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ON THE MINIMUM OF A POSITIVE DEFINITE QUADRATIC FORM

OVER NON–ZERO LATTICE POINTS. THEORY AND APPLICATIONS.

FAUSTIN ADICEAM AND EVGENIY ZORIN

Abstract. Let Σ``
d be the set of positive definite matrices with determinant 1 in dimension

d ě 2. Identifying any two SLdpZq–congruent elements in Σ``
d gives rise to the space

of reduced quadratic forms of determinant one, which in turn can be identified with the
locally symmetric space Xd :“ SLdpZqzSLdpRq{SOdpRq. Equip the latter space with its
natural probability measure coming from a Haar measure on SLdpRq. In 1998, Kleinbock
and Margulis [11] established sharp estimates for the probability that an element of Xd takes
a value less than a given real number δ ą 0 over the non–zero lattice points Zdzt0u.

In this article, these estimates are extended to a large class of probability measures arising
either from the spectral or the Cholesky decomposition of an element of Σ``

d . The sharpness
of the bounds thus obtained are also established (up to multiplicative constants) for a subclass
of these measures.

Although of an independent interest, this theory is partly developed here with a view
towards application to Information Theory. More precisely, after providing a concise intro-
duction to this topic fitted to our needs, we lay the theoretical foundations of the study of
some manifolds frequently appearing in the theory of Signal Processing. This is then applied
to the recently introduced Integer–Forcing Receiver Architecture channel whose importance
stems from its expected high performance. Here, we give sharp estimates for the probabilistic
distribution of the so–called Effective Signal–to–Noise Ratio, which is an essential quantity
in the evaluation of the performance of this model.

In honorem Henriettae Dickinsonis.
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1. Introduction

Fix once and for all an integer d ě 2. Let Q be a non–degenerate symmetric matrix
in dimension d. Throughout, the matrix Q will be identified with the corresponding
quadratic form x P R

d ÞÑ t
x ¨ Q ¨ x.

If Q is indefinite, the Oppenheim conjecture solved by Margulis states that the set
of values taken by this quadratic form at non–zero integral points, viz.

 
t
a ¨ Q ¨ a : a P Z

dzt0u
(
,

is dense in the real line whenever d ě 3. When d “ 2 however (i.e. for indefinite binary
quadratic forms), this set may exhibit very different structures : it may be dense or else
closed and discrete, but it may also be not closed and/or not dense. For further details
on the theory of values taken by an indefinite quadratic form, the reader is referred
to [6, 7] and to the references therein.

In the case that Q is definite, say positive definite without loss of generality, it is
easy to see that the quantity

MdpQq :“ min
aPZdzt0u

t
a ¨ Q ¨ a (1)



POSITIVE DEFINITE QUADRATIC FORM & LATTICE POINTS 3

is well–defined. It is a result due to Hermite (see [2, p.43] for a proof) that one has
always

MdpQq ď
ˆ
4

3

˙pd´1q{2
|Q|1{d

, (2)

where |Q| denotes the determinant of Q. It is known that the constant p4{3qpd´1q{2 on
the right–hand side of (2) is optimal only when d “ 2. Denoting by S``

d the set of
positive definite matrices in dimension d ě 2, this leads one to the definition of the
Hermite constant γd :

γd :“
supQPS``

d
MdpQq

|Q|1{d ¨

The supremum in this definition can actually be replaced with a maximum. Only the
values of γd for d “ 2, 3, 4, 5, 6, 7, 8 and d “ 24 are exactly known. For other d’s, several
estimates have been established. See, e.g., [5] for proofs and further details on the
Hermite constants. See also [4] for an algorithm to approximate MdpQq for a given
Q P S``

d .

. It should be noted that the study of the quantity MdpQq for a generic Q P S``
d

underpins the more general problem of determining the minimum of such a quadratic
form over non–zero elements of any full rank lattice Λ. Indeed, as such a lattice can
be written in the form Λ “ L ¨ Zd for some L P GLdpRq, the minimum of Q over the
elements of Λzt0u is given by Md ptLQLq. Also, if L1 P GLdpRq is another matrix such
that Λ “ L1 ¨ Zd, then there exists Z P SLdpZq such that L1 “ LZ. This implies in
particular that MdpQq “ Md ptZQZq for any Q P S``

d and any Z P SLdpZq , i.e. that
the quantity MdpQq is invariant under SLdpZq–congruent matrices.

. The problem of estimating MdpQq is here considered from a probabilistic point of
view. Given an estimate such as (2), even if it means renormalising in an obvious way
the matrices under consideration, it is natural to focus on the case of positive definite
matrices with determinant one. Let therefore

Σ``
d :“

 
Σ P S``

d : detpΣq “ 1
(

denote such a set. In full generality, the main problem addressed in this work can
loosely be summarised this way :

Problem 1 (Main Problem). For a given probability measure µ on the set Σ``
d , esti-

mate the probability µ pMdpΣq ď δq as a function of δ ą 0.

In order to take into account the SLdpZq–invariance of the problem, identify any two
SLdpZq–congruent matrices in Σ``

d . This defines the space of reduced quadratic forms
with determinant one, which is henceforth denoted by Σ``

d,red. It is easy to see that the
map

φ : g P Xd ÞÑ g ¨ t
g P Σ``

d,red (3)

is well–defined and bijective, where Xd denotes the locally symmetric space

Xd :“ SLdpZqzSLdpRq{SOdpRq
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and where g :“ SLdpZq ¨ g ¨ SOdpRq is the equivalence class in Xd of any g P SLdpRq
(the surjectivity of the map φ follows for instance from the Cholesky decomposition of
an element of Σ``

d ). From now on, let

Γ :“ SLdpZq, G :“ SLdpRq and H :“ SOdpRq
(which are all unimodular groups) in such a way that Xd :“ ΓzG{H.

The set Xd seen as a double coset space can be equipped with a natural G–invariant
probability measure µXd

arising from the G–invariant probability measure µΓzG on
the space of lattices ΓzG. If one denotes by µH the Haar probability measure on H ,
the invariant measure µXd

is characterised by the fact that for any Borel measurable
function f P L

1pµΓzGq, the following equation holds :
ż

Xd

ˆż

H

fpghq ¨ dµHphq
˙

¨ dµXd
pgHq “

ż

ΓzG
fpgq ¨ dµΓzGpgq

(see [13] for proofs and details). The probability measure µΓzG is itself obtained from
any suitably normalised Haar measure µG on G. One can furthermore explicitly express
the volume element dµGpMq in terms of the Iwasawa decomposition ofM P G— see [17,
§2] for details.

With the help of the bijective map (3), the measure µXd
can be pushed forward to

a probability measure φ˚µXd
on the space Σ``

d,red. In view of Problem 1, one is then
concerned with the estimate of the probability

pXd
pδq “ pφ˚µXd

q
` 
Σ P Σ``

d,red : MdpΣq ď δ
(˘

“ µXd
ptg P Xd : Mdpφpgqq ď δuq

for any fixed δ ą 0 which may be assumed to be less than the Hermite constant γd for
obvious reasons (note that the above equations are direct consequences of the change of
variables formula for pushforward measures). This problem was emphatically solved by
Kleinbock–Margulis who proved in [11, §7] the following result (see also [12, Theorem
1.3.5]). Before stating it, and in view of the statement of our own results, let from now

Vd “ πd{2

Γ
`
d
2

` 1
˘ and Ad “ 2πd{2

Γ
`
d
2

˘ (4)

denote respectively the volume and the area of the unit Euclidean ball in dimension
d ě 2 (here, Γp . q denotes the usual Euler Gamma function).

Theorem 1 (Kleinbock & Margulis, 1998). The following inequalities hold for any
δ ą 0 :

Vd

2ζpdqδ
d{2 ´ cd

V 2
d

4
δd ď pXd

pδq ď Vd

2ζpdqδ
d{2¨ (5)

Here, ζ denotes the Riemann zeta function and cd a strictly positive constant which,
when d ě 3, can be taken to be

cd “ 1

ζpdq ¨ ζpd ´ 1q¨
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The implicit presence of the square root of δ on both sides of (5) is due to this easily
verified equivalence valid for any g P G :

pMdpφpgqq ď δq ðñ
´
g ¨ Zd X B2p0,

?
δq ‰ t0u

¯
,

where, given x P R
d and r ą 0, B2px, rq is the closed Euclidean ball with radius r

centered at x.

Theorem 1 suggests that, as δ ą 0 tends to zero, one should expect the probability of
the event MdpΣq ď δ to grow like δd{2 when the space Σ``

d is equipped with a “typical”
probability measure defined from the invariant measure µXd

. For the applications we
have in mind however (see §4), the choice of any such measure is neither natural nor
convenient. The primary theoretical goal of this work is thus to establish estimates
in the likes of (5) for a larger class of probability measures on the space Σ``

d . These
probability measures will be defined from the spectral (§2) and then the Cholesky
decomposition (§3) of an element of Σ``

d .

Note that, although the problem of estimating the probability of the event MdpΣq ď
δ is well–defined in the space Σ``

d,red of reduced quadratic forms, there is no loss of

information in working instead in the space Σ``
d . Indeed, any probability measure

on Σ``
d defines a probability measure on Σ``

d,red after periodisation modulo SLdpZq–
congruent matrices. Conversely, any probability measure on Σ``

d,red defines a probability

measure on Σ``
d supported on a fundamental domain of Σ``

d,red in Σ``
d .

Before stating the main results, we mention that the latter may also be used to tackle
the following less natural but nevertheless still relevant variant of the main problem
stated above (namely, when the probability space is S``

d instead of Σ``
d ) :

Problem 2 (Variant of the Main Problem). For a given probability measure µ1 on the
set S``

d , estimate the probability µ1 pMdpQq ď δq as a function of δ ą 0.

The changes to make to the results dealing with Problem 1 in order to obtain their
analogues for Problem 2 are straightforward when considering the approach via the
spectral decomposition (§2). They will therefore not be explicitly stated. When con-
sidering the approach via the Cholesky decomposition however (§3), these changes will
induce some technical difficulties and will therefore be explicitly stated.

Throughout, in order not interrupt the thread of the exposition, the lengthy proofs
are postponed until the end of each section. They may be skipped at a first reading.

2. An Approach via the Spectral Decomposition.

Denote by D``
d the set of diagonal matrices in dimension d with strictly positive

entries. Let ∆``
d be the subgroup of D``

d consisting of all those matrices with deter-
minant one :

∆``
d :“ D``

d X SLdpRq.
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Throughout, D``
d (resp. ∆``

d ) will be identified with pRą0qd (resp. with pRą0qd´1 —
in this case, one only considers the d ´ 1 first diagonal entries of an element of ∆``

d

to define the identification). It will sometimes be more convenient to see an element of
∆``

d as an element of D``
d , in which case it will also be represented as a d–tuple. This

should not cause any confusion.

Let

Od :“ OdpRq
denote the orthogonal group in dimension d. We first seek to equip the set Σ``

d with a
special class of probability measures defined from the spectral decomposition of an ele-
ment therein. This class will play an important role in the forthcoming considerations :
in short, Problem 1 will be addressed for probability measures lying in this class.

2.1. Definition of a Suitable Class of Measures. Let Σ P Σ``
d be decomposed as

Σ “ t
P∆P with P P Od and ∆ P ∆``

d . Given x P R
d, one has clearly t

x ¨Σ ¨x “ t
y ¨y

with y “
?
∆Px. This shows that the following equivalence holds for any δ ą 0 :

pMdpΣq ď δq ðñ
´
P ¨ Zd X ∆´1{2 ¨ B2p0,

?
δq ‰ t0u

¯
. (6)

This motivates the introduction of the surjective map

Ψ : pP,∆q P Od ˆ ∆``
d ÞÑ t

P∆´2P P Σ``
d (7)

which we now use to push forward to Σ``
d a given measure defined on Od ˆ ∆``

d (the
exponent “-2” is just meant to simplify the formulae hereafter). It is important to
keep in mind for what follows that the orthogonal matrix P appearing in the Spectral
Decomposition of Σ as above is well–defined in the quotient Od{Id, where Id is the
subgroup of Od consisting of all those diagonal matrices with entries ˘1. The equiva-
lence (6) then still holds when P is seen as an element of Od{Id in view of the fact that
P ¨ I ¨ Zd “ P ¨ Zd for any I P Id.

Let µd be the Haar probability measure on the compact group Od. Given P P Od, the
volume element dµdpP q is explicitly described for instance in [20] in terms of dpd´1q{2
independent coordinates on Od. Let furthermore νd be a probability measure on ∆``

d .
Define then a measure on the product space Od ˆ ∆``

d by setting

τd :“ µd b νd. (8)

This can be pushed forward to a probability measure Ψ˚τd on Σ``
d . Of course, the

relevance of such a measure strongly relies on the properties of the map Ψ and of the
measure τd. In this respect, the following lemma establishes a crucial property satisfied
by Ψ :

Lemma 1. Let ∆``
d,sub be the subset of ∆``

d consisting of all those elements in ∆``
d

whose entries are pairewise distinct :

∆``
d,sub :“

 
∆ “ pα1, ¨ ¨ ¨ , αdq P ∆``

d : @i ‰ j, αi ‰ αj

(
.

Then, the restriction of the map Ψ to the set Od ˆ ∆``
d,sub is 2

d to 1.
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More precisely, Ψ induces a bijection

Ψ1 : pOd{Idq ˆ ∆``
d,sub ÞÑ Ψ

`
Od ˆ ∆``

d,sub

˘
Ă Σ``

d . (9)

Note that Ψ
`
Od ˆ ∆``

d,sub

˘
sits as a dense open set in Σ``

d .

