
This is a repository copy of Reducing Loss of Service for Mixed-Criticality Systems 
through Cache-and Stress-Aware Scheduling.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/200274/

Version: Accepted Version

Proceedings Paper:
Lesage, Benjamin Michael Jean-Rene, Dai, Xiaotian orcid.org/0000-0002-6669-5234, 
Zhao, Shuai et al. (1 more author) (2023) Reducing Loss of Service for Mixed-Criticality 
Systems through Cache-and Stress-Aware Scheduling. In: Proceedings of the 31st 
International Conference on Real-Time Networks and Systems. , pp. 188-199. 

https://doi.org/10.1145/3575757.3593654

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Reducing Loss of Service for Mixed-Criticality Systems through
Cache- and Stress-Aware Scheduling

Benjamin Lesage
Onera, France

benjamin.lesage@onera.fr

Xiaotian Dai
University of York, UK

xiaotian.dai@york.ac.uk

Shuai Zhao
Sun Yat-sen University, China

zhaosh56@mail.sysu.edu.cn

Iain Bate
University of York, UK

iain.bate@york.ac.uk

ABSTRACT

Hardware resources found in modern processor architecture, such

as the memory hierarchy, can improve the performance of a task by

anticipating its needs based on its execution history and behaviour.

Interleaved jobs, belonging to other tasks with different behaviours,

can cause stress on those resources by disrupting the execution

history thus slowing down more sensitive tasks. Schedulability

analyses and policies tend to ignore such behaviours, in favour

of conservative assumptions, as their effects are difficult to assess.

When they are included, the analysis can be very complex and the

measures needed are hard to obtain.

In this paper, we propose abstract timing models that capture

stress and sensitivity with respect to the memory hierarchy. The ad-

vantage of an abstract timing model is that it can be derived through

measurements without the need for a detailed understanding of the

precise cache hierarchy and how it affects software execution. The

disadvantage of course is that there is no hard timing guarantee

especially if timing anomalies may exist. The contribution of this

paper is to build on existing priority assignment schemes using

the timing model to discriminate between tasks within sharing

a priority levels and improve the system’s timing behaviours in

overload. More specifically, we show that for task sets scheduled

with mixed-criticality scheduling the number of jobs not executed

is often reduced.

CCS CONCEPTS
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1 INTRODUCTION

Modern processor architectures introduce a number of resources

which aim at improving the performance of prolonged or repeated

executions of the same task. Those resources aim to anticipate the

needs of a task based on its execution history and patterns. As

such, interleaved jobs, belonging to tasks with different behaviours,

might contend for resources disrupting their state and creating

stress for subsequent jobs.

The memory hierarchy is an example of such a resource. It aims

at improving the performance of tasks’ memory accesses by exploit-

ing the spatial and temporal locality principles. Those principles

state that a memory access, be it for instructions or data, is very

likely to be followed by accesses to the same address (temporal) or

neighbouring ones (spatial). Whole blocks of data are thus brought

from the memory into fast caches, close to the processor, to speed

up subsequent accesses. Due to the limited size of caches, excess

blocks are evicted to make room for more recent ones.

A memory-sensitive task might thus leave residual memory

blocks in the memory hierarchy that subsequent jobs of the same

task can exploit. A stressing task, contending for the memory hi-

erarchy, would result in the eviction of those residual blocks in

favour of its own. A scheduler informed by a stress and sensitivity

model at run time could interleave the jobs of these two tasks to

(1) maximise the benefits from residual blocks for sensitive tasks;

and (2) minimise the impact of stress on the memory hierarchy.

Example. Consider the motivating example in Figure 1 composed

of 5 tasks, h, e, s, t, and u, where the upward arrow indicates a

tick of period 𝑇 = 1. Tasks t and s have a high sensitivity to cache

effects and cause low stress on others. Task e has low sensitivity

but causes high stress, and task u has low sensitivity and low stress.

The basic assumption underlying this work is that the fewer jobs

execute between two consecutive instances of a task like s, the less

it will be impacted by stress on the memory hierarchy. Stress in turn

results in missing residual blocks and thus longer execution times

for tasks, identified through the hashed blocks. As an example,

the first instance of any task is subject to very high stress; the

task executes against a cold memory hierarchy, without residual
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(a) Arbitrary static task priority ordering
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(b) Cache-aware static task priority ordering
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(c) Cache-aware dynamic task priority ordering
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Figure 1: Impact of static and dynamic task priority ordering on the schedule of the same task set.

memory blocks. In contrast, it doesn’t matter as much how many or

which jobs execute between instances of task u from the perspective

of cache stress and sensitivity.

The higher priority, larger period task h should always execute

first before other tasks. The order of the other low-priority tasks

does not impact the schedulability of the system and has less impact

on the response time of the tasks in the system. Following our

assumption, however, it may help improve the service offered to

tasks in a mixed-criticality scheduling scheme. Figures 1a and 1b

presents a static fixed priority schedule, where the impact of the

cache is not considered (Figure 1a) or improved to reduce the impact

of high-stress tasks (Figure 1b). The dynamic fixed priority schedule

(Figure 1c) allows the online reordering of jobs within their priority

level.

Under the arbitrary ordering depicted in Figure 1a, the sensitive

task t is always subject to high stress from task e when they are

released together. This translates to longer execution times (hashed

blocks) for t. Figure 1b has a different ordering where task t is only

subject to interferences from tasks u, h, and s in the last period.

This results in a small speed-up over the previous scenario, when

all tasks are released. By alternating the execution of s, t, and u,

the dynamic schedule in Figure 1c further reduces the stress the

task inflicts upon each other mainly by reducing the impact of e.

Contributions: We introduce the concept of the Cache Recency Pro-

file (𝐶𝑅𝑃 ), an execution timemodel based on how recently a particu-

lar task has been executed ś referred to as the Recency Distance (𝑅𝐷 ).

The profile represents a simplified model of the speed-up of a task,

built on measurements without a detailed understanding of the

cache architecture or the actual execution order of tasks. The 𝐶𝑅𝑃

model takes no part in the schedulability analysis of the system.

Instead, it is used in conjunction with existing methods, such as

Audsley’s Optimal Priority Assignment (OPA) [5], acting as a tie-

breaker when priority levels are shared. Based on the 𝐶𝑅𝑃 and its

inherent properties, we introduce a static priority allocation, and a

family of scheduling approaches relying on predicting individual

job’s execution time at runtime.

Paper organisation: We first introduce the task model and system

assumptions (Section 2). This leads to the definition of our stress

and sensitivity model, i.e. the 𝐶𝑅𝑃 , its semantics and construction

from observations on a target platform in Section 3. Section 4 then

introduces the intuition behind the relationship between stress and

the properties of tasks, to define new fixed priority allocation and

scheduling approaches. The evaluation of both the proposed execu-

tion time model and its application are presented in Section 5. We

finally discuss related work and conclude respectively in Sections 6

and 7.

2 TASK MODEL, NOTATION, AND
SCHEDULABILITY

We present in the following an execution time model, the 𝐶𝑅𝑃 , for

mixed-criticality systems (MCS) under Non-Preemptive Fixed Prior-

ity Scheduling (NP-FPS) on a single-core processor. The 𝐶𝑅𝑃 does

not intend to produce or replaceWCET estimates, nor is it aiming to

contribute to the schedulability of a system. Our approach exploits

shared priority levels from existing analyses to refine scheduling

decisions and improve the service to tasks.

