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Trust-Preserving Mechanism for Blockchain
Assisted Mobile Crowdsensing

Long Zhang, Gang Feng, Senior Member, IEEE, Shuang Qin, Member, IEEE, Xiaoqian Li,
Yao Sun, Senior Member, IEEE, and Bin Cao, Senior Member, IEEE

Abstract—Blockchain is envisioned as one of the promis-
ing technologies to address trust concern brought by mobile
crowdsensing (MCS), due to its auditability, immutability and
decentralization. Nevertheless, blockchain cannot fundamentally
guarantee that the valuable sensed data outside the chain can
enter the chain, although data integrity and consistency can
be ensured once it is confirmed inside the chain. In addition,
simply applying blockchain in MCS while ignoring possible
abnormal saboteurs hidden in numerous devices may mislead
the normal operation of blockchain, resulting in untrustworthy
interactions. Consequently, it is highly desirable to build a
trust-preserving mechanism (TPM) to fully enjoy the benefits
of using blockchain in MCS. To this end, we first resort to a
probabilistic trust assessment inferred from the interaction out-
comes in blockchain, to incentivize participants to maintain the
trustworthiness of interactions. By inferring trust to aid decision-
making, trust decision is further made, including leader election
and transaction data generation, to filter untrusted nodes from
participating in blockchain process. Finally, extensive simulations
are conducted to validate the effectiveness and efficiency of TPM,
and improve the performance in terms of contribution rate,
consensus accuracy and system stability.

Index Terms—Blockchain, mobile crowdsensing, trust-
preserving mechanism, trust decision.

I. INTRODUCTION

LEVERAGING ubiquitous devices for data sensing, mo-
bile crowdsensing (MCS) [1], [2] provides data analysis

and computation to customers with common interests under
centralized coordination, facilitating many novel application
paradigms. In MCS, intelligent devices monitor the surround-
ing features at the edge of networks, upload the sensed data
to the MCS server for intelligent processing [3], [4], and
then get rewards based on the evaluation results. Due to
the large amount of data generated from numerous devices
in the current emerging applications, the existing centralized
authority and client-server mode of MCS system hinder the
bidirectional judgment of trust relationship between MCS
servers and terminal devices, making them vulnerable to attack
and deception. On the one hand, the data generated by different
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MCS participants differ in terms of trustworthiness which
involves data quality and user reliability. On the other hand,
most of data collected in MCS is related to the privacy of
participants.

Recently, the emerging blockchain technology provides a
decentralized paradigm for trustworthy data sharing in MCS
[5]. Before interacting with other participants, the sensed data
in blockchain-assisted MCS is hashed and encapsulated into
a basic verifiable data structure, called the transaction. By de-
ploying appropriate consensus protocols and cryptographic al-
gorithms [6], [7], individual participants can independently and
securely interact and verify transactions without the centralized
authority of MCS. Meanwhile, participants in blockchain can
create, transmit and access transactions anonymously, thus
greatly eliminating the possibility of exposing or stealing real
user identity due to the evil MCS. Moreover, only transactions
verified by the majority of participants can be authorized to
be recorded in a distributed ledger, which brings strong trust
endorsement to the sensed data and interactions inside the
blockchain.

However, an obvious vulnerability of blockchain-assisted
MCS is that the data originates in untrusted participants and
interacts through unreliable physical facilities and networks.
While blockchain can ensure the integrity and traceability
of sensed data once a transaction is confirmed inside the
blockchain, it still lacks an effective trust assessment mecha-
nism to determine whether the data outside the blockchain is
allowed inside the blockchain [8]. Obviously, the truthfulness
of the data outside the blockchain cannot be accurately veri-
fied, which is beyond the scope of current blockchain capabil-
ities [9]. Meanwhile, the abnormal behavior of participants
inevitably affects the normal interaction process inside the
blockchain. For example, malicious users may launch byzan-
tine faults to interfere with others [10], and lazy users may
not respond to others in time, thus impeding the consensus
process. This implies that in the absence of an effective trust
assessment mechanism, the trustworthiness of any data and
interactions cannot be guaranteed even if they are confirmed
by the blockchain.

Consequently, there will be a need for a trust-preserving
mechanism (TPM) to bridge the trust gap inside and outside
the blockchain by forming an assessment of interaction infor-
mation. On the one hand, the founding rationale of blockchain
is that mutually untrusted participants interact based on crowd
consensus and verifiable transactions, resulting in truthful and
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verifiable interaction outcomes. On the other hand, trust occurs
naturally in various interaction services in blockchain-assisted
MCS, which is a measurable belief and can be assessed based
on past interaction outcomes [11]. Therefore, incorporating
TPM into the blockchain is a way not only to create an
unforgeable chain of data but also to establish trust inside
and outside the blockchain.

Whereas various trust assessment mechanisms have been
proposed [12]–[15], there is still a lack of an effective assess-
ment approach for blockchain-assisted MCS, which is crucial
to the trustworthiness of the system and the validity of the data.
In general, the existing trust assessment approaches infer a
trust score according to the past interaction outcomes between
participants, which can be designed based on evidence theory,
subjective logic, fuzzy logic, machine learning, etc [16].
However, the rightness of interaction information is hard to
verify in conventional trust assessment approaches due to the
presence of lazy and malicious participants, which directly
affects the accuracy of the inter-node trust scoring. The advent
of blockchain, with its verifiable and immutable features,
makes up for the lack of trust. These observations inspire us to
exploit blockchain to design a trust assessment approach and
facilitate the transfer of valuable data from outside the chain to
inside the chain through transactions. Our main contributions
in this paper are summarized as follows:

1) We propose to incorporate TPM into a blockchain-
assisted MCS framework, which relies on a chained
database to track and secure transactions from MSC,
while TPM is designed to filter untrusted participants so
that valuable data outside the blockchain can be admitted
by the blockchain. In TPM, a trust assessment process is
used to measure whether the participants in the system
are trustworthy.

2) We develop a probabilistic multi-class trust assessment
model, and employ the multinomial distribution to map
interaction outcomes verified by blockchain into ternary
trust scores, i.e., belief, disbelief, and uncertainty. Mean-
while, we consider the adverse impact of deficient
interaction information on inferring trust scores and thus
derive a knowledge defect to compensate for the bias
introduced by insufficient interaction to trust assessment.

3) To use inferred trust to aid decision-making, we resort
to a trusted-leader election to give highly-trusted nodes
more opportunities to be elected as leaders, thus starting
the consensus process correctly. Afterward, we analyze
the maximum transaction throughput considering system
stability and obtain the optimal transaction data size to
reduce network and storage overhead.

4) We provide numerical results to validate the performance
of the proposed TPM in blockchain-assisted MCS. Com-
pared with benchmarks with and without trust assess-
ment, the TPM can achieve significant improvement
in contribution rate, consensus accuracy, and system
stability.

The remainder of the paper is organized as follows. Section
II reviews the existing solutions for trust, blockchain and MCS.
In Section III we illustrate a TPM framework in blockchain-

assisted MCS. Section IV details the trust assessment method-
ology, which is followed by the trust decision in Section V.
Section VI further uses inferred trust to aid decision-making.
Extensive experiments are conducted in Section VII. Finally,
Section VIII concludes the paper.

