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Scrap metal classification using magnetic induction
spectroscopy and machine vision

Kane C. Williams, Student Member, IEEE, Michael D. O’Toole, Member, IEEE, Anthony J. Peyton

Abstract—The need to recover and recycle material towards
building a circular economy is increasingly a global imperative.
Non-ferrous metals in particular are highly recyclable and can
be extracted using processes such as eddy current separation.
However, their further separation into recyclable groups based
on metal or alloy continues to pose a challenge. Recently, we
proposed a new technique to discriminate between non-ferrous
metals: Magnetic induction spectroscopy (MIS) measures how a
metal fragment scatters an excitation magnetic field over different
frequencies. MIS is related to conductivity, which can be used to
classify the fragment according to this property.

In this paper, we demonstrate for the first time the use of
MIS with machine learning to classify non-ferrous scrap metals
drawn from commercial waste streams. Two approaches are
explored: (1) MIS over a bandwidth from 3 kHz to 90 kHz,
and (2) the combination of MIS with physical colour of the
metal samples. We show that MIS alone can obtain purity and
recovery rates >80% for most metal groups and waste streams,
rising to >93% for stainless steel. The exception was the Zorba
waste stream where the mix of aluminium alloys within the
sample set led to poor conductivity contrasts. The introduction
of colour substantially improved results in this case, increasing
purity and recovery rates by 20-35 percentage points. Of the
machine learning models tested, we found that random forest,
extra trees and support vector machine algorithms consistently
achieved the highest performance.

Index Terms—Classification algorithms, Electromagnetic in-
duction, Machine vision, Recycling, Waste recovery

I. INTRODUCTION

AN accurate and economic separation technique is essen-
tial to allow non-ferrous metals to be recovered, recycled,

and reused. The advantages of returning non-ferrous metal to
the supply chain are substantial. For instance, materials such
as aluminium and copper are highly recyclable; aluminium
produced from mined Bauxite ore requires 186,262 MJ of
energy to acquire 1000 Kg of primary aluminium, whereas
secondary (recycled) aluminium requires only 11,690 MJ [1].
This substantial energy saving means reduced CO2 emissions
and impact on the climate. There is international pressure to
improve the rate of metal recycling, recognising the need to
move to a more sustainable ‘Circular economy’ [2]. In Europe,
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for example, EU directives (2000/53/EC) and (2012/19/EU)
address the need for materials recovery in end-of-life vehicles
and waste electrical and electronic equipment (WEEE); both
prominent sources of non-ferrous metal.

Non-ferrous metals are primarily separated from source
waste streams by eddy current separation. This process uses
a high-speed rotating drum embedded with permanent mag-
nets to induce eddy-currents in the fragment, which in turn,
develop Lorentz forces. In highly conductive fragments, i.e.
non-ferrous metals, the Lorentz force is sufficient to eject
the sample from the conveyor, whereas poorly conducting
fragments are allowed to free-fall from the conveyor. This
means the eddy-current separator (ECS) is limited by the
geometry of the waste fragments. It can be difficult to generate
large repulsive forces with smaller-sized metal pieces, or long-
thin elements such as wires where it is more difficult for eddy-
currents to circulate [3]. High density and low-conductivity
material is also difficult to eject. The resultant product of the
ECS is a mix of non-ferrous metals which must be further
separated to be recyclable and yield full value.

Many challenges remain in sorting this non-ferrous metal
mix reliably, efficiently and at scale. These metals need to
be sorted into their base elements (aluminium, copper, zinc,
etc), and in some cases, further sorted by alloy family. Tramp
elements within an alloy make them difficult to recycle. Small
amounts within the recyclate are allowed at a specific rate,
but high rates can make the produced metal brittle [4]. Tramp
elements become more of an issue in aluminium, where they
are difficult to remove [3]; this makes it essential to recycle
some aluminium sources into clean alloy families, increasing
the complexity of recycling processes and the risk of cross-
contamination that undermines alloy sustainability.