A system comprises a set of 𝑁 tasks (𝜏1, 𝜏2, ..., 𝜏𝑁 ). Each task

𝜏𝑖 is defined by its period, execution time budget, criticality level,

priority, and 𝐶𝑅𝑃 model: 𝜏𝑖 := (𝑇𝑖 ,𝐶𝑖 , 𝐿𝑖 , 𝑃𝑖 ,𝐶𝑅𝑃𝑖 ). Task deadlines

are implicit, constrained to their periods such that 𝐷𝑖 = 𝑇𝑖 . Tasks

may share the same priority, 𝑃𝑖 = 𝑃 𝑗 , thus belonging to the same

priority group. The scheduler always ensures the next task is picked

amongst the ready tasks in the highest priority group, 𝑟𝑒𝑎𝑑𝑦ℎ𝑝 . The

selection of the highest priority ready task within the said group is

decided at run time based on the recent execution order of tasks.

We consider the standard dual-criticality task model (𝐿𝑂 and

𝐻𝐼 ). Each task 𝜏𝑖 is categorised in one of the two classes according

to its criticality 𝐿𝑖 . 𝐿𝑂-criticality tasks have a single timing esti-

mate 𝐶𝑖 = 𝐶𝐿𝑂
𝑖 , and 𝐻𝐼 -criticality tasks have an additional more

conservative estimate𝐶𝑖 = (𝐶
𝐿𝑂
𝑖 ,𝐶𝐻𝐼

𝑖 ), such that𝐶𝐿𝑂
𝑖 ≤ 𝐶𝐻𝐼

𝑖 .𝐶𝐻𝐼
𝑖

is a WCET estimate obtained through conservative timing analyses,

and guaranteed to hold for a𝐻𝐼 -criticality task under all conditions.

The scheduler recognises different execution modes. In the 𝐿𝑂-

criticality mode, all tasks execute within their 𝐶𝐿𝑂 bound and all

jobs are completed within their deadline. In the𝐻𝐼 -criticality mode,

only 𝐻𝐼 -criticality tasks are guaranteed to run and assumed to do

so within their 𝐶𝐻𝐼 bound. A watchdog monitors tasks for timing

overruns, events where a task’s execution exceeds its 𝐶𝐿𝑂 . 𝐿𝑂-

criticality jobs are terminated by the watchdog on overruns, and

their contribution to cache stress is accounted as full. An overrun

from a 𝐻𝐼 -criticality task will result in a mode change, to the 𝐻𝐼 -

criticality mode. The job is left to complete up to its 𝐶𝐻𝐼 , and

ready 𝐿𝑂-criticality jobs are cancelled. The system returns to the

𝐿𝑂-criticality mode on an idle tick.
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The system is known to be schedulable if it is schedulable in both

𝐿𝑂 and 𝐻𝐼 modes, and upon a mode change from the 𝐿𝑂 to the 𝐻𝐼

mode [7]. This is solved by assessing the response time 𝑅
𝐿
𝑖 of each

task 𝜏𝑖 against its deadline 𝐷𝑖 , in all its criticality modes 𝐿 ≤ 𝐿𝑖 :

𝑅𝐿𝑖 = 𝐵𝐿𝑖 +𝐶
𝐿
𝑖 +

∑︁

𝑗∈ℎ𝑒𝑝≥𝐿 (𝑖 )

(⌈

𝑅𝐿𝑖
𝑇𝑗

⌉

×𝐶𝐿
𝑗

)

(1)

where ℎ𝑒𝑝≥𝐿 (𝑖) is the set of higher or equal priority tasks 𝜏 𝑗 of

criticality 𝐿𝑗 ≥ 𝐿, and 𝐵𝐿𝑖 is the blocking term, i.e. the maximum

time spent by the task waiting for a lower priority task 𝑙𝑝≥𝐿 (𝑖) of

criticality 𝐿𝑘 ≥ 𝐿 to complete:

𝐵𝐿𝑖 = max
𝑘∈𝑙𝑝≥𝐿 (𝑖 )

(𝐶𝐿
𝑘
− 1) (2)

A transition to the 𝐻𝐼 mode occurring during blocking, as a

result of a 𝐻𝐼 criticality task overrun, would fall under the case

covered by 𝑅𝐻𝐼
𝑖 in Equation (1). The response time 𝑅∗𝑖 of task 𝜏𝑖

during a mode change thus assumes some tasks execute to their

𝐶𝐿𝑂 before a transition caused by a higher or equal priority task:

𝑅∗𝑖 =𝐵𝐿𝑂𝑖 +𝐶𝐻𝐼
𝑖

+
∑︁

𝑗∈ℎ𝑒𝑝=𝐿𝑂 (𝑖 )

(⌈

𝑅𝐿𝑂𝑖
𝑇𝑗

⌉

×𝐶𝐿𝑂
𝑗

)

+
∑︁

𝑗∈ℎ𝑒𝑝=𝐻𝐼 (𝑖 )

(⌈

𝑅∗𝑖
𝑇𝑗

⌉

×𝐶𝐻𝐼
𝑗

)

(3)

3 SINGLE-CORE STRESS AND SENSITIVITY

A stress and sensitivity model [14, 16] captures the effect on the

execution time of a task of other tasks contending for shared re-

sources; the sensitivity of a task thus outlines the variations of its

execution time in response to the stress induced by other tasks.

While originally proposed in the context of multi-core architec-

tures, the concepts of stress and sensitivity apply just as well to

single-core architectures, where contention occurs not as a result

of concurrent accesses to a resource, but as a result of preemptions,

or the interleaving of jobs from different tasks.

Stress and sensitivity models are rarely considered as part of

the schedulability analysis of a system. The conservative WCET

timing estimates used for verification remain valid for all execution

contexts generated by the system. A sensitivity model however can

inform the scheduler on the expected behaviour of tasks at runtime,

and arbitrate conflicts between equivalent tasks w.r.t. to the schedu-

lability of the system. It is important to note that the models do not

need to accurately model cache behaviours but any inaccuracies

may lead to sub-optimal run-time orderings; a complete and correct

model is impractical given the number of different paths that can

be taken through each task or the number of different run-time

orderings of jobs.

We introduce the stress and sensitivity components of our model

respectively in Sections 3.1 and 3.2. This includes the process re-

quired to collect observations to build the model, and, in Section 3.3,

the process of building a model usable at runtime.

3.1 RD ś Measuring stress on the memory
hierarchy

We consider the following properties as desirable in a good stress

metric:

• Significant: Variations captured by the metric imply substan-

tial variations in timing;

• Observable: Contributions to the stress levels are easy to

monitor at runtime;

• Controllable: Contributions that cannot easily be influenced

or controlled represent an unnecessary level of detail;

• Intuitive: The link between the metric(s) and variations of

the execution time can be explained;

• Positively correlated: Higher stress levels, as captured by the

metric, imply higher contention and thus execution times;

• Profilable: The metric can be extracted from tasks through a

one-time profiling phase.