Proof. Let Q P Σ``
d with spectral decomposition Q “ t

P∆´2P for some P P Od and
some ∆ P ∆``

d,sub. The rows of the matrix P are then (normed) eigenvectors of Q.
Since eigenvectors associated to distinct eigenvalues are orthogonal, these rows are
determined up to their sign. The lemma follows. �

Let ρd be the Haar probability measure on Od{Id, which satisfies the property that
for any function f P L

1pµdq defined over Od,

ż

Od

fpP q ¨ dµdpP q “ 1

2d
¨
ż

Od{Id

˜ÿ

IPId
fpPIq

¸
¨ dρdpPIdq. (10)

In view of Lemma 1, a dense open subset of Σ``
d can be identified with the product

space pOd{Idqˆ∆``
d,sub via the map Ψ1 defined in (9). We will be interested in probability

measures supported on this dense open set. A natural class of such measures are
obtained by taking the pushforward by Ψ1 of a measure of the form ρd b νd under the
following assumption on νd which will be made throughout :

Assumption 1. The complement of ∆``
d,sub in ∆``

d has zero νd–measure, i.e.

νd
`
∆``

d,sub

˘
“ 1.

Thus, under this assumption, Ψ1 establishes a bijection between a set of full ρd b νd–
measure in pOd{Idq ˆ ∆``

d and its image in Σ``
d .

Note also that under Assumption 1, the two pushforward measures Ψ1
˚pρd b νdq and

Ψ˚τd (with τd defined in (8)) are exactly the same on Σ``
d . Indeed, if Σ P Σ``

d lies in
the image of the restriction of the map Ψ to Od ˆ ∆``

d,sub, Lemma 1 implies that the

preimage Ψ´1 ptΣuq of Σ by Ψ is of the form Ψ´1 ptΣuq “ tpPI,∆q : I P Idu for some
P P Od and ∆ P ∆``

d . Since the orthogonal matrix P appearing in the the equivalence
stated in (6) can be seen as an element of Od{Id, it follows from the definition of Ψ
in (7) that either all or none of the 2d elements pP,∆q in this preimage satisfy/ies the
relation

P ¨ Zd X ∆ ¨ B2p0,
?
δq ‰ t0u . (11)

Together with (10), this establishes the claim.

Assumption 1 imposes a rather mild restriction on the measure νd, which is even
allowed to be fractal. A natural class of measures satisfying this assumption is given
by those probability measures which are absolutely continuous with respect to a Haar
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measure ξ on ∆``
d . Recall that, up to a multiplication constant, the volume element

dξp∆q of any such invariant measure is given by

dξp∆q “
d´1ź

i“1

dα1
i

α1
i

, (12)

where ∆ “ pα1
1, . . . , α

1
d´1q P ∆``

d .

2.2. Estimation of the Probability that a Non–Zero Integer Vector should

lie in a Random Ellipsoid Centered at the Origin. We adopt here a geometric
approach in order to address Problem 1 within the framework developed thus far. Part
of the ideas behind this approach have been applied in [17] to problems in mathematical
physics. However, unlike here, the focus in the latter work was rather on the probability
that a large convex set should contain a non–zero lattice point. Furthermore, the
multiplicative constants appearing in the formulae proved in [17] are not explicit while
it will be one of our objectives to obtain fully explicit estimates.

From the change of variables formula for pushforward measures and in view of (6),
(7) and (11), the objective boils down to estimating, for a given δ ą 0, the quantity

pΨ˚τdq
` 
Σ P Σ``

d : MdpΣq ď δ
(˘

“ τd pFdpδqq ,
where

Fdpδq :“
!

pP,∆q P Od ˆ ∆``
d : P ¨ Zd X ∆ ¨ B2p0,

?
δq ‰ t0u

)
.

To avoid cumbersome notation, the set Fdpδq will from now on be denoted by Fpδq
whenever there is no risk of confusion.

In order to state the results regarding the estimate of the probability τd pFpδqq, a
good deal of notation is first introduced.

Throughout, a vector in R
d will be seen as the datum of a d–tuple represented

in column (that is, we consider the right action of d–dimensional matrices on R
d).

Whenever this does not induce any ambiguity, such a vector shall indifferently be
written in row for convenience. Given a vector α :“ pα1, . . . , αdq P pRą0qd, Ed pαq will
denote the full ellipsoid

Ed pαq :“
#
x P R

d :
dÿ

i“1

ˆ
xi

αi

˙2

ď 1

+
(13)

(α1, . . . , αd are thus the lengths of the semi–principal axes of this ellipsoid). If there is
no risk of confusion, one shall also write more simply Epαq for Ed pαq.

Let S
d´1 denote the unit sphere in dimension d. Let also σd´1 be the spherical

probability measure on S
d´1. This measure is given by a volume element denoted by

dv which is such that for any σd´1–measurable surface A Ă S
d´1,

σd´1 pAq :“ 1

Ad

ż

A

dv
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(we have chosen not to include the factor Ad in the volume element as otherwise any
use of our results will unavoidably involve the computation of constants involving this
factor). If A is any subset of Rd such that its intersection AXS

d´1 with the unit sphere
is σd´1–measurable, set

rσd´1 pAq :“ σd´1

`
A X S

d´1
˘
.

Given a vector v P S
d´1, vK shall denote the hyperplane in R

d passing through the
origin with unit normal vector v. Also, the notation } . }2 and } . }8 shall refer to the
usual Euclidean and sup norms in R

d. The set of points in Z
d visible from the origin

shall be denoted by PpZdq :

PpZdq :“
 
a P Z

d : gcdpaq “ 1
(
.

Finally, given a closed convex set C Ă R
d centered at the origin, define

pdpCq :“ µd

` 
P P Od : P ¨ Zd X C ‰ t0u

(˘
.

Note that in the case d “ 1, O1 “ t˘1u, the convex body C is an interval J and

p1pJ q “
"

1 if λ pJ q ě 2
0 if λ pJ q ă 2,

(14)

where λ pJ q denotes the length of J .

The main result in this section can now be stated as follows.

Theorem 2. Let δ ą 0. Then,

τd pFpδqq “
ż

∆``
d

pd

´
Ep

?
δ∆q

¯
¨ dνdp∆q. (15)

Furthermore, the quantity pd
`
Ep

?
δ∆q

˘
satisfies the estimates

gdp∆, δq ď pd

´
Ep

?
δ∆q

¯
ď fdp∆, δq, (16)

where

gdp∆, δq :“ max

"
rσd´1

´
Edp

?
δ∆q

¯
,

ż

Sd´1

pd´1

´
Edp

?
δ∆q X vK

¯
¨ dv
Ad

*

and

fdp∆, δq :“ min

$
’’&
’’%
1,

ÿ

nPPpZdq
}n}2 ď

?
δ}∆}8

rσd´1

˜
Ed

˜ ?
δ

}n}2
∆

¸¸
,
//.
//-

.

Here, the base case for the recursive formula induced by the integral in gdp∆, δq is given
by (14) and the sum in fdp∆, δq is to be seen as equal to zero when

?
δ }∆}8 ă 1.

In view of such a statement, we now seek to determine, one the one hand the inter-
section of an ellipsoid with a hyperplane and on the other the spherical measure of the
intersection of a (full) ellipsoid with the unit sphere. The former question is addressed
in this proposition :
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Proposition 1. Let α “ pα1, . . . , αdq P pRą0qd and v “ pv1, . . . , vdq P S
d´1. Assume

that vd ‰ 0.

Then, the intersection Ed pαq X vK of the d–dimensional ellipsoid Ed pαq with the
hyperplane vK is a pd ´ 1q–dimensional ellipsoid Ed´1 pα, vq. Furthermore, one has

Ed´1 pα, vq “
 
y P R

d´1 : t
y ¨ Q ¨ y ď 1

(
, (17)

where
Q :“ D pId´1 ` u ¨ t

uqD P S``
d (18)

with Id´1 the identity matrix in dimension d ´ 1,

D :“
`
α´1
1 , ¨ ¨ ¨ , α´1

d

˘
P D``

d and t
u :“

ˆ
αivi

αdvd

˙

1ďiďd´1

P R
d´1.

Also, if the lengths of the semi–principal axes of Ed pαq are ordered increasingly in
the sense that α1 ď ¨ ¨ ¨ ď αd, then the lengths β1, . . . , βd´1 of the semi–principal axes
of Ed´1 pα, vq ordered increasingly satisfy the inequalities

α1 ď β1 ď α2 ď . . . ď αd´1 ď βd´1 ď αd.

Note that, even if it means relabelling the axes, there is no loss of generality in
assuming that the lengths of the semi–principal axes of Ed pαq are ordered increasingly.
Also, the condition vd ‰ 0 is not restrictive at all as formula (17) holdsmutatis mutandis
with any other non–zero coordinate vj in place of vd — see the proof in §2.4 for details.

We now turn to the estimate of the spherical measure of the intersection of the
ellipsoid Ed pαq with the unit sphere (where α “ pα1, . . . , αdq P pRą0qd). To this end,
it may be assumed, without loss of generality in view of Assumption 1, that

0 ă α1 ă α2 ă . . . ă αd´1 ă αd. (19)

Whenever αd ą 1, define then

α
r

:“
`
α
r1, . . . , αrd´1

˘
P D``

d´1, (20)

where for i “ 1, . . . , d ´ 1,

α
ri :“

d
α2
i ¨ α2

d ´ 1

α2
d ´ α2

i

.

The following statement provides an inductive formula for rσd´1 pEd pαqq. The quan-
tity

Wk “
ż π{2

0

sink θ ¨ dθ “
?
π

2
¨ Γ

`
k`1
2

˘

Γ
`
k`2
2

˘ (21)

appearing therein denotes the Wallis integral of order k ě 0.

Proposition 2. Assuming (19), one has

rσd´1 pEd pαqq “
"

1 if α1 ě 1
0 if αd ď 1.

(22)
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Moreover, if α1 ă 1 ă αd, then

rσd´1 pEd pαqq “ 1

2Wd´2
¨
ż π

0

rσd´2

´
Ed´1

´ α
r

sin θ

¯¯
¨ psin θqd´2 ¨ dθ (23)

with base case

rσ0 pE1 pαqq “
"

1 if α ě 1
0 if α ă 1

for any α ą 0.

Although providing an exact theoretical formula, equation (23) may lead to lengthy
calculations for a given ellipsoid. In order to overcome this difficulty, the next proposi-
tion provides rather accurate estimates for the quantity rσd´1 pEd pαqq when α1 ă 1 ă αd.
Before stating it, we introduce some additional notation : given x ě 0, let

bpxq :“ arccos pmin t1, xuq “
"

arccospxq P r0, π{2s if x P r0, 1s,
0 if x ě 1.

Under (19), define

Idpαq :“ 2d

Ad

¨
dź

i“2

ż π{2

bpαd´i`1q
sini´2 θ ¨ dθ whenever αd ě 1. (24)

We leave this quantity undefined when αd ă 1. For i “ 1, . . . , d ´ 1, assuming αd ě 1,
set furthermore

α
r

˚
i :“ min

 
1, α
ri

(
“

"
αri if αi ď 1,
1 if αi ě 1

and let α
r

˚ “
`
α
r

˚
1 , . . . , αr

˚
d´1

˘
.

Proposition 3. Assume that (19) holds and that α1 ă 1 ă αd. Then, with the notation
above, one has

Id

ˆ
α
r

˚
?
d ´ 1

, 1

˙
ď rσd´1 pEd pαqq ď Id

`
α
r

˚, 1
˘
.

The following cruder but easier–to–estimate inequalities also hold :

Id

ˆ
α?
d

˙
ď rσd´1 pEd pαqq ď Id pαq ,

where the lower bound is defined whenever αd ě
?
d.

Here, given a generic vector α P pRą0qd satisfying (19) and αd ě 1, the quantity
Idpαq can be estimated as follows :

apdq ¨
d´1ź

j“1

min tαj , 1u ď Id pαq ď a1pdq ¨
d´1ź

j“1

min tαj , 1u

with

apdq “ 2d

pd ´ 1q! ¨ Ad

¨
´π
2

¯pd´2qpd´3q{2
and a1pdq “ 2d

Ad

¨
´π
2

¯dpd´1q{2
.
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With the help of Propositions 1, 2 and 3, one may now answer the question as to
whether Theorem 2 leads to sharp estimates for the probability τd pFpδqq as expressed
in (15). To this end, one must focus on a relevant subclass of probability measures
νd. A natural choice is to restrict the attention to compactly supported measures.
Indeed, such measures can approximate a large class of measures and appear naturally
in practical problems (see §4). Assume therefore without loss of generality that νd seen
as a measure on pRą0qd´1 is absolutely continuous with respect to the Haar measure (12)

with density supported on the hypercube rǫ, ǫ´1sd´1. Denote by χ
pdq
ǫ : Rd´1 Ñ R the

characteristic function of the latter set.

To simplify the calculations, we will further require that the density of νd with respect
to the Haar measure ξ is uniform, i.e. that ξ–almost everywhere, the density dνd{dξ
is proportional to χ

pdq
ǫ . In view of (12), given α1 “ pα1

1, . . . , α
1
d´1q P ∆``

d , one has
explicitly

dν
pǫq
d pα1q “ 1

|2 log ǫ|d´1
¨ χpdq

ǫ pα1q ¨
d´1ź

i“1

dα1
i

α1
i

, (25)

where ν
pǫq
d “ νd. Inasmuch as one is working up to multiplicative constants, one can

reduce to this case any measure whose density with respect to ν
pǫq
d is almost everywhere

bounded above on the hypercube Kεpdq “ rǫ, ǫ´1sd´1 and almost everywhere bounded
below by a strictly positive constant on a sub–hypercube of Kεpdq.

The next proposition shows that, for any given ǫ ą 0, the estimates of the probability

τ
pǫq
d pFpδqq :“ τd pFpδqq obtained from Theorem 2 are essentially sharp in δ.

Theorem 3. Fix ǫ ą 0 and assume that δ P p0, 1q. Let τ
pǫq
d be the probability measure

defined as in (8) from the measure ν
pǫq
d given by (25).