There are several methods for sorting non-ferrous metals,
each with advantages and disadvantages as summarised in
Table I. A common approach is sorting by hand, using the
worker’s judgement to sort by colour and physical charac-
teristics [3]. Manual sorting is only economical in regions
where labour costs are low. Regions such as Europe and the
United States have tended to export their waste, the volume
of which has seen substantial growth over the last 20 years
[3]. It is claimed that manual sorting can achieve classification
accuracies up to 99% [5]. The sustainability of manual sorting
in other countries has been challenged, not least on environ-
mental costs of waste transport. Sink-float systems offer a less
labour intensive, conceptually simple solution that uses the
different densities of metals for separation. Slurries of water,
sand and air are used to create different gravitational drums
that separate the metal [3]. The sink-float method struggles
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to separate hollow and boat-shaped materials. There is a high
cost of maintaining a constant gravitational density [3], and
the process creates environmental waste, such as contaminated
water, which requires treatment.

The gold standard methods to classify non-ferrous scrap
metal are Laser-Induced Breakdown Spectroscopy (LIBS) and
X-ray methods, such as X-ray transmission (XRT) and X-ray
fluorescence (XRF). LIBS and XRF are commonly used to
establish ground-truth metal composition using handheld anal-
ysers or laboratory instruments [6], [7], hence their discrimi-
nation capability is high. In operation, they work downstream
of ECS, separating the mixed non-ferrous metal product that
results. As dry sensor-based methods, these techniques can
only passively interrogate the sample as they pass across the
conveyor and must be paired to ejector mechanisms, typically
air-jets, to provide the physical separation of the metal pieces.

LIBS is a technique that classifies metals by laser ablating
the surface of the metal to generate a plasma to analyse
composition [8]. Fast conveyor speeds, however, can makes
it difficult to target the laser where precise multiple firings are
required to obliterate surface contaminants before measuring
the plasma [9], [10]. It has been proposed to use an additional
camera system to identify flat and uncontaminated points on
the sample [8], however, this builds complexity and imple-
menting a near-3D camera under high-speed operation is still
a significant technical challenge. XRT uses a high intensity X-
ray beam to measure absorption across the metal piece [10].
This allows XRT to separate light metal (aluminium) from
heavy metals (copper and brass). This technique is not affected
by surface contaminants, however it is unable to sort metals of
similar density [11], [12]. XRF emits low energy radiation on
to the surface of a metal, causing excited low-energy electrons
to eject [13]. The space left is filled by high energy electrons,
which release an elemental specific fluorescence [13]. Like
LIBS, XRF is susceptible to surface contamination and can
be difficult to use for elements with very low characteristic
radiation, such as aluminium, silicon and magnesium [3].
Spectral ratios for aluminium alloys, for example, tend to be
determined by their major alloying elements [3].

LIBS and X-ray techniques, while offering good perfor-
mance and capability, are generally very expensive and face
limitations when translated to high-throughput metals classifi-
cation, where typical commercial conveyor speeds can operate
between 2 to 3 m/s. There is still much interest within the state-
of-the-art for low-cost, and industrially practical solutions,
either as alternatives to LIBS and X-ray or to complement
them by providing a pre-sorting stage. For instance, the
‘Electrodynamic sorting technology’ developed recently at the
University of Utah [14], [15], uses a tuneable or variable
frequency ECS system to be able to sort different metals
and smaller fragment. The authors highlight some success
extracting aluminium from Zorba [16], brass, copper and other
aluminium alloys [14], although in the latter results were
drawn from spherical test samples rather than genuine scrap.

