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a b s t r a c t 

There is an increasing interest in creating interactive learning applications using innovative interaction technolo- 

gies, especially in STEM (Science, technology, engineering, and mathematics) subjects. Recent developments in 

machine learning have allowed for nearly perfect hand-tracking recognition, introducing a touchless modality for 

interaction within Augmented Reality (AR) environments. However, the research community has not explored 

the pedagogical approach of Kinesthetic Learning or “Learning by Doing ”, hand tracking, and machine learning 

agents combined with Augmented Reality technology. Fundamentally, this exploration of touchless interaction 

technologies has taken on new importance in the new post-COVID world. Meanwhile, machine learning has 

gained attention for its ability to enhance personalized learning and play a vital new role as a virtual instructor. 

This paper proposes a novel approach called the AGILEST approach, which uses machine learning Agents to fa- 

cilitate interactive kinesthetic learning in STEM education through touchless interaction. The first case study for 

this approach will be an AR learning application for chemistry. This application uses real-time touchless hand 

interaction for kinesthetic learning and uses a machine learning agent to act as both trainer and assessor of the 

user. The evaluation of this research has been conducted remotely through a usability study with expert review- 

ers, which includes 15 young researchers with peer-reviewed work in Human-Computer Interaction & AR and 2 

subject experts STEM teachers at the secondary school level. The usability evaluation through NASA Task Load 

Index (NASA-TLX), Perceived Ease of Use (PUEU), and Perceived Usefulness (PU) with expert reviewers provide 

positive feedback about this approach for productive learning gain, engagement and interactiveness in learning 

STEM subjects. 
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Learning Technology is continuously evolving, and its importance

s now being recognized worldwide due to the COVID-19 pandemic.

s a result, most countries have adopted some form of remote learn-

ng during the outbreak’s peak. The first country to do this was China

hich adopted the Suspending Classes Without Stopping Learning Policy

46] , which examined alternative learning solutions that facilitate the

se of technology integration in remote learning. 

One area where remote learning suffers is naturally in hands-on ex-

eriments for STEM (Science, technology, engineering, and mathemat-

cs) subjects. However, with the development of new interaction tech-

iques and intelligence, there are possibilities to support STEM subjects

earning virtually. One approach is to use eXtended Reality (XR), which

s an umbrella term for Augmented Reality (AR), Mixed Reality (MR),

nd Virtual Reality(VR) as explained in Fig. 1 and especially suitable

or presenting information during experimentation, as it can be used to

ntegrate both physical and virtual lab work [2] . 

By augmenting the real world with virtual objects, AR provides new

ossibilities for education in different educational contexts [23,45] . For
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xample, in the learning process, student engagement is a critical com-

onent, and AR has been proven to be highly motivational for students

o create more involvement in the learning process [38] . 

In the STEM subjects, instructors face many difficulties in the teach-

ng process because students lack basic competency, motivation, back-

round knowledge, encouragement, attention, confidence, and other as-

ects of a subject [7] . Kinesthetic learning ( “learning by doing ”) or phys-

cal engagement with the learning process [40] , when combined with

R, can create an engaging learning environment to develop technical

oncepts. To facilitate “learning by doing ” or hands-on learning, hand-

racking technology can play a crucial role in virtual environments.

hese hand-tracking technologies are gaining new attention in the post-

OVID world as a recommendation to avoid touching devices to prevent

he spread of the disease [3] . 

AR education does not necessarily require expensive AR HMDs such

s the Microsoft Hololens, an entry-level smartphone with a camera is

ore than capable of providing a basic AR experience, as demonstrated

y the success of AR games like Pokémon GO. The vast majority of
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Fig. 1. Difference between Real environment, Augmented Reality, Augmented Virtuality and Virtual Reality explained by Reality-virtuality continuum [22] . 
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martphones are capable of some form of AR, and within the next few

ears, even the most inexpensive smartphone will have the capabili-

ies of a current state-of-the-art smartphone. This technology can assist

earning everywhere without any location or cost restrictions; thus, its

ccessibility makes it the perfect target for developing learning tech-

ologies of the future. In addition, several interaction techniques are

xplored in AR environments, including touch, marker tracking, ges-

ures, and hand recognition [15] . 

