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Twenty-Five Years of Sensor Array and Multichannel Signal Processing

Wei Liu, Martin Haardt, Maria S. Greco, Christoph Mecklenbräuker, and Peter Willett

Abstract

In this paper, a general introduction to the area of sensor array and multichannel signal processing is provided,

including associated activities of the Sensor Array and Multichannel (SAM) Technical Committee (TC) of the

IEEE Signal Processing Society (SPS). The main technological advances in five SAM sub-areas made in the past

twenty-five years are then presented in detail, including beamforming, direction of arrival estimation, sensor location

optimization, target/source localization based on sensor arrays, and multiple input and multiple output arrays. Six

recent developments are also provided at the end to indicate possible promising directions for future SAM research,

which are graph signal processing for sensor networks, tensor based array signal processing, quaternion valued

array signal processing, one-bit and non-coherent sensor array signal processing, machine learning and artificial

intelligence for sensor arrays, and array signal processing for next-generation communication systems.

Index Terms

Sensor array, multichannel signal processing, beamforming, direction of arrival, sparse arrays, MIMO arrays.

I. INTRODUCTION

Sensor array and multichannel signal processing has a long history, with typical research topics including

beamforming and direction-of-arrival (DOA) estimation at its early stage and corresponding representative al-

gorithms including the Capon beamformer/linearly constrained minimum variance (LCMV) beamformer and the

MUSIC/ESPRIT algorithms [1]–[5]. The past twenty-five years have seen an explosive growth of research activities

in this area and significant progresses have been made in a wide range of theoretical and application areas of sensor

array and multichannel signal processing. Although traditionally their applications have been mainly limited to the

defense sector, such as radar and sonar, nowadays, we can see their impact in everyday life, including beamforming

for ultrasound imaging, synthetic aperture radar for remote sensing, vehicular radar (ultrasound or electromagnetic)
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for autonomous driving, microphone arrays for human-machine interface (a good example is the Amazon Echo),

and multiple input and multiple output (MIMO) antenna arrays for Wi-Fi and mobile communications standards

(IEEE 802.11n, IEEE 802.11ac, 3G, WiMAX, and LTE).

As a result, the sensor array and multichannel signal processing research area has expanded significantly in

the past years, as reflected by the scope of the Sensor Array and Multichannel (SAM) Technical Committee

(TC) of the IEEE Signal Processing Society (SPS). The SAM TC, formed in 2000, aims to promote activities

within the technical fields of sensor array processing and multi-channel statistical signal processing [6], including

beamforming and space-time adaptive processing, DOA estimation, source separation, target detection, localization

and tracking, MIMO signal processing, array processing for radar, sonar and communications, and many other

applications of multi-sensor or synthetic aperture systems, as indicated by the list of EDICS covered by the TC

(https://signalprocessingsociety.org/community-involvement/sensor-array-and-multichannel/edics).

The SAM TC organizes two biennial workshops dedicated to the SAM research area: the IEEE International

Workshop on Computational Advances in Multisensor Adaptive Processing (CAMSAP) organized in December

every odd-numbered year since 2005, and the IEEE Sensor Array and Multichannel Signal Processing Workshop

organized in June/July every even-numbered year since 2002, each accepting 100-200 research papers. Due to the

Covid-19 pandemic, CAMSAP 2021 originally scheduled for December 2021 in Costa Rica has been postponed

to December 2023. The next SAM workshop (SAM 2024) will be held in the US with two possible venues:

either Oregon State University or Skamania Lodge, Stevenson, Washington. Moreover, at each year’s ICASSP

conference, the SAM track also receives about 100-200 regular submissions. Currently there is also the Synthetic

Aperture Technical Working Group (SA-TWG) which resides under the SAM TC, with the goal of “supporting

the maturation of the theoretical framework and the associated empirical techniques that underpin the estimation

of parameters of propagating waves through various media using synthetic apertures”.

In this paper, as it is not possible to give an exhaustive list of all the advances made in the SAM area, we

will focus on five major topics and introduce the corresponding progresses made in tackling their respective

technical challenges: beamforming (including robust adaptive beamforming and frequency invariant beamforming),

DOA estimation (including sparsity based and underdetermined DOA estimation), sensor location optimization,

target/source localization based on sensor arrays, and MIMO arrays (including MIMO radar and MIMO for wireless

communications). The first two are classic SAM topics from the very beginning of SAM research as mentioned

earlier, while the latter three were only studied systematically in the past decades. Then, six new developments in the

SAM area will be presented to give an indication about possible future research directions, including graph signal

processing for sensor networks, tensor based array signal processing, quaternion valued array signal processing,

one-bit and non-coherent sensor array signal processing, machine learning and artificial intelligence (AI) for sensor
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arrays, and array signal processing for next-generation communication systems.

This paper is structured as follows, the five main technological advances will be introduced in detail in Section II,

followed by the six new developments in Section III, and some concluding remarks are provided in Section IV.

II. MAIN TECHNOLOGICAL ADVANCES IN THE SAM AREA

In this section, advances made in the five major SAM research topics in the past twenty-five years will be

presented, including beamforming, DOA estimation, sensor location optimization, target/source localization based

on sensor arrays, and MIMO arrays.