Optical methods, like manual sorting, uses colour char-
acteristics to sort metals, although across more wavelengths
compared to the human eye. Li et al. [17] explored deep learn-
ing and superpixel optimization with an RGB image, where

their proposed algorithm achieved an average precision of
98%, which used 15 samples of aluminium and copper pieces.
Hyperspectral imaging (HSI) measures a wider spectrum be-
yond the RGB wavelengths provided by a standard camera,
returning a rich feature set for classification. HSI methods have
achieved classification accuracies of 96.87% [18] and 98.36%
[19] with WEEE scrap metal and 80 to 97% for brass, iron,
copper, aluminium, and nickel classification [20]. Although
HSI provides good classification, the high dimensional vector
associated with each pixel combined across the whole image
creates a heavy computational load [18]; this limits the speed
of the conveyor to allow time for processing. HSI classification
has been reported on conveyor speeds running at up to 2.28
m/s; an improvement on previous methods of <1 m/s [18].

This study explores the use of magnetic induction or elec-
tromagnetic sensors for non-ferrous metal classification. These
sensors are generally lower cost than other methods and are
well-suited to fast-moving conveyors and the constraints of
high-throughput operation. They operate on similar principles
to eddy-current separators, in that an oscillating magnetic field
is used to induce eddy-currents in the sample. However, these
eddy-currents are too small to induce appreciable Lorentz
forces, rather it is the resultant secondary magnetic field
generated by these eddy-currents that is used to interrogate the
characteristics of the metal (i.e. the mutual inductance). This
decoupling of ejection method from the magnetic response
means that we can potentially classify to finer conductivity
contrasts between metals and larger fragment shape variability
than ECS, reliant as it is on developing sufficient ejection
forces and predictable piece trajectories. Common to the LIBS,
X-ray and the optical methods, the magnetic induction sensors
must be paired with a physical ejection mechanism to separate
the pieces when classified. In contrast, magnetic induction is
not influenced by surface contaminants as eddy currents can
penetrate the conductive surface of the metal piece.

Magnetic induction sensors have shown some efficacy in
separating the different metals of the non-ferrous metal mix
produced by eddy-current separation. Messina et al. [21]
explored the use of narrowband low-frequency excitations (700
Hz to 5 kHz) and pulsed magnetic fields [12]. This system
showed good results for separating metals with high conduc-
tivity contrasts, such as low conductivity stainless steel, from
other non-ferrous with high conductivity, including bronze,
brass, zinc, magnesium, aluminium and copper. Recovery
and purity rates between 90 and 100% were reported for
stainless steel, whereas recovery and purity were generally
below 80% for the other metals. Kutila et al. [22] extended this
approach by combining a magnetic sensor with optical system,
which could be operated combined or separately. The results
showed a similar range of 80% to 95% purity and recovery
rates for stainless steels and the separation of reddish metals
(copper and brass). Performance was found to be impacted
by industrial conditions, including machine vibration, ambient
light, and reflections.

We propose to use magnetic induction spectroscopy (MIS)
for metals classification. This approach, in contrast to the
magnetic induction methods described, uses broadband excita-
tions to obtain mutual inductance measurements across several
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frequencies from 3-90 KHz. This broadband spectrum captures
the interesting region where skin-depth takes effect, returning
measurements which are to differing degrees a function of
conductivity and sample geometry (lower frequencies) or
sample geometry only (higher frequencies). MIS has been used
extensively in non-destructive evaluation research, including
surface crack detection [23], lift-off distance and characterisa-
tion of metals [24], and estimating thickness of metallic films
[25]. MIS has also been used for classification research into
metal detection and landmine identification [26] and landmine
detection combined with ground penetrating radar [27]. For
non-ferrous scrap metal classification, O’Toole et al. developed
a dual-frequency MIS system using mixed pairs of excitation
frequencies from 3 kHz to 64 kHz [28]. This system was able
to classify manufactured scrap pieces in brass, copper, and
aluminium with average purity and recovery rates of 92%.
However, performance fell to recovery rates of 80% and purity
rates of 55% to 80% when tested on scrap metal drawn from
commercial waste, where sample morphology and lift-offs
from sensing coils were more variable [9]. MIS has also been
reported for classification of batteries within waste streams,
where notable differences in the spectra were observed across
D, AA, AAA and 9V/Eblock cells [29].