By providing real-time hand interaction with virtual objects using

martphones, they facilitate an effective means of developing kinesthetic

pplications, which can be an effective and interactive way of learn-

ng. Furthermore, the use of inexpensive smartphones can be crucial in

esource-constrained environments that can exist in less developed ar-

as of the world or even in underprivileged regions in significantly de-

eloped countries [4,34] . It is impossible to provide learning materials

n the classroom or personal learning space in these environments, re-

tricting them from learning scientific concepts through hands-on prac-

ice. Thus, the case study application used in this paper incorporates

he scientific topic of chemistry with a learning scenario of resource-

onstrained learning environments. A lesson aimed approximately at

 middle/high school level allows for a virtual hands-on learning ap-

roach. 

The principal contribution of this paper is the introduction of the AG-

LEST approach: Using machine learning AGents to facilitate Interactive

inesthetic LEarning in STEM education using a Touchless interaction.

undamentally, this approach does not replace the teacher but gives

hem more agility in their teaching as they can fit themselves into the

rocess at any point. AR tools should be there to augment and enhance

 person’s abilities, not to replace the person. 

The core focus of this research is to address the needs of resource-

onstrained environments to teach scientific and technological concepts

n STEM subjects at the middle and high school level using a kinesthetic

earning “learning by doing ” approach. Along with the touchless inter-

ction with the virtual learning material, this project uses the machine

earning agents in AR acting as both virtual teacher and assessor to al-

ow such an approach to scale up across a classroom. Furthermore, by

ntegrating touchless interaction (full interaction with 3D models, not

ust gestures) with virtual objects, learning scientific subjects in AR can

ecome more affordable and productive. 

. Related work 

In the different systematic reviews, there is impressive and result-

riented work reported in the field of augmented reality for learning,

hich is based on various aspects of learning goals including increas-

ng engagement, reducing cognitive load, developing interactive con-

ents [21] , increasing motivation, educational inclusion [37] and con-

ents authoring [13,42] . From collaborative learning to individualized
2 
earning in the personal space and from classroom to remote learning,

R has shown acceptance in the audience due to its close relationship

ith the real environment. 

AR has proved its ability to increase the interactiveness of learn-

ng contents in STEM education, like in chemistry [24] , Inquiry-based

earning of Physics [39] , mathematics [1] and gesture-based anatomy

earning [26] . TheKinesthetic learning approach tested in AR using

inect device for learning mathematics by drawing graphs and patterns

6] and leap motion device used for web-based 3D geometry learning

hich helped students to learn in a better way but reported some usabil-

ty and performance issues in the gesture-based interaction. A gesture-

ased interaction approach using leapmotion was adopted for the recog-

ition of Arabic sign language, which proved up to 88% recognition ac-

uracy [14] . Furthermore, a similar interaction approach was adopted

or free-hand interaction in stroke rehabilitation [27] . 

These results have been strengthened by a recent study that reported

n how increased performance of touchless gestures can be achieved in

martphone-based apps using color markers [36] . 

Agent-oriented approach in the AR [17] and the suitability of these

gents [9] opens the opportunities to use agents to enhance learning

chievements in STEM education and skill training. Use of these mean-

ngful conversational agents has been reported to help students to per-

orm peer assessments with reasonable accuracy in formal learning [28] .

In chemistry, marker-based and screen touch interaction have been

ested previously to provide interactive learning with virtual 3D models

20,29] and hands-on learning [44] which has reported growing inter-

st and engagement of the students in terms of the interactive learning

pproach. The hands-on learning approach was also explored to find the

ffectiveness of learning by doing in virtual learning [11] . However, this

nteraction is limited to 2D screen touch or moving the markers to in-

eract with the elements to learn chemistry. There are affordability and

ortability issues in the current context of hands-on learning as high-end

MDs are expensive to afford, and desktop systems are not portable if

onsidering the leapmotion and Kinect real-time hand interaction. 

New interaction techniques in AR, like gestures and especially real-

ime hand interaction, have added a new value to the interactive learn-

ng approaches in AR. For example, the potential of hand interaction for

ands-on assembly tasks has been explored in PC assembly learning [5] .

Artificial Intelligence (AI) & Machine Learning (ML) open new ex-

iting opportunities and potential in educational practice when imple-

ented as human-centered AI [47] . Ouyang and Jiao [33] differentiate

he use of AI in education into three main paradigms. 