We propose a stress metric to assess the impact of a task on

others, w.r.t. the memory hierarchy and in particular residual cache

blocks. Residual cache blocks are the memory blocks that may have

been loaded into cache when a task was last executed and that may

not have been evicted before it is accessed again. As interleaving

jobs from contending tasks perform memory accesses, they might

contribute to stress on the memory hierarchy by evicting residual

cache blocks of the modelled task. The likelihood a residual cache

block is evicted increases with each access to a new, distinct cache

block. We thus introduce the Recency Distancemetric of a task (𝑅𝐷 𝑗 )

as its contribution to stress. 𝑅𝐷 𝑗 captures the maximum number of

unique cache blocks accessed by 𝜏 𝑗 during its execution, a proxy

of the evictions it incurs in the memory hierarchy (Intuitive). An

increase in the recency distance between instances of a modelled

task 𝜏𝑖 should increase the likelihood its residual blocks are evicted,

resulting in longer execution times (Positively correlated). The 𝑅𝐷

is akin to the concept of cache reuse distance [30].

The 𝑅𝐷 𝑗 metric used in this paper abstracts itself from the actual

memory accesses and evictions caused by a task 𝜏 𝑗 . The 𝑅𝐷 also

ignores the location of the blocks in memory, i.e. whether contend-

ing and modelled tasks occupy the same cache space. That is, the

cache effects of a single large task or combined smaller distinct

tasks may be similar, in terms of the model, and evenly distributed

across the cache space. These abstractions help reduce the required

knowledge on other tasks in the system and their memory mapping,

and a single number captures the contribution of a task to stress.

The 𝑅𝐷 of a task can be profiled through a number of existing

tools [8, 29, 30] (Profilable), as an example by counting the number

of cold cache misses (due to a block having never been accessed)

generated by a run of the task. Profiling, and the specifics of these

tools, might result in noise, variations, or precision loss in the

measurements. However provided the relative 𝑅𝐷 values collected

across different tasks are representative of their relative impact, the

metric should be adequate for modelling purposes.

Upon execution of a task 𝜏 𝑗 , all prior tasks might suffer from the

evictions it causes. The contribution of 𝜏 𝑗 to stress on the memory

hierarchy, captured as the single value 𝑅𝐷 𝑗 , needs to be accounted.

For any two consecutive jobs of 𝜏𝑖 which interleave with an exe-

cution of 𝜏 𝑗 , 𝑅𝐷 𝑗 is added to the stress suffered by 𝜏𝑖 to capture

the contribution of 𝜏 𝑗 . To assess the stress suffered by a job of 𝜏𝑖
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at runtime, we simply need to which other tasks executed since

the last instance of 𝜏𝑖 , and their respective 𝑅𝐷 (Observable). We

provide more details on the computation of the stress suffered by a

job in the next section.

3.2 CRP ś Profiling the sensitivity to cache
behaviour

The 𝑅𝐷 denotes the contribution of tasks to stress on the memory

hierarchy. To predict how a task might behave at runtime, we need

to model its sensitivity, that is how its execution time might be

impacted by said stress. We propose here a 𝐶𝑅𝑃 model to capture

the potential benefits of residual cache blocks to the execution of

a task. The 𝐶𝑅𝑃 outputs a scaling factor relative to a baseline exe-

cution time, in our case the task’s WCET. The execution time (ET)

estimation of task 𝜏𝑖 under a given stress level 𝑟 is thus predicted

using the 𝐶𝑅𝑃 as such:

𝐸𝑇 𝑖 (𝑟 ) = 𝐶𝑅𝑃𝑖 (𝑟 ) ×𝐶
𝐿𝑖
𝑖 (4)

where𝐶𝑅𝑃𝑖 is the𝐶𝑅𝑃 for task 𝜏𝑖 ,𝐶
𝐿𝑖
𝑖 is its WCET estimate accord-

ing to its criticality. The use of a scaling factor to model sensitivity,

as opposed to an additive one, offers several benefits. With the

use of the WCET as the baseline for timing estimates, the model

intuitively defines the 𝐶𝑅𝑃 as the expected speed up for the mod-

elled task thanks to residual cache blocks left by a prior job. The

speed-up can be constrained such that no predictions exceed the

task’s WCET. The model output is independent of the execution

time measurement unit. The 𝐶𝑅𝑃 could accommodate prediction

errors caused by external influences if their range is known. For

example, the task may be further slowed down by 10% due to cache

effects introduced by an RTOS.

To build the𝐶𝑅𝑃 of task 𝜏𝑖 , we need to understand how the stress

generated by contending tasks, captured by their 𝑅𝐷 contribution,

impacts the execution time of consecutive jobs of 𝜏𝑖 . The stress

suffered by the 𝑘𝑡ℎ instance of task 𝜏𝑖 , 𝐽𝑖,𝑘 , since its last instance is

defined as:

𝑟𝑖,𝑘 =

∑︁

{ 𝑗 | ∃ 𝐽𝑗,𝑚,𝐽𝑖,𝑘−1<𝐽𝑗,𝑚<𝐽𝑖,𝑘 }

𝑅𝐷 𝑗 (5)

where 𝑟𝑖,0 = ∞, 𝑅𝐷 𝑗 is the contribution of task 𝜏 𝑗 to stress on

the memory hierarchy (profiled as discussed in ğ3.1), and 𝐽 𝑗,𝑚 <

𝐽𝑖,𝑘 denotes that the𝑚𝑡ℎ instance of task 𝜏 𝑗 executes prior to the

𝑘𝑡ℎ job of task 𝜏𝑖 . We only account once for the blocks loaded by

a task 𝜏 𝑗 . The intuition behind this abstraction is that repeated

executions of 𝜏 𝑗 will either find the blocks in cache, causing no

further evictions, or having been evicted themselves as well as the

other task’s blocks1.

The level and impact of stress on a job can be monitored at run

time, from the actual system, by collecting jobs’ execution times and

their scheduling history. At first, the models may not be as accurate

as those generated using contender-based approaches, e.g. [21].

Howeverwith time, they have the advantage of addressing concerns,

principally representativity, highlighted in [19]. Refinements of the

model based on observations from the actual system have been

1We have observed only negligible effects due to repetitions on our target platform,
but we acknowledge that the abstraction of the evictions caused by task 𝜏 𝑗 may vary

e.g. based on the cache replacement policies.

Algorithm 1 Collecting CRP observations through profiling

1: function run_config(task, contenders, repetitions)

/* Collect ET for task under contention */

2: timings← []

3: for 𝑖 𝑖𝑛 range(repetitions) do

4: run(task) ⊲ Warm up memory hierarchy

5: for c 𝑖𝑛 contenders do ⊲ Run all contenders

6: run(c)

7: end for

8: t← instrumented_run(task) ⊲ Measure execution time

9: timings← timings + [t]

10: end for

11: return timings

12: end function

13: function profile_task(task, rd_range, reps)

/* Profile task sensitivity at selected range */

14: observations← []

15: explored_rd← []

16: for r 𝑖𝑛 rd_range do

17: explored_rd← explored_rd + [r] × reps.stress

18: end for

19: shuffle(explored_rd)

20: for target_rd 𝑖𝑛 explored_rd do

/* Pick contenders to match target RD */

21: cntd← pick_contenders(target_rd)

22: for t 𝑖𝑛 run_config(task, cntd, reps.config) do

/* Collect (RD, ET) for configuration */

23: observations← observations + [(rd(contenders), t)]

24: end for

25: end for

26: return observations

27: end function

considered in [13]. We focus in the following on bootstrapping the

model, in the absence of the actual system.