In this paper, we examine for the first time the use of
broadband multi-frequency magnetic induction spectroscopy
to classify non-ferrous scrap metals. As described, magnetic
sensors and MIS systems pose a potentially low-cost, industri-
ally robust, general solution to sorting non-ferrous metal mixes
output from eddy-current separators, compared to techniques
such as LIBS and X-rays. This method can in principle sort
any metal, grade, or alloy provided that conductivity contrasts
are sufficient, and unlike most other sensor-based approaches,
is unaffected by surface contaminants. We advance on previous
work by using multiple frequency components across a broad-
band spectrum from 3-90 kHz and combining these frequency
components as features in a machine learning algorithm. In
contrast, our previous work only considered two components
[28]. By sweeping across the full frequency range, we obtain
the full shape characteristics of the spectra as eddy-current
penetration diminishes according to the skin-depth effect.

The specific contributions of this paper are threefold:
We first demonstrate the capability of using multi-frequency
MIS measurements for metals classification by using a static
swept frequency test rig, combined with machine learning
algorithms to interpret the spectral response and deliver a
metal classification. Secondly, we establish the efficacy of
different machine learning models for MIS classification, using
an expansive sample set of 445 genuine non-ferrous scrap
metal pieces drawn from six distinct pre-sorted commercial
waste streams. We report the optimal results that can be
achieved. Thirdly, we show the impact of combining MIS with
some simple metal colour parameters as additional features to
support classification. This is based on our findings that some
metals with poor conductivity contrasts, such as brass and
cast aluminium, conveniently have high colour contrasts. This
invites the exciting possibility of using multi-sensor systems,
enhancing and mitigating the strengths and weaknesses of
individual sensors by their combination.
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Fig. 1. The real (a) and imaginary (b) components of different conductive
spheres of radius 20 mm, measured at a point 3 mm from the surface.

II. THEORY

A. Magnetic induction spectroscopy

To understand how magnetic induction spectroscopy can be
used to determine the conductivity of different metals, the
analytical formulation of a conductive sphere in free space
can be used [30]. Define a as the radius of the sphere, σ as
its conductivity and its permeability µ = µ0 = 4π × 10−7.
The conductive sphere is centred at the origin and is within a
uniform magnetic field acting along an axis Z, oscillating at
frequency f . This field induces eddy currents within the object
that flow in the azimuthal direction [31]; these eddy currents
induce a secondary magnetic field. If we take a point z along
the Z-axis outside the sphere (z > a), we can calculate Hrx

and Hex, which are the complex components of the secondary
magnetic field and excitation respectively, using the following,

Hrx

Hex
= −3a3

z3

(
1

α2
+

1

3
− coshα

α sinhα

)
(1)

α = (i2πfσµ)
1
2 a

Fig. 1 shows the real and imaginary component of Hs/Hex

at a point z, 3 mm from the surface of a sphere with a radius of
20 mm. The conductivity of the sphere is varied across a range
similar to the metal samples discussed in this paper. It can be
seen from Fig. 1 that the peak of the imaginary component
shifts lower in frequency when conductivity increases. Fig. 1
also shows that regardless of conductivity, all the curves reach
the same asymptote and the only visible difference is between
the frequency of convergence. As the frequency increases, the
eddy currents flow closer to the surface of the object; this
is the skin depth effect [32]. The negligible skin depth at
high frequency causes the asymptote of the real component to
not change with conductivity [28]. Fig. 2 shows the real and
imaginary component of Hrx/Hex at z, which is again 3 mm
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TABLE I
SUMMARY OF THE ADVANTAGES AND DISADVANTAGES OF SORTING TECHNIQUES FOR NON-FERROUS SCRAP METALS.

Sorting
techniques

Separation
parameter

Advantage (+) and disadvantage (-)

Eddy
current
separator
(ECS)

Conductivity + Does not require additional equipment to eject pieces.
- Cannot eject small metal pieces and wire.
- Requires the user to manually set the separation bin line.
- Generally, only suitable for extracting non-ferrous metals from non-metals.