• AI-Directed, learner-as-recipient 

• AI-Supported, learner-as-collaborator 

• AI-Empowered, learner-as-leader 

Although previous research has made valuable contributions in de-

eloping AR applications for education, there has been little to no work
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Fig. 2. Four major components of this research; Real-time hand interaction, 

kinesthetic Learning, Machine learning agents, remote learning in AR. 
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one exploring the use of virtual touchless hand interaction and intel-

igent agents within these systems. The possibility of meaningful AR-

ased agents [32] and kinesthetic learning in AR applications provide a

ast opportunity to enhance the potential of AR technology in education

 Fig. 2 ). 

.1. Research questions 

RQ1: What are the possibilities of real-time hand interaction

ith handheld AR to increase productivity in kinesthetic (hands-on)

earning? 

RQ2: How virtual material in AR in the form of 3D can help to

earn in resource-constrained environments using the hand interaction

pproach? 

RQ3: Can machine learning play an influential role in immersive

earning technologies for user training? 

. System design 

To investigate the above-given research questions, this paper is pre-

enting the AGILEST approach, which combines the use of Machine

earning agents (using the Unity ML-agents plugin 1 [25] ), real-time

and interaction by Manomotion 2 with ARFoundation. The overall sys-

em design architecture is explained in Fig. 3 . This approach focuses on

andheld devices (smartphones and tablets) to reach a wider audience.

he following subsections will detail this approach, first in terms of ma-

hine learning, the touchless interaction implementation, and finally,

utline the learning flow provided by this approach. 

The design process translates the concept of touchless hand inter-

ction and self-guided learning. Touchless (real hand interaction with

irtual objects) technology in smartphones is the most recent advance-

ent. 

.1. Machine learning agents 

The AGILEST approach allows the machine learning agent to train

he user about the chemical interactions using previously trained data.

ith ML-Agents, various training scenarios are achievable by collect-

ng and recording different observations to make decisions, as explored

y using reinforcement learning [10] , explained in Fig. 6 . This medi-

ted agent-oriented approach helps the user learn which elements or
1 https://www.unity.com/products/machine-learning-agents . 
2 https://www.manomotion.com/mobile-ar/ . 

t  
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t  
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3 
olecules they will use to create different reactions. The Unity ML-

gents plugin integrates machine learning agents within the system to

chieve this goal. 

Learning components of the ml-agent are explained in Fig. 4 . Unity

L-agents plugin allows the creation of new or using pre-made envi-

onments for training agents to integrate into the unity application (As

hown in Fig. 5 ). These agents use Python APIs to train the learning

ehavior. 

To get the trained Neural Network (NN) models for integration in

nity, hand interaction data of creating chemical reactions by com-

leting multiple episodes. ML-agent collects observation of the the

ser’s hand moves, picks, grabs, and creates reactions which lead to re-

ards by using functions of CollectObservations(VectorSensor sensor), sen-

or.AddObservation and OnActionReceived (float[] vectorAction) . To get

etter stability, this was tested over different sessions, and evaluated

ith different increasing buffer sizes shown in Fig. 6 (ii) to achieve con-

istency ( Fig. 7 ). 

The use of agents within the AGILEST approach is twofold, as they

re used for two aspects: 

• End-User Trainer 

• Self-Assessment 

It follows the reward-based assessment using the errors and time-

ased data of the user’s actions. ( Fig. 8 shows the graphs of TensorFlow

fter training the data). According to reinforcement learning, the learn-

ng rate should decrease with time, as shown in Fig. 8 . Finally, the ml-

gent is trained on the same functions that the user will use in the next

tep ( TEST ) through hand interaction using the heuristic method. 

.2. Hand interaction 

The Manomotion with ARFoundation framework enables hand track-

ng capability, which allows the user’s hand to interact with the 3D ob-

ects through the smartphone camera. 

This hand interaction is achieved using the depth API within AR-

oundation. The custom-made hand is implemented by using hand

racking info to help the user locate the hand. When a user’s tracked

and reaches any 3D object and collides, it activates the point light

o notify the user that the interaction element is now interactable. In-

eraction allows the user to hold and move 3D cubic elements around

o create a reaction of that chemical, as shown in Fig. 9 and Fig. 10 .

he application also reports the frame processing time and provides

nformation about the different states of the user’s hand (Grab, Hold,

rop). 

After the reaction, the user receives audio feedback and vibrations

elling them when these two chemicals react, what happens like “When

ydrogen reacts with fire in the presence of air, it creates an explosion ”. Fi-

ally, the application records the time taken to achieve all the chemical

eactions and sends the user to QUIZ module. 