We consider the introduction of a dedicated profiling step, to

build the initial 𝐶𝑅𝑃 of a task. The profiling approach, outlined in

Algorithm 1, provides control over the exercised contention levels,

allowing for a more systematic exploration of the 𝑅𝐷 value range

(Controllable). The resulting observations contribute to the char-

acterisation of the task’s sensitivity, like 𝑅𝐷 for stress, on a given

hardware platform, in a variety of scenarios, and irrespective of

some of its context. The core profiling loop (lines 1-12) instruments

the execution of the modelled task to capture its execution time.

The task is executed twice, first to warm up the memory hierarchy

(line 4), and the selected contenders (whose 𝑅𝐷 is known) are ex-

ecuted in between to generate controlled stress levels (lines 5-7).

The process is repeated across various 𝑅𝐷 levels in a random order

(lines 15-19), each time picking a set of contenders matching the

target 𝑅𝐷 (line 21). Each configuration of contenders and target

𝑅𝐷 contention can be repeated (resp. lines 3 and 17) to assess the

variability of execution times under the same stress level. This

allows for estimating some of the noise inherent to the 𝐶𝑅𝑃 mod-

elling approach and 𝑅𝐷 abstraction. Each collected execution time

is matched against the exercised 𝑅𝐷 (line 23).
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Algorithm 2 Predict CRP with PWLF model

1: function crp_predict(𝑟, 𝑐𝑟𝑝)

2: 𝑐 = min({𝑏 | 𝑟 > 𝑐𝑟𝑝.𝑏𝑟𝑒𝑎𝑘𝑠 [𝑏 ] } ) ⊲ Find segment for 𝑟

3: 𝑝 ← 𝑐𝑟𝑝.𝑠𝑙𝑜𝑝𝑒𝑠 [𝑐 ] × 𝑟 + 𝑐𝑟𝑝.𝑖𝑛𝑡𝑒𝑟𝑠 [𝑐 ] ⊲ Fit 𝑟 to segment

4: return max(0,𝑚𝑖𝑛 (𝑝, 1.0) ) ⊲ Clamp output

5: end function

3.3 Model fitting the CRP

The 𝐶𝑅𝑃 observations from the profiling step, described in the

previous sections, provides a raw map of the sensitivity of a task

(ET) to contention in the memory hierarchy (RD). We now consider

how to fit a suitable model to our observations, to capture the main

trends in the task’s behaviour, and provide a concise representation

to be embedded at runtime to inform the scheduler. Our approach

relies on piece-wise linear regression (PWLF).

PWLF [24] partitions the model into 𝑀 linear segments. Each

segment models the sensitivity of the task over a continuous, non-

overlapping partition of the 𝑅𝐷 value range. A single model only

stores information about the slope and intercept of each segment,

and the breakpoints that partition the 𝑅𝐷 value range. Algorithm 2

outlines the prediction of the𝐶𝑅𝑃 at a given 𝑅𝐷 level, as discussed

earlier with a clamped output, i.e. restricted to the interval [0, 1].

PWLF provides for models with low memory (O(𝑀)) and compu-

tation (O(𝑀)) overheads. The segments capture the diminishing

returns of residual cache blocks in the memory hierarchy. As the

distance between jobs of the same task increases, measured by 𝑅𝐷 ,

those blocks are evicted from the higher level caches, closer to the

processor, and only reside in larger, slower levels which access

latency tends towards that of the main memory.

The focus is therefore on capturing trends in the task sensitivity,

when and how much the benefits of residual cache blocks wear

off, more than an exact estimate of these benefits. We adjust the

trained model to ensure (1) monotonicity (2) and continuity of the

model predictions with increasing 𝑅𝐷 . The process starts from the

tail of the last segment and adjusts the parameters of each segment

such that its tail meets the head of its successor at their shared

breakpoint (continuity), and the slope of the segment is null or

positive (monotonicity). The adjusted model is by construction

more pessimistic than the trained one, predicting the same or lesser

speedups.

4 CRP-BASED SCHEDULING FOR
MIXED-CRITICALITY

OPA [5] provides an optimal solution to the priority assignment

problem. That is the priority assignment produced for a given

task set, if any, is at least as good as any other assignment. Three

necessary and sufficient conditions have been identified for the

optimality of the solution [15].

In condition 1 (respectively condition 2), the schedulability of

a task may depend on any independent properties of higher (resp.

lower) priority tasks, but not on their relative priority ordering.

Condition 3 states that when swapping the priorities of two tasks,

the now higher priority one cannot become unschedulable if it was

previously schedulable. These conditions hold in our task model for

the schedulability test presented in Section 2. Neither response time

Equations (1) nor (3) depends on task ordering, and the additional

blocking by swapping the order of two tasks with the same priority

level is balanced by the reduced interferences from higher priority

tasks.

4.1 Conflict resolution in shared priority levels

Our approach relies on a variant of OPA which minimises the

number of priorities required [6]. This variant of OPA provides a

partial ordering between tasks, if any, which ensures the system is

schedulable. As long as this partial order is preserved, the system is

schedulable. If no higher priority task is ready, two tasks assigned

the same priority level can be executed in any order. Under the

𝐶𝑅𝑃 model, however, different task schedules and interleaving may

result in different stress levels and execution times for each task. We

thus propose a static priority assignment which aims to maximise

the benefits of residual cache blocks in the memory hierarchy. We

focus in particular on the optimisation of the critical instant where

all tasks are simultaneously released. The proposed approach relies

on three intuitions regarding the impact of tasks on the memory

hierarchy. Those informal precepts should hold in the general case,

but we aim to provide neither a formal proof, nor a counter-example.

Intuition 1. Tasks with a smaller period contribute to the stress

of higher period ones upon simultaneous release.

Let us consider a periodic tick 𝑇𝐻 where two jobs 𝐽𝑖,𝑘 and 𝐽 𝑗,𝑚
are released. As such if 𝑇𝑖 < 𝑇𝑗 , the last release of task 𝜏𝑖 occurred

at time 𝑇𝐻 − 𝑇𝑖 , and the last release of 𝜏 𝑗 at 𝑇𝐻 − 𝑇𝑗 < 𝑇𝐻 − 𝑇𝑖 .

Both releases must complete before 𝑇𝐻 . The execution of 𝜏𝑖 is thus

likely to have completed more recently. There is at least one job

of 𝜏𝑖 contributing to stress in the memory hierarchy since the last

instance of 𝜏 𝑗 . When both are released simultaneously, there is no

analytical impact for 𝐽 𝑗,𝑚 in running after 𝐽𝑖,𝑘 (priority ordering

allowing) as 𝜏𝑖 ’s contribution has already been accounted for in the

stress 𝑟 𝑗,𝑚 suffered by 𝐽 𝑗,𝑚 (see Equation (5)).

Intuition 2. Higher-priority jobs contribute to the stress of lower-

priority ones upon simultaneous release.