A. Beamforming

Beamforming is a classic sensor array signal processing problem and a core SAM topic [1]–[5], and it has

been studied extensively at least for a century. It can be classified into narrowband and wideband beamforming

according to the relative bandwidth of the signals, adaptive and fixed beamforming according to its relationship

with the received data, analogue and digital beamforming according to its circuits implementation. In the past

twenty-five years, three main developments are highlighted, including robust adaptive beamforming [7], frequency

invariant beamforming (FIB) [5], and hybrid beamforming [8], which is a combination of digital and analogue

beamforming techniques. In this subsection, we will discuss the first two in detail and leave the topic of hybrid

beamforming to the subsection about MIMO arrays.

1) Robust Adaptive Beamforming

In general, for the narrowband case, for an M -sensor array with K impinging signals, the received array signals

can be formulated into the following form

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), . . . , xM (t)]T is the received signal vector, A is the steering matrix consisting of K steering

vectors a(θ) corresponding to the K source signals (θ represents the angle of arrival of an arbitrary impinging

signal), and n(t) is the noise vector.

Then the beamformer output y(t) is given by an instantaneous linear combination of the received spatial samples

xm(t) as follows,

y(t) =

M∑

m=1

xm(t)w∗

m = wHx(t) , (2)

where wm is the weight coefficient for the m-th received sensor signal with the weight vector w = [w1, . . . , wM ]T .

The Capon beamformer, which can be considered as a special case of the more general linearly constrained

minimum variance (LCMV) beamformer [1]–[5], can achieve effective adaptive beamforming when the DOA angle
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θ0 of the desired signal is exactly known, and the following is the standard formulation

min
w

wHRw subject to wHa(θ0) = 1 (3)

where R = E{x(t)xH(t)} is the covariance matrix, and a(θ0) is the steering vector of the array at θ0. In practice,

since R is usually not available, as an approximation, it is replaced by the sample covariance matrix R̂, which is

obtained through the finite number of data samples.

However, the Capon beamformer is very sensitive to model mismatch errors, such as DOA error for the desired

signal, mutual coupling, general array manifold errors and finite sample effects in covariance matrix estimation, and

therefore various robust adaptive beamforming techniques have been developed [7]. One well-known technique is

diagonal loading, with the weight vector expressed as α(R̂+ ξI)−1a(θ0), with α being a constant, ξ the diagonal

loading factor and I the identity matrix.

One prominent development in this area in the past twenty-five years is the worst-case based robust adaptive

beamformer [9], where instead of constraining the beamformer response to be unity at the desired signal direction,

it is forced to exceed unity within an uncertainty set of steering vectors, which can be expressed as

min
w

wHR̂w subject to |wH ã| ≥ 1, ∀ ã ∈ A

A = {ã | ã = a(θ0) + e, ‖e‖ ≤ ε} (4)

where ã is the actual steering vector of the desired signal corresponding to the presumed steering vector a(θ0), A

is the full set that ã belongs to, and e is the steering vector error with its norm bounded by ε. The problem is then

converted to the following form using the worst-case optimization

min
w

wHR̂w subject to wHa(θ0) ≥ ε‖w‖+ 1

Im{wHa(θ0)} = 0 , (5)

where Im{·} denotes the imaginary part of its argument. As the signal to interference plus noise ratio (SINR) of

the beamformer output will not change by rotating the weight vector, an alternative formulation can be derived as

min
w

wHR̂w subject to Re{wHa(θ0)} ≥ ε‖w‖+ 1 , (6)

where Re{·} takes the real part of its argument.

Both the Capon beamformer and the worst-case robust beamformer require estimation of the covariance matrix

R and it is a challenging task when only a small number of snapshots is available; one solution to the problem

is the family of iterative adaptive approach (IAA) based methods [10], which can still work for the extreme case

with only one snapshot.

Another notable contribution for robust adaptive beamforming is based on interference covariance matrix recon-

struction and steering vector estimation [11], which has attracted much attention recently with follow-up works
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focusing on different ways of reconstructing either or both of the covariance matrices corresponding to the desired

signal and interference plus noise, separately.

2) Frequency Invariant Beamforming

For wideband arrays, different from the data model in (1), the received array signals are expressed in the form

of convolution (represented by ⋆) [5]

x(t) = Ã ⋆ s(t) + n(t), (7)

where the (m, k)-th element of the matrix Ã is given by δ(t − τm,k), with τm,k being the time delay of the k-th

impinging signal at the m-th sensor compared to some reference point.

As a result, wideband beamforming is achieved through a series of tapped delay-lines (TDLs), or FIR/IIR filters

in its discrete form [5]. For wideband beamformers, in general the beam width will increase with the decrease of

frequency since the relative aperture of the array becomes smaller for lower frequencies and therefore one unique

problem for wideband beamforming is how to design a beamformer with a frequency invariant beam response or

beam pattern.