.3. Learning flow 

To understand how the machine learning agents and touchless inter-

ction combine, the learning flow of the application needs to be ex-

mined. For machine learning agents, learning flow is following the

oncept of AI-Directed, learner-as-recipient and AI-empowered, learner-as-

eader [33] . 

As seen in Fig. 11 , the user starts with LEARN module, then goes

o the TEST module and ends with QUIZ based assessment of user

hich reports the score of student back to Firebase database. In the

EARN module, the machine learning agent will take the previously

rained Neural Network(NN) model to demonstrate to the user what

ossible chemical interactions are possible. Then, when the user feels

hey understand the possible interactions, they can move to the TEST

odule. 

https://www.unity.com/products/machine-learning-agents
https://www.manomotion.com/mobile-ar/
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Fig. 3. System Architecture Diagram, ex- 

plaining components of the system. 

Fig. 4. Learning Component of the Unity ML- 

agents system, which explains how Python APIs 

work in the agent learning environment and train 

the agent’s brain. 
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As per the AGILEST approach, the same NN model for training the

ser can be used for assessment to see how closely the user follows the

revious agent’s movements. It is achieved by feeding back the data to

he NN model. 

After completing the LEARN and TEST sessions, the user will move

o the QUIZ module. The quiz questions are based on the chemical re-

ctions users learned and tested in the previous two modules. 

After completing the QUIZ, the application shows the user’s score

nd compares it with the previous highest score. As per the complexity

f the questions, each question has a different score and a different time

imit to respond. Every wrong answer leads to a negative score. The final

ained score of the user is shown on the screen, and a comparison of its

core with the highest score achieved by other users is reported in the
irebase database. u  

4 
Virtual laboratories for STEM subjects [35] are becoming a unique

eld in VR-enabled Education Tools. However, the additional require-

ents with display devices for tracking in AR add more complexity.

nd in terms of pure software engineering, using an agent-orientated

bstraction could help in creating much more modular systems [19] that

llow the separation of the display and tracking, making AR tutor-

ased applications much easier to develop. Combining this with an

gent-oriented approach with Machine Learning (ML) can help to im-

rove large-scale assessments and automate the learning process for

ore personalized learning [49] and technological transformation of

emote education with AR/VR [31] . Yet, the user is not involved in

he training process, he aims to learn from the trained agent in LEARN

odule and then move to “TEST ” module, which is a practice mod-

le allowing kinesthetic learning in Augmented Reality. In an advanced



M. Zahid Iqbal and A.G. Campbell Telematics and Informatics Reports 9 (2023) 100034 

Fig. 5. Integration of trained Neural Network(NN) model after training. 

Fig. 6. (i) Process flow of ml-agent, following the reinforcement learning concept; (ii) Parameters used in the trainer configuration for agent training. 

Fig. 7. (i) Learn module, trained with Machine learning agent (ii) Chemical Reaction explained. 

Fig. 8. Progress of the training agent. First graph shows the mean rewards with respect to the number of steps taken; the second graph is about the mean time taken 

to train each episode. 

5 
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Fig. 9. When user’s hand collides with any 3D cubic element, it allows grabbing and creating the chemical reactions. 

Fig. 10. User interaction with the application using tablet and visualization of elements with gas, fire, crystals, and liquid. 

Fig. 11. Concept of learning flow with ML agent, hand interaction 

and MCQs quiz. 
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xample, to develop a complex learning system, ml-agents can use live

ata to improve performance based on the data collected from differ-

nt users during the learning process. This can be considered in future

raining application development in XR. The use of ml-agents or intelli-

ent agents is very new in the immersive learning domain; in terms of

ure software engineering, using an agent-orientated abstraction could

elp in creating much more modular systems that allow the separa-

ion of the display and tracking, making AR tutor-based applications

uch easier to develop. As this technology will go within immersive

earning, it will better differentiate between scripted agents and trainer

gents. 
6 
. Evaluation 

For conducting evaluations, many ethical, accessibility, and hygiene

ssues emerged due to COVID-19, especially where end users are un-

er 18 [43] . This whole situation in the EU region made it impossible

o get ethics approval for conducting experiments with the actual end-

sers under 18. As an alternative solution, studies with human factors

nvolving machine interaction, especially those under 18, have adopted

ystem evaluations with expert reviewers. 

