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Abstract

Quantum computing (QC) is a new computational
paradigm whose foundations relate to quantum
physics. Notable progress has been made, driv-
ing the birth of a series of quantum-based algo-
rithms that take advantage of quantum computa-
tional power. In this paper, we provide a tar-
geted survey of the development of QC for graph-
related tasks. We first elaborate the correlations
between quantum mechanics and graph theory to
show that quantum computers are able to gen-
erate useful solutions that can not be produced
by classical systems efficiently for some prob-
lems related to graphs. For its practicability and
wide-applicability, we give a brief review of typi-
cal graph learning techniques designed for various
tasks. Inspired by these powerful methods, we note
that advanced quantum algorithms have been pro-
posed for characterizing the graph structures. We
give a snapshot of quantum graph learning where
expectations serve as a catalyst for subsequent re-
search. We further discuss the challenges of using
quantum algorithms in graph learning, and future
directions towards more flexible and versatile quan-
tum graph learning solvers.

1 Introduction
Quantum computing (QC), whose foundations relate to quan-
tum physics, harnesses the computational power derived
from the properties of quantum mechanics to perform cal-
culations. Quantum computing has attracted wide atten-
tion from both industry and academia for its promising
prospective of exponentially accelerating the traditional ap-
proaches [Liu et al., 2021; Zlokapa et al., 2021] as well as
naturally exploring the physical systems [Preskill, 2018;
Hegade et al., 2021].

Benefiting from the unique characteristics of quantum me-
chanics, which are totally different from the classical systems,
such as superposition, interference, and entanglement, quan-
tum computing has potential superiority in many calculation
tasks. The most remarkable step is taken by [Shor, 1994]

∗Correspondence author is Junchi Yan.

that demonstrates two mathematical problems - integer fac-
torization and discrete logarithm - can be solved efficiently
by using quantum computers, whereas no efficient classi-
cal method is known. Furthermore, [Grover, 1996] points
to another valuable evidence, showing the quantum advan-
tage of searching and retrieving target values in unstructured
databases quadratic faster than the most effective classical
method.

The potential advantages of quantum computers arouse re-
searchers’ curiosity in solving the problem of graph theory.
Early works concentrate on exploiting the quantum compu-
tational power to produce effective solutions to graph theo-
retical problems. We classify such quantum algorithms as
quantum graph computing. Two families of graph theoreti-
cal problems have been studied extensively. One family re-
lates to graph representations of combinatorial optimization
problems which are thought to be exponentially hard for clas-
sical computers [Moylett et al., 2017]. Another family com-
prises extracting patterns and finding hidden structures within
a number of graphs [Chang et al., 2018]. Most of these prob-
lems are NP-hard if not even harder, or practically intractable
for large-scale settings for the exact solution. A number of
quantum based algorithms focus on reformulating some of
these problems into computationally solvable forms of quan-
tum computers [Calude et al., 2017]. Besides, these algo-
rithms try to use the associated properties of quantum me-
chanics to solve problems efficiently and find the exact solu-
tion.

More recently modern graph learning techniques has
revolutionized graph analytics tasks such as node classi-
fication [Kipf and Welling, 2017] and graph classification
[Chen et al., 2020]. Meanwhile, fueled by the advent of
quantum hardware and the high-performance quantum sim-
ulation frameworks, an increasing amount of literature on
quantum machine learning has been proposed in recent years,
showing the quantum potential of both acceleration of the
computational process and improvement of the performance.
With the power of data, quantum machine learning has the
potential of finding atypical but useful patterns that classical
systems are not considered to be able to generate effectively
[Huang et al., 2021]. It seems an attractive direction towards
combining the expressive ability of classical graph learning
techniques with the power of quantum computing. We call
it quantum graph learning. In this paper, we give a snapshot



of quantum graph learning and hope that it can inspire more
in-depth research.