In order to achieve a frequency independent beam response, many methods were proposed in the past, and one

typical solution is harmonic nesting, where for a number of frequency bands, different subarrays with appropriate

aperture and sensor spacing are operated [4]. In a design proposed in [12], each sensor in the array is followed by

its own primary filter and the outputs of these primary filters share a common secondary filter to form the final

output; although the design for a one-dimensional (1-D) array is relatively simple due to the dilation property of the

primary filters, for two-dimensional (2-D) and three-dimensional (3-D) arrays, this property is not guaranteed, which

makes the general design case very complicated. In [5], [13], based on a simple Fourier transform relationship, a

systematic and consistent approach was developed to design fixed frequency-invariant beamformers for 1-D, 2-D

and 3-D arrays and for both continuous and discrete apertures.

Furthermore, a series of least-square based frequency invariant beamformer design methods were proposed with

closed-form solutions and applicable to arbitrary array geometries [5]. In its very basic form, given the desired

beam pattern Pd(Ω, θ) (Ω is the normalized frequency) and designed response P (Ω, θ) (quadratic function of the

beamforming weight vector w) over the frequency range of interest ΩI and the range of angle of interest Θ, the

design is to minimize the following cost function:

α

∫

Θ

|P (Ωr, θ)− Pd(Ωr, θ)|
2dθ + (1− α)

∫

ΩI

∫

Θ

|P (Ω, θ)− P (Ωr, θ)|
2dΩdθ , (8)

where the first part is the traditional cost function for least-square based design over one reference frequency Ωr,

the second part is the term for measuring the difference between the response of the designed beamformer and its

response at the reference frequency Ωr over the full range of angle of interest, i.e. the frequency variation of the

response, and α trades these off. Note that the first part of the cost function is only calculated at the reference
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Fig. 1: A design example for a frequency invariant beamformer.

frequency, not the whole ΩI , and the reason is that if the response is frequency invariant, then as long as at one

single frequency (Ωr) the designed response is close to the desired one, the whole response will also be close to

it. A design example for a frequency invariant beamformer over the normalized frequency range [0.3π, π] based

on a uniform linear array (ULA) of 10 sensors and a TDL length of 20 is shown in Fig. 1.

The above FIB design techniques can be employed to design an FIB network where multiple frequency invariant

beamformers pointing to different directions are placed in parallel to transform the wideband array signal processing

problem into a narrowband one, so that traditional narrowband beamforming and DOA estimation solutions can

be applied directly to the output of the FIB network [5]; the second part of the cost function in (8) can also be

incorporated into the adaptive beamforming process to realize adaptive FIB directly instead of relying on the FIB

network [14].

Note that the TDL based wideband beamforming structure could be replaced by the sensor delay-line (SDL)

based structure [5], [15], where multiple sensors are placed behind the original array sensors in place of the delay-

lines for effective wideband beamforming; such an SDL based structure may prove to be very important for the

coming terahertz (THz) or sub-THz communication systems, where the delays required for effective wideband

beamforming/beam steering may be too short to be implemented in practice.

B. Direction of Arrival (DOA) Estimation

DOA estimation is another core SAM research area. Originally, it was realised by various beamforming algorithms

in its simplest form, such as the Butler matrix and the Capon beamformer or the LCMV beamformer, and then more

advanced super-resolution solutions have been developed under the classic subspace framework. In the past twenty-

five years, inspired by developments of compressive sensing (CS) [16], two important advances in this area are the
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sparsity based DOA estimation framework [17], [18], which, unlike the subspace based framework, can deal with

coherent sources directly, and the underdetermined1 DOA estimation approach based on various signal properties

(such as noncircularity and nonGaussianity) and the co-array concept (both sum and difference co-arrays) [17],

[19]–[21].

1) Sparsity Based DOA Estimation

To introduce the basic idea for sparsity based DOA estimation, consider the following discrete version of the

continuous model in (1)

x[i] = As[i] + n[i] , (9)

where x[i] is the array data vector for the i-th snapshot, s[i] is the source signal vector, and n[i] is the noise vector.

For the i-th snapshot, to exploit the spatial sparsity property of the source signals, a search grid of Kg (Kg ≫ K)

potential incident angles θg,0, . . . , θg,Kg−1 is first generated, and an overcomplete representation of A is then

constructed, given by

A(θg) =
[
a(θg,0), . . . ,a(θg,Kg−1)

]
. (10)

A(θg) is independent of the actual source directions θk. We also construct a Kg×1 column vector sg[i], with each

entry representing a potential source at the corresponding angle. Then, the model from the perspective of sparse

signal reconstruction becomes

x[i] = A(θg)sg[i] + n[i] . (11)

Now the sparsity-based DOA estimation for a single snapshot can be formulated as

min ‖sg[i]‖0

subject to ‖x[i]−A(θg)sg[i]‖2 ≤ ε

(12)

where ‖·‖
0

is the ℓ0 norm to promote sparsity in sg[i]. Locations of the non-zero entries in the resultant sg[i]

represent the corresponding DOA estimation results.

As the ℓ0 norm is non-convex, in practice it is normally replaced by the ℓ1 norm as an approximation. Finally,

the sparsity-based DOA estimation for a single snapshot is formulated as

min ‖sg[i]‖1

subject to ‖x[i]−A(θg)sg[i]‖2 ≤ ε

(13)

where ‖·‖
1

is the ℓ1 norm.