The experimental design of this research evaluation has adopted

xpert reviews method influenced by different Human-Computer
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Fig. 12. Gender-wise distribution of the expert reviewers. 
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nteraction (HCI) studies for testing new applications involved with hu-

an factors [16,41,48] . This evaluation aimed to test the usability of

nteraction hand, adopted approach kinesthetic learning approach and

fficiency of the machine learning agents in the augmented environment

 getting feedback. 

.1. Participant recruitment 

The participants were recruited through online conferences of Con-

ected Learning Summit (CLS21) 3 & International Conference of the

mmersive Learning Research Network (iLRN 2021) 4 . Out of 46 poten-

ial experts outreached via formal invitation emails, 19 expert reviewers

igned consent to participate, and four withdrew later due to compati-

ility issues with their devices. Among 15 participating subjects, 6 were

ales, and 9 were females ( Fig. 12 . 

All participants had research-level experience in eXtended Real-

ty(XR) as general, interaction design, and learning technology with

ublished peer-reviewed research papers. Fig. 13 shows the demograph-

cs of the expert reviewers which represents the diversity and inclusion

f different regions in the concept and design evaluation process. To

onsider the subject experts’ knowledge about the adopted approach

nd their involvement in the design improvement process, we engaged

wo STEM Teachers with having minimum 2–4 years of experience in

eaching science subjects at the secondary school level. These subject

xperts have been engaged during EATEL Summer School on Tech-

ology Enhanced Learning 5 organized by the European Association of

echnology-Enhanced Learning (EA-TEL) conducted in-person. Reviews

f subject experts are discussed in the Section 3.5. 

.2. Evaluation procedure 

Initial email-based outreach was performed as an invitation to get

onsent from young researchers in Human-Computer Interaction (HCI)

nd AR/VR based on their peer-reviewed work in the domain. After

onfirming their consent, these participants were provided with the APK

or installation on Android smartphones, instructions to follow, Youtube

ideo 6 explaining the application working. As a final step, all of these

articipants were provided with a questionnaire in Google form was

rovided to fill out after testing the application. 

.3. Tasks 

The experiment consisted of installing AR application (presented

bove) on compatible Android phones and testing its usability, which
3 https://www.2021.connectedlearningsummit.org/ . 
4 https://www.immersivelrn.org/ilrn2021/ . 
5 https://www.ea-tel.eu/jtelss22 . 
6 https://www.youtube.com/watch?v = mQ6D6ItJaG8 . 

 

 

 

 

7 
ncludes the role of the machine learning agent as a trainer and real-time

and interaction to create chemical reactions using 3D cubic elements.

he post-experiment task includes filling out a questionnaire which was

esigned using NASA Task Load Index [18] reported as one of the best

ests to measure the cognitive load in AR [8] , Perceived Usefulness and

ase of Use [12] to examine the usability & subjective questionnaires to

et qualitative feedback. 

NASA Task Load Index (NASA-TLX) is an assessment method to mea-

ure and conduct a subjective Mental Workload (MWL). It involves six

actors. 

• Mental Demand: Mentally demand needed for task completion? 

• Physical Demand: Physical demand needed the task completion? 

• Temporal Demand: Time demand and pace of the task? 

• Performance: Success in accomplishing the task 

• Effort: How hard to accomplish your level of performance? 

• Frustration: How irritated, stressed, and annoyed felt to complete

the task? 

Following the Technology Acceptance Model(TAM) as shows in

ig. 14 , the Perceived Ease of Use(PUEU) and Perceived Usefulness(PU)

uestionnaire were used to measure these human factors for acceptance

f new technology. 

• Perceived usefulness 

• Perceived ease of use 

• Behavioral intention 

.4. Results 

An analysis was performed based on the questionnaire filled out by

he participants after testing the application. Based on the data col-

ected in the questionnaire, Tables 1 and 2 provide information about

he mean, median, and high to low scores on usability and efficiency of

eal-time hand interaction and machine learning agents. 

The graph in Fig. 15 shows the visual representation of results from

able 1 . 

The physical task load and effort needed to complete the task are

ower than mental effort. Therefore, the time pressure to complete the

asks is also lower than all other factors. 

Performance indicators are higher, and the score of mental frustra-

ion factor (cognitive load) to understand the system the first time is also

 little higher, which is further explained in the Section 3.5 with user

ollow-up interviews. The PUEU graph in Fig. 16 indicates the effective-

ess of hand interaction and machine learning agent is higher as com-

ared to all other factors. The satisfaction level of the expert reviewers

s very high regarding the general usability, and behavioral intentions

f the user towards the system also indicate a higher score. 