Then,

τ
pǫq
d pFpδqq “ 0 if δ ď ǫ2pd´1q. (26)

Moreover, if δ ą ǫ2pd´1q, then

cdpǫq ¨ sd pǫ, δq ď τ
pǫq
d pFpδqq ď Cdpǫq ¨ Sd pǫ, δq (27)

for some constants cdpǫq, Cdpǫq ą 0. Here,

sd pǫ, δq :“
ż

Jdpǫ,δq

d´1ź

i“1

min

"?
δ,

1

αi

*
¨ dαi

and

Sd pǫ, δq :“ δd{2 ¨
ż

Jdpǫ,δq

d´1ź

i“1

dαi

αi

,

where the domain of integration Jdpǫ, δq is defined by the set of inequalities

ǫ ď α1 ă ¨ ¨ ¨ ă αd´1 ď ǫ´1 and max
 
δ´1{2, αd´1

(
ă pα1 . . . αd´1q´1

.
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These quantities sd pǫ, δq and Sd pǫ, δq satisfy the estimates

sd pǫ, δq ě min
!?

δ, ǫ
)d´1

¨ |2 log ǫ|d´2

pd ´ 2q! ¨
´
min

!?
δ, ǫ

)
´ ǫd´1

¯
. (28)

and

Sd pǫ, δq ď δd{2 ¨ log
˜ ?

δ

ǫd´1

¸
¨ |2 log ǫ|d´2

pd ´ 2q! ¨ (29)

One can furthermore choose

cdpǫq “ apdq ¨ pd ´ 1q!
pd ¨ |2 log ǫ|qd´1

and

Cdpǫq “ 3d´1 ¨ a1pdq ¨ d! ¨ d
|2 ¨ log ǫ|d´1

,

where apdq and a1pdq are defined in Proposition 3.

Theorem 3 implies for instance the existence of two positive constants κpdq and Kpdq
depending only on the dimension d such that for any δ lying in the interval

“
ǫ2pd´1q, ǫ2

‰
,

κpdq ¨ δd{2

|log ǫ| ¨
ˆ
1 ´ ǫd´1

?
δ

˙
ď τ

pǫq
d pFpδqq ď Kpdq ¨ δd{2

|log ǫ| ¨
˜ ?

δ

ǫd´1
´ 1

¸

(the upper bound is a direct consequence of the convexity inequality logp1 ` xq ď x

valid for all x ě 0). We thus recover in this case also the growth in δd{2 appearing in
Theorem 1.

The remainder of this section is devoted to the proofs of the various results stated
above.

2.3. Proof of Theorem 2. Note that equation (15) follows immediately from Fubini’s
Theorem applied to the probability measure τd. The upper and lower bounds in (16)
will now be established separately. To this end, we first make the following crucial
remark : if A Ă S

d´1 is a σd´1–measurable set and x0 P S
d´1, then

σd´1 pAq “ µd ptG P Od : Gx0 P Auq . (30)

Indeed, each of the measures involved in this equation is clearly Borelian and uniformly
distributed on the unit sphere (in the sense that the measure of a ball on the sphere
depends only on the radius of the ball but not on the position of its centre). Now,
a result of Christensen [3] states that two Borelian measures uniformly distributed in
a separable metric space must be proportional. As the measures under consideration
have been normalised to become probability measures, they must be equal — see [14,
Chap. 3] for details.
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Proof of the upper bound in (16). Let δ ą 0 and ∆ P ∆``
d . The symmetry with respect

of the origin and the convexity of the ellipsoid Ed
`?

δ∆
˘
imply that

!
P P Od : P ¨ Zd X Ed

´?
δ∆

¯
‰ t0u

)

“
!
P P Od : P ¨ P

`
Z
d
˘

X Ed

´?
δ∆

¯
‰ H

)
.

Given an event E, let χE denote the Boolean function

χrEs “
"

1 if E holds
0 if E does not holds.

Then, denoting by #S the cardinality of a finite set S, one has

pd

´
Ep

?
δ∆q

¯
“

ż

Od

dµdpP q ¨ χrP ¨PpZdq X Edp?
δ∆q ‰ Hs (31)

ď
ż

Od

dµdpP q ¨ #
´
P ¨ P

`
Z
d
˘

X Ed

´?
δ∆

¯¯

“
ż

Od

dµdpP q ¨

¨
˝ ÿ

nPPpZdq
χrPn P Edp?

δ∆qs

˛
‚.

Now, given P P Od and n P PpZdq, it should be clear that

Pn P Ed

´?
δ∆

¯
ðñ P

n

}n}2
P Ed

˜ ?
δ

}n}2
¨ ∆

¸
X S

d´1.

For either of these statements to be true, it is furthermore necessary that

}n}2 ď
?
δ ¨ }∆}8 .

Therefore,

pd

´
Ep

?
δ∆q

¯
ď

ÿ

nPPpZdq
}n}2 ď

?
δ}∆}8

µd

˜#
P P Od : P

n

}n}2
P Ed

˜ ?
δ

}n}2
¨ ∆

¸
X S

d´1

+¸

“
(30)

ÿ

nPPpZdq
}n}2 ď

?
δ}∆}8

rσd´1

˜
Ed

˜ ?
δ

}n}2
¨ ∆

¸¸
,

hence the claim. �

Proof of the lower bound in (16). Let e1 “ tp1, 0, . . . , 0q P R
d be the first element of the

standard vector basis in R
d. It then follows from (31) that

pd

´
Ep

?
δ∆q

¯
ě µd

´!
P P Od : Pe1 P Ed

´?
δ∆

¯)¯

“
(30)

rσd´1

´
Ed

´?
δ∆

¯¯
,
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which establishes the first of the two inequalities to be proved.

The proof of the second one is more involved. Let ed “ tp0, . . . , 0, 1q P R
d denote the

last element of the standard vector basis in R
d. Letting the group Od act on the sphere

S
d´1, the stabiliser of ed is isomorphic to Od´1 identified with the subgroup

ˆ
Od´1 0

t
0 1

˙
Ă Od.

With this identification, given R, S P Od, the product S´1R lies in Od´1 if, and only if
the last columns of R and S are the same, i.e.

S´1R P Od´1 ðñ Red “ Sed P S
d´1.

This implies the well–known fact that the quotient Od{Od´1 is isomorphic to the sphere
S
d´1. Fix now a measurable function f : Sd´1 Ñ Od such that

@v P S
d´1, fpvq ¨ ed “ v. (32)

Any S P Od can then be written uniquely in the form

S “ fpvq ¨
ˆ
S 1 0
t
0 1

˙
, (33)

where S 1 P Od´1 and v P S
d´1 (in particular, the last column of S is then v).

Furthermore, if R, S P Od are respectively represented by pR1,uq and pS 1, vq in
these coordinates (where R1, S 1 P Od´1 and u, v P S

d´1), then RS is represented by
pT 1S 1, Rvq for some T 1 P Od´1 depending only on R and v. Indeed, this follows from
the uniqueness of the representation (33) together with (32) which implies that the last
column of R ¨ fpvq is Rv. Thus, identifying Od with Od´1 ˆS

d´1, left multiplication on
Od by some R P Od induces a left multiplication on Od´1 by some T 1 P Od´1 (depending
only on R and v) and the orthogonal transformation on S

d´1 induced by the action of
R. This implies (see, e.g., [20] for details) that for any S P Od, the volume element
dµdpSq is given in the coordinates pS 1, vq by

dµdpSq “ dv

Ad

¨ dµd´1pS 1q (34)

(recall that dv{Ad is the volume element of the uniform probability measure on the
unit sphere).

Consider now the immersion

ι : x P R
d´1 ÞÑ tptx, 0q P R

d.

Let P “ pP 1,wq P Od (with P 1 P Od´1 and w P S
d´1). It is then easily seen that

P ¨ Zd “ Zw ` fpwq ¨ ι
`
P 1 ¨ Zd´1

˘
Ą fpwq ¨ ι

`
P 1 ¨ Zd´1

˘
.
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This implies that

pd

´
Ep

?
δ∆q

¯
“
(34)

1

Ad

¨
ż

Sd´1

dw ¨ µd´1

´!
P 1 P Od´1 :

`
Zw ` fpwq ¨ ι

`
P 1 ¨ Zd´1

˘˘
X Ed

´?
δ∆

¯
‰ t0u

)¯

ě 1

Ad

¨
ż

Sd´1

dw ¨ µd´1

´!
P 1 P Od´1 :

`
fpwq ¨ ι

`
P 1 ¨ Zd´1

˘˘
X Ed

´?
δ∆

¯
‰ t0u

)¯

“ 1

Ad

¨
ż

Sd´1

dw ¨ µd´1

´!
P 1 P Od´1 : P 1 ¨ Zd´1 X E

pwq
d

´?
δ∆

¯
‰ t0u

)¯
,

where

E
pwq
d

´?
δ∆

¯
:“ ι´1

´
fpwq´1 ¨ Ed

´?
δ∆

¯¯
.

Since the set Ed
`?

δ∆
˘

X wK is sent to E
pwq
d

`?
δ∆

˘
by the linear isomorphism x P

wK ÞÑ ι´1 pfpwq´1 ¨ xq which preserves µd´1–volumes, one obtains that

pd

´
Ep

?
δ∆q

¯
ě

ż

Sd´1

dv

Ad

¨ pd´1

´
Edp

?
δ∆q X vK

¯
.

This concludes the proof of Theorem 2. �

2.4. Proof of Proposition 1. The proof of Proposition 1 is rather elementary and
will be done in two steps.

We first seek to prove (17). To this end, it will be convenient to use the Kronecker
symbol δij which is equal to 1 if the integers i and j are equal and zero otherwise. Then,
with the notation of Proposition 1, given x “ px1, . . . , xdq P R

d,

x P Ed´1 pα, vq ðñ
˜

dÿ

i“1

ˆ
x1

αi

˙2

ď 1

¸
^
˜
xd “ ´1

vd
¨
d´1ÿ

i“1

xivi

¸

ðñ 1

pvd ¨ αdq2
¨
˜

d´1ÿ

i“1

xivi

¸2

`
d´1ÿ

i“1

ˆ
xi

αi

˙2

ď 1

ðñ
ÿ

1ďi,jďd´1

ˆ
δij

α2
i

` vivj

pvd ¨ αdq2
˙
xixj ď 1

ðñ t
y ¨ Q ¨ y ď 1,

where y “ tpx1, . . . , xd´1q P R
d´1 and where the matrix Q is defined in (18). Since Q is

clearly definite positive, this establishes the first claim in Proposition 1.

To prove the second claim, denote by Rv P SOdpRq a rotation in R
d which maps the

first vector e1 in the standard basis of Rd to v. Let furthermore Qα :“ pα´2
1 , . . . , α´2

d q P
D``

d . Then, the d–dimensional ellipsoid Ed pαq is congruent to the ellipsoid

rE pvq
d pαq :“

 
x P R

d : t
x ¨ ptRvQαRvq ¨ x ď 1

(
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and the pd ´ 1q–dimensional ellipsoid Ed´1 pα, vq becomes congruent to the ellipsoid
rE pvq
d pαq X tx1 “ 0u given by a positive definite matrix Q

pvq
α P S``

d´1. This matrix Q
pvq
α is

obtained by stripping off the matrix t
RvQαRv from its first row and first column. Let

β´2
d´1 ď ¨ ¨ ¨ ď β´2

1 denote the eigenvalues of Q
pvq
α (in other words, β1, . . . , βd´1 are the

lengths of the semi–principal axes of the ellipsoid rE pvq
d pαq X tx1 “ 0u). It then follows

from a direct application of the Cauchy Interlacing Inequalities that

1

α2
d

ď 1

β2
d´1

ď ¨ ¨ ¨ ď 1

β2
1

ď 1

α2
1

,

which completes the proof of Proposition 1.

2.5. Proof of Proposition 2. Before proving Proposition 2, we make a crucial remark
which will be used several times hereafter. Fix α P R

d satisfying (19). Let

Adpαq :“ Edpαq X S
d´1 (35)

and x :“ px1, . . . , xdq P R
d. Then,

x P Adpαq ðñ
˜

dÿ

i“1

ˆ
x1

αi

˙2

ď 1

¸
^
˜

dÿ

i“1

x2
i “ 1

¸

ðñ
˜

d´1ÿ

i“1

x2
i ¨

ˆ
1

α2
i

´ 1

α2
d

˙
ď 1 ´ 1

α2
d

¸
^
˜

dÿ

i“1

x2
i “ 1

¸
.

Given µ P pRą0qd´1, let Cdpµq denote the full cylinder with axis spanned by ed whose
section with the hyperplane txd “ 0u is the pd´1q–dimensional ellipsoid Ed´1pµq. With
the notation of Proposition 2, the above chain of equivalences thus amounts to claiming
that

Adpαq “ Cdpα
r

q X S
d´1. (36)

Proof of Proposition 2. Note first that the relations (22) are trivial. Indeed, under (19),
Adpαq “ S

d´1 if α1 ě 1 and #Adpαq ď 2 if αd ď 1. Assume therefore that α1 ă 1 ă αd.
Parameter a dense open set in S

d´1 as follows :

v “ pu ¨ sin θ, cos θq ,
where u P S

d´2 and θ P p0, πq (θ is thus the angle between u and ed). A stan-
dard calculation shows that, in these coordinates, the volume element dv reads dv “
psin θqd´2 ¨ dθ ¨ du (if d “ 2, du is the counting probability measure on S

0 “ t˘1u).
Therefore,

rσd´1 pEdpαqq “ 1

Ad

ż π

0

dθ ¨ psin θqd´2

ż

Sd´2

χrpu¨sinθ, cos θq PAdpαqs ¨ du.

In view of (35) and (36), the intersection of Adpαq with the hyperplane txd “ cos θu
is obtained as the intersection of the pd ´ 1q–dimensional ellipsoid Ed´1pαr

q with the
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pd ´ 1q–dimensional unit sphere centred at the origin with radius sin θ :

x P Adpαq X txd “ cos θu ðñ
˜

d´1ÿ

i“1

ˆ
x1

α
ri

˙2

ď 1

¸
^
˜

d´1ÿ

i“1

x2
i “ sin2 θ

¸
^ pxd “ cos θq .

This implies that, given u P S
d´2 and θ P p0, πq,

pu ¨ sin θ, cos θq P Adpαq ðñ u P Ed´1

´ α
r

sin θ

¯
.

