require a blueprint of the topology to operate

and GARDEN has a centralized controller bottleneck.

Related to misconfiguration detection, Batfish [24]

can find errors proactively (before the configuration is

applied) and answer “what if” questions, but it focuses

on analyzing specific network configuration files rather
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than topology cabling. DAC also detects miswirings,

however it halts when malfunctions are detected, which

then needs to be resolved manually. The Error Toler-

ant Address Configuration (ETAC) [25] is an optimized

version of DAC, which generates a network graph by

removing devices in the physical network involved in

malfunctions, but these malfunctions are located man-

ually and excluded devices are no longer used in the

graph, regardless of their malfunction type, thus wast-

ing resources. The Miswiring Tolerant Routing proto-

col (MTR) [26] surpasses the limitations of DAC and

ETAC, but is only applicable to Clos-based networks.

5 Conclusion

GA3 is an efficient labeling protocol for hierarchical

networks, including data centers, which assigns ordered

HLMAC addresses with probe frames that discover the

topology and explores all possible shortest paths in the

network. GA3 is also capable of detecting miswirings

and faulty ports. GA3 obtained very good evaluation

results with a low control overhead, improving on the

closest approach: DCP from ALIAS.

This solution opens a new field in topology discov-

ery: it implements probe frames to explore the network

instead of obtaining the information through period-

ical messaging. It also provides high adaptability for

data center networks, because even if a link fails or

the network is expanded, GA3 continues working in a

distributed manner and, at the same time, it avoids

manual configuration or centralized bottlenecks. Fur-

thermore, our proposal is compatible with different ar-

chitectures and forwarding approaches.
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