.5. Follow-up interviews: User experience 

Along with NASA and PUEU, there was a subjective questionnaire to

nderstand user experience and get more detailed answers in the form

f recommendations. During the first usability test, reviewers reported

onstructive experimental feelings regarding hand interaction and the

se of ML-agents. In addition, responses were very positive about the

ystem’s consistency and usability. However, the common issues re-

orted related to frame processing speed on different APIs like a user

f “Samsung S7 ”. 

Some responses of the experts on a general usability question were; 

• “felt some troubles for initially following the LEARN section, but the gen-

eral interaction with the app and with cubic elements is easy after a few

tries ”. 

• “it was not working with my phone, but I used a tablet. Previously, I

played with gesture-based interaction with Hololens but this direct hand
interaction is fantastic. ”

https://www.2021.connectedlearningsummit.org/
https://www.immersivelrn.org/ilrn2021/
https://www.ea-tel.eu/jtelss22
https://www.youtube.com/watch?v=mQ6D6ItJaG8
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Fig. 13. Geographic mapping of the expert reviewers. 

Table 1 

Data of NASA Task Load Index questionnaire responses with average, median, min and max. 

Questions- NASA Task Load Index 5-point Likert scale Average Median Min Max 

1. How much mental and perceptual activity was required? (Low - High) 2.5 3 1 3 

2. How much physical activity was required? 2.5 2 1 4 

3. How much time pressure did you feel due to the pace at which the tasks or task elements occurred? 1.8 1 1 5 

4. How successful were you in performing the task? 2.75 3 2 5 

5. How hard did you have to work (mentally and physically) to accomplish your level of performance? 2.3 2 1 4 

6. How irritated, stressed, and annoyed versus content, relaxed, and complacent did you feel during the task? 2.6 3 1 4 

Table 2 

Data of Perceived Usefulness and Ease of Use questionnaire responses with average, median, min, and max. 

Questions - Perceived Usefulness and Ease of Use) 7-point Likert scale Average Median Min Max 

1. Does the use of touchless hand interaction with 3D learning material improve learning performance? 5.2 6 1 7 

2. Does using AR-based interaction method willenhance learning effectiveness? 5.6 6 2 7 

3. Machine Learning module helps to learn creating chemical reactions. 4.78 5 2 7 

4. Was it easy to learn chemical reactions with AR Hand Interaction? 4.6 5 1 7 

5. Was it easy to interact with the App? 4.66 5 1 7 

6. Was it easy to follow the Learn Module? 4.35 4.5 2 6 

7. Was it easy to interact with the 3D chemicals with hand interaction? 4.06 4 2 6 

8. I am satisfied with the learning approach and interaction. 4.6 5 2 7 

9. I will recommend it to my students or friends. 4.66 5 1 7 

10. Was it pleasant to use it? 5.06 5 2 7 
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As recommendations to make the app more productive, participants

esponded as; 

• “adding more learning material on different topics in the app can help to

make the application more productive ”

• “using spheres instead of cubes ”

• “improving the machine learning part to create more attention ”. 

• “adding more learning material on different topics in the app can help to

make the application more productive ”

• “using spheres instead of cubes ”

• “improving the machine learning part to create more attention ”. 

A participant appreciated the visualization of effects relevant to the

ctual chemicals as, “On top of the cubic elements, you can actually see the

hysical appearance of certain elements (e.g. gas flow, vapor, etc.) ” which

s supposed to create more realism in virtual learning. 

When it comes to the “most interesting part of the application ”, re-

ponses were; 

• “the most interesting concept was the indication of the hand actions that

appear to be highly responsive to the actual human hand action ”
8 
• “educational part of AR chemistry ”

• “hand interaction capability is my smartphone ”

The participants responded differently to the machine learning mod-

le to assist users in learning. Responses like “this concept could be suc-

essful in this regard ” and “yes, I think this needs more of a built-in lesson or

earning goal. How is the AR activity allowing people to apply newly learned

nowledge, or are they discovering new knowledge which will be formalized

n a reflection? You may want to look at Kolb’s model of experiential learn-

ng ” bring an overall conclusion that machine learning can help in AR

earning when used as a pre-trained learning module. As a result of pre-

enting the application to the subject experts, we collected their feed-

ack about the learning flow, chosen case study for chemistry, and how

t can improve the students learning. Overall, the experts showed very

onfident and exciting feedback for using hand interaction for “hands-

n learning ” and adopting machine learning agents to train end-users.