There are reviews on quantum computing and quantum
machine learning. [Montanaro, 2016; Biamonte et al., 2017]

overview quantum algorithms that have the potential
speed-ups. They mainly review idealized quantum algo-
rithms that efficiently perform linear algebraic operations.
[Adedoyin et al., 2018] conducts a survey focused on the
gate-model quantum computer. [Preskill, 2018] reports quan-
tum algorithms that can be executed on the current quantum
hardware and the future potential of quantum computing is
discussed. [Dunjko and Briegel, 2018] investigates the inter-
action between machine learning, artificial intelligence and
quantum mechanics. [Cerezo et al., 2020] limits the scope
within the quantum algorithms based on parameterized quan-
tum circuits. In summary, existing surveys have not fully re-
flected the state-of-the-art development of quantum comput-
ing, especially for graph algorithms. Our survey focuses on
quantum algorithms on graphs, from quantum graph comput-
ing to quantum graph learning, which we believe is an emerg-
ing field.

2 Quantum Graph Computing
There are three common paths intersecting quantum comput-
ing and graph theory. First, some works consider an under-
lying graph structure consisting of nodes connected by edges
and perform quantum evolution on this structure, in which an
important quantum paradigm is Hamiltonian encoding. Sec-
ond, the relationship between the transition rules of a graph
and the randomness of the quantum representation is explored
from the point of view of utilizing the superposition and en-
tanglement of quantum states to characterize the properties
of graphs, e.g., quantum random walks. In this case, the
quantum states preserve the features of nodes and edges of
the original graph as well as its topology information. An-
other way to build quantum graph solvers is the employment
of quantum search, which, in most cases, provides quadratic
acceleration over traditional exhaustive search methods. Here
we discuss the synergy of these three areas.

2.1 Hamiltonian Encoding based Solvers
One approach to developing universal quantum computing is
adiabatic quantum computing (AQC), which relies on the adi-
abatic theorem that evaluates the continuous-time evolution
of a quantum system. To describe the dynamics of an arbi-
trary quantum system, a class of Hamiltonians is defined

H =
∑

i<j

Jijσ
z
i σ

z
j +

∑

i

hiσ
z
i +

∑

i

giσ
x
i , (1)

where σz , σx are Pauli matrices. Broadly speaking, Eq. 1
can be viewed as a transverse-field Ising model and such
model is QMA-complete [Albash and Lidar, 2018]. The first
two terms push the quantum bit (qubit) to be either |0〉 or
|1〉, whereas the last pushes the state to a superposition. An
outside measurement leads to the collapse from superposi-
tion to a deterministic state. These foundations give the abil-
ity for quantum computers to handle certain problems that
can not be efficiently solved classically. To implement such
models in a real physical process, quantum annealing (QA)

captures the relaxation of the adiabatic conditions and con-
trols the continuous-time evolution at finite temperature and
in open environments. Machines performing QA at the hard-
ware level attempt to minimize the energy determined by the
Hamiltonian, and the output of an anneal is a low-energy
ground state, which consists of an Ising spin for each qubit
where the eigenvalues {+1,−1} of Pauli matrix σz corre-
spond to the binary constraint of the properties of classi-
cal Ising model [Ushijima-Mwesigwa et al., 2017]. This is
closely related to the quadratic unconstrained binary opti-
mization (QUBO) problem - a combinatorial optimization
problem that can be applied to many graph theoretical prob-
lems.

Many NP-hard problems can be expressed as the mini-
mization of the energy of the Hamiltonian as the form of
Eq. 1 e.g. graph partitioning, graph coloring, vertex cover
and clique finding [Lucas, 2014]. Therefore, varieties of con-
tributions concentrate on relaxing and reformulating these
graph-related combinatorial optimization problems into the
QUBO formulation and utilizing QA to quickly approach
the exact solution. The method in [Chams et al., 1987] con-
verts the graph coloring problem to graph partitioning and
employs simulated annealing to screen the better solution of
the problem. Different annealing schemes are exploited in
[Silva et al., 2020]. These schemes dominate traditional tech-
niques for certain types of graphs with the cost of long com-
puting time. To transform a set of constraints to the energy
minimization problem, penalty terms associated with the con-
straints should be added to the QUBO quadratic expression
[Silva et al., 2020]. Besides, reduction and approximation
are necessary for space efficient. Their work demonstrates
that the quantum annealer can more reliably approach the op-
timal solution and produce better heuristics for graph coloring
under specific settings.