Thus :

rσd´1 pEdpαqq “ 1

Ad

ż π

0

dθ ¨ psin θqd´2

ż

Sd´2

χ«
u P Ed´1

˜
α

rsin θ

¸ff ¨ du

“ Ad´1

Ad

¨
ż π

0

dθ ¨ psin θqd´2 ¨ rσd´2

ˆ
Ed´1

ˆ α
r

sin θ

˙˙
.

The result then follows from (4) and (21). �

2.6. Proof of Proposition 3. The proof of Proposition 3 rests on the following lemma.
Throughout, we adopt the notation introduced before the statement of Proposition 3
and fix α P R

d satisfying (19) and the inequalities α1 ă 1 ă αd. Let furthermore

Kdpαq :“
dź

i“1

r´αi, αis .

Lemma 2. The following equation holds :

rσd´1 pKdpαqq “ Id pαq .
Furthermore, one has also the estimates

Ld pαq ¨
ˆ
2

π

˙d´2

ď Id pαq ď Ld pαq

with

Ld pαq :“ 2d

pd ´ 1q! ¨ Ad

¨
d´1ź

j“1

ˆ´π
2

¯j

´ b pαd´jqj
˙
.

Proof. Parametrise the unit sphere in spherical coordinates by defining the coordinates
of v :“ vd P S

d´1 by induction in the following way :

vd “ pcos θ1, vd´1 ¨ sin θ1q ,
where vk P S

k´1 for k “ 2, . . . , d´1. Here, the base case is v2 “ pcos θd´1, sin θd´1q P S
1.

Thus, given i “ 1, . . . , d ´ 1, the real number θi is the angle between v and the ith

standard vector basis ei of R
d. These angles θi are unique upon requiring that θi P r0, πs

for i “ 1, . . . , d´2 and θd´1 P r0, 2πq. Upon taking into account the notation convention
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adopted here to label the angles, the volume element dv is then given by the usual
formula

dv “ 1

Ad

¨
dź

i“2

sini´2 θd´i`1 ¨ dθd´i`1.

Thus, given v P R
d with (cartesian) coordinates px1, . . . , xdq,

v P Kdpαq X S
d´1 ðñ @i P J1, dK, |xi| “ |cos θi| ď αi

ðñ
pαdą1q

@i P J1, d ´ 1K, |cos θi| ď αi

ðñ
"

@i P J1, d ´ 2K, θi P rbpαiq, π ´ bpαiqs ,
θd´1 P rbpαd´1q, π ´ bpαd´1qs Y rπ ` bpαd´1q, 2π ´ bpαd´1qs

(with obvious changes for the bounds of the latter intervals when bpαd´1q “ 0). There-
fore,

rσd´1 pKd pαqq “ 1

Ad

¨ 2pπ ´ 2bpαd´1qq ¨
dź

i“3

ż π´bpαd´i`1q

bpαd´i`1q
sini´2 θ ¨ dθ

“ 2d

Ad

¨
´π
2

´ bpαd´1q
¯

¨
dź

i“3

ż π{2

bpαd´i`1q
sini´2 θ ¨ dθ

“
(24)

Idpαq.

The estimates involving Ldpαq follow now straightforwardly from the definition of Idpαq
and from the convexity inequalities p2{πq ¨ t ď sin t ď t valid for any t P r0, π{2s. �

Proof of Proposition 3. It plainly follows from the definition of the ellipsoid Ed pαq
in (13) that

dź

i“1

„
´ αi?

d
,
αi?
d


Ă Ed pαq Ă

dź

i“1

r´αi, αis . (37)

Also, relations (35) and (36) imply that
˜

d´1ź

i“1

„
´

α
r

˚
i?

d ´ 1
,

α
r

˚
i?

d ´ 1

¸
ˆr´1, 1s Ă Ad pαq Ă

˜
d´1ź

i“1

“
´α
r

˚
i , αr

˚
i

‰
¸

ˆr´1, 1s (38)

(this is because the basis of the cylinder Cd
`
α
r
˘
is the ellipsoid Ed´1

`
α
r
˘
).

Thus, the estimates for rσd´1 pEd pαqq in Proposition 3 become straightforward con-
sequences of relations (37) and (38) and of Lemma 2. As for the bounds for Id pαq
therein, they also follow from Lemma 2 and from the inequalities

´π
2

¯j´1

¨ min t1, αd´ju ď
´π
2

¯j

´ bpαd´jqj ď j ¨
´π
2

¯j

¨ min t1, αd´ju .

The latter is a direct consequence of the convexity inequalities

x ď π

2
´ arccosx ď π

2
x
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valid for all x P r0, 1s and of the factorisation identity

´π
2

¯j

´ bpαd´jqj “
´π
2

´ bpαd´jq
¯

¨
j´1ÿ

k“0

´π
2

¯j´1´k

bpαd´jqk.

�

2.7. Proof of Theorem 3. Let ǫ ą 0 and let ∆ :“ pα1, . . . , αdq P ∆``
d be such that

the vector α1 :“ pα1, . . . , αd´1q lies in the support of the measure ν
pǫq
d as defined in (25)

(i.e. ǫ ď αi ď ǫ´1 for all i “ 1, . . . , d ´ 1). This clearly implies that }∆}8 ď ǫ´d`1.

In particular, in view of the upper bound in (16), the probability τ
pǫq
d pFpδqq vanishes

whenever
?
δ ¨ ǫ´d`1 ă 1, i.e. whenever δ ă ǫ2¨pd´1q. Since ν

pǫq
d

`
∆``

d z∆``
d,sub

˘
“ 0, the

same conclusion holds if δ “ ǫ2¨pd´1q. This establishes (26).

Assume from now on that δ ą ǫ2pd´1q. The goal is to bound from below and above
the probability

τ
pǫq
d pFdpδqq “ 1

|2 log ǫ|d´1
¨
ż

rǫ, ǫ´1sd´1

d´1ź

i“1

dαi

αi

¨ pd
´
E
´?

δ∆
¯¯

.

Upon reordering the coordinates of the vector ∆ as defined above, it follows from the
invariance of the quantity pd

`
E
`?

δ∆
˘˘

under such permutation that

pd ´ 1q!
|2 log ǫ|d´1

¨
ż

ǫďα1ă¨¨¨ăαd´1ďǫ´1

αd´1ăαd:“pα1...αd´1q´1

d´1ź

i“1

dαi

αi

¨ pd
´
E
´?

δ∆
¯¯

ď τ
pǫq
d pFdpδqq

ď d!

|2 log ǫ|d´1
¨
ż

ǫďα1ă¨¨¨ăαd´1ďǫ´1

αd´1ăαd:“pα1...αd´1q´1

d´1ź

i“1

dαi

αi

¨ pd
´
E
´?

δ∆
¯¯

.

Here, we are using two facts to obtain the upper bound : on the one hand, if σ is a
permutation of J1, dK such that, given a d–tuple pα1, . . . , αdq, ασp1q ď ¨ ¨ ¨ ď ασpdq, thenśd´1

i“1 α
´1
i ď śd´1

i“i α
´1
σpiq; on the other, given a d-tuple pβ1, . . . , βdq such that β1 ă ¨ ¨ ¨ ă

βd, there are d! d–tuples pα1, . . . , αdq for which there exists a permutation σ such that
ασp1q “ β1, . . . , ασpdq “ βd. The lower bound follows from a similar argument : given a
d-tuple pβ1, . . . , βdq such that β1 ă ¨ ¨ ¨ ă βd, there are pd´ 1q! d–tuples pα1, . . . , αdq for
which there exists a permutation σ of J1, d´1K such that ασp1q “ β1, . . . , ασpd´1q “ βd´1

and αd “ βd “ max1ďiďd βi.

Note that in the domain of integration,

}∆}8 “ αd “ pα1 . . . αd´1q´1
. (39)
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Since from Proposition 2, pd
`
E
`?

δ∆
˘˘

“ 0 whenever
?
δ ¨ αd ď 1, one has also

pd ´ 1q!
|2 log ǫ|d´1

¨
ż

ǫďα1ă¨¨¨ăαd´1ďǫ´1

maxtδ´1{2, αd´1uăpα1...αd´1q´1

d´1ź

i“1

dαi

αi

¨ pd
´
E
´?

δ∆
¯¯

ď τ
pǫq
d pFdpδqq (40)

ď d!

|2 log ǫ|d´1
¨
ż

ǫďα1ă¨¨¨ăαd´1ďǫ´1

maxtδ´1{2, αd´1uăpα1...αd´1q´1

d´1ź

i“1

dαi

αi

¨ pd
´
E
´?

δ∆
¯¯

. (41)

We now call on Theorem 2 to bound the probability pd
`
E
`?

δ∆
˘˘

as follows :

rσd´1

´
Edp

?
δ∆q

¯
ď pd

´
E
´?

δ∆
¯¯

ď
ÿ

nPZdzt0u
}n}8ď

?
δ¨}∆}8

rσd´1

˜
E

˜ ?
δ

}n}2
¨ ∆

¸¸
. (42)

Furthermore, from Proposition 3,

rσd´1

´
Edp

?
δ∆q

¯
ě apdq ¨

d´1ź

i“1

min

#?
δ ¨ αi

d
, 1

+
ě apdq

dd´1
¨
d´1ź

i“1

min
!?

δ ¨ αi, 1
)
. (43)

Given the domain of integration of the integrals above, one has also

ÿ

nPZdzt0u
}n}8ď

?
δ¨}∆}8

rσd´1

˜
E

˜ ?
δ

}n}2
¨ ∆

¸¸
ď

ÿ

nPZdzt0u
}n}8ď

?
δ¨}∆}8

a1pdq ¨
d´1ź

i“1

min

#?
δ ¨ αi

}n}2
, 1

+

ď a1pdq ¨ δpd´1q{2 ¨
˜

d´1ź

i“1

αi

¸
¨

¨
˚̊
˝

ÿ

nPZdzt0u
}n}8ď

?
δ¨}∆}8

1

}n}d´1
8

˛
‹‹‚

ď a1pdq ¨ δpd´1q{2 ¨
˜

d´1ź

i“1

αi

¸
¨

¨
˝

?
δ¨}∆}8ÿ

k“1

d ¨ p2k ` 1qd´1

kd´1

˛
‚

ď a1pdq ¨ δpd´1q{2 ¨
˜

d´1ź

i“1

αi

¸
¨
´
3d´1 ¨ d ¨

?
δ ¨ }∆}8

¯

ď
(39)

3d´1 ¨ a1pdq ¨ d ¨ δd{2. (44)

Inequalities (27) thus turn out to be a rephrasing of the relations (40)—(44) with
the constants cdpǫq and Cdpǫq stated in the theorem.
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As for inequalities (28) and (29), note first that, on the one hand,

sdpǫ, δq ě min
!?

δ, ǫ
)d´1

¨
ż

ǫďα1ă¨¨¨ăαd´1ďǫ´1

maxtǫ´1,δ´1{2uăpα1...αd´1q´1

dα1 . . .dαd´1

and that, on the other,

Sdpǫ, δq ď δd{2 ¨
ż

ǫďα1ă¨¨¨ăαd´1ďǫ´1

δ´1{2ăpα1...αd´1q´1

d´1ź

i“1

dαi

αi

¨

Now, given any c ą 0, the change of variables yi “ αi for 1 ď i ď d ´ 2 and
yd´1 “ śd´1

i“1 αi shows that

ż

ǫďα1ă¨¨¨ăαd´1ďǫ´1

căpα1...αd´1q´1

dα1 . . .dαd´1 “
ż

ǫďy1ă¨¨¨ăyd´2ďǫ´1

ǫd´1ăyd´1ăc´1

dyd´1 ¨
d´2ź

i“1

dyi
yi

“ |2 log ǫ|d´2

pd ´ 2q! ¨
`
c´1 ´ ǫd´1

˘

and that
ż

ǫďα1ă¨¨¨ăαd´1ďǫ´1

căpα1...αd´1q´1

d´1ź

i“1

dαi

αi

“
ż

ǫďy1ă¨¨¨ăyd´2ďǫ´1

ǫd´1ăyd´1ăc´1

d´1ź

i“1

dyi
yi

“ |2 log ǫ|d´2

pd ´ 2q! ¨ log
ˆ

c´1

ǫd´1

˙
.

This completes the proof of Theorem 3.

3. An Approach via the Cholesky Decomposition.

The probabilistic approach via the spectral decomposition exposed in §2 requires
that the probability measures under consideration be essentially defined from the set
of eigenvalues of a given element in Σ``

d . While this should not be seen as a big
restriction in view of the spectral decomposition and of the fact that the orthogonal
group is compact, the determination of the eigenvalues of a matrix is known to be a
hard task. We therefore adopt here an alternative approach based on the Cholesky
decomposition of a quadratic form in Σ``

d or, in view of Problem 2, on the Cholesky
decomposition of a quadratic form in S``

d .

Let T ``
d be the group of upper triangular matrices with strictly positive diagonal

entries. Let Θ``
d be the subgroup of T ``

d consisting of all those matrices with deter-
minant one :

Θ``
d :“ T ``

d X SLdpRq. (45)
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Let

p :“ dpd ´ 1q
2

¨ (46)

The set T ``
d shall be identified with pRą0qd ˆR

p by splitting a matrix therein between
its d diagonal terms and the remaining p off–diagonal upper coefficients. A generic
element in T ``

d shall thus be represented as pβ,uq with β P pRą0qd and u P R
p, in

which case it will be convenient to adopt the notation

β :“ pβ1,β
r

q

with β1 P R and β
r

P R
d´1 (this notation is independent from (20)). In the same way,

the set Θ``
d shall be identified with pRą0qd´1 ˆ R

p. A generic element of Θ``
d shall

thus be represented as pβ1,uq with β1 P pRą0qd´1 and u P R
p, in which case it will be

convenient to adopt the notation

β1 :“ pβ 1
1,βr

1q

with β 1
1 P R and β1

r
P R

d´2. When a matrix in Θ``
d is seen as an element of T ``

d , it

shall also be given as a vector from pRą0qd ˆ R
p. This should not cause any confusion.