II. RELATED WORK

We survey the related work of TPM and blockchain in MCS,
and highlight the motivation and novelty of our work.

A. Blockchain-enabled MCS

In order to tackle the challenges of trust, security and pri-
vacy caused by the centralized MCS architecture, blockchain,
as a backbone decentralized framework in data management
systems, has been introduced into MCS, with the aim to realize
trusted transactions among different participants. Recently,
some researchers have studied how to implement task publish,
worker selection and other issues in MCS using blockchain
[17]–[20]. In [17], Zou et al. apply Ethereum-based public
blockchain to replace centralized MCS to protect location
privacy and avoid repudiation and tempering of information. In
addition to the publishers and workers in traditional MCS, the
verifiers act as miners in blockchain-based MCS to execute
proof of work (PoW) consensus. For the purpose of safely
enforcing transactions, the smart contracts in a blockchain
are used to automatically execute digital contracts, which are
triggered when predetermined contract terms are met. With
Ethereum-based public blockchain, Li et al. in [18] design
a series of smart contracts to perform crowdsourcing tasks,
including user register, task release, task reception, etc.

To promote data trading between producers and consumers
without brokers, An et al. in [19] focus on the crowdsensed
data trading using blockchain and smart contracts. To guaran-
tee the trustworthiness of data sensing and trading, the authors
regard the blockchain as a reverse auctioneer to determine
sellers and bidding strategy securely and reliably. In the field of
intelligent transportation, Ning et al. in [20] address the safety,
latency and utility challenges brought by blockchain-enabled
MCS and formulate a multi-objective optimization problem by
jointly considering these challenges.

Overall, the aforementioned research provides useful refer-
ences for understanding blockchain-assisted MCS to improve
trust, security and privacy from a system view. Nevertheless,
there is little research available on how to fill the trust gap
inside and outside the blockchain. As noted, if the data
generated by untruthful nodes is added to the blockchain,
the rightness of the ledger will be degraded. Conversely, the
untrusted ledger can further mislead the interaction behavior
of nodes and destroy the normal operation of the blockchain.
Consequently, establishing trust in MCS is a critical problem
to be solved.

B. Integration of Trust and Blockchain

To address the trust challenge caused by untruthful data
and abnormal interactions, trust management mechanisms can
be exploited to supervise and motivate distributed nodes. In
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Fig. 1. The TPM framework in blockchain-assisted MCS, where the red
dashed box represents the malicious transactions published by abnormal
nodes.

leader-based blockchain, a leader (miner) should be elected to
initiate the consensus process. In [12], Mohammed et al. use
the payment in the form of reputation to incentivize normal
nodes and punish misbehaving nodes, where the reputation
is calculated by Vickrey, Clarke, and Groves (VCG) model.
To resist selfish edge attacks and faked service attacks, Xiao
et al. in [13] propose a blockchain-based trust mechanism
to assess service reputation using computational results from
edge devices. In PoW, the edge device with the highest
service reputation has the highest opportunity to win the
miner election. An et al. in [14] present a quality control
mechanism for crowdsensing applications through a credit-
based consensus node selection, where the credit value is
incremented or decremented with the occurrence of normal
or abnormal behavior.

In addition, trusted computing based on cryptographic
technology has been developed to improve the security and
trustworthiness of computer platforms [21]. By embedding
trusted platform modules on the chip, transactions can be
securely executed in an off-chain computing environment, and
then the results can be returned to the blockchain [22].

Although some progress has been made in trust-preserving
blockchain, most of the work is based on oversimplified and
subjective trust assessment, without inferring trust from the
actual interaction behavior of blockchain. Furthermore, most
studies integrate MCS into a blockchain with single chain
ledger structure and PoW consensus protocol. Unfortunately,
such blockchain yields limited throughput, long confirmation
latency and high resource consumption, which is not appro-
priate for resource-constrained mobile devices. To this end,
Chatzopoulos et al. in [23] introduce a directed acyclic graph
(DAG)-based blockchain, which allows concurrent transac-
tions to improve cost-efficiency and scalability. By measuring
the reputation of users with the earned fees, the probability of
a user being selected to maintain DAG is proportional to the
reputation.

C. The Novelty of the Paper

Owing to the aforementioned considerations, we aim to
design an effective TPM under the framework of DAG-based
blockchain, so that valuable sensed data outside the blockchain
can be authorized to enter the blockchain. Different from the
aforementioned research, we provide a more holistic view of
modeling trust in blockchain by constructing a ternary trust as-
sessment. It features the use of multinomial distribution to map
the interaction outcomes verified by blockchain into multi-
class trust scores including belief, disbelief and uncertainty.
Meanwhile, we also address the problem of knowledge defect
caused by deficient interaction quantity, which is crucial for
forming accurate and fair trust assessment.

III. FRAMEWORK OF TPM IN BLOCKCHAIN-ASSISTED
MCS

Depending on the specific service requirements, interac-
tion nodes can be assigned to one or more roles, including
transaction requesters, transaction publishers and transaction
verifiers [17]. Specifically, transaction requesters are the ini-
tiators to publish MCS tasks with requirements. Motivated
by rewards, transaction publishers are recruited to generate
transactions with sensed data, ID, Hash, etc., which are then
submitted to the blockchain. Through consensus protocols,
transaction verifiers verify the validity and integrity of received
transactions. For leader-based consensus protocols, transaction
verifiers regularly elect a leader to aggregate the valid and
eligible transactions into a candidate block and send it to all
other verifiers called followers.

To reduce consensus delay and transaction throughput,
splitting the large-scale networks into multiple groups is an
effective method while improving system scalability [24].
Hence, we consider that the interaction nodes in the system
constitute G non-overlapping and non-empty groups. For the
sake of presentation, the g-th group is indexed by Gg , which
can be formed based on distances, social ties and interests [24],
[25]. In this paper, we can statically define groups according
to the regions where nodes are located.

In Fig. 1, the framework of TPM in blockchain-assisted
MCS is built on a hierarchy of IoT systems, composed of
sensing layer, trust-Chain layer and application layer from
left to right. At the bottom of Fig. 1, we show the work-
flow of TPM in blockchain-assisted MCS. Starting from the
transaction generation and dissemination at sensing layer, the
transactions are evaluated and verified at trust-chain layer, and
eligible ones are allowed to be included in the ledger.

A. Sensing Layer

Interaction nodes at sensing layer are responsible for re-
alizing transaction generation and dissemination. At this
layer, the normal nodes, such as heterogeneous smart devices,
act as transaction publishers to honestly participate in the
tasks. Meanwhile, abnormal nodes can deliberately publish
transactions that cause failures to occur in blockchain or affect
the service quality in MCS. In transaction generation stage, the
sensed data with some additional information will be filled
into a transaction Tx = (Hash, ID,Trust,Data,Timestamp),
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where Hash is the hash digest of Tx, ID is the assigned
identity, Trust is the trust score of the transaction publisher,
Data is the transaction data, and Timestamp is the update
time of transaction generation. In the subsequent transaction
dissemination stage, the signed transaction is forwarded to the
associated leader node for further verification.