Manual sorting Colour
and density

+ Low cost.
- Accuracy and speed depend on operator experience.
- Economical only with low-wages.

Sink
and Float

Density + Can separate large quantities of metal into light and heavy metal.
- High initial outlay, requiring processing plant.
- Produces environmental waste that needs to be treated.

XRT Density + Not affected by surface contaminants.
- Requires additional radiation safety measures.

XRF Elemental
composition

+ Wide range of metals/alloys can by classified.
- Metals with low radioactive characteristics are difficult to classify.
- Requires additional radiation safety measures.
- Susceptible to surface contamination.
- High cost

LIBS Elemental
composition

+ Wide range of metals/alloys can by classified.
- Susceptible to surface contamination.
- High cost

Optical
cameras

Colour + Faster classification than manual sorting.
- Susceptible to surface contamination present.

HSI Colour
(Expanded
wavelengths)

+ Wider set of wavelengths available for classification compared to optical camera.
- Takes longer to compute than an optical camera.
- Susceptible to surface contamination present.

Electrodynamic
sorting

Conductivity Similar to ECS
+ Able to sort between non-ferrous groups, e.g. aluminium from Zorba.

Magnetic
induction

Conductivity + Immune to surface contaminants.
+ Does not require a line of sight.
- Metal pieces should be close to the sensor, which could be problematic if the conveyor or pieces bounce.

Magnetic
induction
spectroscopy*

Conductivity Same as magnetic induction
+ Multiple frequencies for more diverse classification feature set
+ Potentially improved performance with respect to the conductivity contrasts and shape variability.

*Technique explored in this paper individually and in combination with optical cameras.

away from the surface of the sphere with a fixed conductivity
of 16.24 MS/s (28% ICAS). The radius of the sphere ranges
between 3 and 90 mm. It can be seen from Fig. 2 that the size
of the sphere affects the frequency and height of the imaginary
peak and the height of the asymptote of the real component.

B. Classifiers

In the following section, we describe the different classifi-
cation methods used. These methods are chosen as they work
well with a small number of inputs, and the structure of the
algorithms is easy to explain and visualise.

Support vector machines (SVM) are a commonly used
machine learning algorithm that use hyperplanes to partition
the feature-space. Support vector machines can perform lin-
ear and nonlinear classification. Nonlinear classification is
achieved by a polynomial or radial basis function (RBF). The
nonlinear SVM polynomial and RBF perform their own unique
transformation of the data, which is then separated with a
linear hyperplane. SVM data must be scaled as the algorithms
are sensitive to the magnitude range of the data [33].

K-nearest neighbours (KNN) is a clustering algorithm
which classifies data based on the closest neighbours of the
training set. A K predefined number of neighbours is selected.
Each new feature is compared to the same feature from the
training data, and the closest K labels are recorded. The label
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Fig. 2. The real (a) and imaginary (b) components of different sized spheres
that have a conductivity of 16.24 MS/s (28% ICAS) and are measured 3mm
away from the surface.
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Fig. 3. Schematic of analogue electronics for the MetalID system.

with the largest number of nearest neighbours from a particular
class is assigned to that data point.

Ensemble classifiers use a combination of multiple decision
trees. Random forest (RF) and Extra randomised trees (ET)
algorithms contain decision trees, whose individual results are
combined and used to determine the label. The decision is
determined by the majority or the average of the predictions
of all trees. Adaboost is similar to RF and ET; but instead
uses multiple small decision trees. Once a base tree is created,
it is tested on the training data, the weight of misclassified
training data is increased for the next predictor [34]. The result
is decided by a majority vote.