The Cholesky decomposition of a positive definite matrix amounts to claiming that
the map

ϕchol : L P T ``
d ÞÑ t

LL P S``
d (47)

is bijective. This implies in particular that the map

rϕchol : L P Θ``
d ÞÑ t

LL P Σ``
d (48)

is also bijective. Determining the Cholesky decomposition of a given positive definite
matrix is a problem which has been extensively studied from an algorithmic point of
view and which can be implemented in a very efficient way — see, e.g., [19] for details.

3.1. Definition of a Suitable Class of Measures. Note that S``
d sits as an open

cone in the space of symmetric matrices in dimension d. It is a pp ` dq–dimensional
manifold (with p as defined in (46)) and any matrix therein can be identified with
a vector in R

p`d by considering its upper triangular part. Similarly, Σ``
d sits as a

pp ` d ´ 1q–dimensional manifold in S``
d which can be identified with a subset of

R
p`d´1 by considering the upper triangular part of a matrix therein minus the bottom

right coefficient. For a rigorous justification of the fact that this indeed gives a system
of independent coordinates, see (the proof of) Lemma 3 in §3.4 below.

With the help of these identifications, we will be concerned with measures supported
on S``

d (resp. on Σ``
d ) absolutely continuous with respect to the pp ` dq–dimensional

Lebesgue measure λp`d (resp. with respect to the pp ` d ´ 1q–dimensional Lebesgue
measure λp`d´1).

Let then f : S``
d Ñ R` (resp. rf : Σ``

d Ñ R`) be a density function supported on
S``
d (resp. on Σ``

d ). The corresponding measure is denoted by νf (resp. by rν rf ).
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3.2. The Main Estimates. Given δ ą 0, the quantities of interest are

mf pδq :“ νf
` 
Q P S``

d : MdpQq ď δ
(˘

(49)

and
rm rf pδq :“ rν rf

` 
Σ P Σ``

d : MdpΣq ď δ
(˘

.

Given any β P pRą0qd, define

Gfpβq :“ 2d ¨
dź

i“1

βd´i`1
i ¨

ż

Rp

pf ˝ ϕcholq pβ,uq ¨ dλppuq

and, given any β1 ą 0, let

gfpβ1q :“
ż

pRą0qd´1

Gfpβ1, β
r

q ¨ dλd´1pβ
r

q. (50)

Similarly, given any β1 P pRą0qd´1, define

rG rfpβ1q :“ 2d´1 ¨
d´1ź

i“1

βd´i`1
i ¨

ż

Rp

´
rf ˝ rϕchol

¯
pβ1,uq ¨ dλppuq

and, given any β 1
1 ą 0, let

rg rfpβ 1
1q :“

ż

pRą0qd´2

rG rf pβ 1
1, β

1

r
q ¨ dλd´2pβ1

r
q.

With these definitions, the main theorem in this section reads as follows :

Theorem 4. Let δ P p0, 1q. Then,

0 ď 1 ´
ż 8

?
δ

gf ď mfpδq ď 1 ´
ż

Idpδq
Gf ď 1, (51)

where

Idpδq :“
´?

δ, `8
¯d

.

Furthermore, one has also the estimates

0 ď 1 ´
ż 8

?
δ

rg rf ď rm rf pδq ď 1 ´
ż

∆d´1pδq
rG rf ď 1, (52)

where

∆d´1pδq :“
#
β1 P pRą0qd´1 :

´
@i P J1, d ´ 1K, βi ą

?
δ
¯

^
˜

d´1ź

i“1

βi ă 1?
δ

¸+
.

Both sets of inequalities (51) and (52) provide non–trivial lower and upper bounds
for the probabilities mf pδq and rm rf pδq, although the former bounds are doomed to be

cruder than the latter (see the proof in §3.4 for details). In fact, we will mostly be
interested in obtaining accurate upper bounds. In this respect, it is worth pointing out
that those obtained above amount to finding short lattice vectors in a ball with respect
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to the sup–norm in R
d centered at the origin rather than in the largest Euclidean ball

contained in it (see the proof of Lemma 4 below for details). For “not too wild” density
functions, the loss of accuracy in doing so should be seen as involving a multiplicative
constant depending only on the dimension d.

3.3. A Numerical Example. A most standard distribution supported on the set of
positive definite matrices is the so–calledWishart distribution. It is used in various fields
such as the spectral theory of random matrices, multidimensional bayesian analysis
and more generally in statistics, where its importance stems from the fact that it is a
multidimensional generalisation of the chi–squared distribution which appears naturally
in the likelihood–test ratio. The Wishart distribution is also commonly used to analyse
the problem of wave fading in wireless communication, which is of particular interest to
us in view of the results presented in §4 below. For further details on this probability
distribution, see, e.g., [8]. We only mention here the few definitions and properties
needed for our purpose.

Let X be a random n ˆ d matrix. Assume that the rows xi (1 ď i ď n) of X are
independent random vectors distributed according to a d–variate normal distribution
Nd p0, V q with zero mean and covariance matrix V P S``

d . The Wishart distribution
in dimension d ě 1 with n degrees of freedom with respect to the scale matrix V is
then the probability distribution of the matrix t

XX . It is usually denoted by WdpV, nq.
Whenever n ě d, the matrix t

XX is invertible with probability one and the Wishart
distribution admits a density function given by

fWdpV,nqpQq “ 1

2nd{2 ¨ |V |n{2 ¨ Γd

`
n
2

˘ ¨ |Q|pn´d´1q{2 ¨ exp
ˆ

´1

2
¨ Tr

`
V ´1Q

˘˙
.

Here, Q P S``
d , |V | and |Q| are shorthand notation for the determinant of V and Q

respectively, Trp . q is the usual trace operator over the space of matrices and

Γd

´n
2

¯
:“ πdpd´1q{4

dź

j“1

Γ

ˆ
n

2
` 1 ´ j

2

˙

is the multivariate Gamma function.

Let δ ą 0. Denote by mWdpV,nqpδq the probability corresponding to the Wishart
distribution defined as in (49). With the notation of Theorem 4, one has then the
estimates

1 ´
ż 8

?
δ

gWdpV,nq ď mWdpV,nqpδq ď 1 ´
ż

Idpδq
GWdpV,nq, (53)

where the function GWdpV,nq is explicitly given for any β P pRą0qd by

GWdpV,nqpβq “
śd

i“1 β
n´i
i

2dpn{2´1q ¨ |V |n{2 ¨ Γd

`
n
2

˘ ¨
ż

Rp

exp

ˆ
´1

2
¨ Tr

`
V ´1 ¨ ϕchol pβ,uq

˘˙
dλppuq

and where the function gWdpV,nq is defined as in (50).
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For the sake of concreteness, assume from now on that

n “ d “ 2 and V “ I2.

Then,

ϕchol :

ˆ
β1 u

0 β2

˙
ÞÑ

ˆ
β2
1 uβ1

uβ1 u2 ` β2
2

˙

and, after calculations,

GW2pI2,2qpβ1, β2q “
c

2

π
¨ β1 ¨ exp

ˆ
´1

2

`
β2
1 ` β2

2

˘˙

and

gW2pI2,2q pβ1q “ β1 ¨ exp
ˆ

´1

2
β2
1

˙
.

Inequalities (53) now read :

J1pδq :“ 1 ´
ż `8

?
δ

β1 ¨ exp
ˆ

´1

2
β2
1

˙
¨ dβ1 ď mW2pI2,2qpδq

ď 1 ´
c

2

π
¨
ˆż `8

?
δ

β1 ¨ exp
ˆ

´1

2
β2
1

˙
¨ dβ1

˙
¨
ˆż `8

?
δ

exp

ˆ
´1

2
β2
2

˙
¨ dβ2

˙
:“ J2pδq.

Some values taken by the functions J1 and J2 are represented in the following table :

δ 0.2 0.1 0.01 0.001

J1pδq 0.095 0.049 4.99 ¨ 10´3 5.0 ¨ 10´4

J2pδq 0.41 0.28 8.42 ¨ 10´2 2.6 ¨ 10´2

If the space of two dimensional positive definite matrices is equipped with the prob-
ability distribution W2pI2, 2q, the numerical values above imply for instance that at
most 8.42% of these matrices admit a minimum over Z2zt0u less than 0.01. Conversely,
such a minimum is bigger than 0.2 for at least 9.5% of these matrices.

The remainder of this section is devoted to the proof of Theorem 4.

3.4. Proof of Theorem 4. We first prove two preliminary lemmata. The first one is
presented in a context slightly more general than the one imposed by Theorem 4 : this
more general statement will be needed in §4 below. It involves the set

M˚
d pγ, cq :“

 
H P T ``

d : det pγId ` t
H ¨ Hq “ c

(
. (54)

Here, Id is the identity matrix in dimension d and γ and c are non–negative real
numbers. It is easily seen (with the help of the spectral decomposition for instance)
that the set M˚

d pγ, cq is non–empty if, and only if, c ą γd.

Lemma 3. The map ϕchol as defined in (47) is a C1–diffeomorphism with Jacobian
determinant

JacL pϕcholq “ 2d ¨
dź

i“1

ld´i`1
ii (55)
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for any L P T ``
d with diagonal entries pl11, . . . , lddq.

Also, assuming c ą γd, the map

Ψ
pdq
pγ,cq : H P M˚

d pγ, cq ÞÑ c´1{d ¨ pγId ` t
H ¨ Hq P Σ``

d

is a C1–diffeomorphism between M˚
d pγ, cq and its image with Jacobian determinant

JacH

´
Ψ

pdq
pγ,cq

¯
“ 2d´1 ¨ c´pd´1qpd`2q{p2dq ¨

d´1ź

i“1

hd´i`1
ii (56)

for any H P M˚
d pγ, cq with diagonal entries ph11, . . . , hddq.

Proof. Only equation (56) will be established hereafter as equation (55) can be deduced
(in an easier way) from the argument presented below.

We first seek to determine a system of independent coordinates in M˚
d pγ, cq and in

its image Ψ
pdq
pγ,cq pM˚

d pγ, cqq. To this end, given c ą γd, define the auxiliary polynomial
map

rΨpdq
γ : H P T ``

d ÞÑ det pγId ` t
H ¨ Hq

is such a way that M˚
d pγ, cq “

´
rΨpdq
γ

¯´1

ptcuq. Since the differential of the determinant

map at a square matrix A is the map X ÞÑ Tr ptcompAq ¨ Xq (where compAq is the
comatrix of A), an elementary calculation shows that, at any H P M˚

d pγ, cq, the

differential dH
rΨpdq
γ of rΨpdq

γ is the linear map

dH
rΨpdq
γ : X P T ``

d ÞÑ 2 ¨ Tr
“
c ¨ pγId ` t

H ¨ Hq´1 ¨ t
HX

‰
.

This map has clearly rank one. From the Regular Value Theorem (see [15, Lemma 1
p.11]), the fibre M˚

d pγ, cq is therefore a manifold of dimension dim T ``
d ´ 1 “ pd ´

1qpd ` 2q{2.
If H “ phijq1ďiďjďd P M˚

d pγ, cq, choose for a system of coordinates in M˚
d pγ, cq the

pd´1qpd`2q{2 variables rh :“ phijq1ďiďjďd´1 (i.e. excluding hdd). Let Σ :“ pσijq1ďi,jďd
lie

in the image of M˚
d pγ, cq by Ψ

pdq
pγ,cq. Let rσ :“ pσijq1ďiďjďd´1 (this is the upper triangular

part of Σ excluding the term σdd). In order to show that rσ is a system of pd´1qpd`2q{2
independent coordinates parametrised by rh, express Σ as Σ “ c´1{d ¨ pγId ` t

H ¨ Hq for
some H P M˚

d pγ, cq. Note then that when the elements of rσ are listed row by row,
each new entry

σij “ c´1{d ¨
˜
γδij `

iÿ

k“1

hkihkj

¸
(57)

(1 ď i ď j ď d ´ 1) depends on an entry of H which has not appeared previously.

However, σdd “ c´1{d ¨
´
γ ` h2

dd ` řd

k“1 h
2
kd

¯
can be expressed as a function of rh and
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hdd. For example, when d “ 3,

Σ “ c´1{dγId ` c´1{d ¨

¨
˝
h2
11 h11h12 h11h13

h2
12 ` h2

22 h12h13 ` h22h23

˚ h2
33 ` h2

13 ` h2
23

˛
‚.

This legitimates rh and rσ as systems of coordinates respectively for M˚
d pγ, cq and for

its image by Ψ
pdq
pγ,cq.

In order to compute the Jacobian determinant in (56), we now adapt the argument
developed in [1, Chap. 7] to our purpose. Fix H “ phijq1ďiďjďd P M˚

d pγ, cq and
denote by

`
dΨpHq σij

˘
i,j

(resp. by pdH hijqi,j) the canonical basis of the tangent space

to Ψ
pdq
pγ,cq pM˚

d pγ, cqq at Ψ
pdq
pγ,cqpHq with respect to the system of coordinates rσ (resp. of

the tangent space to M˚
d pγ, cq at H with respect to the system of coordinates rh). For

the sake of simplicity of notation, set further dσij :“ dΨpHq σij and dhij :“ dH hij . The
latter tangent vectors then satisfy the property that for any i, j,

dhij ^ dhij “ 0. (58)

Moreover, the change of coordinates induced by Ψ
pdq
pγ,cq implies that

ľ

1ďi,jďd´1

dσij “ JacH

´
Ψ

pdq
pγ,cq

¯
¨

ľ

1ďi,jďd´1

dhij

(see [1, Chap. 7] for details). In view of (57), one has

dσij “ c´1{d
iÿ

k“1

phkj ¨ dhki ` hki ¨ dhkjq ,

i.e.

c1{ddσ11 “ 2h11 ¨ dh11,

c1{ddσ12 “ h11 ¨ dh12 ` . . . , . . . ,

c1{ddσ1d “ h11 ¨ dh1d ` . . . ,

c1{ddσ22 “ 2h22 ¨ dh22 ` . . . , . . . ,

c1{ddσ2d “ h22 ¨ dh2d ` . . . , . . . ,

...

c1{ddσd´1,d´1 “ 2hd´1,d´1 ¨ dhd´1,d´1 ` . . .