B. Trust-Chain Layer

The trust-chain layer is served by verifiers composed of
leader and follower nodes, in which leader nodes are in
charge of verifying the rightness and integrity of transactions
received from sensing layer, and aggregating valid and eligible
transactions into candidate blocks, and the follower nodes are
in charge of checking the candidate blocks. The functions
involved include trust assessment and decision, transaction
evaluation and block generation and block validation.

For trust assessment and decision, each node infers the trust
score based on the interaction information from blockchain
and makes trusted decisions according to TPM. Please refer to
the next section for details of TPM. For Transaction evaluation
and block generation, according to the votes of follower nodes
in each group, a trusted leader is elected to fairly evaluate
the transaction. Through transaction evaluation, the leader
is empowered to incorporate the eligible transactions into a
block, so as to maintain the integrity and trustworthiness of
transaction data inside the blockchain. For block validation,
the verifiers in a group validate received candidate blocks,
including hash digest, trust score, signature, timestamp, etc.
The verified candidate block will be added to the ledger and
wait to be confirmed as a block until the preset policy is met.

In this paper, we resort to a directed acyclic graph (DAG)-
based distributed ledger to record transaction data. For con-
ventional single-chain data structure (e.g., bitcoin), it is im-
permissible for concurrent transactions to form forks at the
same position in the chain. Instead, the DAG-based distributed
ledger allows concurrent transactions to be processed simulta-
neously, resulting in a forking structure. As a result, DAG-
based design significantly improves transaction throughput
and scalability, but is inevitably vulnerable to attacks with
intensive-computing power.

In DAG, the new incoming blocks need to select some
published and yet unapproved candidate blocks (called tips)
for approvals and store their hashes in own blocks, yielding
a forking-chain structure. After that, the incoming block also
becomes a tip waiting for subsequent approvals. To measure
the workload of issuing a block, each block is attached with
a weight value. With the continuous arrival of incoming
blocks, a tip is eventually regarded as a block when its
cumulative weight reaches a predefined threshold. Note that
the cumulative weight of a block is calculated as the weight
of itself plus the weights of other blocks that directly and
indirectly approve it. In TPM in blockchain-assisted MCS, the
incoming block prefers to approve top-k tips with the highest
trust score in DAG. In Fig. 1, we depict the DAG ledger in the
presence of abnormal nodes, where an abnormal tip (depicted
by red box) cannot be approved by incoming blocks with the
assistance of TPM, and thus it will be eventually isolated.

C. Application Layer

The application layer uses application programming inter-
faces (APIs) to allow interaction nodes to access. With the
requirements of APIs, interaction nodes can be assigned to
the appropriate group and smart contracts.

IV. TRUST ASSESSMENT OF TPM IN
BLOCKCHAIN-ASSISTED MCS

According to the definition of ITU-T recommendation [11],
trust can be viewed as the capacity and belief of one entity
to predict another entity’s future behavior based on the in-
teractions accumulated from history. In this section, we aim
to infer the trust score between nodes using the interaction
information from transaction generation to block validation.

After an interaction, the corresponding interaction outcome
(typically positive/negative) can be used as the first-hand
observation to infer a trust score. For example, to mitigate
counterparty risk, Bitcoin-otc marketplace infers the trust score
of a user by aggregating the number of positive and negative
ratings1. Considering the uncertain interaction outcomes, we
express the general trust score as T = (Tb, Td, Tu) in [0, 1],
where Tb is the belief degree inferred from normal interaction
outcome b, Td is the disbelief degree inferred from abnormal
interaction outcome d and Tu is the uncertainty degree inferred
from uncertain interaction outcome u [26].

A. Trust Assessment Process

The designed TPM operates in two phases: trust behavior-
awareness and trust assessment.

1) Trust behavior-awareness: The trust behavior-awareness
identifies a series of interaction behavior used to form trust
assessment. Owing to the auditability and verifiability of
blockchain, trust behavior-awareness monitors and records the
interaction outcomes b, d and u throughout transaction gen-
eration and dissemination, transaction evaluation and block
generation and block validation processes.
• The interaction behavior results in outcome b if the

transaction generated by a node is successfully added
to DAG ledger through a leader, i.e, the transaction is
confirmed from trust generation to block validation. The
interactions that successfully pass transaction evaluation,
block validation and trust assessment can be detected as
Hash(PreHash,Merkle,Nonce) ≤ Target, where Hash()
is the hash operation, PreHash is the hash value of the
previous block, Merkle is the root of the Merkle tree
containing eligible transactions in the block, and Target
is a hash value that a valid block must be smaller than
or equal to.

• The interaction behavior results in outcome d if any of
the functions from trust generation to block validation
fails. The abnormal interactions are typically caused by
Byzantine failures, i.e., some of the nodes fail in respond-
ing or interact maliciously. Once abnormal interactions
are detected (Hash(PreHash,Merkle,Nonce) > Target),
the resultant interaction outcome d will be recorded.

1https://bitcoin-otc.com/viewratings.php
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• The interaction behavior results in outcome u if the
generated transactions and blocks cannot be included
in DAG ledge due to ineligible and invalid reasons. In
addition, we consider that some leaders cannot complete
an interaction during their term due to lazy behavior,
resource constraints, etc. As a result, the resultant inter-
action outcome u between nodes will be recorded.

In the following, we use ai,j = (ab,i,j , ad,i,j , au,i,j) to
denote the number of direct interaction outcome from node i
to node j, where ab,i,j , ad,i,j and au,i,j represent the number
of interaction outcomes b, d and u from node i to node j,
respectively. Accordingly, the total interaction outcome from
node i to node j can be expressed as ai,j =

∑
o∈{b,d,u} ao,i,j .

In addition, the interaction outcome of node i can be expressed
as ai = (ab,i, ad,i, au,i), where ab,i, ad,i and au,i represent
the number of interaction outcomes b, d and u of node i,
respectively. The total interaction outcome of node i can be
calculated as ai =

∑
o∈{b,d,u} ao,i.

2) Trust assessment: Trust assessment aims to infer the
trust score between a pair of interaction nodes from historical
interaction information. For ease of representation, we use
a = (ab, ad, au) as a specific example to represent ai,j or
ai, where ab, ad and au represent the number of interaction
outcomes b, d and u, respectively. In addition, in order to
measure the impact of different interaction outcomes on trust
assessment, we use the weight τ = (τb, τd, τu) to indicate the
importance of interaction outcomes b, d and u, respectively.
To punish abnormal behavior and prevent the proportion of
normal outcomes b from increasing rapidly, τd and τu are
usually greater than τb.

To form a trust assessment on different interaction out-
comes, the Dirichlet distribution can be used to map the
multi-class interaction information into a probability distri-
bution [27]. Given the multi-class interaction outcome a =
(ab, ad, au), we can construct a ternary trust score T =
(Tb, Td, Tu), in which each element in T is regarded as
an expectation of the parameter in a under the Dirichlet
distribution. Accordingly, the probability distribution of each
possible outcome b, d and u can be regarded as a multinomial
distribution Θ = (Θb,Θd,Θu), where Θb, Θd and Θu are
unknown prior probability of each possible outcome b, d and
u, respectively, and

∑
o∈{b,d,u}Θo = 1. According to the

Bayesian theory, the Dirichlet distribution is the conjugate
prior of multinomial distribution Θ = (Θb,Θd,Θu). Thus,
we can express the probability density function (PDF) of the
Dirichlet distribution [28] as

Dir (Θ|a) =
Γ
(∑

o∈{b,d,u} τoao

)
∏
o∈{b,d,u} Γ (τoao)

∏
o∈{b,d,u}

Θτoao−1
o , (1)

where Γ(·) is Gamma function. In addition, the expectation of
Θ is EDir(Θ|a) (Θo) = τoao∑

o∈{b,d,u} τoao
.