When two jobs from distinct priority classes are released at the

same time, the higher priority job should be executed first thus

contributing to stress for the lower priority one. Note that if the two

tasks have the same period, they continuously conflict with each

other: the lower priority task 𝑘𝑡ℎ instance, 𝐽 𝑗,𝑘 , will be executed

after the instance of the higher priority task, 𝐽𝑖,𝑘 , but before the

next one, 𝐽𝑖,𝑘+1.

Intuition 3. All fixed orders of tasks within a same priority and

same period group are equivalent w.r.t. how the tasks conflict with

each other.

Following from intuition 2, any task𝜏ℎ set to run first in the group

will contribute to the others’ conflicts upon simultaneous release.

And conversely, all other tasks in the group, executed afterwards,

will contribute to conflicts for the next release of 𝜏ℎ .

We thus present the Cache-based Priority Assignment (CPA). The

intuition behind the CPA is to refine the priorities assigned through

OPA, from the highest priority group to the lowest, to maintain the

schedulable partial order. Tasks within a priority group are ordered

offline such that small period tasks are executed first, as they do
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not add to preexisting stress (Intuition 1). Within a priority and

period group, tasks are left in their arbitrary definition order, as no

solution is deemed more favourable (Intuition 3). CPA does reduce

to OPA with Deadline-Monotonic Priority Ordering applied within

each priority level, irrespective of the current implicit deadline

constraint where 𝑇𝑖 = 𝐷𝑖 (Section 2).

4.2 Dynamic priority refinements using CRP

The static CPA priority assignment is informed by the 𝐶𝑅𝑃 model

properties but itself makes no call or execution time prediction

through the model. CPA instead relies on reducing the stress on

tasks outside of preexisting effects, to provide a total ordering

between tasks. Under OPA, the scheduler must pick the next job

amongst the valid candidates 𝑟𝑒𝑎𝑑𝑦ℎ𝑝 (see Section 2) in the same

priority group. Using the 𝐶𝑅𝑃 , the scheduler could identify the

tasks that are the most likely to benefit from residual cache blocks

and, where possible, schedule them first.

Intuition 4. The initial execution of a task, its first job, will see

no benefit from the memory hierarchy.

Barring scenarios where different tasks may share data or instruc-

tions, a task that was never executed could not have allocated cache

blocks. Such tasks could thus be scheduled last, while maintaining

the relative priorities defined by OPA. If all ready tasks have passed

their first job, lesser stress levels, i.e. smaller 𝑅𝐷 contributions, on

the hierarchy should be favoured.

Intuition 5. Any task already present in another task’s history

will contribute no further stress to the latter.

By construction (see Eq. (5)), we only account once for the con-

tribution of a task to another one’s stress. The scheduler could thus

prioritise jobs of tasks whose contribution is already accounted for

in other ready tasks.

We propose four heuristics to (1) reduce the contribution to the

stress suffered by following jobs ([𝑅𝐷 < ], Eq. (6)), (2) favour jobs

under the least stress ([𝑟 < ], Eq. (7)), (3) those with the highest

speedup ([𝐶𝑅𝑃 < ], Eq. (8)), (4) or those with the highest timing

improvements ([Δ𝐸𝑇 > ], Eq. (9)). Situations where multiple jobs

have the same value output from the heuristics are resolved by

picking the one with the least contribution to stress (𝑅𝐷𝑖 ) on the

memory hierarchy.

[𝑅𝐷 < ] = min
𝐽𝑖,𝑘 ∈𝑟𝑒𝑎𝑑𝑦ℎ𝑝

(𝑅𝐷𝑖 ) (6)

[𝑟 < ] = min
𝐽𝑖,𝑘 ∈𝑟𝑒𝑎𝑑𝑦ℎ𝑝

(𝑟𝑖,𝑘 ) (7)

[𝐶𝑅𝑃 < ] = min
𝐽𝑖,𝑘 ∈𝑟𝑒𝑎𝑑𝑦ℎ𝑝

(𝐶𝑅𝑃𝑖 (𝑟𝑖,𝑘 )) (8)

Δ𝐸𝑇𝑖 (𝑟 ) = 𝐶
𝐿𝑖
𝑖 − 𝐸𝑇 𝑖 (𝑟 )

[Δ𝐸𝑇 > ] = max
𝐽𝑖,𝑘 ∈𝑟𝑒𝑎𝑑𝑦ℎ𝑝

(Δ𝐸𝑇𝑖 (𝑟𝑖,𝑘 ))
(9)

We order tasks for their initial release, considering that the initial

release of tasks might result in a pattern maintained by the heuristic

as observed in Figure 1c. Each heuristic uses the pre-defined order-

ing to break ties upon the first job of a task. The initial ordering is

computed through a greedy algorithm which aims to maximise the

benefits of scheduling a task (Δ𝐸𝑇𝑖 (𝑟 )) first over the slowdown it

causes on others (Δ𝐸𝑇𝑗 (𝑟 ) − Δ𝐸𝑇𝑗 (𝑟 + 𝑅𝐷𝑖 )). The greedy approach

starts by considering all tasks in decreasing priority, picking the

best one and appending it first to the static order. Once a task has

been picked its contribution is added to the current order 𝑅𝐷 , and

the process repeats until all tasks have been ordered.

Note that all heuristics, with the exception of [𝑅𝐷 < ], make

use of the stress or 𝐶𝑅𝑃 model at runtime with predictions feeding

into their scheduling decision. This requires additional monitoring

on the system’s behalf, in particular a sufficient representation of

the job history. For each task executed 𝜏𝑖 , the scheduler needs to

capture its contribution 𝑅𝐷𝑖 to stress, and whether any task 𝜏 𝑗
executed since its last job. This can be modelled with a bit matrix

(O(𝑁 2) where 𝑁 is the number of tasks in the system), such that

ℎ[𝑖] [ 𝑗] = 1 if 𝜏 𝑗 executed since the last job of 𝜏𝑖 . Upon execution of

𝜏 𝑗 , its line ℎ[ 𝑗] [·] is reset and its column ℎ[·] [ 𝑗] is set. The extra

monitoring is not considered prohibitive given the benefits attained

through the use of the heuristics that depends on it.

5 EVALUATION

The 𝐶𝑅𝑃 aims to provide a high-level model of the behaviour of

tasks, and especially their interleaving, in response to stress on

the memory hierarchy. It could thus provide guidance on how to

schedule tasks to minimise said stress. In this section, we evaluate

two key aspects of our approach:

• ğ5.2: How accurately do the 𝑅𝐷 and 𝐶𝑅𝑃 models represent

stress and sensitivity? This question focuses on the quality of

the 𝐶𝑅𝑃 as a model of the execution time of a task, whether

the 𝑅𝐷 is a Significant indicator of execution time variability,

and potential gaps in the model.

• ğ5.3: How do the proposed policies affect the loss of service for

systems? The proposed scheduling policies aim to exploit

properties of the 𝐶𝑅𝑃 , or deploy the model at runtime to

perform decisions. We need to assess whether those benefit

the system as a whole, and the underlying trade-offs.