he subject experts suggested adding more elements on for engaging the

ser in the process, adding more visual effects to represent elements,

nd allowing more space for the user in the virtual environment. The



M. Zahid Iqbal and A.G. Campbell Telematics and Informatics Reports 9 (2023) 100034 

Fig. 14. Technology acceptance model [30] . 

s  

w  

p  

R  

t  

a

3

 

p  

a  

u  

1  

s  

t  

a  

s  

p  

h  

A

 

f  

Fig. 16. Ratings for Perceived Usefulness and Ease of Use on 7-point Likert 

scale. 
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r

uccessful implementation of the real-time hand interaction capability

ith the virtual objects over the real environment and user training ca-

ability using machine learning agents provided answers to RQ1, RQ2 &

Q3 of possibilities of combining these elements in an AR learning sys-

em, effectiveness on the kinesthetic activities in the immersive learning

nd increase in the engagement factor to motivate the learning. 

.6. Limitations 

Due to remote experimental design, metrics used, and device com-

atibility, we acknowledged that our results might have limited gener-

lizability. The evaluation strategy of expert reviewers instead of end-

sers (students) was adopted due to ethical issues because of the COVID-

9 pandemic which restricts access to the end-users. The experimental

tudy is about the assessing the performance of the system, feedback of

he expert reviewers on usability, level of engagement created by this

pproach to motivate users, and advice of subject experts on subject-

pecific matters. Due to the lack of control group experiments, this pa-

er is not presenting any comparison with traditional learning, use of

and interaction in AR, and the use of machine learning agents with the

R system. 

As the app was designed for Android only, there is also a limitation

or iOS users. However, the most critical technical limitation is the re-
9 
uired API 24 (Android 7) or later, which means Android phones were

ssembled after 2016. Hand interaction in smartphone AR enables direct

nteraction with virtual contents, but as compared to the smartphone’s

eld of view, human hands can ergonomically move in a broader range,

equiring users to be aware of the usable interaction region. Therefore,

he orientation of the application is set to landscape orientation by de-

ault because a wide field of view is necessary for better hand interac-

ion. 

The evaluation study and feedback collection were completed with

xpert reviewers who already have a good level of using AR applica-

ions so that actual end-users might face other usability and interaction-

elated issues. 
Fig. 15. Ratings of NASA Task Load Index (TLX) on 5-point Likert scale. 
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. Conclusion and future work 

The AGILEST approach has been introduced in this paper to demon-

trate how touchless hand interaction and machine learning agents can

e combined to develop intelligent learning environments for STEM

ducation. Integrating ML-agents both as end-user trainers and as a

acilitator for self-assessment is a novel approach that would allow

he application to support learning in STEM subjects. Furthermore,

ection 3.1 demonstrates how neural networks can be trained to mir-

or hand movements & interaction for kinesthetic tasks. 

This work aims to provide teachers with more agility in their teach-

ng and promote hands-on learning in resource-constrained environ-

ents. The usability tests conducted with the expert reviewers have

hown that hands-on learning in smartphones using virtual hand inter-

ction supported with agent-based training can help to improve pro-

uctivity and interactiveness. Furthermore, the expert reviewers’ feed-

ack about the ml-agents for increasing learning efficiency was positive,

hich supported the hypothesis behind the implementation of the ma-

hine learning agents. To get input from the subject experts, two STEM

eachers with experience in secondary school are engaged to expert ad-

ice on the learning flow and adopted approach. Finally, the realism ap-

roach received optimistic feedback from reviewers by providing real-

ime hand interaction with learning material. 

Due to resource constraints, the teacher may not be able to be present

o conduct these chemical reactions with the student; such AR solutions

an help to overcome the learning barriers. Thus, using agent-oriented

pproach with hand interaction technology, AR can offer new possibil-

ties in innovative learning, where the provision of the actual objects is

ot possible due to cost or availability. Kinesthetic learning in AR by

nteraction techniques is a new field of research. It offers a new form

f remote learning whose development is essential to reinforce learn-

ng goals. However, the detailed evaluation of the system, comparing

tudents’ knowledge gain and the effectiveness of the hypothesis, needs

ore structured control group experiments. Hence future work will in-

lude the control group experiments with the students to compare with

raditional learning. 
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