Furthermore, we use a′ = (a′b, a
′
d, a
′
u) to denote the possible

interaction outcome for the subsequent interaction, where a′b,
a′d and a′u represent the possible outcomes of belief b, disbelief
d and uncertainty d, respectively. As the conjugate prior of
multinomial distribution, the fact is if the prior distribution
of multinomial follows the Dirichlet distribution, so does the

posterior distribution. Therefore, for the o-th possible outcome,
its weighted expectation under the posterior distribution can
be expressed as

ED(Θo|a′) (Θo) =

∫
Θo

ΘoD (Θo|a′) dΘo

=
τoao + τoa

′
o∑

o∈{b,d,u} (τoao + τoa′o)
. (2)

According to the expectation of the Dirichlet distribu-
tion, the trust assessment To can be represented as To =

τoao+τoa
′
o∑

o∈{b,d,u}(τoao+τoa′o) (o ∈ {b, d, u}). However, using deficient
observations to assess trust can easily lead to knowledge
defect, resulting in inaccurate and unfair trust score. As a
result, a small number of interactions may yield a high trust
score. As such, malicious nodes can easily improve the belief
degree Tb by increasing the number of normal interactions
over a period of time. To remedy this defect, we consider the
impact of imperfect interaction knowledge on trust assessment
by exploiting the definition of certainty in [15]. For the
multinomial distribution considered in this paper, we further
derive a knowledge defect c (a′) as below.

To obtain c (a′), we first express the conditional PDF
of Θ given a′ as f (Θ|a′). Due to the mean value(∫ 1

0
f (Θ|a′) dΘ

)
/ (1− 0) = 1, the idea of computing c (a′)

is to use mean absolute deviation (MAD) to count the number
of increases and decreases from mean value 1 [15]. Given the
observed interaction space a′ = (a′b, a

′
d, a
′
u) and corresponding

probability Θ = (Θb,Θd,Θu), c (a′) can be calculated based
on MAD, expressed by c (a′) = 1

2

∫∫∫ 1

0
|f (Θ|a′) − 1|dΘ,

where 1
2 is a scaling factor to eliminate double counting. To

obtain f (Θ|a′), we should calculate PDF f (Θ) and proba-
bility distribution Prob (a′|Θ). In fact, f (Θ) follows Dirich-
let distribution Dir (Θ|a′) and Prob (a′|Θ) is multinomial
distribution, i.e., Prob (a′|Θ) =

(
a′

a′b,a
′
d,a
′
u

)∏
o∈{b,d,u}Θ

a′o
o .

Substituting D (Θ|ãi,j) and Prob (a′|Θ) into c (a′), we have

c (a′) =
1

2

∫∫∫ 1

0

|f (Θ|a′)− 1| dΘ

=
1

2

∫∫∫ 1

0

∣∣∣∣∣ Prob (a′|Θ) f (Θ)∫∫∫ 1

0
Prob (a′|Θ) f (Θ) dΘ

− 1

∣∣∣∣∣ dΘ,

=
1

2

∫∫∫ 1

0

∣∣∣∣∣∣
∏
o∈{b,d,u}Θ

ao+a′o−1
o∫∫∫ 1

0

∏
o∈{b,d,u}Θ

ao+a′o−1
o dΘ

− 1

∣∣∣∣∣∣ dΘ.

(3)

Note that the calculation of knowledge defect usually con-
sumes a relatively large amount of time due to the triple
integral involved in (3). In practice, an effective solution
is to pre-calculate the value of knowledge defect and save
it as a lookup table to avoid repeated calculation. Based
on ED(Θo|a′) (Θo) =

τoao+τoa
′
o∑

o∈{b,d,u}(τoao+τoa′o) in (2) and c (a′)

in (3), the general trust score can be calculated as T =

(Tb, Td, Tu), where Tb = c (a′)
τbab+τba

′
b∑

o∈{b,d,u}(τoao+τoa′o) , Td =

c (a′)
τdad+τda

′
d∑

o∈{b,d,u}(τoao+τoa′o) and Tu = 1− Tb − Td.
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DTi,j =
(
c(a′i,j)

τbab,i,j + τba
′
b,i,j∑

o∈{b,d,u}(τoao,i,j + τoa′o,i,j)︸ ︷︷ ︸
DTb,i,j

, c(a′i,j)
τdad,i,j + τda

′
d,i,j∑

o∈{b,d,u}(τoao,i,j + τoa′o,i,j)︸ ︷︷ ︸
DTd,i,j

, 1−DTb,i,j −DTd,i,j︸ ︷︷ ︸
DTu,i,j

)
. (4)

B. Direct and Indirect Trust Assessment

Typically, trust assessment between a pair of nodes yields
direct and indirect trust scores. If node i has ever interacted
with node j, the direct trust score can be obtained. In contrast,
it is reasonable to infer that node i may trust node j to some
degree according to the recommendation of another node, say
x, yielding the indirect trust score.

First, substituting the direct interaction outcome ai,j =
(ab,i,j , ad,i,j , au,i,j) into the general trust score T and the
knowledge defect c (a′), the direct trust score is given by
DTi,j = (DTb,i,j , DTd,i,j , DTu,i,j) with the corresponding
c(a′i,j). As a result, the direct trust score DTi,j can be
expressed in (4).

Next, the indirect trust score IT
i

x−→j
from node i to node j

can be calculated based on the recommendation of common
neighbors. Here we use i

x−→ j (x ∈ Ψi,j) to denote an
interaction path from node i to node j through neighbor node
x, Ψi,j = N(i)

⋂
N(j) is the set of common neighbors of

nodes i and j, N(i) and N(j) are the neighbors of nodes
i and j respectively [29]. For fairness and motivation, the
common relationship between nodes can be considered in
indirect interactions. For example, the nodes in a community
of common interest tend to contribute more than those of an
irrelevant community. Let ωi,j be the common relationship
weight between nodes i and j, typically reflecting common-
distance, common-neighbors, etc., given by

ωi,j =

{
Dis (i, j) /maxi′,j′∈Gg Dis (i′, j′), co-distance,
Ψ, co-neighbors,

(5)
where Dis(i, j) represents the distance between nodes i and
j, and Ψ represents the number of common neighbors. By
associating ωi,j , the indirect trust score can be calculated as

IT
i

x−→j
=
(
IT

b,i
x−→j
, IT

d,i
x−→j
, IT

u,i
x−→j

)
,

=

{
DTi,x, if i == v,

DTx,j , if j == v,
(6)

where v ∈ arg min{i,j} (ω̄i,xDTb,i,x, ω̄x,jDTb,x,j). ω̄i,x and
ω̄x,j are the normalized common relationship weights respec-
tively.