The point to write these expressions this way is that, in view of (58), as soon as dhij

appears in one of the terms in dσij , it may be ignored in all the others. All in all, this
leads to

cpd´1qpd`2q{p2dq
ľ

1ďi,jďd´1

dσij “
˜
2d´1 ¨

d´1ź

i“1

hd´i`1
ii

¸
¨

ľ

1ďi,jďd´1

dhij ,
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which completes the proof of the lemma. �

The second lemma needed to prove Theorem 4 is more elementary.

Lemma 4. Let L “ pβ,uq P T ``
d and η ą 0. Write β “ pβ1, . . . , βdq P pRą0qd. The

following holds :

‚ if βi ą η for all i “ 1, . . . , d, then

L ¨ Zd X B2 p0, ηq “ t0u ; (59)

‚ conversely, if L ¨ Zd X B2 p0, ηq “ t0u, then β1 ą η.

Proof. The second claim is immediate upon noticing that β1 “ }Le1}2. Assume there-
fore that βi ą η for all i “ 1, . . . , d and note that conclusion (59) is trivial when d “ 1.
Let d ě 2. Decompose the matrix L :“ Ld in the following way :

Ld “
ˆ
Ld´1 ud´1

0 βd

˙
.

Here, Ld´1 P T ``
d´1 and ud´1 P R

d´1. It is then readily seen that

L ¨ Zd “
ď

nPZ
ALd

pnq, where ALd
pnq “

ˆ
Ld´1 ¨ Zd´1 ` nud´1

nβd

˙
.

Proceeding by induction on d ě 2, given x P ALd
pnq, the inequality }x}8 ą η follows

by the induction hypothesis if n “ 0 and is otherwise a direct consequence of the fact
that }x}8 ě βd ą η. This completes the proof of the lemma. �

Proof of Theorem 4. Only the estimates (52) will be established hereafter as inequali-
ties (51) follow from the argument presented below in a similar way.

Let Σ P Σ``
d decomposed in its Cholesky form as Σ “ t

LL, where L “ pβ1,uq P Θ``
d

with β1 “ pβ 1
1, . . . , β

1
d´1q P pRą0qd´1 and u P R

p. Set furthermore

β 1
d “

˜
d´1ź

k“1

β 1
k

¸´1

.

It should be clear that, given δ ą 0,

pMdpΣq ą δq ðñ
´
L ¨ Zd X B2

´
0,

?
δ
¯

“ t0u
¯
.

From Lemma 4, if either statement in this equivalence holds, then β 1
1 ą δ. Conversely,

it also follows from Lemma 4 that if min1ďiďd β 1
i ą

?
δ, that is, if β1 P ∆d´1pδq, then

any of the statements in this equivalence holds.



30 FAUSTIN ADICEAM AND EVGENIY ZORIN

Since

1 ´ rm rfpδq “
ż

Σ``
d

rfpΣq ¨ χrMdpΣqąδs ¨ dΣ

“
ż

Θ``
d

´
rf ˝ rϕchol

¯
pLq ¨ |JacL prϕcholq| ¨ χrL¨ZdXB2p0,?δq “ t0us ¨ dL,

one thus obtains the estimatesż

∆d´1pδq
dλd´1pβ1q

ż

Rp

´
rf ˝ rϕchol

¯
pβ1,uq ¨

ˇ̌
Jacpβ1,uq prϕcholq

ˇ̌
¨ dλppuq

ď 1´rm rfpδq ď
ż `8

?
δ

dλpβ 1
1q
ż

pRą0qd´2

dλd´2pβ1

r
q
ż

Rp

´
rf ˝ rϕchol

¯
pβ 1

1,β

r
1,uq ¨

ˇ̌
ˇ̌Jacpβ1

1
,β

r
1,uq prϕcholq

ˇ̌
ˇ̌ ¨ dλppuq

(recall that β1 “
´
β 1
1,βr

1
¯
). The upper and lower bounds for rm rf pδq in (52) now follow

directly from Lemma 3 (with γ “ 0 and c “ 1). Furthermore, to prove that these
bounds always lie in the interval r0, 1s, it is enough to notice that, from the definitions

of the functions rG rf and rg rf ,ż

pRą0qd´1

rG rf “
ż `8

0

rg rf “
ż

Σ``
d

rfpΣq ¨ dΣ “ 1.

�

4. Application to Signal Processing

The initial motivation of this work was to address a fundamental problem that
emerged very recently in Information Theory. The latter is related to a new model
of communication channel (the so called Integer–Forcing Architecture) which has been
receiving considerable attention in the literature due to its expected high performance.
The precise estimation of this performance involves the probability that a quadratic
form admits a minimum over non–zero lattice points less than a given constant.

In what follows, we first present the very basic tools from Information Theory that
will enable one to understand the importance and the position of the problem under
consideration — for a deeper introduction to the topic, see [18], especially Chapter 5.
The theory developed in the previous sections will then allow one to bound accurately
the probability to estimate.

4.1. Position of the Problem. Assume that two users (or transmitters) S1 and S2

want to transmit messages (or signals) x1 (for S1) and x2 (for S2) along a communica-
tion channel (e.g., a cable or a radio channel) simultaneously to two receivers R1 and
R2 (1). Independently of the familiar concept of noise, the signal is distorted during

1This configuration, widely studied in Information Theory, is known as an “X–Channel” with a reference
to the shape of Figure 4.1 below.
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transmission up to a certain degree of fading. This may be due for instance to the
distance between the users and the receivers or else to reflections on obstacles such as
buildings in the path of the signals. This phenomenon is modelled by the so–called
channel coefficients. For the message sent by Si to Rj (i, j P t1, 2u) the corresponding
channel coefficient is denoted by hij . Thus, in the simplest case of an additive channel,
the message yi received by Ri (i P t1, 2u) is represented by the system of equations

"
y1 “ h11x1 ` h12x2 ` z1
y2 “ h21x1 ` h22x2 ` z2,

(60)

where z1 and z2 are the noise — see also the figure below.

❅❅��

x1

❅❅��

y1

❅❅��
x2

❅❅��
y2

�
�
�
��✒

�
�

�
��

❅
❅

❅
❅❅

❅
❅
❅
❅❅❘

✲

✲

S1

S2

R1

R2

h11

h22

h12

h21

Figure 1. Channel of communication corresponding to the configuration in (60)

. Matricially, the system of equations (60) reads

y “ Hx ` z (61)

with

y “
ˆ
y1
y2

˙
, H “

ˆ
h11 h12

h21 h22

˙
, x “

ˆ
x1

x2

˙
and z “

ˆ
z1
z2

˙
.

Of course, it is obvious to generalise this model to the case when there are m ě 1
users and n ě 1 receivers. Then, the matrix H in (61) is rectangular with dimensions
n ˆ m, the vectors y and z are n–dimensional and the vector x is m–dimensional.
From the receiver’s point of view, it is natural to consider x and z as random vectors,
in which case the entries of the noise vector z are often taken as independent with
Gaussian distribution with zero mean and unit variance. As for the input x, it satisfies
a power constraint of the form

E ptx ¨ xq ď m ¨ SNR, (62)

where Ep . q denotes the expectation and where SNR stands for the Signal–to–Noise
Ratio, a fundamental strictly positive quantity which will be discussed later. In the
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standard case when each entry of x is a sum of binary digits (bits), the power con-
straint (62) reflects the fact that the number of bits that can be sent through the
channel is limited by some of its physical properties.

It is important to point out here that the seemingly simple model with two users and
two receivers exposed above underpins some of the most fundamental features of the
more general model with m users and n receivers. Thus, some channel architectures
with m “ 2 users and n “ 2 receivers have been at the heart of deep theoretical
problems in Information Theory — see, e.g., [18, §5.4.3].

The most basic problem when considering a channel of communication is to determine
whether the received information is reliable; that is, to what extent the noise affects
the quality of the signal. In order to make the probability error small, an obvious
guess is that one has to reduce the rate of new data sent by the users (for instance,
by repeating each string of message several times). In 1948, Shannon proved that this
intuition is surprisingly incorrect : it is actually possible to exchange information at a
strictly positive data rate keeping at the same time the error probability as small as
desired. There is nevertheless a maximal rate, the capacity of the channel, above which
this cannot be done any more. The latter quantity is usually expressed in bits.

As the proof of the result established by Shannon is non–effective (i.e. it does not
provide a way to code the information in order to approach the capacity), from an
engineering standpoint, the problem to determine the capacity of a channel and then
to provide a way to get as close as possible to this capacity remains open.

There is no single expression for the capacity of a channel; rather, it depends on its
intrinsic architecture. It nevertheless always involves the Signal–to–Noise Ratio (SNR).
This quantity, often expressed in decibels, compares the level of a desired signal to the
level of background noise : the bigger this ratio, the better the quality of the signal.
For the model represented by the equations in (61) and (62) (with any m,n ě 1), it is
shown in [16] that the capacity C can be expressed as

C “ log det pIm ` SNR ¨ t
H ¨ Hq . (63)

Note also the following important point : the performances of a channel depend
heavily on whether or not the transmitter knows the channel coefficients matrix H .
Indeed, if such information is available, they can for instance allocate more power to
the stronger antennas to minimise the effect of fading. In most cases however (for
instance in wireless systems), this information is not known to the transmitter, in
which case a reasonable strategy is to allocate equal power to each of the antennas. In
the latter configuration, the capacity of the channel is rather referred to as the mutual
information.

4.2. Channels with Integer–Forcing Receiver Architecture. Recently, an im-
portant breakthrough has been achieved in Information Theory. Indeed, Zhan & alii
introduced in [21] a new architecture of channel, the so–called Integer–Forcing Re-
ceiver Architecture, which has been receiving considerable attention in the literature
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(see [16] and the references therein for further details). It is not our goal to describe
the channel precisely : if interested, the reader is referred to [21]. Here is however the
main ingredient from which follow all the properties of this new model : in a standard
communication channel, the receivers obtain the message x sent to them by first elim-
inating interferences from the vector y (especially the noise z) and then by decoding
each individual data stream (i.e. each component of the vector y). The idea introduced
by Zhan & alii is, first to decode integer linear combinations of data stream and, then,
to eliminate the interference.

The near optimality of this strategy has been verified by extensive ad hoc calculations
(see [16, §I.A.] for details). As for a theoretical proof of this fact, this task has been
started in [16] in the following general set–up which, as explained in the paper, appears
in several important communication scenarios.

Assume that each transmitter wishes to send the same message to all the receivers
(this is for instance the case for TV broadcast). They all are aware of the characteristics
of the channel, namely its SNR coefficient and also the mutual informationC0. However,
they ignore the actual channel matrixH modelling the transmission as in (61). Without
any more information and in view of (63), this matrixH is considered as being randomly
and “uniformly” chosen2 from the set

Hm,n pC0, SNRq :“
 
H P R

nˆm : log det pIm ` SNR ¨ t
H ¨ Hq “ C0

(
. (64)

It is proved in [16] that the performance of the channel under consideration after
applying the integer–forcing technique is actually determined by the so–called Effective
Signal–to–Noise Ratio SNReff. We shall not be concerned with the actual definition
of this quantity, which is rather technical — for details, see [16, §II.B.]. The crucial
point formulated with our notation is the following estimates satisfied by the SNReff

coefficient (see [16, Theorem 2] for a proof) :

1

4m2
¨ Mm pIm ` SNR ¨ t

H ¨ Hq ă SNReff ď Mm pIm ` SNR ¨ t
H ¨ Hq . (65)

For the quality of communication to be best possible, one wishes to obtain a SNReff

coefficient as large as possible. Inequalities (65) show that the order of magnitude
of this coefficient is dictated by the minimum of the positive definite quadratic form
Im ` SNR ¨ t

H ¨ H over non–zero elements of Zm. In view of the probabilistic model
developed so far, the main problem which emerges from this theory can be formulated
as follows :

Problem 3 (Main Problem of Application). Assume that the channel matrix H is
chosen randomly and “uniformly” from the set (64). Let κ P p0, 1q.

Find the best possible value of s ě 0 such that the event SNReff ě s is realised with
probability greater than κ; equivalently, determine the cumulative distribution function
of the quantity SNReff seen as a random variable.

2As will be shown later, this concept of uniformity, understood here intuitively, needs to be clarified.
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It is worth noting that the techniques developed here in order to tackle this problem
can also be used to solve other questions appearing in the literature dealing with the
Integer–Forcing Architecture. An example of such questions is the estimate of the
probability that the so–called effective noise variance as defined in [21, §IV.E.] should
be less than a given constant. Another more general example is the estimate of the
so–called probability of outage of some channels — see [18, 21]. In all cases, the main
ingredient is Theorem 4 (more precisely, the upper bounds appearing therein). Also,
it must be pointed out that the manifold (64) is ubiquitous in the literature related to
Signal Processing. Some of its topological properties playing a crucial role in the study
of the performance of various channels are established in §4.3 below.

4.3. Formalisation of the Concept of a “Uniformly” Distributed Measure on

the Set Hm,n pC0,SNRq. For convenience, set from now on

γ :“ pSNRq´1 and c0 :“ γmeC0 (66)

in such a way that

Hm,n pC0, SNRq “
 
H P R

nˆm : det pγIm ` t
H ¨ Hq “ c0

(
.

For the sake of simplicity of notation, the dependency of the various quantities on γ

and c0 will not be marked hereafter. The reader should however keep in mind that
almost all the constants, sets and functions introduced hereafter depend on these two
parameters.