When multiple data snapshots are available, we could perform DOA estimation by (13) for each snapshot i

separately. However, a more effective approach is to jointly estimate the DOAs of the impinging signals across

multiple snapshots employing the group sparsity concept, since they all have the same spatial support.

1Here “underdetermined” means that the number of signals is larger than or equal to the number of physical sensors.
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Denote X =
[
x[0], . . . ,x[P−1]

]
, where P is the number of snapshots. Similarly, we can define S =

[
s[0], . . . , s[P−

1]
]

and N =
[
n[0], . . . ,n[P − 1]

]
. Then, the signal model for multiple snapshots can be obtained by

X = AS+N , (14)

To introduce spatial sparsity, similar to the single-snapshot case, we construct Sg =
[
sg[0], . . . , sg[P −1]

]
, and use

the row vector sg,kg
, 0 ≤ kg ≤ Kg − 1 to represent the kg-th row of the matrix Sg.

X = A(θg)Sg +N . (15)

Then a new Kg × 1 column vector is generated by computing the ℓ2 norm of each row in Sg, expressed as

ŝg =
[∥∥sg,0

∥∥
2
,
∥∥sg,1

∥∥
2
, . . . ,

∥∥sg,Kg−1

∥∥
2

]T
. (16)

Finally the problem for multiple snapshots can be formulated as

min
Sg

‖ŝg‖1

subject to ‖X−A(θg)Sg‖F ≤ ε ,

(17)

where ‖·‖F represents the Frobenius norm, and ‖ŝg‖1 is also called the ℓ2,1 norm of the matrix Sg. Locations of

the non-zero entries of the resultant column vector ŝg are then the corresponding estimation results.

One problem with the above group sparsity based formulation is its high computational complexity, especially

when a large number of snapshots P are available. To reduce the complexity, we can perform singular value

decomposition (SVD) to X and project the data to a lower dimension signal space, leading to the so-called ℓ1-SVD

method [22], or using the covariance matrix of the data to form a virtual array directly [23].

2) Underdetermined DOA Estimation

For underdetermined DOA estimation, although it can be achieved by exploiting nonGaussianity, noncircularity or

nonstationarity of the signals, the most important development is through constructing various sparse array structures

for virtual co-array generation, such as co-prime arrays, nested arrays and their numerous extensions [24]–[26].

For second-order statistics based co-array generation, one common step is to vectorize the covariance matrix of

the physical sparse array. Consider the covariance matrix

Rxx = E
{
x[i]xH [i]

}
=

K∑

k=1

σ2

ka(θk)a
H(θk) + σ2

nIN , (18)

where σ2

k is the power of the k-th impinging signal.

By vectorizing Rxx, we obtain a virtual array model

z = vec {Rxx} = Ã(θ)s̃+ σ2
ñiN2 , (19)
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(a) A co-prime microphone array system
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(b) Estimation result for 10 sources

Fig. 2: An experimental example for group-sparsity based underdetermined wideband DOA estimation, where 10

uncorrelated acoustic source signals are distributed from around −40◦ to 50◦ with an approximate step size of

10◦ [27].

where Ã(θ) = [ã(θ1), . . . , ã(θK)] is the equivalent virtual steering matrix, with ã(θk) = a∗(θk) ⊗ a(θk) being

the corresponding steering vector (⊗ denotes the Kronecker product), s̃ =
[
σ2
1
, . . . , σ2

K

]T
is the equivalent source

signals, and ĩN2 is obtained by vectorizing IN .

In the above virtual array model, although there are repeated entries in Rxx, the number of virtual sensors

corresponding to the difference co-array is much more than that of physical sensors, and the equivalent source

signals share the same spatial sparsity with the original impinging signals. The virtual model in (19) is similar to

the single-snapshot array model, and sparsity based DOA estimation methods can be applied here.

Instead of employing a sparse array, it is possible to extend the co-array concept to different frequencies, where

a single ULA can be used with two continuous-wave signals of co-prime or other different frequencies and also to

the wideband case through frequency decomposition and employing multiple frequency pairs [17].

The group sparsity concept employed for the multiple-snapshot case can be applied to general underdetermined

and overdetermined wideband DOA estimation [17]; like in traditional wideband DOA estimation, focusing can also

be employed for sparsity based wideband DOA estimation to simplify the problem to a single reference frequency.

One interesting observation about the wideband case is, the sensor spacing can be larger than half the wavelength

corresponding to the highest frequency of the signal without causing the spatial aliasing problem; on the contrary,

an improved estimation performance can be achieved for a larger spacing due to increased aperture.