So far we have obtained indirect trust score IT
i

x−→j
from

multiple interaction paths i x−→ j. Next, the fusion mechanism
is needed to combine multiple indirect interaction paths. To
achieve this, Dempster-Shafer’s rule can be used to effectively
tackle the combination problem of multiple indirect trust
[30]. Formally, the aggregated indirect trust score is given

by IT i,j = (ITb,i,j , ITd,i,j , ITu,i,j). Following the Dempster-
Shafer’s rule, IT i,j can be expressed as

IT i,j =



ITb,i,j =

∑
l1∩l2···∩lΨ={b}

IT
l1,i

1−→j
···IT

lΨ,i
Ψ−→j

1−
∑

l1∩l2···∩lΨ=∅
IT

l1,i
1−→j
···IT

lΨ,i
Ψ−→j

,

ITd,i,j =

∑
l1∩l2···∩lΨ={d}

IT
l1,i

1−→j
···IT

lΨ,i
Ψ−→j

1−
∑

l1∩l2···∩lΨ=∅
IT

l1,i
1−→j
···IT

lΨ,i
Ψ−→j

,

ITu,i,j =
IT

u,i
1−→j
···IT

u,i
Ψ−→j

1−
∑

l1∩l2···∩lΨ=∅
IT

l1,i
1−→j
···IT

lΨ,i
Ψ−→j

.

(7)

Finally, substituting the total interaction outcome ai =
(ab,i, ad,i, au,i) into the general trust score T and c (a′), the
trust score of node i can be calculated as Ti, i.e., Ti =
(Tb,i, Td,i, Tu,i), expressed in (8).

V. AID TO DECISION-MAKING USING TRUST

By inferring trust to aid decision-making, TPM helps the
system offer effective and efficient services by selecting trust-
worthy workers to generate reliable transaction data. Next, we
will elaborate on how trust decision is made during transac-
tion generation and dissemination, transaction evaluation and
block generation, and block validation processes.

A. Transaction Generation and Dissemination

In order to issue a transaction Tx and let the other nodes
validate it, each transaction publisher first creates a storage
unit to store sensed data and transmits Tx to the associated
leader node.

Considering that individual participants collect and share
sensing data at the edge of mobile networks, the impact
of channel fading and interference hinders the transaction
delivery ratio. To measure the level of delivered transaction,
we represent the transaction delivery probability as the ratio
of transaction data that are successfully delivered to the desti-
nation from the source. Given the transaction data size txsize

i ,
the transaction delivery probability Ptx

i,j can be approximately
calculated as

P tx
i,j =

(
1−

∫ ∞
0

P ber
i,j (γ) p (γ) dγ

)txsize
i

=

1− α̂M
2

1−

√
γ̃β̂M

2 + γ̃β̂M

txsize
i

, (9)

where γ is the signal-to-interference plus noise ratio (SINR),
p(γ) is the probability of density function (PDF) of γ, and
P ber
i,j (γ) is the bit error probability for a given γ. Note

that P ber
i,j (γ) is determined by the specific modulation and
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Ti =
(
c(a′i)

τbab,i + τba
′
b,i∑

o∈{b,d,u}(τoao,i + τoa′o,i)︸ ︷︷ ︸
Tb,i

, c (a′i)
τdad,i + τda

′
d,i∑

o∈{b,d,u}(τoao,i + τoa′o,i)︸ ︷︷ ︸
Td,i

, 1− Tb,i − Td,i︸ ︷︷ ︸
Tu,i

)
. (8)

coding schemes, such as M-PAM, M-PSK and M-QAM.
Generally, P ber

i,j (γ) can be the represented as a generic form,

i.e., P ber
i,j (γ) = α̂MQ(

√
β̂Mγ), where α̂M = αM/ logM and

β̂M = βM/ logM [31]. Here, αM and βM are the modulation-
specific constants, and Q(·) is the Gaussian Q-function [31],
[32]. Furthermore, we consider that fading channels follow a
Rayleigh distribution, and thus γ is exponentially distributed
with mean value γ̃, such that γ̃ = E[|hi,j |2pj/(N0 + I)],
where hi,j is the channel gain, N0 is the noise power, pj is the
received power of the target node j, and I is the interference
power.

B. Transaction Evaluation and Block Generation

In each consensus group, the leader node generates a block
by iteratively executing PoW, until a nonce that satisfies the
difficulty requirements is found. Once the leader is elected,
other nodes in the associated consensus group, called follow-
ers, must trust any requests from the leader. However, the
leader election brings a concern that abnormal nodes may pose
threats to the consensus process. To ensure the randomness
and democracy of leader selection, any node can start the
leader election, but abnormal nodes can slow down the system
progress or even interrupt the current consensus process. To
reduce the adverse impact of abnormal behavior on block
generation, trust assessment can guide nodes to make trust
decision, so that highly-trusted nodes have more opportunities
to be elected leaders.

For leader-based consensus protocols, PBFT [10] and Raft
[33] are efficient ways to achieve consistency of distributed
nodes for consortium and private networks. Because Raft has
high transaction throughput and low communication complex-
ity compared with PBFT [34], we resort to Raft to perform
trusted-leader election in this paper. Note that trusted-leader
election can also be applied to PBFT with appropriate mod-
ifications. Unlike randomized leader elections based on Raft
and PBFT, a majority rule can be used to decide to elect a
trusted leader, denoted as

j∗ = majority
i,j∈Gg

(vi,j), (10)

where vi,j is a vote from the i-th follower to the j-th candi-
date leader, majority(·) is a function that indicates whether
candidate leader j obtains a majority of votes, and j∗ denotes
the election result, i.e., candidate leader j is elected as the
leader.

In addition, one or more candidate nodes attempt to
trigger leader election using randomized election time-
outs for fairness. Let the timeout interval be [t1, t2], the
timeout of each node t can be randomly set in t ∈
[t1, t1 + (1− Tb,j)ε(t2 − t1)], where ε is a constant used to

scale down (ε > 1) or scale up (0 < ε < 1). Obviously,
this simple way makes trustworthy nodes have the larger
probability to be candidate nodes, while ensuring randomness.

The elected leader regularly sends heartbeats to the asso-
ciated followers to maintain authority. Whenever a follower
receive a heartbeat, it should reset an election timeout to
a random value. In summary, the followers start the leader
election process based on the following steps:

Step 1: If any follower does not receive heartbeats after a
timeout, the node that finishes the timeout first becomes the
candidate leader, votes itself and sends a voting request to
other followers.

Step 2: When the followers receive the voting request, they
close the local timeout. Meanwhile, the followers validate the
consistency and integrity of DAG snapshot of candidate leader.
If the DAG is verified successfully, each follower calculates
the trust assessment Ti,j based on the interaction history.
According to validation results and trust score, each node votes
with a ternary-opinion 〈1, 0,−1〉, expressed as

vi,j =


1, if Ti,j ≥ τ,
0, if Ti,j < τ,

−1, if validation fails,

(11)

where τ is a trust score threshold, which can be determined
by the average trust score of Ti,j .