Existing quantum hardware can only control a relatively
small number of qubits, which is far from the size for large-
scale data processing. In addition, it is difficult to fully em-
bed real-world optimization problems on quantum devices as
a consequence of poor connectivity between arbitrary cou-
ples of qubits. As a result, the qubit connectivity in quan-
tum hardware rarely matches the QUBO form described by
the underlying graph structure. To overcome these problems,
the authors of [Bass et al., 2018] present a heterogeneous al-
gorithm that uses classical co-processing to preprocess the
primitive problem and randomly selects a large number of
possible solutions, after which the reduced form of the max
clique problem corresponding to the largest possible solutions
can be encoded into the quantum annealer for accelerating the
searching process. In [Pelofske et al., 2019], a decomposi-
tion alternative divides a big input graph into multiple smaller
subgraphs that fit the quantum annealer to further improve the
adaptability. Other applications also show the benefits of us-
ing Hamiltonian to encode and solve graph related problems
including graph isomorphism problem [Calude et al., 2017;
Ushijima-Mwesigwa et al., 2017] and vertex cover problem
[Pelofske et al., 2019]. Likewise, recent works demonstrate
quantum annealing has potential advantages over classical
approaches ranging from optimization [Brady et al., 2021] to
machine learning [Nath et al., 2021]. However, it is diffi-



cult to ensure the final quantum state to be the ground state,
meaning that the final solution is probably not optimal. Be-
sides, with the increase of the size of the system and the
complexity of the problem, it seems reasonable to expect
the annealing time to scale exponentially for problems with
exponentially small gaps, especially for NP-hard problems
[Albash and Marshall, 2021].

2.2 Quantum Random Walks based Solvers

Another way to represent the topological information of
graphs in quantum information is quantum random walks
(QRWs). Motivated by the widespread use of classical ran-
dom walks, QRWs view a graph as a collection of nodes
in either real or complex space, among which the correla-
tions between two nodes are indicated by edges. The Walker
evolves in a quantum mechanical manner over time by char-
acterizing its initial distribution in terms of the amplitudes
of quantum states. Compared with classical random walks,
where the stochastic transition matrix determines the random
patterns, the randomness of QRWs depends on the reversible
unitary translation. No internal information could be obtained
until the final states are measured. Readers are referred to
[Kempe, 2003; Venegas-Andraca, 2012] for introductions on
QRWs. Here, we provide a brief overview of the two types of
QRWs with typical progress on solving graph related tasks.

Discrete Time Quantum Random Walks One way to in-
tersperse quantum effects with random walks is the discrete
time quantum random walks (DT-QRWs). Let HP be the
Hilbert space spanned by the positions of the nodes, and
HC be the ‘coin’-space whose dimension is usually equiv-
alent to the maximal degree of the graph [Kempe, 2003].
The state of the whole graph can be described by the space
H = HC ⊗ HP . Suppose that a unitary operator C de-
termines the possibility of the diffusing direction, and S
indicates the conditional transition of the system, the DT-
QRWs of step T is defined as the transformation UT , and
U is written as U = S · (C ⊗ I), where I is the iden-
tity matrix [Venegas-Andraca, 2012]. By repeating the suc-
cession of unitary translation U , i.e., transforming the state
|ψt〉 = U |ψt−1〉 iteratively with timestamp t, the distribution
of the walker can be encoded in the final state. Measuring
the coin-register of the walk in the computational basis states
will output the classical information of the probability distri-
bution.

Continuous Time Quantum Random Walks Another
way to model the quantum diffusing is the continuous time
quantum random walks (CT-QRWs). For the general clas-
sical random walk in the form of the differential equation,

the probability distribution at time t of node i is:
dpi(t)
dt

=
−∑

j Hi,jpj(t), where matrix H is an analogue to the clas-

sical transition matrix, whereas each entry of H is the possi-
bility of jumping from node i to node j. Solving the equation
we obtain ~p(t) = e−Ht~p(0), and [Farhi and Gutmann, 1998]

extends this concept to quantum case by using the Hamil-
tonian to establish the continuous evolution U(t) = e−iHt.
If we start in some initial state |ψ0〉, evolve it under U for
a time t and measure the positions of the resulting state we
obtain a probability distribution over the nodes of the graph

[Kempe, 2003]. In contract to the classical random walks,
quantum diffusion is a reversible process and it does not con-
verge to a stationary distribution in general, and an average
distribution called Cesaro limit ~ct is introduced to obtain a
stationary distribution: ~cti =

1
t

∑t

s=1 ~p
s
i .