III. METHOD

A. MetalID system

The MetalID sensor was first described in O’Toole et al. [9]
with the solenoid design reported in [28]. A schematic of the
system is shown in Fig. 3. The system comprises:

1) A sensing element or solenoid array.
2) Front-end analogue drive and receive electronics.
3) A Red Pitaya STEM 125-14 for data acquisition.
The sensing element consists of an inner excite coil with 32

turns wrapped around a 10 mm diameter acetyl former contain-
ing two 6 mm diameter ferrite rods (Fair-Rite 4077276011).
The excite coil generates the excitation magnetic field Hex, to
induce eddy currents in the test object.

This structure is enclosed by a pair of outer receive coils,
with 600 turns each wrapped around a 16 mm acetyl former
and wound in opposition to form a gradiometer that cancels
the effect of the excitation. This receive coil is used to measure
the secondary magnetic field Hrx induced by the test object.
We denote the complex frequency component of the voltage
emf induced in the receive coil by the field Hrx as Vrx(f).

The complete sensing element is screened by an aluminium
cylinder with one end left open to form the sensing interface
with the test pieces. The front-end analogue electronics con-
sists of a LT1210 (Linear Technology), power amplifier which
drives the excite coil with an oscillating current, and a AD8429
low-noise instrumentation amplifier (Analog Devices) which
provides 40 dB gain on the measured emf.

The Red Pitaya data acquisition system synchronously
outputs a transmit waveform to the power amplifier to drive
the excitation coil, and measures the receive coil voltage
output from the low noise amplifier. The transmit waveform

is generated by a 12-bit DAC sampling at 12.5 MSPS. The
receive waveform is measured using a 14-bit ADC sampling
at 125 MSPS. The result is processed on an FPGA. The signal
is first downsampled by a factor of 50 using an FIR filter and
decimation process, then input to an FFT with a 4096-element
buffer to obtain individual frequency components.

The MetalID sensor was used to obtain MIS measurements
at frequencies from 3 KHz to 90 KHz in intervals of 3 KHz.
The results are referenced to a calibration target, a 10 x 20
mm ferrite cylinder (material 4B1, Ferroxcube), in-line with
previous research [9] [28]. The process for a frequency sweep
of a single test sample was as follows:

1) 15 background frequency sweeps (scans) were taken and
averaged where no test sample was present on the sensor.
We denote the background scan Vrx,bkgnd.

2) The ferrite calibration target was placed on the sensor
and scanned. This result is denoted Vrx,calib.

3) The test sample was placed on the sensor and scanned.
This result is denoted Vrx,sample.

The ferrite piece is used as a reference as it has a constant
permeability and negligible conductivity across the frequency
range of interest. Therefore, it can be shown from (1) that the
induction spectra Hrx/Hex for the ferrite becomes purely real
(zero imaginary) and uniform across the frequency range.

Denote the relative magnetic or mutual inductance, i.e.
referenced to the ferrite, as M(f) ∝ Hrx/Hex. This result
is obtained from the measurements described for a frequency
f using the following:

M(f) = M ′ + jM ′′ =
Vrx,sample − Vrx,bkgnd

Vrx,calib − Vrx,bkgnd
(2)

where M ′ and M ′′ are the real and imaginary components
respectively. The MIS sensor will be used independently and
together with the results from an imaging system.

B. Imaging system

We propose that the visual characteristics of the scrap metal
fragments (test samples) can complement induction measure-
ments as features to classify the material. This work focuses on
extracting colour, specifically the red, green and blue (RGB),
and hue, saturation, and value (HSV) colour components for
each test sample. Sample colour has the potential to distinguish
between metals with high colour contrasts, for example, red
metals (brass, copper, etc) from white metals (aluminium, etc).

Static images of each sample are taken with the induction
measurements using a bespoke imaging rig, as shown in Fig. 4.
The rig consists of a camera, image processing system and
lighting dome. The MetalID sensor is located underneath the
rig, housed in an acrylic box.