Fig. 2 shows a real experimental result based on an 8−microphone co-prime array for estimating the directions

of 10 speech signals with a bandwidth from 5 kHz to 10 kHz and sampling frequency of 20 kHz [27].
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C. Sensor Location Optimization

In many applications, the array’s geometrical layout is assumed to be fixed and given in advance. However, it

is possible to change the geometrical layout of the array including adjacent sensor spacing and these additional

spatial degrees of freedom (DOFs) can be exploited to improve the performance in terms of either beamforming

or DOA estimation or both. For the beamforming side, given the non-convex nature of the optimization problem,

traditionally it is solved by genetic algorithms (GAs), simulated annealing, or similar [28]. With the development

of compressive sensing or the sparsity maximisation framework, a new CS-based framework with a theoretically

optimum solution (given the convex nature of the problem) has been developed for sensor location optimization

for fixed beamforming [29], followed by further work in adaptive beamforming [30], [31], with robustness against

various array model errors considered too. For the DOA estimation side, the main efforts have been focused on

the co-array design to increase the DOFs for underdetermined DOA estimation. As mentioned in the last section,

coprime arrays and nested arrays are two representative array structures [24], [25], based on which numerous

second-order and fourth-order (or even higher) co-array construction methods have been developed. In this part,

we will focus on the sparse array design problem for beamforming.

To illustrate how the design works, consider a narrowband linear array structure consisting of M omni-directional

sensors, where the distance from the first sensor to subsequent sensors is denoted as dm, for m = 1, 2, . . . ,M ,

with d1 = 0, i.e. the distance from the first sensor to itself. The output of the beamformer is a weighted sum of the

received signals and the weighting coefficients are denoted by wm, m = 1, 2, . . . ,M , which are placed together

into the weighting vector w. Then, the sparsity based design for sensor location optimization can be described as

follows.

First, consider the array geometry being a grid of potential active antenna locations. In this instance, dM is the

maximum aperture of the array and the values of dm, for m = 1, 2, . . . ,M − 1, are selected to give a uniform grid,

with M being a very large number, so that the spacing between adjacent antennas is very small. Through selecting

the minimum number of non-zero valued weight coefficients to generate a beam response close to the desired one,

a sparse array design result is obtained. In other words, if a weight coefficient is zero-valued, the corresponding

sensor will be inactive and therefore can be removed, leading to a sparse or non-uniformly spaced sensor array.

Mathematically, it is formulated as a constrained ℓ1 norm minimization problem

min ||w||1 (20)

subject to ||pr −wHA||2 ≤ ε , (21)

where pr is the vector holding the desired beam responses at the sampled angular range of interest, A is the steering

matrix corresponding to those angles, with wHA representing the designed beam responses, and ε is the allowed

error between the designed and desired beam responses. The minimization of the ℓ1 norm of the weight vector
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Fig. 3: Location optimization result and comparison with the ULA.

helps to promote sparsity in the weight vector, and the reweighted ℓ1 norm minimization could be used instead to

have a closer approximation to the ideal ℓ0 norm minimization problem, where smaller weighting terms are added

to the larger elements of the weight vector w, so that smaller values in w are penalized more and become closer

to zero after minimization [32].

A broadside mainbeam design example is shown in Fig. 3, where the sensor locations are optimized over an

overall aperture of dM = 10λ, which is split into 181 potential sensor locations (M=181). It can be seen that the

resultant weight vector is sparse with only 12 non-zero valued coefficients, leading to a sparse array of 12 sensors,

and compared to the beam pattern of a standard 12−sensor ULA with half-wavelength spacing, the sparse array

has a similar main beamwidth, but a much lower sidelobe level.

Various constraints can be added to the above formulation to deal with more complicated application scenarios.

For example, in the above formulation, the steering vector of the array is assumed to be known exactly, which may

not be true due to various possible model perturbations, such as errors in sensor locations, mutual coupling and

discrepancies in individual sensor responses; then, robust designs can be achieved by applying a norm-bounded

error constraint to the weight vector. In another case, it has been assumed that the sensors in the array are of zero

size; however, this is not true in a real world, and various size constraints can be added to the design, or some

post-processing methods can be introduced to make sure the minimum spacing between adjacent sensors in the

result is larger than the size of the sensor. Based on the concept of group sparsity, the design can also be extended

to the wideband case with TDLs [29].

D. Target/Source Localization Based on Sensor Arrays

This is another important problem in array signal processing and significant progress has been made in this

area in the past twenty-five years. Typical solutions include those based on received signal strength (RSS) [33],

those based on distance related measurements such as time of arrival (TOA) [34], and those based on the angle of
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Fig. 4: A general target/sourve localization model based on distributed sensor arrays [37].

arrival (AOA) or DOA [35], [36]. The last is also called bearing-only localization, and is an attractive candidate

since synchronization among the distributed platforms is not required, and it can be used in both active and passive

sensing networks and adopted in a wide range of applications including multistatic radar, distributed massive MIMO,

and wireless sensor networks. There are normally two steps in this bearing-only localization: the first is applying

existing DOA estimation methods to find the AOAs at all distributed sensor arrays, while the second is to find

intersections of those estimated AOAs in order to localize the sources and the maximum likelihood estimator (MLE)

has been adopted to minimize the total least square errors of the noise-corrupted angle measurements among all

distributed sensor arrays. However, the performance of such a two-step localization approach is dependent on the

accuracies of angle measurements obtained at all platforms, and even one bad AOA estimation result can lead to

a serious performance degradation.