Step 3: Once the candidate leader obtains the majority
of votes, it wins the election and sends heartbeats to other
followers. In the subsequent duration, the leader node needs
to perform transaction evaluation to include eligible transac-
tions in the block. Specifically, the evaluation function on
the leader node computes the trust score Ti of transaction
publishers and selects the eligible transactions with high trust
score. If a transaction is successfully added to the ledger, the
interaction outcomes can be updated to ab,j,i = ab,j,i + 1 and
ab,i = ab,i + 1 accordingly by the leader node. Otherwise,
ad,j,i = ad,j,i + 1 and ad,i = ad,i + 1.

After the term of leader node ends, the evaluation function
on transaction publishers computes the trust score of the leader
by verifying the newly generated block. Depending on the out-
come of blockchain interaction, transaction publishers update
the interaction outcome to ab,i,j = ab,i,j+1 and ab,j = ab,j+1
(or ad,i,j = ad,i,j + 1 and ad,j = ad,j + 1) accordingly.
Note that lazy leaders in the system can slow down the
consensus process, which may not be effectively detected by
the blockchain. Therefore, we employ a statistic evaluation
function to detect lazy leader nodes. By observing historical
delay data of the interaction completed by the leaders, the
average delay µ̂ and the variance σ̂2 can be counted. If a new
observation is greater than µ̂+ 3σ̂, the leader can be regarded
as a lazy node. As a result, the interaction outcomes au,i,j and
au,j can be updated by transaction publishers.
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C. Block Validation
To enable a candidate block to be included in DAG, the

TPM in blockchain-assisted MCS should process the below
stages:

Stage 1: Once a candidate block is generated, the leader
node first randomly selects some candidate tips (not exceeding
the size of the set of visible tips).

Stage 2: Then the leader node validates the candidate tips,
while executing trust assessment for the eligible candidate tips
and sorting them in descending order of trust score.

Stage 3: Next the candidate block chooses the top-k tips
with the highest trust score from the eligible candidate tips,
and references the hash of k tips in DAG.

Stage 4: In addition to containing transactions, timestamp,
leader ID and trust assessment of the leader, the hashes of
the k tips are added into the candidate block. After that, the
candidate block will be propagated to other consensus groups
for cross-validation.

Through the above process, the successfully validated block
can be added into the DAG as a new tip. As subsequent blocks
arrive at the DAG for continuous approvals, the candidate
block will eventually become a block until cumulative weight
reaches a defined threshold.

It is worth noting that block validation should select a set
of visible tips. To improve the diversity and freshness of trust,
we regard a tip whose timestamp plus the maximum visible
timespan does not exceed the current time as a visible tip.
As such, the tips of highly-trusted nodes can be assessed
and validated by more nodes within the maximum visible
timespan, while the tips of abnormal nodes can be isolated
due to the less selection.

D. Group Transaction Throughput
During the interaction process of blockchain, the leader can

easily become a communication bottleneck. Therefore, suc-
cessful interactions play a vital role not only in building trust
among nodes, but also in improving group transaction through-
put. In blockchain, the maximum transaction throughput is
mainly determined by block size Bsize, transaction number
Bnum included in a block, block interval ξinvl. Specifically,
block size Bsize is determined by the size of sensed data, block
interval ξinvl is the required time that a leader node to publish
a block. Hence, the transaction throughput of the g-th group
at time t is given by

TPSg (t) =
min

{
Bsize,Txg (t)

}
txsizeξinvl

, (12)

where Txg (t) is the communication throughput of the g-th
group at time t, and txsize is the average transaction size.

The communication throughput Txg (t) can be expressed as

Txg (t) =
∑
i∈Gg

λitx
size
i Ptx

i,j , (13)

where λi is the transaction generation rate of the i-th node in
unit time.

For block interval ξinvl, it is mainly determined by trans-
action computation delay ξtask and block generation delay
ξpuzzle.

1) Transaction computation delay ξtask: Upon receipt of
transactions, the leader node should process sensed data in
each transaction. Let ci be the computation density (CPU
cycles per transaction), and the computational capability of
the associated leader be fj (CPU cycles per second). ξtask is
calculated by ξtask =

∑
i∈Gg

λici
fj

.
2) Block generation delay ξpuzzle: To have the right to

create a candidate block, the leader node should perform a
hash operation to solve a cryptographic puzzle. The required
time is probabilistically determined and depends on the target
difficulty value D and hash rate hashratej (the number of
hash operation per second). The average time for successfully
creating a candidate block ξpuzzle is exponentially distributed
with block generation rate rateblock

j = hashratej/D [35],
[36].

In summary, given the maximum block interval Binvl, ξinvl

can be approximately expressed as

ξinvl = min
(
Binvl, ξtask + ξpuzzle

)
. (14)

VI. TRUST DECISION FOR TRANSACTION SIZE
OPTIMIZATION

Different from the lightweight data in financial field,
blockchain-assisted MCS packages sensed data into transac-
tions, which poses a challenge to resource-constrained mobile
devices and wireless networks. To address the issue, this sec-
tion aims to make a trust decision to optimally plan transaction
size by exploiting the priority of trust assessment. As such, this
trust decision lowers down the throughput share of unreliable
transaction data in DAG, thereby reducing excessive latency
and computational overhead.

A. Transaction Size Optimization

As noted, the tips observed by each node at the current time
need to be approved by incoming blocks at the next time. To
measure the backlog level of tips, the dynamic equation of the
throughput of tips can be expressed as

Cg (t) = max [Cg (t− 1)−Dg (t) , 0]
+

+Ag (t) , (15)

where Cg (t) is the throughput of unapproved tips at time t,
Dg (t) is the throughput of approved tips at time t, Ag (t)
is the throughput of incoming tips at time t, and Ag (t) =
min

{
Bsize,Txg (t)

}
.

In fact, the backlog level of tips can be used to measure the
dynamic changes of transactions in the system. To adjust trans-
action throughput adaptively based on backlog level, Lyapunov
optimization theory is an effective modeling method, which
can deal with the long-term average optimization problem in
a stochastic system. Hence, a transaction size optimization
problem based on Lyapunov optimization and trust assessment
is formulated in the paper to jointly optimize transaction
throughput and backlog level. To measure the system’s in-
stability, we define a quadratic function with respect to tip
throughput at each time, which can be regarded as a Lyapunov
function [37], expressed as L (t) = 1

2

∑G
g=1 [Cg (t)]

2.
Following the Lyapunov optimization framework, now we

can define a one-unit Lyapunov drift ∆L(t) = E[L (t+ 1)−
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L (t)] to represent the difference in the Lyapunov function
from time t to (t + 1). Considering the gain after taking
control actions, the Lyapunov drift-minus-gain function can
be represented as

∆L (t)− V ·
G∑
g=1

E [TPSg (t)] , (16)

where V is a non-negative control parameter to measure the
importance of transaction throughput maximization compared
with the tip stability. With the control parameter V , we can
balance the transaction throughput maximization and the tip
stability by minimizing the drift-minus-gain function. Further-
more, the upper bound of the drift-minus-gain function can be
derived based on Lemma 1 [37].

Lemma 1: (The upper bound of drift-minus-gain function).
Under the feasible transaction data, the maximum through-

put of incoming tips Amax
g and the maximum throughput of

approved tips Dmax
g , we have the upper bound of drift-minus-

gain function as follows

∆L (t)− V · E [TPSg (t)] ≤ B − V ·
G∑
g=1

E [TPSg (t)]

−
G∑
g=1

E [Cg (t− 1)Dg (t)] +

G∑
g=1

E [Cg (t− 1)Ag (t)] ,

(17)

where B = 1
2

∑G
g=1

(
Dmax
g

)2
+ 1

2

∑G
g=1

(
Amax
g

)2
.