A crucial remark is that Sylvester’s determinant identity immediately implies that

det pγIm ` t
H ¨ Hq “ det pγIn ` H ¨ t

Hq .
Therefore, even if it means working throughout with t

H instead of H to obtain the
analogues in the case n ě m of the results stated below, it may be assumed without
loss of generality that

d :“ min tm,nu “ m. (67)

In order to address Problem 3 as stated above, one needs first to formalise the idea of
a “uniform” measure on the set Hm,n pC0, SNRq. If one understands this concept in the
usual mathematical meaning of a Borelian measure in a complete metric space such that
the measure of a ball depends only on its radius but not on the position of its center, this
is problematic. Indeed, as shown in Lemma 5 below, the set Hm,n pC0, SNRq is compact.
Now, it is proved in [10, Proposition 1.7] that a bounded subset of an Euclidean space
carries a uniform measure only if it is contained in a sphere. It is not hard to see that
this never happens for the set Hm,n pC0, SNRq as soon as d ě 2. In view of this and in
order to render this idea of uniform distribution in a different way, we first establish
some properties of the set Hm,n pC0, SNRq.

Given an integer k P J0, dK, let R
pkq
m,n be the subset of Hm,n pC0, SNRq consisting of

all those matrices with rank k :

Rpkq
m,n :“ tH P Hm,n pC0, SNRq : rankpHq “ ku .
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Note that any of the sets R
pkq
m,n is invariant under a map of the form H ÞÑ U ¨H , where

U P On is an orthogonal transformation. This legitimate the focus on a fundamen-

tal domain for the left action of On on R
pkq
m,n. As shown in Lemma 5 below, such a

fundamental domain is naturally be related to the set

M
pkq
d :“

 
T P T `

d : rankpT q “ k and det pγId ` t
T ¨ T q “ c0

(
,

where T `
d is the set of all those upper triangular d–dimensional square matrices with

non–negative diagonal entries. Note that when k “ d, the set M
pkq
d coincides with the

set M˚
d pγ, c0q defined in (54). In what follows, we will adopt the simpler notation

M˚
d :“ M˚

d pγ, c0q .

It is not hard to see that a necessary and sufficient condition for the subset M˚
d to

be non–empty is that
c0 ą γd. (68)

In this case, the zero matrix cannot belong to the set

ĂMd :“
dď

k“0

M
pkq
d “

 
T P T `

d : det pγId ` t
T ¨ T q “ c0

(
(69)

(if c0 “ γd, the latter set only contains the zero matrix and if c0 ă γd, it is empty —
see §3.4 or the proof of Lemma 5 for details). The relation (68) will be assumed to hold
throughout.

Lemma 5. The following two points hold :

‚ The set Hm,n pC0, SNRq is compact.
‚ Given an integer k P J0, dK, a fundamental domain for the left action of the

orthogonal group On on R
pkq
m,n can naturally be identified with a subset of M

pkq
d .

Furthermore, when k “ d, a fundamental domain for the left action of the

orthogonal group On on R
pdq
m,n can naturally be identified with the set M˚

d itself.

Proof. The second point is a direct consequence of the QR decomposition : any matrix

H P R
pkq
m,n can be decomposed as H “ QR, where Q P On and where the matrix R has

rank k and is of the form

R “
ˆ
T

0

˙

with T P T `
d . Furthermore, this decomposition is unique when R has full rank.

As for the first point, note that the set Hm,n pC0, SNRq is clearly closed. To show that
it is also bounded, we will adopt the following notation : given a n ˆ m rectangular
matrix M , }M}8 will denote the sup–norm of the vector in R

nm determined by its
entries. Also, ~M~2 (resp. ~M~8) will stand for the operator norm of M induced by
the Euclidean norms (resp. the sup–norms). Given two positive real numbers a and b,
the Vinogradov symbol a ! b will as usual indicate the existence of a positive constant
c ą 0 such that a ď cb.
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Let then H P Hm,n pC0, SNRq. By looking at the diagonal elements in t
H ¨ H , it is

plain that

}H}8 ď
b

}tH ¨ H}8.

Let t
H ¨ H “ t

P ¨ D ¨ P be the spectral decomposition of the positive matrix t
H ¨ H ,

where P P Om and where D is a diagonal matrix with entries λ1, . . . , λm ě 0. From
the equivalence of norms in finite dimension and from the fact that ~P~2 “ 1, one thus
obtains :

}tH ¨ H}8 ! ~ t
H ¨ H~2 “ ~ t

PDP~2

ď ~ t
P~2~D~2~P~2

“ ~D~2

! }D}8 :“ max Spect ptH ¨ Hq ,

where Spect ptH ¨ Hq denotes the spectrum of the matrix t
H ¨ H . From the definition

of the set Hm,n pC0, SNRq, one has furthermore that

c0 “ det pγIm ` t
H ¨ Hq “ det pγIm ` Dq “

mź

i“1

pγ ` λiq .

Since λi ě 0 for all i “ 1, . . . , m, this implies that Spect ptH ¨ Hq Ă r0, γ pc0γ´m ´ 1qs
(which set is empty if c0 ă γm). This completes the proof. �

Remark 1. We would like to point out here that the first point in Lemma 5 rules out
an assumption often made in the literature related to Information Theory (see, among
many other examples, [22, Problem 13.12]); namely, the coefficients of a matrix H lying
in Hm,n pC0, SNRq cannot have a Gaussian distribution.

Remark 2. A much more involved argument presented in the proof of Lemma 6 below

implies that the Euclidean norm of a matrix lying in the set ĂMd and viewed as a

vector in R
dpd`1q{2 is at most

a
pc0 ´ γdq{γd´1 and at least

b
c
1{d
0 ´ γ — see the end

of §4.5 for details. From the QR decomposition, this also holds for a matrix lying in
Hm,n pC0, SNRq.

If one understands the concept of a “uniform” measure as a measure “evenly” dis-
tributed (in some intuitive sense), in view of the invariance of the set Hm,n pC0, SNRq
under the left action of the orthogonal group, it is natural to define such a measure
from a fundamental domain of Hm,n pC0, SNRq for this action. Thus, if one is able to

equip the set ĂMd as defined in (69) with a “uniform” probability measure rνd which
satisfies furthermore the property that

rνd pM˚
dq “ 1 (70)



POSITIVE DEFINITE QUADRATIC FORM & LATTICE POINTS 37

(that is, the measure rνd is only supported on those matrices of full rank), then, in view
of Lemma 5, rνd would be a relevant candidate for our purpose3.

A natural choice for rνd is a measure which takes into account the geometry of the

manifold ĂMd. Setting

p1 “ dpd ` 1q
2

´ 1,

this leads one to define rνd from the infinitesimal volume element d volp1pT q on the

hypersurface ĂMd Ă R
p1`1. More precisely, for any measurable subset B Ă ĂMd,

rνd pBq :“
ş
B
d volp1pT qş

ĂMd
d volp1pT q ¨ (71)

Note that this is a well–defined probability measure as ĂMd is compact.

Let

f : T P T `
d ÞÑ c

´1{d
0 ¨ pγId ` t

T ¨ T q
and

g :“ det ˝f (72)

in such a way that
ĂMd “ g´1 pt1uq .

Given T “ ptijq1ďi,j,ďd
P T `

d and given indices i and j such that 1 ď i ď j ď d, set

Bij :“ B
Btij

and define furthermore the charts

Bij :“
 
T P T `

d : pBijgq pT q ‰ 0
(
. (73)

The relevance of this definition follows from this lemma :

Lemma 6. Assume (68). Then :

‚ The gradient ∇g of g never vanishes on ĂMd. In other words,

ĂMd “
ď

1ďiďjďd

´
Bij X ĂMd

¯
.

‚ On each of the charts Bij, the volume element d volp1pT q can be expressed as
follows :

d volp1pT q “
ˆ}∇g}2

|Bijg|

˙
pT q ¨ dt11 . . .ydtij . . .dtdd (74)

(as usual, the hat means that the corresponding index is removed from the list).

3It must be pointed out here that, from an engineering standpoint, it is often assumed that the channel
matrix has full rank not to have to deal with redundant information. Lemma 7 below shows that we will not
have to make such an assumption here.
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‚ The subset of matrices of full rank in ĂMd is contained in Bdd :

M˚
d Ă Bdd.

With the help of this lemma, one can now prove that the measure rνd defined in (71)
satisfies (70) :

Lemma 7. Let k P J0, d ´ 1K. Then, under (68),

rνd
´
M

pkq
d

¯
“ 0

Proof. It follows from Lemma 6 that ĂMd can be covered by a finite number of subsets`
B1
ij

˘
1ďiďjďd

such that, within each B1
ij , the function Bijg never vanishes. Also, within

each B1
ij , the measure determined by the volume element d volp1pT q is absolutely con-

tinuous with respect to the p1–dimensional Lebesgue measure λp1. In order to prove
the lemma, it is therefore enough to establish that for all 0 ď k ď d ´ 1 and all
1 ď i ď j ď d,

λp1

´
M

pkq
d X B1

ij

¯
“ 0. (75)

To this end, note that
Ťd´1

k“0M
pkq
d sits as an algebraic subvariety in ĂMd Ă T `

d ; it is

defined as the intersection of ĂMd with the hypersurface

L :“
 
T P T `

d : detpT q “ 0
(
.

Since the hypersurface L defines an irreducible variety, any variety intersects it properly
(with the possibility of an empty intersection) or is contained in it. It is easily seen
(with the help of the spectral decomposition for instance) that the set M˚

d is non–empty

under (68); in other words, that there are points in ĂMd not contained in L. Thus, the

intersection ĂMd X L has codimension at least one in ĂMd, which readily implies (75)
and completes the proof. �

4.4. Estimation of the Cumulative Distribution Function of the Effective

Signal–to–Noise Ratio. In view of (65), Problem 3 boils down to finding, for a given
s ě 0, a lower bound for the event Md pId ` SNR ¨ t

H ¨ Hq ě 4sd2 when H is chosen
randomly from the set Hm,n pC0, SNRq according to the distribution of the probability
measure rνd. From the change of variables operated in (66) and from Lemma 7, this
amounts to bounding from below the quantity

mdpδq :“ rνd
´!

H P M˚
d : Md

´
c

´1{d
0 pγId ` t

H ¨ Hq
¯

ą δ
)¯

,

where we have set
δ :“ 4d2sγdc

´1{d
0 (76)

(note that the definitions of mdpδq above and of mfpδq in (49) differ inasmuch as the
inequalities defining each of these quantities are reversed. The definition of mdpδq is
here motivated by the statement of Problem 3). Note that when H P M˚

d,

c
´1{d
0 pγId ` t

H ¨ Hq P Σ``
d .



POSITIVE DEFINITE QUADRATIC FORM & LATTICE POINTS 39

It follows immediately from the definition of the the function Md in (1) that

Md

´
c

´1{d
0 pγId ` t

H ¨ Hq
¯

ě γc
´1{d
0 in such a way that

mdpδq “ 1 whenever δ ď γ

c
1{d
0

¨

In what follows, it will therefore be assumed without loss of generality that

δ ą γ

c
1{d
0

:“ δ˚
d . (77)

In order to call on Theorem 4 under this assumption, one needs to push forward the
measure rνd from M˚

d to the space Θ``
d as defined in (45) via the maps

M˚
d

fÝÑ Σ``
d

rϕ´1

cholÝÝÝÑ Θ``
d (78)

(cf. (48) for the definition of rϕchol). The main apparent difficulty in doing so is that
the Cholesky decomposition of the matrix γId ` t

H ¨ H cannot be straightforwardly
deduced from to the Cholesky form t

H ¨H when H P M˚
d. However, explicit expressions

can be given from the general Cholesky algorithm which, as mentioned in §3, can
be implemented in an very efficient way. Thus, given H “ phijq1ďiďjďd

P M˚
d, if

L “ plijq1ďiďjďd
P Θ``

d is the Cholesky form of the matrix c
´1{d
0 pγId ` t

H ¨ Hq P Σ``
d

(that is, if t
L ¨L “ c

´1{d
0 pγId ` t

H ¨ Hq), one can express recursively the coefficients hij

as functions of lij (which is what is needed to apply Theorem 4) as follows : for all
1 ď i ď d,

hii “

gffe
iÿ

k“1

c
1{d
0 l2ki ´ γ ´

i´1ÿ

k“1

h2
ki (79)

and, for all 1 ď i ă j ď d,

hij “ 1

hii

˜
iÿ

k“1

c
1{d
0 lkilkj ´

i´1ÿ

k“1

hkihkj

¸
(80)

(this is just the classical algorithm giving the Cholesky decomposition applied to the

positive definite matrix c
1{d
0 ¨ t

L ¨ L ´ γId — see [19] for details).

In order to transport the measure rνd to the space Θ``
d , one will also need to compute

the Jacobian Jd of the map f´1 ˝ rϕchol : N ˚
d Ñ M˚

d obtained from (78), where

N ˚
d :“

`
rϕ´1
chol ˝ f

˘
pM˚

dq . (81)

To this end, note that, with the notation of Lemma 3, one has rϕchol “ Ψ
pdq
p0,1q and

f “ Ψ
pdq
pγ,c0q in such a way that (56) implies that

Jd “ c
pd´1qpd`2q{p2dq
0

d´1ź

i“1

ˆ
lii

hii

˙d´i`1

.
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Also, it follows from Lemmata 6 and 7 that it is enough to consider the restriction
of the measure rνd to the chart Bdd defined from (73). It is given therein by the volume
element (74) with i “ j “ d.

In view of formulae (79) and (80), any expression involving the coefficients hij of a
matrix H P M˚

d can be viewed as a function of the coefficients lij of the matrix L as

defined above. With this in mind, define two auxiliary functions rJd and rΓd over the
space N ˚

d by setting

rJdpLq :“ Jd and rΓdpLq :“
ˆ}∇g}2

|Bddg|

˙
pHq. (82)

Furthermore, if L P Θ``
d is decomposed as L “ pβ1,uq with β1 P pRą0qd´1 and u P R

p

as in §3 (see Equation (45) sqq. for the notation), it will be convenient to set

rJdpβ1,uq :“ rJdpLq and rΓdpβ1,uq :“ rΓdpLq.