Overview of QRWs-based Solvers These ideas of quan-
tum diffusion are generalized to develop varieties of graph
solvers for graph theoretical problems. QRWs often induce
an asymmetric probability distribution mainly due to their in-
trinsic interference pattern and unusual collapse characteris-
tics. It is evident that the interference pattern of QRWs is
much more intricate than the Gaussian obtained in the classi-
cal case [Kempe, 2003]. The first attempt to develop an ex-
ponential separation of classical and quantum random walks
is given by [Childs et al., 2002]. They construct a binary glue
tree and demonstrate that DT-QRWs are able to penetrate the
graph in polynomial time. [Childs and Eisenberg, 2005] de-
velops an algorithm based on DT-QRWs for more general
subgraph finding problems, i.e., L-subset distinctness in poly-
nomial time for a small size of the subgraph. More intri-
cate tasks including graph matching and graph distinction
can also be handled using the quantum inference of QRWs
[Emms et al., 2009b; Emms et al., 2009a]. Although there
are many correlations between CT-QRWs and DT-QRWs, the
authors of [Kempe, 2005] find that in the hypercube case, the
hitting time of DT-QRWs is exponentially faster than that of
classical random walks, whereas the CT-QRWs do not con-
verge to the uniform distribution at all. The relationship be-
tween the transition pattern of CT-QRWs and the spectrum of
a regular graph is revealed by [Ren et al., 2011], which char-
acterizes the capacity of the Ihara zeta function in distinguish-
ing graphs. It is shown in [Emms et al., 2009c] that node em-
beddings produced by the hitting time associated with the CT-
QRWs tend to capture more structural information.

2.3 Quantum Search based Solvers

The quantum search algorithm, also known as Grover’s al-
gorithm, is first proposed by [Grover, 1996] at the theoretical
level. This algorithm incorporates a superposition of all pos-
sible states related to the problem. Then a unitary operator is
used to change the amplitudes of each state while maximiz-
ing the amplitudes of the desired state which can be extracted
by measuring. It is especially suitable for the application
scenarios where a set of specific solutions are searched and
retrieved in a huge number of candidates. For the function
whose output size is N , the quantum search algorithm finds

the desired input value by using just O(
√
N) evaluations of

the function with high probability. In particular, many graph
theoretical problems are NP-hard if not even tougher, and the
search space grows exponentially with the problem’s size. It
is reasonable to handle these problems in terms of quantum
computing power.

It is shown in [Dürr et al., 2006] that quantum search
algorithm decreases the query complexity further for cer-
tain graph problems including spanning tree, connectivity,
strong connectivity and single source shortest path. In
[Hillery et al., 2010], the search is performed by quantum
random walks to find the marked clique of a complete



graph. A novel quantum search architecture [Černỳ, 1993]

is developed to solve the travelling salesman problem
(TSP). However, [Greenwood, 2001] points out this scheme
does not mean quantum computers can solve arbitrary
NP-hard problems in polynomial time since the number
of qubits to represent the superposition states is astro-
nomical. An efficient quantum approach proposed by
[Srinivasan et al., 2018] combines the quantum phase estima-
tion algorithm [Kitaev, 1996] with the quantum search algo-
rithm to solve the TSP. It provides a quadratic speedup over
the classical brute force method. A breakthrough to achieve
quantum speedups for TSP and several NP-hard problems
presented by [Ambainis et al., 2019] integrates Grover’s al-
gorithm with classical dynamic programming. Despite the
fact that quantum search has the potential to solve various
complex graph related problems, developing a quantum algo-
rithm that promises to be faster than the best classical algo-
rithm remains difficult, as classical techniques do not always
rely on exhaustive search.

3 Classic Graph Learning

We provide background on classic graph learning. It in gen-
eral attempts to assign a vector representation to each of the
(sub)graphs, preserving both structural information and node
features.