5.1 Experimental setup

In this evaluation, we explored two complementary facets of the

proposed 𝐶𝑅𝑃 model, first in terms of the quality of the model

for execution time predictions, then its benefit to a scheduling

policy. To assess the quality of the model, we profiled a selection

of 11 benchmarks from the TacleBench suite [18]. The selected

benchmarks, described in Table 1, were picked to capture a variety

of sizes and behaviours, and ensure all benchmarks’ execution

follows a single path. The benchmarks are sorted increasingly by

the number of memory accesses they perform, be it instruction

or data accesses. These are good metrics of the overall length of

each benchmark and of their behaviour w.r.t. the memory hierarchy.

Additional accesses imply additional instructions to execute, and

they tend to target new unique cache blocks causing more stress as

captured by 𝑅𝐷𝑖 .

We applied Algorithm 1 to profile the benchmarks with the con-

figuration depicted in Table 2. The profiled 𝑅𝐷 range (rd_range)

covers the interval where benchmarks exhibited most variations

due to stress. For each target 𝑅𝐷 level, we generated 25 configura-

tions of contending tasks (reps.stress) to capture a spectrum of
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Benchmark 𝑅𝐷𝑖 # Mem. accesses

statemate 97 60632

ndes 194 126978

adpcm_dec 151 306214

adpcm_enc 148 307446

h264_dec 648 402850

g723_enc 182 1054418

gsm_dec 536 3714177

anagram 1215 7160559

gsm_enc 916 9990908

ammunition 970 261630684

mpeg2 4105 568118381

Table 1: Profiled benchmarks characteristics

stress sources, e.g. from data vs. instruction blocks, for each level.

The configurations were randomly picked amongst the valid com-

binations of remaining benchmarks, such that their combined 𝑅𝐷

tends towards the target 𝑅𝐷 level. Each configuration was further

executed 5 times (reps.config) to ensure consistent timings.

Parameter Value Description

rd_range.min 0 Minimum target 𝑅𝐷 level

rd_range.max 10000 Maximum target 𝑅𝐷 level

rd_range.step 100 Step between target 𝑅𝐷 level

reps.stress 25 Number of configurations per 𝑅𝐷 level

reps.config 5 Number of runs per configuration

mb_size 32B Memory block size

Table 2: Parameters applied during profiling (Alg. 1)

The tasks were profiled on a quad-core Intel i5-6500 machine,

with three layers of cache of respectively 64KB, 256KB and 6MB,

under the Linux Debian operating system. The CPU core frequency

is fixed to 800MHz, by deactivating Dynamic Voltage and Fre-

quency Scaling, to reduce execution time variability. The process

was mapped on an isolated core, such that no other user application

was running alongside, but no effort was made to isolate the profil-

ing process from system noise. The use of a complex off-the-shelf

processor, whose specifics are unknown aims to assess how the

high-level 𝐶𝑅𝑃 model can still explain variations in the execution

time of a task.

We evaluated the 𝐶𝑅𝑃 -based scheduling policies by simulating

the system. For each simulation, the behaviour of each task set under

each policy was simulated for 100 million cycles while collecting

the following metrics:

(1) JNE: the number of jobs not executed, due to a missed re-

leased, or criticality change (invalidating current and future

releases); and

(2) Effective Utilisation: the effective utilisation of the system, the

portion of time spent executing jobs over the total simulation

length.

We generated 100 schedulable task sets under each combination

of task generation parameters defined in Table 3. We applied the

DRS-based (Dirichlet-Rescale) algorithm in [20] to generate our

task sets, generating first the tasks’ HI utilisation, then their LO util-

isation. Periods are randomly picked in the set described in Table 3,

determining a task’s 𝐶𝐿𝑂 (and 𝐶𝐻𝐼 if applicable) by combining it

with their utilisation. A task’s BCET is obtained by multiplying its

𝐶𝐿𝑂 with a random factor picked in the [0.5, 1.0] interval.

Shared Parameters

Length (cycles) 100,000,000

Cache size (blocks) 10,000

Task periods (cycles) {1𝑥 , 2𝑥 , 3𝑥 , 4𝑥 , 5𝑥 , 10𝑥 , 20𝑥 , 25𝑥 , 40𝑥 , 50𝑥 }

Task Generation Parameters

Task count {10, 20, 30, 50, 80, 100, 150, 200}

Target utilisation {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%}

Target cache utilisation {25%, 50%, 100%, 200%, 400%, 1000%}

HI tasks ratio {0.1, 0.2, 0.3, 0.4, 0.5}

BCET to𝐶𝐿𝑂 ratio [0.5, 1.0]

Table 3: Simulation and Task generation parameters

We generate the 𝐶𝑅𝑃 -specific parameters using a similar ap-

proach. The 𝑅𝐷 contribution of tasks is picked uniformly such

that their combined contribution amounts to the task set target

cache utilisation. The 𝐶𝑅𝑃 for each task is generated by picking

two breakpoints, 𝑏𝐿𝑂 and 𝑏𝐻𝐼 , in the [0;𝐶𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒] interval using

DRS. Those delimit the segments of the task𝐶𝑅𝑃 , modelled using a

piece-wise line function. At 𝑟 = 0, the task executes to its BCET. Its

execution time linearly increases with stress up to 𝐶𝐿𝑂 at 𝑟 = 𝑏𝐿𝑂 .

Similarly the task execution time increases from 𝐶𝐿𝑂 to 𝐶𝐻𝐼 be-

tween 𝑟 = 𝑏𝐿𝑂 and 𝑟 = 𝑏𝐻𝐼 . The task sees no benefit from residual

cache blocks if the exercised stress exceeds 𝑏𝐻𝐼 .

5.2 RD and CRP as a stress and sensitivity
model

This section evaluates the 𝑅𝐷 and 𝐶𝑅𝑃 as a stress and sensitivity

model for a task, that is whether the stress on the memory hierarchy

as measured by 𝑅𝐷 explains some of the execution time variability

of a task, and how much variability is explained by the model. We

first profile the selected benchmarks using the approach described

in ğ3.2, and fit a 𝐶𝑅𝑃 model to each as per ğ3.3. Outliers, observa-

tions with a z-score [26] (or distance from the mean) above 3, are

removed from the data. Execution times for each benchmark are

normalised to its highest observed one, barring outliers. Each 𝐶𝑅𝑃

is composed of𝑀 = 3 segments, to capture the diminishing returns

of the 3 cache layers in the profiled memory hierarchy.

The collected observations and the corresponding predictions

through the fitted 𝐶𝑅𝑃 are presented in Figure 2 (resp. using light

and darker colours). We identified three classes of benchmarks, and

only present results for a representative of each class:

• High sensitivity benchmarks in Figure 2a, represented by

ndes (and statemate), exhibit clear benefits from residual

cache blocks in the memory hierarchy. Those benchmarks

are the shortest in terms of the number of memory accesses.

The presence or absence of just a few residual cache blocks

is thus enough to cause execution time variability.
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(a) High sensitivity ndes benchmark (b) Low sensitivity adpcm_dec benchmark (c) High stress mpeg2 benchmark

Figure 2: Observed and predicted execution times under the CRP model for selected benchmarks from the TacleBench suite.

• Low sensitivity (Figure 2b), represented adpcm _dec (ad-

pcm_enc, gsm_enc, gsm_dec, h264_dec), exhibit some tempo-

ral variability but it is not explained through residual cache

blocks. This can stem from a longer baseline execution time

which eclipses the comparatively smaller benefits of residual

cache blocks, or internal conflicts which prevent the reuse

of those blocks.