To tackle the shortcomings of the two-step approach, we could jointly process the collected information across

the observation platforms in lieu of fusing the separate angle estimation results at all platforms. One recent advance

in this direction is a group sparsity based one-step approach [37], where a common spatial sparsity support

corresponding to all distributed sensor arrays is enforced, leading to a better estimation performance, which also

avoids the possible pairing and ambiguity problems associated with the two-step AOA based solution.

To show how this idea works, we consider a distributed narrowband sensor array network with M sub-arrays

and K targets as shown in Fig. 4, where Um(xm, ym) and Tk(xTk
, yTk

) represent locations of the receiver platform

and the k-th target, respectively. For each receiver, a linear sub-array with Lm sensors is employed.

For each target located at Tk(xTk
, yTk

), a unique incident angle θm,k relative to the mth sub-array can be obtained.

Without loss of generality, a square area of interest in the Cartesian coordinate system is divided into a Kx ×Ky

grid with Kx and Ky being the number of grid points along the x-axis and the y-axis, respectively. G(xkx
, yky

)

represents the location of the (kx, ky)-th search grid, and the signal originating from the possible source located

at G(xkx
, yky

) will arrive at the m-th sub-array with a DOA angle θ
g
m(kx, ky). Since (xkx

, yky
) is common to all
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sub-arrays and a source located at G(xkx
, yky

) will appear to come from the same location with respect to all

sub-arrays, we can apply the group sparsity concept to all sub-arrays’ source data.

For example, for the mth sub-array, corresponding to the data model in (14), we can have the multiple-snapshot

model as

Xm = AmSm +Nm , (22)

with m = 1, 2, . . . ,M . Applying the sparsity based approach, we can construct the following overcomplete data

model

Xm = Ag
mSg

m +Nm , (23)

where A
g
m is the overcomplete steering matrix corresponding to the KxKy potential signal directions θ

g
m(kx, ky)

and S
g
m is the potential source matrix. If there is no source located at a particular position G(xkx

, yky
), then the

corresponding row of S
g
m will be zero-valued for all m = 1, 2, . . . ,M . We can place all the matrices S

g
m together

to form a new matrix Sg as follows

Sg =
[
S
g
1
,S

g
2
, . . . ,S

g
M

]
, (24)

Then the group-sparsity based localization problem can be formulated by minimizing the ℓ2,1 norm of Sg subject to

limiting the overall reconstruction error for all sub-arrays to a small value. One main advantage of the group sparsity

based approach for direct target localization is that the different sub-arrays are not required to be synchronized and

can work on different frequencies, the statistical properties of the sources can be different for different subarrays, and

sensor numbers, rotation angles, and corresponding source signals of different sub-arrays do not need to be the same

(as long as they come from the same set of target locations). This group-sparsity based one-step direct localization

idea can be extended to either the wideband or the underdetermined case – or both – without difficulty [37].

Fig. 5 shows a simulation result for underdetermined wideband localization, where the normalized signal fre-

quency band is from 0.75π to π, and there are six sub-arrays and five targets, with each sub-array being a 4-sensor

minimum redundancy array [4].

E. Multiple Input and Multiple Output (MIMO) Arrays

MIMO, which is by its multi-channel implementation at both transmitter and receiver a natural fit within the

SAM portfolio, is another significant development in array signal processing in the past twenty-five years. There

are mainly two totally different directions. One is MIMO radar which exploits the orthogonality of the transmitted

waveforms to increase the DOFs of the system to improve the resolution and capacity of the array [38]–[40], which

will play an important part in 4D auto radar imaging in addition to traditional radar detection applications. Note

that non-orthogonal waveforms can also be employed for MIMO radar [41]. The other one is MIMO for wireless
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Fig. 5: Localization results for five targets with six sub-arrays (20dB SNR, 500 snapshots).

communications to exploit spatial diversity of the channel to improve performance and in particular capacity of the

communication system [42]. While MIMO has already been in use for both Wi-Fi and 4G communication systems,

its new evolution, the so-called massive MIMO or ultra-massive MIMO (UM-MIMO) will play a crucial role in

the next-generation communication systems and beyond [43].

1) MIMO Radar

In a MIMO radar, multiple transmit antennas emit orthogonal waveforms and multiple receive antennas then

receive the echoes reflected by the targets. Antennas of the MIMO radar can be widely separated [38] or co-located

[39], [40], with the latter one more widely studied. For the case with co-located antennas, the transmitting side and

the receiving side can be located either at the same site or far away from each other.

Consider a co-located narrowband MIMO radar system, where the transmit and receive antennas are located at

the same place. The transmitted multiple orthogonal waveforms are then reflected back by K present targets and

received by the receive array. After matched filter processing, the output signal vector x[i] at the receiver at the ith

snapshot can be expressed as

x[i] =

K∑

k=1

at(θk)⊗ ar(θk)bk[i] + n[i]

= [at(θ1)⊗ ar(θ1), · · · ,at(θK)⊗ ar(θK)]b[i] + n[i] (25)

where θk is the DOA of the kth target, at(θk) and ar(θk) are the steering vectors of the transmit and receive array,

respectively, and bk[i] = γke
j2πfki, with γk being the complex-valued reflection coefficient of the kth target and fk

being the Doppler frequency for moving targets.