3.1 Factorization based Embedding Approaches

By representing the graph’s edges and connected nodes as
low-dimensional vectors that preserve global properties of the
graph, the subsequent graph analytics tasks can be easily ad-
dressed by employing mature machine learning algorithms
[Goyal and Ferrara, 2018]. Here we introduce the factoriza-
tion based approaches and discuss their pros and cons.

Matrix Factorization based Approaches There are a
variety of graph learning approaches that represent the
correlations between nodes by factorizing the matrix that
contains the graph information to obtain the embed-
ding. Different tasks require the factorization of matri-
ces with different properties. Graph Laplacian eigenmaps
[Belkin and Niyogi, 2001] constructs a low-dimensional rep-
resentation for each node while keeping the smoothness of
the distinctness of connected nodes. To circumvent the loss
of local topology information, a Cauchy graph embedding
method developed by [Luo et al., 2011] is employed to pre-
serve the similarity relationships of the original graph data,
and introduce a more effective objective function to empha-
size the similarity efficacy. However, the factorization of the
matrix of the graph with massive nodes often requires huge
computing resources. [Ahmed et al., 2013] proposes a factor-
ization technique that relies on graph partitioning to enhance
scalability.

Random Walk based Approaches Random walk statis-
tics is widely used to capture the graph properties. The la-
tent representation of the node that captures the local struc-
ture information is condensed into the low-dimensional fea-
ture vector by performing a diffusing process. DeepWalk
[Perozzi et al., 2014] generates the training data in terms of
compressing the graph structure into a text like corpus using
random walk, and trains the graph learner to maximize the

occurrence probability of neighbors in the walk. Node2vec
[Grover and Leskovec, 2016] employs biased random walk to
make a trade-off between breadth-first (BFS) and depth-first
(DFS) graph searches, resulting in higher-quality and more
informative embeddings than DeepWalk. [Qiu et al., 2018]

shows that many random walk based approaches also perform
implicit matrix factorization, since the requirement of the spe-
cific adjacent matrix or Laplacian matrix before performing
learning. Most of these methods are inherently transductive.

3.2 Graph Kernel Methods
Inspired by the kernel methods which utilize a linear classifier
to solve non-linear problems, graph kernel methods have been
widely used for graph-level tasks, e.g., classification and clus-
tering. They directly compare the structures of the subgraphs
by defining a user-specific similarity metric or a meaningful
distance measurement on graphs. In contrast to the factoriza-
tion based approaches representing the graph information as
low-dimensional vectors, graph kernel methods characterize
graph features implicitly in a high dimensional space. It in-
volves performing pairwise comparisons between local sub-
structures centered at every node.

Most early graph kernel works belong to the family
of R-convolution kernels [Haussler, 1999]. More recently,
[Tian et al., 2019] shows a kernel-based framework to pro-
duce hidden representations of nodes, bridging the gap be-
tween graph kernel methods and graph neural networks.
[Chen et al., 2020] combines the message passing mecha-
nism with the graph kernel and constructs a convolutional ker-
nel network to represent the graph effectively. The high com-
putational complexity of graph kernel methods suppresses
their applicability. While it is still valuable to study the theo-
retical framework behind the graph learning approaches using
graph kernel methods due to their inherent transparency and
interpretability.

3.3 Graph Neural Networks
For graph learning, Graph neural networks (GNNs) are a type
of deep learning method for extracting the pattern of graph
structural data, which dominate the literature.

Recurrent Graph Neural Networks The initial trial of the
GNNs is recurrent graph neural networks whose foundations
relate to the information diffusion mechanism. In the pro-
totype [Scarselli et al., 2008] of recurrent graph neural net-
works, the node hidden embedding is updated by the adja-
cent neighbors. This process continues until a stable equilib-
rium is reached. A gated recurrent unit (GRU) is used as a
recurrent function in a gated graph neural network (GGNN)
[Li et al., 2016], restricting the recurrence to a few steps.

Convolutional Graph Neural Networks A number of
convolutional graph neural networks can be categorized into
a general framework named Message Passing Neural Net-
work (MPNN) [Gilmer et al., 2017]. The forward pass of
these models has two phases - an aggregation phase and an
update phase - that run iteratively to let information propa-
gate further. The aggregation phase serves to detect (multi-
ple) patterns in multiple sub-regions of the input graph, while
the update phase generally consists of pooing functions that
collapse the hidden features of interrelated sub-regions into
a new vector representation. Some studies perform graph



convolution operation building upon the signal processing on
graphs [Shuman et al., 2013].