• High stress (Figure 2c), represented by ammunition (anagram,

mpeg2), see marginal benefits from the cache, and cause a

high level of disruption for other tasks. Those tend to be

the longest tasks in our sample, as more memory accesses

tend to correlate with more unique blocks and higher stress

levels.

All fitted𝐶𝑅𝑃 models exhibit the same trend in the observations

with higher 𝑅𝐷 leading to higher execution times. The 𝑅𝐷 is thus

an interesting metric to capture the distance between two jobs of

a task while implicitly including the whole memory hierarchy, i.e.

caches but also other control structures such as translation look-

aside buffers, or write registers. However, it is insufficient to explain

all execution time variability.

We further assess the quality of the 𝐶𝑅𝑃 through two met-

rics comparing observed and predicted execution times (1) the

root-mean-square error (RMSE [23]); and (2) the Spearman’s rank

correlation coefficient [32]. The RMSE is a scale-dependent measure

of the accuracy of the model predictions with lower values indi-

cating better predictions. The value captures the absolute, average

distance between observations and predictions with a value of 0

being a perfect match. The correlation coefficient assesses whether

the prediction and observation have a monotonic relationship, i.e.

increases in one relate to an increase (1) or decrease (−1) in the other.

A score closing on 0 indicates a lack of correlation between obser-

vations and predictions, or a lack of correlation between increases

in 𝑅𝐷 and observed timings. We present the error and correlation

metric for the 𝐶𝑅𝑃 fitted to each benchmark in Table 4, computed

from a sample of 10,000 observations. All correlation coefficients

are noted as significant.

The prediction error across all benchmarks tends to be quite

low, with the exception of adpcm_enc. It could be modelled with

a simple error model considering a ±10% interval around predic-

tions. adpcm_enc is a small benchmark, in terms of both memory

footprint and execution time, which either does not benefit from

residual cache blocks or such that small perturbations could cause

comparatively large effects on the task. In either case, the 𝑅𝐷 stress

metric is insufficient to explain the variability within or between

instances of the benchmark. adpcm_dec and anagram also exhibit a

poor correlation, however, a small error seems to indicate instead

that the benchmarks show little variability w.r.t. 𝑅𝐷 in our exper-

iments. Other benchmarks such as h264_dec and mpeg2 show a

small correlation between observations and predictions, indicating

that the model does capture a trend in the data but it is insufficient

to explain most execution time variability. It does however man-

age to capture a lot of variability for the smallest tasks statemate

and ndes. Both exhibit a bi-modal distribution, as highlighted in

Figure 2a. The figure shows a larger density of observations close

to the baseline execution time irrespective of the observed 𝑅𝐷 .

Benchmark Error Correlation

(RMSE) (Pearson)

statemate 0.069 0.41

ndes 0.057 0.44

adpcm_dec 0.019 0.07

adpcm_enc 0.223 0.06

h264_dec 0.051 0.27

g723_enc 0.071 0.35

gsm_dec 0.012 0.17

anagram 0.036 0.05

gsm_enc 0.026 0.18

ammunition 0.008 0.15

mpeg2 0.005 0.12

Table 4: Metrics for the quality of the CRP model

The 𝐶𝑅𝑃 model manages to provide some relatively accurate

predictions across most benchmarks, with provision for a simple

error model. If the 𝑅𝐷 metric captures some of the stress on the

memory hierarchy, there is still room for improvement on our pro-

filing platform, i.e. additional metrics to explain further variations

in timings. As expected smaller benchmarks seem to benefit the

most from close locality between jobs.

5.3 Scheduling impact of CRP-based policies

We evaluate the impact in this section of scheduling policies built

considering the 𝐶𝑅𝑃 model, based either on the locality principles

underlying the model or calling the model at runtime to improve

scheduling decisions. The evaluation focuses on the service granted



Reducing Loss of Service for Mixed-Criticality Systems through Cache- and Stress-Aware Scheduling RTNS ’23, June 7–8, 2023, Dortmund, Germany

OPA
CPA

CPA Lo

[RD <] Lo

[ ET >] Lo

[CRP <] Lo

[r <] Lo

500

1000

JN
E

Cache Utilisation = 25 %

500

1000

JN
E

Cache Utilisation = 50 %

500

1000

JN
E

Cache Utilisation = 100 %

500

1000

JN
E

Cache Utilisation = 200 %

500

1000

JN
E

Cache Utilisation = 400 %

OPA CPA
CPA

 Lo

[RD <] L
o

[ ET
 >] L

o

[CRP <
] L

o

[r <
] L

o

Policy

500

1000

JN
E

Cache Utilisation = 1000 %

(a) JNE across varying cache utilisation

OPA
CPA

CPA Lo

[RD <] Lo

[ ET >] Lo

[CRP <] Lo

[r <] Lo

0.1

0.2

0.3

0.4

Ef
fe

ct
iv

e 
Ut

ilis
at

io
n

Cache Utilisation = 25 %

0.1

0.2

0.3

0.4

Ef
fe

ct
iv

e 
Ut

ilis
at

io
n

Cache Utilisation = 50 %

0.1

0.2

0.3

0.4

Ef
fe

ct
iv

e 
Ut

ilis
at

io
n

Cache Utilisation = 100 %

0.1

0.2

0.3

0.4

Ef
fe

ct
iv

e 
Ut

ilis
at

io
n

Cache Utilisation = 200 %

0.1

0.2

0.3

0.4

Ef
fe

ct
iv

e 
Ut

ilis
at

io
n

Cache Utilisation = 400 %

OPA CPA
CPA

 Lo

[RD <] L
o

[ ET
 >] L

o

[CRP <
] L

o

[r <
] L

o

Policy

0.1

0.2

0.3

0.4

Ef
fe

ct
iv

e 
Ut

ilis
at

io
n

Cache Utilisation = 1000 %

(b) Effective Utilisation across varying cache utilisation

Figure 3: Comparison of the scheduling policies with task sets composed of 100 tasks, 20% 𝐻𝐼 tasks, 30% utilisation.

to 𝐿𝑂 criticality tasks bymeasuring the number of jobs not executed

(JNE), and the overall impact of the policies on the effective system

utilisation. We also consider a 𝐿𝑂 variant of policies where appli-

cable which first prioritises 𝐿𝑂 criticality tasks within a priority

group.

The explored task generation parameters also cover a blend of

configurations, from realistic, challenging task sets to more manage-

able ones. Due to space constraints, we can only present a limited

number of them highlighting common trends, benefits, and limits



RTNS ’23, June 7–8, 2023, Dortmund, Germany B. Lesage et al.

of the proposed policies. We simulated all proposed policy combina-

tions and variants, but only present the ones providing interesting

grounds for discussion notably if a variant strictly dominates others.

The following policies have been selected:

• OPA: a baseline priority allocation, with fixed, arbitrary or-

dering of tasks within a priority group;

• CPA and CPA 𝐿𝑂 : static priority allocation, based on CRP

intuitions, with no shared priority; and

• [𝑅𝐷 < ]𝐿𝑂 , [Δ𝐸𝑇 > ]𝐿𝑂 , [𝐶𝑅𝑃 < ]𝐿𝑂 , and [𝑟 < ]𝐿𝑂 : dy-

namic scheduling policies, reordering tasks within a priority

group at runtime.