Proof: In (17), we can observe that the proof of upper bound
of drift-minus-gain function in (17) is equivalent to that of
the Lyapunov drift ∆L(t). Therefore, we only need to prove
∆L(t) ≤ B −

∑G
g=1 E[Cg(t)Dg(t)] +

∑G
g=1 E[Cg(t)Ag(t)].

For ∆L (t), we have

∆L (t) = E[
1

2

G∑
g=1

[Cg (t+ 1)]
2 − 1

2

G∑
g=1

[Cg (t)]
2
]

= E[
1

2

G∑
g=1

([Dg (t+ 1)]
2

+ [Ag (t+ 1)]
2

+ (18)

2 (Ag (t+ 1)−Dg (t+ 1))Cg (t)− 2Dg (t+ 1)Ag (t+ 1))]

≤ B + E[

G∑
g=1

Cg (t)E [Ag (t+ 1)−Dg (t+ 1)]] (19)

The proof is completed.
Compared to minimizing the drift-minus-gain function in

(16), minimizing the upper bound of drift-minus-gain function
in (17) is more tractable. Hence, we can minimize the upper
bound of drift-minus-gain function to jointly ensure tip sta-
bility and achieve a higher transaction throughput. Given the
states of incoming and approved tips, an adaptive transaction

size generation decision can be made based on the following
Lyapunov optimization:

P1 : min
{txsize

i }
B − V

G∑
g=1

TPSg (t)−

G∑
g=1

Cg (t− 1)Dg (t) +

G∑
g=1

Cg (t− 1)Ag (t) , (20)

s.t. C1 : txmin ≤ txsize
i ≤ txmax, i ∈ Gg, (20-1)

C2 :
min

{
Bsize,

∑
i∈Gg txsize

i

}
txsize

≤ Bnum, (20-2)

C3 : Tb,i1 ≥ Tb,i2 ≥ Tb,i3 · · · , (20-3)

where constraint C1 specifies the size of transaction data,
constraint C2 specifies the region of txsize

i given the maxi-
mum transaction size Bnum, and constraint C3 indicates the
descending order of trust score Tb,i for selected transactions.

B. Optimal Transaction Size

From (P1), we can observe that there is no coupling rela-
tionship between G groups with respect to txsize

i . Hence, (P1)
can be decomposed into G sub-problems to solve. Through
equivalent conversions, the optimization problem in (P1) can
be converted into the following form:

P2 : min
{txsize

i }
I1 − I2 + I3

∑
i∈Gg

λitx
size
i I

txsize
i

4 , (21)

s.t. C1,C2, and C3, (21-1)

where I1, I2, I3 and I4 are constants related to system pa-
rameters: I1 = 1

2 ((Dmax
g )2 + (Amax

g )2), I2 = Cg(t−1)Dg(t),

I3 = Cg(t−1)− V
txsizeξinvl , and I4 = (1− α̂M

2 [1−
√

γ̃β̂M

2+γ̃β̂M
]).

Taking the derivative of the optimization objective in (P2)
with respect to txsize

i , its first-order derivative is equal to
λiI3I

txsize
i

4

(
1 + txsize

i ln I4
)
. The optimal transaction size can

be obtained by investigating the following two cases:
Case 1. I3 < 0: The optimization objective in (P2) first

decreases monotonically and then increases monotonically.
Hence, the optimal transaction size could be obtained at
stationary point − 1

ln I4
or the upper boundary point, expressed

as

txsize∗
i =

{
− 1

ln I4
, if − 1

ln I4
≤ txmax

txmax, if − 1
ln I4

> txmax
. (22)

Case 2. I3 > 0: Similarly, the optimal transaction size can
be obtained at the lower boundary point, expressed as txsize∗

i =
txmin.

VII. NUMERICAL RESULTS

In this section, we validate the effectiveness of the proposed
TPM in blockchain-assisted MCS and evaluate several critical
performance metrics, including contribution rate, consensus
accuracy, transaction throughput and tips stability. Specifically,
the contribution rate is a measure of effectiveness, defined as
the proportion of approved transactions under a threshold in
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(a) Malicious leaders.
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(b) Malicious publishers
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(c) Lazy leaders.
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(d) Lazy publishers.
Fig. 2. Impact of tip approvals on contribution rate of abnormal nodes.

the total number of published transactions. To reflect the trust-
worthiness of a leader, the consensus accuracy is statistically
computed by measuring the proportion of normal nodes in the
total number of elected nodes. Based on (12), the transaction
throughput of a group can be calculated. In addition, the tip
stability can be measured by the average number of tips of all
nodes in the system.

A. Experimental Settings

We consider a blockchain-assisted MCS underlaying a
wireless network scenario. Assume that the 10 groups are
constructed randomly and independently, the network coverage
of each group is set to 150 square meters, and 100 nodes are
randomly located in this area, where the transmit power of
each node is 20 dBm, the noise power is −104 dBm, and
path loss exponent is 2.5 [38]. In addition, K is set to −31.54
dB, α̂M and β̂M are 1 and 2, respectively [31]. To simplify,
each node is allocated 1 Mhz bandwidth, and CPU frequency
of each node and computation density are randomly generated
in [1, 2] GHz [39]. In addition, the SHA-256 hash function is
used to generate data hash in this paper.

We classify the node status into normal and abnormal nodes,
where abnormal nodes include malicious and lazy ones. More
specifically, malicious leaders may poison the received trans-
action data, while a lazy leader may slow down the consensus
process. In addition, malicious publishers issue more useless
transactions in a short time to obtain more rewards, while
lazy publishers publish fewer or even no transactions. Since
abnormal nodes may behave normally to defraud trust, we
assume that abnormal nodes publish transactions or blocks
with a probability p. In this paper, we set the probability p to
2/3 and the number of abnormal nodes to 30, unless stated
otherwise.

In the process of TPM in blockchain-assisted MCS, we
set the rate at which each node publishes transactions to
0.5 transactions per unit time. The generated transaction data
size is limited to [10, 100] Kb, and the maximum number of
transactions in a block is 50. To ensure that the tips from
trustworthy nodes get more approvals, we set the maximum
visible timespan to 20 units. In the visible timespan, the new
incoming blocks should select 10 tips to authenticate, and two
of them will be referenced by incoming blocks.

B. Performance Comparisons

In this subsection, we conduct three experiments to compare
the performance of TPM in DAG-based blockchain (called
TPM-BlockDAG) with three baseline schemes as follows:
• Dirichlet-based BlockDAG (Dirichlet-BlockDAG): In

[27], the authors employ a blockchain to record historical
trust information. By classifying the behavior of partici-
pants into several ranks, the Dirichlet distribution is used
to infer the trust score for a behavior at a specified rank.

• Poof of reputation-based BlockDAG (PoR-BlockDAG):
In [40], the authors propose a reputation-based consensus
protocol to promote successful interactions in blockchain.
Essentially, the PoR adopts a sigmoid function to infer the
trust score and thus elects a leader who has the highest
trust score.