4 Quantum Graph Learning

Recently many quantum machine learning algorithms
have been proposed that either promise quantum speed-
ups over their classical counterparts [Liu et al., 2021;
Zlokapa et al., 2021], or have the potential of finding atyp-
ical but useful patterns that classical systems are not con-
sidered to be able to generate effectively [Cong et al., 2019;
Huang et al., 2021]. With the development of quantum de-
vices and high-performance quantum simulation frameworks,
there is an increasing interest in building novel quantum
algorithms to help solve near-term applications for practi-
cal problems. A variety of quantum analogues to the clas-
sical machine learning models have been proposed. Ad-
vanced contributions have taken the first step. For in-
stance, [Harrow et al., 2009] proposes an exponentially fast
algorithm for efficiently solving linear equations. Based
on this, the quantum support vector machine (QSVM) pre-
sented by [Rebentrost et al., 2014] can handle binary clas-
sification problems on a quantum computer with complex-
ity logarithmic in the size of the vectors and the number of
training examples. The practical implementation of QSVM
for recognizing handwritten characters is completed by
[Li et al., 2015]. To realize more intricate tasks, the quantum
convolutional neural network (QCNN) [Cong et al., 2019]

generates excitement around the possibility of efficiently an-
alyzing quantum data via performing convolutional and pool-
ing operations in quantum systems.

Although quantum algorithms have the potential to tackle
graph problems efficiently, quantum computing for graph
learning is still in its early stages. The literature is relatively
sparse and lacks formal rationale for the model selections. In
the following, we show some progress of leveraging quan-
tum physics to extract graph structural information, bring-
ing up new possibilities for quantum computing applications.
The main characteristics and differences of these methods are
summarized in Tab. 1.

4.1 Quantum Kernel based Graph Learning

Similar to the classical graph kernel methods, quantum ker-
nels (QK) on graphs aim to decompose the graph into sub-
structures and compare the similarity between each pair of
substructures specified in terms of their quantum representa-
tions. The Quantum Jensen–Shannon Graph Kernel (QJSK)
[Bai et al., 2015] infers the graph properties using the den-
sity matrix description constructed by CT-QRWs. The au-
thors develop an aligned version of the QJSK to preserve the
permutation invariance and more correspondence information
between pairs of nodes in the graph. Additionally, they gen-
eralize their ideas by probing the graph structure using the
DT-QRWs [Bai et al., 2017]. In [Schuld et al., 2020], the au-
thors present the potential of encoding the graph information
in the quantum Hilbert space using the derivation of Gaussian
Boson Samplers Kernel (GBSK). The information of all pos-
sible subgraphs can be obtained by sampling instead of count-
ing the appearance of specific substructures classically. A
specific kernel encoding the feature of all subgraphs (SFGK)

[Kishi et al., 2021] investigates how to utilize the power of
quantum superposition to encode every subgraph into a fea-
ture space. The major disadvantage of their model is that
the similarity between the superposition states is hard to es-
timate, thereby limiting the model capacity. The Hamilto-
nian encoding approach is further exploited in the Quantum
Evolution Kernel (QEK) [Henry et al., 2021] to represent the
topology of the input graph. A particular graph kernel gen-
erated by performing the quantum evolution followed by a
carefully chosen observable is able to characterize graphs in
a real quantum computer.