It can be seen that with the MIMO radar configuration, a virtual array with significantly increased aperture has

been created due to the effect of the Kronecker product in (25). For example, if both the transmit array and receive

array are 3-sensor ULAs with spacing of d and 3d, respectively, the newly generated virtual ULA will consist of 9

sensors. In this way, by exploiting waveform diversity, a virtual array with a much larger aperture and significantly
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increased DOFs is formed using a small number of physical sensors, providing enhanced spatial resolution, higher

target detection capacity and better performance.

2) MIMO for Wireless Communications

On the other hand, MIMO for wireless communications is a huge research area and numerous techniques have

been developed centered around this concept, such as space-time coding, MIMO beamforming, spatial multiplexing,

and spatial modulation, etc. These days, an element of MIMO can be found in most of the publications in wireless

communications. It is impossible to list all the important advances in the area and in this subsection, we will only

focus on MIMO beamforming which is playing an increasingly important role in the implementation of MIMO

communication systems.

As well known by the array signal processing community and also presented in Section II-A, traditionally

beamforming is designed for line of sight (LoS) transmission and reception, and physically a beam will be formed

in the process pointing to different directions around the array system. However, in MIMO beamforming, due to a

very strong multi-path effect, the result of beamforming between the transmitter and receiver will not necessarily

form a beam in space, but rather an overall enhanced signal transmission link between them. Decades of research in

MIMO beamforming have pushed the boundaries of beamforming well beyond its traditional meaning, and nowadays

any process achieving enhancement of the desired signal while reducing the effect of interference can be considered

as beamforming. However, with the introduction of massive MIMO and millimetre wave communications in 5G

and beyond, the LoS case is becoming more and more important again in MIMO beamforming and one interesting

development in this context is the hybrid beamforming structure proposed for massive MIMO systems [8].

Hybrid beamforming is a combination of analogue beamforming and digital beamforming. Ideally, beamforming

could be implemented completely in the digital domain for maximum flexibility and adaptability; however, for

extremely large arrays, as in the case of massive/ultra-massive MIMO, the extremely high cost associated with the

large number of high-speed analogue to digital converters (ADCs)/digital to analogue converters (DACs) and the

high-level power consumption will render it practically infeasible. For hybrid beamforming in the receive mode,

analogue beamforming is performed first to reduce the number of analogue channels, which are then converted into

digital via a reduced number of ADCs, and after that digital beamforming can then be performed; for the transmit

mode, the process is simply reversed. There are many hybrid beamforming structures proposed in the literature,

and one representative is the sub-aperture based hybrid beamformer. An interesting recent development in this area

is a new class of multi-beam multiplexing designs where the number of analogue coefficients is the same as the

number of antennas, independent of the number of parallel independent user-beams generated, while the number

of subarrays is the same as the number of beams; interested readers can refer to [44], [45] for details.
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III. NEW DEVELOPMENTS IN THE SAM AREA

In the era of artificial intelligence, multi-sensor based systems and techniques are ubiquitous and will play an

even greater role in the future. As a result, there has been an exponential increase in research activities in the SAM

area in the past few years and in the following, we introduce some new developments which may well indicate

promising future research directions.

A. Graph signal processing for sensor networks

Graph signal processing (GSP) is an emerging new mathematical tool for analysis of data resident on a largely

irregular network of either physical or virtual sensor nodes, where the regular network can be considered as a

special case [46], [47]. Examples for the physical sensor network include traffic networks, brain neural networks

and energy consumption sensor networks, while for the virtual one, a good example is social networks. In connection

with classic signal processing, basic concepts such as frequency, and operations such as shift/delay and filtering

have been introduced. However, there is still no unified framework for GSP and it is still an open problem to find

the best representations of a graph signal. However, this has not stopped the wide application of GSP and it has

been shown to be a powerful data analysis tool providing new insights into the studied problems; for example, the

brain signals can be mapped to a graph network to analyze cognitive behavior of the brain. Application of GSP to

traditional sensor array signal processing problems such as direction finding and target localization is an emerging

but somewhat open area, as traditional sensor arrays and networks normally have a regular structure and traditional

sensor array signal processing tools have been extremely successful in tackling those associated problems. It is not

clear yet whether GSP can bring any advantage to the traditional sensor array signal processing problems or not.

B. Tensor based array signal processing

Tensors are an extension of matrices to higher dimensions and have been widely employed for multi-dimensional

data analysis and processing with the aid of tensor decomposition tools and algorithms. Many sensor array signals

and data can be transformed into a multi-dimensional form or viewed directly as a multi-dimensional structure [48],

[49]. For example, the narrowband data received by a rectangular array or multiple sub-arrays are three-dimensional

(3-D), the data received by a wideband linear array can be transformed into the 3-D space-time-frequency domain,

and the data received by vector sensor arrays is naturally higher dimensional. For MIMO communication systems,

the data can be placed into a tensor form by accounting for diversities in space, time, frequency (including Doppler

frequency) and polarization. As a result, tensor processing can be applied to solve many array signal processing

problems directly without much adaptation. However, although it is recognized that tensors can keep the inherent

data structures and therefore have the potential to provide improved performance compared to classic array signal
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processing methods and algorithms, further research is needed to demonstrate the clear benefits of tensor processing

and fully realize its potential.