The main result of this section, which is a direct consequence of the upper bound
in (52), can now be stated as follows :

Theorem 5. Assume (68), (77) and also that δ ă 1. Then,

mdpδq ě κ´1
d ¨

ż

N˚
d

rδs
rJdpβ1,uq ¨ rΓdpβ1,uq ¨ dλp`d´1 pβ1,uq . (83)

Here,
N ˚

d rδs :“ tpβ1,uq P N ˚
d : β1 P ∆d´1pδqu

is a subset of N ˚
d , ∆d´1pδq is defined as in (52) and

κd :“
ż

ĂMd

d volp1pHq

is the area of the hypersurface ĂMd.

In view of Lemmata 6 and 7, the constant κd can also be computed with the help of
any of the following formulae :

κd “
ż

M˚
d

ˆ}∇g}2
|Bddg|

˙
pHq ¨ dh11 . . .dhd,d´1 (84)

“
ż

N˚
d

rJdpβ1,uq ¨ rΓdpβ1,uq ¨ dλp`d´1 pβ1,uq . (85)

A direct use of (84) requires that the coefficient hdd be expressed as a function of the
other entries of the matrix H . To this end, it should be mentioned that, as established
in the course of the proof of Lemma 6 below, the coefficient hdd appears only once (in

the form h2
dd) in the determinant defining the set ĂMd in (69) — see §4.5 for details.

If one wants cruder but simpler–to–obtain estimates for the right–hand side of (83), it

should first be noted that the density function rΓd defined in (82) and appearing in (83)
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and (85) as a function of L and in (84) as a function of H is clearly bounded below
by 1. In order to bound it from above, one can bound the gradient therein from above
with the help of Remark 2. Also, the explicit formula given in Equation (93) below for
the partial derivative pBddgq pHq can easily be used to bound the latter quantity from
below as a function of hdd, γ and c0.

The lower bound appearing in Theorem 5 involves the computation of the integral
of an algebraic function (more precisely : the square root of some rational function)
over an algebraic domain (which can be explicitly defined with the help of inequalities
involving polynomials). This can certainly be done numerically in such a way that
Theorem 5 can be seen as a way to obtain numerical values for the quantity mdpδq.
A more theoretical approach would necessarily require involved calculations which can
nevertheless be carried out for a fixed value of d.

As mentioned in §4.1, the case of d “ m “ 2 users and n “ 2 receivers is already
of interest in the theory of Signal Processing. We explicitly work out the estimates
that can be obtained from Theorem 5 in this case. In order to put the emphasis on
the behaviour of the probability m2pδq as a function of δ and in order not to introduce
unnecessary cumbersome definitions, we present the result in the following way, where
an explicit expression for the function χ follows immediately from the proof presented
in §4.6 (see Equation (94) below) :

Corollary 1. Assume that c0 ą γ2 and that δ˚
2 :“ γ{c1{2

0 ă δ ă 1. Then, there exists a
function χ such that

m2pδq ě γ´1c
´1{2
0 ¨

ż 1{
?
δ

?
δ

dab
c
1{2
0 a2 ´ γ

ż θpaq

´θpaq
db ¨ χpa, bqa

θpaq2 ´ b2
:“ n2pδq, (86)

where

θpaq :“

gffe 1

γc
1{2
0

¨
˜
c
1{2
0

a2
´ γ

¸
¨
´
c
1{2
0 a2 ´ γ

¯
(87)

and where the right–hand side is equal to 1 when δ “ δ˚
2 .

Furthermore, the function χ takes its values in a interval of the form rω1, ω2s, where
the constants ω1 and ω2 are such that 0 ă ω1 ă ω2 ă `8 and depend only on γ and
c0.

The corollary implies that the probability m2pδq tends to 1 as δ tends to the critical
value δ˚

2 with an error term governed by the size of the difference n2pδ˚
2 q ´ n2pδq. Note

that upon bounding the function χ from above by the constant ω2, the inner integral
in (86) becomes independent of the variable a. This shows that the error term in the
difference 1 ´ m2pδq is, up to a multiplicative constant, bounded above by

˜ż 1{
?

δ˚
2

?
δ˚
2

´
ż 1{

?
δ

?
δ

¸
dab

c
1{2
0 a2 ´ γ

“ O pδ ´ δ˚
2 q
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(this relation follows from a direct evaluation of the integral in the left–hand side.
Details of the calculations are left as an exercise for the interested reader). We thus
recover when d “ 2 the growth in δd{2 as in Theorem 1.

Typical values for the capacity C0 of a channel and for the Signal–to–Noise Ratio
SNR can be taken as C0 “ 30 bits and SNR “ 5 dB. From the expression for the
function χ deduced from the proof of Corollary 1, one can find an explicit lower bound
for the probability that the Effective Signal–to–Noise Ratio SNReff should be bigger
than a given value s ě 0. From the discussion held at the beginning of §4.4, this
amounts to bounding from below the quantity m2pδq when δ (hereafter denoted by δs)
is viewed as a function of s according to (76). Note that with such choices, γ “ 1{5
and c0 “ e30{25. Furthermore, δ˚

2 “ e´15 « 3.06 ¨ 10´7 arises from the limit value
s˚
2 “ 5{16 “ 0.3125. Some numerical values are recorded in the following table.

s s˚
2 “ 0.3125 1 1.5 2

δs « 3.06 ¨ 10´7 9.79 ¨ 10´7 1.47 ¨ 10´6 ¨ 10´7 1.96 ¨ 10´6 ¨ 10´7

m2pδsq ě 1 0.672723 0.560289 0.489859

s 5 10 30
δs 4.90 ¨ 10´6 ¨ 10´7 9.79 ¨ 10´6 ¨ 10´7 2.94 ¨ 10´5

m2pδsq ě 0.314961 0.223899 0.12972

Thus, for instance, to ensure that the event SNReff ě s occurs with probability at
least 45%, it is enough to choose s “ 2. Also, the initial value of SNR “ 5 is recovered
with probability at least 31%.

As a concluding remark, we would like to mention here that, from a numerical point
of view, the computation of the Cholesky transforms required to estimate the integrals
in Theorem 5 can be implemented in a much more efficient and stable way than using
Equations (79) and (80). For further details, the interested reader is referred to [19]
and to the references therein.

The rest of this section is devoted to the proofs of Lemma 6 and Corollary 1.

4.5. Proof of Lemma 6. The second point is proved in [9, Chap. 11, §C].

As for the first point, given T :“ ptijq1ďiďjďd
P ĂMd and β ą 0, consider the homoge-

neous polynomial F of degree 2d defined as

F pT, βq :“ det
`
β2Id ` t

T ¨ T
˘
.

Note that
F pT, γ1{2q “

(72)
c0 ¨ gpT q (88)

and assume for a contradiction that

BijF pT, γ1{2q “ 0 (89)

for all 1 ď i ď j ď d.



POSITIVE DEFINITE QUADRATIC FORM & LATTICE POINTS 43

It follows from Euler’s formula for the derivative of a homogeneous function that

2d ¨ F pT, βq “
ÿ

1ďiďjďd

tij ¨ BijF pT, βq ` β ¨ BβF pT, βq

(here, Bβ obviously denotes the partial derivative with respect to the last variable β).
Under (89), this implies that

2d ¨ F
`
T, γ1{2˘ “ γ1{2 ¨ BβF pT, γ1{2q. (90)

Let J1, dK denote the interval of positive integers less than d. GivenK Ă J1, dK, denote
furthermore by |K| the cardinality of K and by mK the |K| ˆ |K| matrix obtained by
considering the rows and columns indexed by K in the matrix t

T ¨T . Set conventionally
detmH :“ 1.

As mK is the Gramian matrix of the columns of T indexed by K, detmK is non–
negative. Furthermore, the definition of the determinant readily implies that

F pT, βq “
ÿ

KĂJ1,dK

β2d´2|K| detmK . (91)

Differentiating with respect to β and multiplying throughout by β then yields

β ¨ BβF pT, βq “
ÿ

KĂJ1,dK

p2d ´ 2 |K|qβ2d´2|K| detmK . (92)

On combining (90), (91) and (92), one thus obtains the relation

2d
ÿ

KĂJ1,dK

γd´|K| detmK “
ÿ

KĂJ1,dK

p2d ´ 2 |K|qγd´|K| detmK ,

i.e. ÿ

KĂJ1,dK

2 |K| γd´|K| detmK “ 0.

Since each term on the left–hand side of this equation is positive, this implies that
detmK “ 0 for all non–empty K Ă J1, dK, i.e. T “ 0. Under assumption (68), this

contradicts the fact that T P ĂMd and thus concludes the proof of the first point.

The third point is elementary : given T P M˚
d, the coefficient tdd appears only in the

bottom right corner in the matrix γId ` t
T ¨ T , where it is present as t2dd. Thus, after

expanding the determinant gpT q following the last column, one obtains that

pBddgq pT q “ c´1
0 ¨ 2tdd ¨ det pγId´1 ` t

T 1 ¨ T 1q , (93)

where the matrix T 1 is obtained by stripping off the matrix T from its last column and
row. Clearly, the latter quantity does not vanish under the assumption that T has full
rank. This concludes the proof of the lemma.
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. The claims made in Remark 2 can now be justified as follows : given T P ĂMd denote
by ti (1 ď i ď d) the ith column of the matrix T and by t this matrix viewed as a
vector in R

dpd`1q{2. Upon isolating the terms corresponding to K “ H and K “ tiu
(1 ď i ď d) from the others in (91), this equation together with (88) readily implies

that }t}22 ď pc0 ´ γdq{γd´1. Conversely, it follows from Hadamard’s inequality that the
determinant of the positive definite matrix γId ` t

T ¨ T is less than or equal to the
product of its diagonal entries. Thus,

c0 “ det pγId ` t
T ¨ T q ď

dź

i“1

`
γ ` }ti}22

˘
ď

`
γ ` }t}22

˘d
,

hence the fact that }t}22 ě c
1{d
0 ´ γ.

4.6. Proof of Corollary 1. Let

H :“
ˆ
u v

0 w

˙
P M˚

2

and

L :“
ˆ
a b

0 1{a

˙
P Θ``

2

be such that
t
L ¨ L “ c

´1{2
0 pγI2 ` t

H ¨ Hq .
Formulae (79) and (80) then read

u “
b
c
1{2
0 a2 ´ γ, v “ c

1{2
0 abb

c
1{2
0 a2 ´ γ

and

w “

gffec
1{2
0 b2 ` c

1{2
0

a2
´ c0a2b2

c
1{2
0 a2 ´ γ

´ γ “

gfffe
´

c
1{2
0

a2
´ γ

¯
¨
´
c
1{2
0 a2 ´ γ

¯
´ γc

1{2
0 b2

c
1{2
0 a2 ´ γ

¨

This is easily seen to imply that the set N ˚
2 defined in (81) can be explicitly expressed

as follows :

N ˚
2 “

!
pa, bq P Rą0 ˆ R :

a
δ˚
2 ă a ă p

a
δ˚
2 q´1 and |b| ă θpaq

)
,

where the quantity θpaq has been defined in (87).

Furthermore, the function g defined in (72) reads in this case

gpu, v, wq “ c´1
0 ¨

``
u2 ` γ

˘
¨
`
w2 ` γ

˘
` γv2

˘

and, with the notation of Theorem 5,

rJ2pa, bq ¨ rΓ2pa, bq “
ˆ
c0¨

a2

u2pa, bq

˙
¨
ˆ rgpa, bq
2c´1

0 ¨ wpa, bq ¨ pu2pa, bq ` γq

˙
.
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In this equation, the variables u and w are seen as functions of a and b and rg is the
norm of the gradient of g (with respect to u, v and w) also expressed as a function of
the parameters a and b; that is, with obvious notation,

rgpa, bq :“
`››∇pu,v,wq g

››
2

˘
pa, bq.

Set

χpa, bq :“ c20
2κ2

¨ a2 ¨ rgpa, bq
u2pa, bq ` γ

, (94)

where κ2 is the constant defined for instance in (85).

The existence of the constants ω1 and ω2 is then guaranteed by the fact the parameter
a stays bounded away from zero (see the expression of u above) and the fact that the

gradient of g is continuous and never vanishes on the compact set ĂMd (see Lemma 5
and Remark 2).

Note also that

u2pa, bq ¨ wpa, bq “ γc
1{2
0 ¨

b
c
1{2
0 a2 ´ γ ¨

a
θ2paq ´ b2.

In order to conclude the proof, one needs to show that the right–hand side of (86) is
equal to 1 when δ “ δ˚

2 ; that is, that n2pδ˚
2 q “ 1. With the notation of Theorem 5, this

readily follows from the fact that

N ˚
2 rδ˚

2 s “ N ˚
2

(such a relation does not hold any more in dimension d ě 3).
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technique, 2007.

[8] M.L. Eaton. The Wishart Distribution. In Multivariate Statistics. A Vector Space Approach, chap. 8
Institute of Mathematical Statistics, Beachwood, Ohio, USA, 2007.

[9] F. Jones. Lectures notes in Calculus. Available at : http://www.owlnet.rice.edu/ fjones/.
[10] B. Kirchheim and D. Preiss. Uniformly Distributed Measures in Euclidean Spaces. Math. Scand., 90(1) :

152–160, 2002.
[11] D.Y. Kleinbock and G.A. Margulis. Logarithm laws for flows on homogeneous spaces. Invent. Math.,

138(3) : 451–494, 1998.
[12] D. Kleinbock, N. Shah and A. Starkov. Dynamics of subgroup actions on homogeneous spaces of Lie

groups and applications to number theory. In Handbook of dynamical systems. Volume 1A, pp.813–930.
Amsterdam: North-Holland, 2002.

[13] T.-S. Liu. Invariant measures on double coset spaces. J. Aust. Math. Soc., 5 : 495–505, 1965.
[14] P. Mattila. Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge :

Univ. Press, 1995.
[15] J.M. Milnor. Topology from the differentiable viewpoint. Based on notes by David W. Weaver. Revised 2nd

ed. Princeton, NJ: Princeton University Press, 1997.
[16] O. Ordentlich and U. Erez. Precoded Integer–Forcing Universally Achieves the MIMO Capacity to Within

a Constant Gap. IEEE Transactions on Information Theory, 61(3) : 323–340, 2015.
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