• Poof of work-based BlockDAG (PoW-BlockDAG): It is
an original PoW-based BlockDAG without relying on a
trust/reputation-based incentive mechanism [41].
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(a) Normal leaders.
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(b) Normal publishers.
Fig. 3. Impact of tip approvals on contribution rate of normal nodes.

1) Impact of the number of tip approval times on contribu-
tion rate: In the process of TPM BlockDAG, we regard the
blocks whose tip approval times are less than a certain number
as untrusted blocks, and these blocks will be considered
isolated without any contribution. In fact, we expect that the
blocks published by normal nodes can get more approval
times, so as to have a greater contribution rate.

In this experiment, we evaluate the impact of the number
of tip approval times on the contribution rate. As shown in
Fig. 2, we can observe that the contribution rate of abnormal
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(c) Malicious publishers.
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(d) Normal publishers.
Fig. 4. Comparisons of contribution rate under malicious behavior.
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(a) Lazy leaders.
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(c) Lazy publishers.
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Fig. 5. Comparisons of contribution rate under lazy behavior.

leaders and publishers decreases with the number of tip
approvals, where the thresholds for tip approval is set to 1,
2 and 3, respectively. On the one hand, the larger threshold
for tip approvals makes it more difficult to approve tips
from malicious and lazy nodes, because the proposed TPM
can incentivize the tips from trustworthy nodes to get more
approvals. On the other hand, we can see that the contribution
rate of abnormal leaders and publishers keeps basically stable
over time, which indicates that the blocks and transactions
published by abnormal leaders and publishers can be isolated
as much as possible in the case of 3 tip approvals.
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(b) Lazy leaders.
Fig. 6. Consensus accuracy.

Furthermore, Fig. 3 illustrates the contribution rate of nor-
mal leaders and publishers. Obviously, the larger number of tip
approvals inevitably decreases the contribution rate of normal
leaders and publisher. However, the contribution rate of normal

leaders and publishers in Fig. 3 is greater than that of abnormal
ones in Fig. 2, while the contribution rate of normal leaders
and publishers gradually increases monotonically. Therefore,
there is a tradeoff between increasing the contribution rate
of normal nodes and decreasing the contribution rate of
abnormal nodes. In the following experiments, we consider
3 tip approvals scheme to effectively help TPM-BlockDAG
resist abnormal nodes.

2) Contribution rate comparisons: Next, we conduct an
experiment to compare the contribution rate of the proposed
TPM-BlockDAG with benchmarks.

Fig. 4 illustrates the contribution rate under malicious
behavior over time. In this experiment, malicious leaders may
poison the information in blocks. In Figs. 4a and 4b, TPM-
BlockDAG reduces the contribution rate of malicious leaders
compared to Dirichlet-BlockDAG, PoR-BlockDAG and PoW
BlockDAG, while the contribution rate of normal leaders is
greater than that of other schemes. In fact, PoW-BlockDAG
can use the hash function to ensure that poisoned blocks
cannot be successfully added to the ledger. Obviously, TPM-
BlockDAG can enable trustworthy leaders to be elected as
the initiators in the process of BlockDAG, resulting in more
positive contributions. Similarly, Figs. 4c and 4d show that
the contribution rate of TPM-BlockDAG is greater than that
of other schemes for malicious and normal publishers. This is
because the trust score of malicious publishers is lower than
that of normal publishers over time, so that more transactions
published by normal publishers can be packaged into blocks.

Furthermore, Fig. 5 shows the contribution rate under lazy
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(a) Throughput of tips.
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(b) The number of tips.
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Fig. 7. Comparisons of throughput under malicious behavior.
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Fig. 8. Comparisons of throughput under lazy behavior.

behavior. Similarly, the trust score of lazy leaders and pub-
lishers is lower than that of normal ones over time, resulting
in a lower probability of getting approval. Owing to this, the
contribution rate of TPM-BlockDAG outperforms that of other
schemes for lazy leaders and publishers.

3) Consensus accuracy comparisons: In the consensus pro-
cess, abnormal nodes may be selected as leaders, which can
slow down and even interrupt the consensus process.

Fig. 6 demonstrates the consensus accuracy under malicious
and lazy behavior. Obviously, TPM-BlockDAG significantly
outperforms other schemes in terms of consensus accuracy.
In particular, the consensus accuracy of TPM-BlockDAG
can quickly approach 1 compared to other schemes. This is
because all schemes can use the inferred trust to motivate
normal nodes to be elected as leaders and punish malicious
and lazy nodes to some extent, but the proposed TPM can
more accurately and comprehensively infer the trust score
of nodes. In addition, PoW-BlockDAG chooses a leader ran-
domly, resulting in significantly lower consensus accuracy
under malicious and lazy behavior.

4) Throughput comparisons: In addition to the contribution
rate and consensus accuracy, we also examine the impact of
TPM on throughput performance including throughput of tips,
the number of tips and TPS. In this regard, the transaction
generation of TPM is of vital importance for improving
throughput while ensuring system stability for BlockDAG, as
shown in Figs. 7 and 8. Note that all simulation results in this
experiment are the moving average of the previous 50 values.

Figs.7a and 8a evaluate the throughput of tips, the number

of tips and TPS over time under malicious and lazy behavior,
respectively. The results show that the throughput of tips
of TPM-BlockDAG is significantly larger than that of other
schemes and keeps basically stable over time. This is because
TPM-BlockDAG regards all approved blocks within the visible
timespan as tips, which increases the number of tips, as shown
in Figs. 7b and 8b. In contrast, Dirichlet-BlockDAG, PoR-
BlockDAG and PoW-BlockDAG only regard current approved
blocks as tips, thus the number of tips is significantly less
than that of TPM-BlockDAG. In fact, a reasonable visible
timespan can increase the diversity of tips for approval, which
is beneficial for approving blocks published by trustworthy
leaders.

Furthermore, we can observe that the TPS of TPM-
BlockDAG is more stable than other schemes in Figs. 7c
and 8c, which verifies the effectiveness of the proposed
transaction size optimization. As a result, TPM-BlockDAG
can generate the optimal amount of transaction data while
stabilizing throughput performance. Although the TPS of
Dirichlet-BlockDAG, PoR-BlockDAG and PoW-BlockDAG
may be larger than that of TPM-BlockDAG, the malicious
transactions generated by untrusted nodes also pollute the
blockchain ledger.

VIII. CONCLUSIONS

In this paper, we have proposed to integrate a trust as-
sessment approach into blockchain-assisted MCS, aiming to
address the trust issue arising from the interaction outside
and inside the blockchain. Based on auditable records in
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blockchain, we model the normal, abnormal and uncertain
interaction outcomes as a probabilistic ternary-trust assessment
to characterize trust, distrust and uncertainty, respectively. To
achieve trust in decision-making, the trust decision including
leader election and transaction generation is made to filter
abnormal nodes in blockchain. The designed TPM addresses
the problem of how to form a reasonable trust score under
deficient interaction outcomes, derives the knowledge defects
of trust score, and provides insights for effective integration
of MCS and blockchain. The experimental results demonstrate
that the proposed TPM can help blockchain resist abnormal
behavior and outperform trust/reputation-based blockchains, as
well as the blockchain without trust.
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