4.2 Shallow Circuit Graph Learning

Most classic graph learning techniques are motivated by
graph-free models such as kernel methods and CNNs. New
generalizations and definitions of important operations have
been developed to handle the complexity of graph data
[Wu et al., 2020]. As a result, some studies use quan-
tum computing to efficiently duplicate procedures result-
ing from classic graph learning. It seems to be essen-
tial to build effective embedding approaches that encode
the classical data into their quantum representations while
keeping as much of the original information as possible
[Huang et al., 2021; Schuld, 2021]. Besides, the embed-
ding phase contributes the most nonlinear transformations
[Schuld and Killoran, 2019] and is the basis of the quantum
speed-ups claimed by many quantum machine learning al-
gorithms [Biamonte et al., 2017]. Therefore, new methods
should be developed to handle embedding efficacy. For learn-
ing on graphs, the permutation invariance of node orderings
should be also carefully considered when transforming orig-
inal graphs into their quantum expressions. The shallow cir-
cuit learning method is a kind of quantum algorithm based
on the current noisy intermediate-scale quantum (NISQ) de-
vices, which encodes the original data into their quantum rep-
resentations and approximates the objective function by ad-
justing the learnable gate circuit parameters [Schuld, 2021].
Generally the shallow circuit can be divided into two parts
where the embedding circuit is responsible for encoding the
data into quantum Hilbert space and the following parameter-
ized processing circuit is used to extract hidden features from
the feature space.

[Verdon et al., 2019] introduces a quantum graph neural
network (QGNN) that treats the interaction of qubits as the
nodes connected by edges. The entire graph thereby can be
expressed by a quadratic Hamiltonian, which implies that we
can think about quantum circuits with graph-theoretic prop-
erties. Their numerical results limited to small-scale ex-
periments show several potential applications such as spec-
tral clustering and graph isomorphism classification. While
more recently, it has been successfully applied to graphs with
node features in [Zheng et al., 2021; Ai et al., 2022]. How-
ever, their methods suffer the computational cost as a re-
sult of quantum tomography, resulting in the massive re-
source overhead. [Mernyei et al., 2021] constructs an equiv-
alent quantum graph circuit (EQGC) whose topology pre-
serves permutation invariance of the input graph. But the
number of the qubits scales linearly with the number of nodes,
and the prediction accuracy closely depends on the fidelity



Category Method Attribute Embedding Input Layer Readout Application

QK-based

QJSK [Bai et al., 2015] % ! C Q & C Tomography Graph Classification

GBSK [Schuld et al., 2020] % ! C Q & C Estimation Graph Classification

SFGK [Kishi et al., 2021] % ! C Q & C Swap Test Graph Classification

QEK [Henry et al., 2021] % ! C Q & C Tomography Graph Classification

Shallow Circuit

QGNN [Verdon et al., 2019] % ! Q Q Tomography Graph Isomorphism

QGCN [Zheng et al., 2021] ! % Syn. Q & C Estimation Graph Classification

DQGNN [Ai et al., 2022] ! % C Q & C Tomography Graph Classification

EQGC [Mernyei et al., 2021] % ! Syn. Q & C Estimation Graph Classification

QNN [Beer et al., 2021] % ! Q Q Estimation Network Embedding

Hybrid Deep

QWNN [Dernbach et al., 2018] ! ! C Q & C Tomography Node Classification

QSGCNN [Bai et al., 2021] ! ! C Q & C Tomography Graph Classification

QSCNN [Zhang et al., 2019] ! ! C Q & C Tomography Node Classification

QGCNN [Chen et al., 2021] ! % C Q & C Estimation Graph Classification

HQGNN [Tüysüz et al., 2021] % ! C Q & C Estimation Link Prediction

Table 1: Comparison between quantum graph learning methods and their application. Although most of these methods employ the topology
embedding that incorporates structural information into the quantum representation, node attributes are not considered in some research.
The input data is classical (C), quantum (Q) or synthetic (Syn.). For the methods with classical or synthetic inputs, the classical layer is
inevitably introduced to preprocess the graph data or assist the quantum computer to update the model parameters. The readout operation is
the interaction transforming the quantum information into the classical expression, where the tomography may require an exponentially large
number of measurements, whereas a small amount of measurements is necessary for estimation of the probability outcomes and swap test.

of the measurements. An alternative approach devised by
[Beer et al., 2021] uses qubits as neurons to characterize the
graph as quantum states. They design a quantum neural net-
work (QNN) trained on a well-designed loss evaluated by the
fidelity of quantum representations of connected nodes.