We first consider the impact of increased cache utilisation on the

𝐶𝑅𝑃 -based scheduling policies in Figure 3. The cache utilisation

is the ratio of unique cache blocks used by the task set over the

overall cache size, with a lower utilisation implying less stress in

the memory hierarchy and an increased likelihood to benefit from

resilient cache blocks. Conversely, a high cache utilisation is more

likely to result in a single task evicting all residual cache blocks,

thus forcing interleaved jobs to their WCET. We focus in Figure 3

on task sets composed of 100 tasks, with a 30% target utilisation for

both 𝐿𝑂 and 𝐻𝐼 modes, of which 20% are 𝐻𝐼 tasks.

As tasks’ cache utilisation increases, generating more stress on

the memory hierarchy, it takes only a few jobs to completely flush

residual cache blocks out of the cache. Therefore tasks are less

likely to benefit from the residual cache blocks and therefore the

proposed policies are less beneficial. As a result, increased cache

utilisation leads to an increased number of jobs not executed and a

more uniform behaviour across all policies. The [𝐶𝑅𝑃 < ]𝐿𝑂 and

[𝑟 < ]𝐿𝑂 outperform all others in our observations, especially at

high cache utilisation. However, while the [𝐶𝑅𝑃 < ]𝐿𝑂 and [𝑟 <

]𝐿𝑂 manage to complete a similar number of 𝐿𝑂 criticality jobs, the

latter tends to do so more efficiently resulting in a lower effective

utilisation (see Figure 3b). This highlights a balance between quality

of service and performance.

The initial ordering matters mostly for [𝑟 < ]𝐿𝑂 . The policy

exploits existing stress contribution to prioritise tasks, favouring

jobs whose contribution to stress has already been accounted. Any

difference introduced during the initial release of tasks is overtaken

by the execution time variance accounted for by the [Δ𝐸𝑇 > ] and

[𝐶𝑅𝑃 < ] policies. Under our constraints, prioritising 𝐿𝑂 criticality

jobs is always beneficial. The additional stress for a 𝐻𝐼 criticality

job is balanced by the opportunity to complete 𝐿𝑂 jobs, especially

if the 𝐻𝐼 criticality job was to overrun its𝐶𝐿𝑂 anyway and cause a

criticality mode change.

Looking at the impact of increased system utilisation in Figure 4,

we observe similar trends to those observed with increasing cache

utilisation. Figure 4 focuses on task sets composed of 20 tasks, with

a 40% portion of 𝐻𝐼 tasks, and a 50% cache utilisation. Increased

system utilisation does result in less completed 𝐿𝑂 criticality jobs.

Although cache utilisation is below 100%, stress on the memory

hierarchy still impacts the execution of sensitive tasks. The model

and task generation thus account for capacity conflicts where mul-

tiple cache blocks might compete for a same, limited portion of the

memory hierarchy. The [𝑟 < ]𝐿𝑂 policy still slightly outperforms

the others, although with only marginal benefits at a high system

utilisation (80%). The heuristic [Δ𝐸𝑇 > ]𝐿𝑂 which relies on the
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Figure 4: Comparison of the scheduling policies across vary-

ing target utilisation with task sets composed of 20 tasks, 40%

𝐻𝐼 tasks, and 50% cache utilisation.

interpretation of the 𝐶𝑅𝑃 model at runtime currently focuses on

the short-term benefits of running a task first, ignoring its impact

on the memory hierarchy and future jobs.

6 RELATED WORK

The concept of a stress and sensitivity model to capture variations

in execution time induced and suffered by a task was explored

in [14, 16]. Our approach relies on those concepts with some impor-

tant differences: (1) we focus on a single core architecture, using

resources shared by jobs of different tasks; (2) our model produces

scaling factors as opposed to additive timing variations; (3) the 𝑅𝐷

stress metric does not capture an execution time penalty on others;

(4) our model is not aimed towards refining schedulability analyses

but inform the scheduler; and (5) the proposed model encompasses

multiple resources in the memory hierarchy at once.

A number of studies consider the definition of execution time [4,

22] and stress [12, 17, 21] models for shared resources through

the abstraction of tasks or their contenders to observable factors.

Hardware-level performance counters do characterise the low-level

behaviour of a task [4, 17, 21, 22]. The number of performance

counters is often limited, therefore even with careful selection, the
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accuracy of any model is limited. We favour a high-level 𝑅𝐷 stress

metric easily monitored at runtime and profiled offline.

The work by Courtaud et al. [12] in particular relies on an offline

profiling phase to build a high-resolution, qualitative character-

isation of tasks. The profile of a task provides the grounds for

predicting the worst-case overheads if suffers as a result of memory

contention. Our approach targets a less accurate but wider scope

sensitivity model to inform online scheduling decisions, as opposed

to worst-case estimates.

The 𝐶𝑅𝑃 solves a question similar to the Cache Related Preemp-

tion Delay (CRPD) problem [1, 27, 28, 31], that is what is the impact

on a task caused by interleaved jobs evicting useful cache blocks

(UCBs) from the memory hierarchy. However, CRPD computation,

assuming limited preemption regions or not, requires low-level

hardware models and analyses to capture the intersection of UCBs

and evicting cache blocks.

Early work on cache-aware scheduling for single core in [25] also

relies on such a low-level model to compute the cache contents after

each task, and its impact on the next job. More recent techniques

do account for the sensitivity of tasks to co-schedule the ones

which share common resources [2, 3], or favour tasks based on

profiled [9] or monitored [10] stress metrics. However, none of

these approaches relies on an execution time model deployed at

runtime.

The same intuition that consecutive jobs benefit from cache reuse

is considered in [11], where periodic schedules are optimised as

part of a co-design problem. The cache model is however relatively

simple such that timing improvements are purely based on the last

executed job.

7 CONCLUSION

In this work, we introduce the concept of𝐶𝑅𝑃 , a stress and sensitiv-

ity model, to capture the impact of a task on the memory hierarchy

and the variations of its execution time due to the impact of others.

The 𝐶𝑅𝑃 models the benefits of cache blocks in the memory hier-

archy leftover from previous jobs. The model successfully captures

some of the execution time variability, especially for smaller, cache-

dependent tasks, in response to the high-level 𝑅𝐷 stress metric.

Longer or streaming tasks however are more sensitive to internal

conflicts and would require additional stress metrics to capture

variability.

We further propose a number of cache-aware scheduling heuris-

tics, building on the properties or the deployment at runtime of

the 𝐶𝑅𝑃 model, and assess how they benefit the overall quality of

service of a mixed-criticality system. Our evaluation shows that

more informed decisions can result in a better utilisation of the

memory hierarchy, leaving more room for low criticality workloads.

However, the deployment of the𝐶𝑅𝑃 at runtime requires some con-

sideration to balance the expected benefits of a job with its impact

on subsequent ones.

We consider the 𝐶𝑅𝑃 model in the context of multi-core archi-

tectures in [33], to inform the allocation of jobs to cores, to exploit

locality in the memory hierarchy. Future work and refinements

to the 𝐶𝑅𝑃 model could help include the effects of other sources

of interference on the memory hierarchy, especially layers shared

concurrently across cores.
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