C. Quaternion valued array signal processing

As a higher-dimensional extension of complex numbers, a quaternion has one real part and three imaginary

parts, and quaternion calculus has been applied to a range of signal processing problems related to three or four-

dimensional signals, such as color image processing, wind profile prediction, vector-sensor array processing, and

quaternion-valued wireless communications [50], [51]. In addition to solving the classic array signal processing

problems such as DOA estimation and beamforming, one important development is the quaternion-valued MIMO

array, where pairs of antennas with orthogonal polarization directions are employed at both the transmitter and the

receiver sides, and a four-dimensional (4-D) modulation scheme across the two polarization diversity channels using

a quaternion-valued representation is employed. Although the polarization states will change during transmission

through the channel, and there may be interferences between these two states, we can employ a quaternion-valued

adaptive algorithm to recover the original 4-D signal, which inherently also performs an interference suppression

operation to separate the original two 2-D signals. For the MIMO array, reference signal based or blind quaternion-

valued adaptive algorithms can be employed for both channel estimation and beamforming. Signal processing has

experienced the revolutionary change from real-valued processing to complex-valued processing, and we may be

at the doorstep of a quaternion-valued new world and increasing interests for quaternion-valued sensor array signal

processing are expected in the near future.

D. One-bit and non-coherent sensor array signal processing

Given the extremely high data rate and storage requirements for a fully digital large sensor array system,

there has been significant work aimed at achieving a reasonable sensor array processing performance with one-bit

representation of the array signals, i.e. only signs of the data samples are reserved while the magnitude information

is removed [52]. This problem can be simply considered as the normal case but with extremely high quantization

noise and we can perform normal array processing irrespective of the number of bits per data sample; however,

a more effective way is to try to achieve effective estimation of the statistics of the signals using the one-bit data

samples and then, based on the newly obtained statistics information, to perform the corresponding tasks. On the

contrary to one-bit array processing, the signs of the data samples are removed and only the magnitude information

is kept, which leads to the so-called non-coherent sensor array signal processing problem, with the advantage of

being robust against array phase errors. One representative example is non-coherent DOA estimation and target

localization [53]–[55], which can be cast into a phase retrieval problem; however, the difference is, there is usually

only one snapshot in phase retrieval, while in array signal processing, multiple snapshots are available, which can
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be exploited by applying group sparsity to existing phase retrieval algorithms, such as the ToyBar and modified

GESPAR algorithms [53], [54].

E. Machine learning and AI for sensor arrays

Machine learning and artificial intelligence have been applied to almost all areas of research in the signal

processing community and the SAM area is no exception. For example, they have been applied to DOA estimation,

beamforming and source separation successfully [56]. There are strong topical connections between sparsity-inspired

array processing (cf. Sec. II-B), compressed sensing (cf. Sec. II-C), and machine learning. Unlike in traditional

machine learning and AI applications where it is a challenge to acquire sufficient training data, in most of the array

signal processing applications, the required training data can be obtained easily by simulation. Nonetheless, their

application to array signal processing also faces some similar issues. For example, after training, the system may

work very well for the targeted scenario, but it may struggle if there is change to the system or the environment,

while the traditional array signal processing methods and algorithms can cope with such changes well. Another

challenge is how to apply machine learning and AI to distributed sensor arrays and networks effectively. As a hot

topic, federated learning may prove to be a promising direction of research for the SAM community [57].

F. Array signal processing for next-generation communication systems

Antenna array design and signal processing is one of the fundamental techniques in 5G (and beyond) wireless

communication systems since the two underpinning 5G/6G technologies - massive or ultra-massive MIMO and

millimetre wave/sub-THz/THz communications, are all based on antenna arrays [58]. It will continue to play a

significant role in many other aspects in the future, such as internet of things (IoT) and integrated sensing and

communication, both of which are hot topics for 6G wireless communications research, with extensive research

activities attracted in the community. Moreover, beamforming is essential to achieve effective communication

over the THz or sub-THz frequency band as it is necessary to employ a large number of antennas for such

high frequencies, while the widely studied reconfigurable intelligent surfaces (RIS) can be considered as a semi-

passive antenna array system [59]. To a great degree, array signal processing will be a main focus of research

for next-generation communication systems and for the integration of sensing and communications, particularly at

mmWaves [60].

IV. CONCLUDING REMARKS

Accompanied by intensive research activities and significant progresses made in signal processing, the world

now has stepped into the new era of artificial intelligence, where multi-sensor based systems and techniques have

become ubiquitous and indispensable to our daily life and will play an even greater role in our society in the very
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near future. This is an exciting time for the SAM community and we welcome new members at different levels

to join the TC and work together to promote its activities, make a more extensive and deeper impact in the real

world and further enhance its standing in our wider society.
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