4.3 Hybrid Deep Graph Learning

While GNNs represent state-of-the-art classical machine
learning for a range of benchmark tasks on graphs, there
is no clear proof of quantum advantages for tasks on clas-
sical graph-related datasets in extant quantum neural net-
works. Therefore, some experts pin their hopes on develop-
ing approaches that combine the expressiveness of the clas-
sical learning methods with the power of quantum modules
to improve the performance of existing models. A hierar-
chical neural network based on QRWs (QWNN) is devel-
oped by [Dernbach et al., 2018] with a series of coins. The
different setting of coins allows the quantum walks to be-
have differently in terms of extracting various properties of
graphs. A classical diffusion process is employed to inter-
sperse the information along with the composite form of po-
sition distribution generated by different quantum walks. An-
other quantum information propagation approach presented
by [Bai et al., 2021] captures the multi-scale node features
by employing the mixing matrix of CT-QRWs instead of
directly using the adjacency matrix. QRWs are employed
to select the more relevant neighbors of the center node to
achieve a more efficient information diffusion process in the
quantum subgraph convolutional neural network (QSCNN)
[Zhang et al., 2019]. [Chen et al., 2021] develops a compos-
ite model (QGCNN) to perform convolutional and pooling
operations on graphs in which the parameterized quantum cir-
cuit tailed by the fully connected neural network is used to ap-
proximate the learning function. A hybrid GNN (HQGNN) is
applied for particle track reconstruction [Tüysüz et al., 2021],
consisting of variational circuits to improve expressiveness.

5 Challenges and Outlook
Though quantum graph computing and quantum graph learn-
ing have proven their potential in various learning tasks, chal-
lenges still exist due to the restricted scale of current quantum
computational devices, instability of quantum states and com-
plexity of yielding numerical results by measurement. We
outlook three directions for the future researches.

Encoding Reliability It is necessary to develop an ef-
fective approach to encode the graph into quantum repre-
sentation while preserving the structural information and
node’s and edge’s features. Besides, the success of (deep)
neural networks relies on the nonlinear activation functions
to enhance the expression ability, whereas the evolution
of the quantum physics is linearly unitary transformation
[Schuld and Petruccione, 2018]. Therefore, it is also impor-
tant to consider more nonlinear effects while embedding clas-
sical data.

Data-driven and Adaptivity The goal of developing clas-
sical learning methods is to be independent of experts and
easy to be migrated to other tasks, and the same is true for
quantum machine learning. However, most existing quan-
tum computing methods are theory-oriented and knowledge-
driven. A recent study [Huang et al., 2021] demonstrates the
potential of enhancing quantum algorithms using the power
of data. The further study of data-driven quantum graph algo-
rithms will be possible to provide a more valuable reference
for solving graph theoretical and graph learning problems.

Computational Efficiency The cost landscapes of train-
ing quantum algorithms are generally non-convex, making
it difficult to establish general guarantees about the compu-
tational expense of the optimizations [Cerezo et al., 2020].
The process of embedding structural information into quan-
tum expression will inevitably introduce additional ancilla
qubits [Zheng et al., 2021] and entanglement between qubits
[Verdon et al., 2019], which further makes quantum circuits
more difficult to model. These problems may be avoided by
ingenious circuit design and efficient gradient calculation.
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borne. Quantum machine learning of graph-structured data.
arXiv:2103.10837, 2021.

[Belkin and Niyogi, 2001] M. Belkin and P. Niyogi. Laplacian
eigenmaps and spectral techniques for embedding and clustering.
In NeurIPS, 2001.

[Biamonte et al., 2017] J. Biamonte, P. Wittek, N. Pancotti,
P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine learn-
ing. Nature, 2017.

[Brady et al., 2021] L. T. Brady, C. L. Baldwin, A. Bapat,
Y. Kharkov, and A. V. Gorshkov. Optimal protocols in quan-
tum annealing and quantum approximate optimization algorithm
problems. Physical Review Letters, 2021.

[Calude et al., 2017] C. S. Calude, M. J. Dinneen, and R. Hua.
Qubo formulations for the graph isomorphism problem and re-
lated problems. Theoretical Computer Science, 2017.

[Cerezo et al., 2020] M. Cerezo, A. Poremba, L. Cincio, and P. J.
Coles. Variational quantum fidelity estimation. Quantum, 2020.
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[Tüysüz et al., 2021] C. Tüysüz, C. Rieger, K. Novotny,
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