Images were taken using a Raspberry Pi 4 Model B 4 GB
with a Raspberry Pi High-Quality Camera Module and a 3MP
C-Mount 8 to 50 mm Zoom Lens. The lens captures images
at 1920x1088 quality. The Raspberry Pi was programmed in
Python 3.7, with the OpenCV2 V4.1.2 [35] and PiCamera
V1.3 libraries to control the camera and process images.

The quality of light is a critical component for any vision
system; it allows easier feature extraction and higher quality
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images. A diffused light source is used to provide consistent
illumination for each test sample. This was achieved using a
3D printed grey lighting dome and LED strips. The design of
the lighting dome allows the camera to be mounted above the
induction sensor at a sufficient distance to prevent interference.

Fig. 4. Mechanical drawing and the built version of the imaging and induction
system.

The camera images are processed to remove the background
and extract a single colour, representative of the whole test
sample in both RGB and HSV colour spaces. Background
removal is performed by taking a series of images over 15
seconds while the camera rig is empty. These images are used
to parameterise a ‘Mean of Gaussian’ background subtractor
in OpenCV. The base of the lighting dome is kept black to
facilitate this. Once this process is complete, a scan is run by
placing the test piece onto the centre of box directly below
the camera. The lighting dome is then secured, and an image
and induction measurement are taken sequentially.

To extract a colour feature-set for the test sample, the image
with background removed is first reduced to 50x50 pixels
to increase the computational speed. A 2-means clustering
algorithm is then applied to separate the pixels into two groups.
One cluster group is the residual black background pixels and
is ignored. The second group constitute foreground pixels of
the sample. A mean average is taken of the foreground pixels
across each colour component (RGB) to obtain a single RGB
set representative of the sample. For HSV, the RGB image is
converted to HSV first and the discussed process followed.

C. Test samples

Six datasets were used, which consisted of mixed non-
ferrous metal and stainless steel from different waste streams
sourced from commercial material recovery facilities. The
waste streams include ‘Zorba’ (3 to 8 mm) and ‘Zurik’ (8
to 25 mm) [36], biomass incinerator metals (BIM), fridge
metals, and window frames (WF) in two different size ranges
(8 to 25 mm and 25 to 75 mm). Zorba consists of shredded
non-ferrous metals and is predominantly aluminium, whereas
Zurik is predominantly stainless steel [36]. BIM consists of
metals that have been through an incinerator, leading to surface

TABLE II
THE METALS PRESENT WITHIN THE DIFFERENT DATASETS.

Waste streams (datasets)
BIM Window

Frame
Zorba Fridge

metals
Zurik Window

Frame
Size (mm) 8 to 25 8 to 25 3 to 8 25 to 75 8 to 25 25 to 75
Aluminium 1 55* 30* 60* 0 13*
Titanium alloy 0 0 1 0 0 0
Stainless steel 2 0 0 2 33* 14*
Zinc 1 33* 6 4 2 7
Nickel 0 0 0 0 2 0
Iron 0 0 0 0 2 0
Copper 6 0 15 4 1 0
Brass 73* 3 30* 1 2 2
Bronzes 8 0 5 19 3 0
Nickel alloy 1 0 0 1 0 0
Nickel silver 0 1 1 0 1 0
Total 92 92 88 91 46 36
*Metal pieces that comprise more than 20% of the dataset.

contamination on all pieces. The fridge metal and window
frame streams consist of shredded refrigerator and window
frames. The differentiation of the input waste streams and
size filtering are consistent with industry standards and are
a realistic presentation for a material separator.

The metal samples in the datasets were measured with
an XRF handheld device (Hitachi X-MET8000 Optimum).
The analyser provided a metal composition and an industrial
grade. The grade was used to label the pieces according
to 11 output classes defined by material, such as copper,
brass and stainless steel. These output classes are consistent
with expected returns for a commercial materials separation
process. The XRF analyser was not able to assign all metal
pieces an industrial grade. In those cases, the pieces were
labelled with an output class determined by the dominant
element in the metal composition, e.g. samples with over 90%
zinc were labelled as ’Zinc’. Samples where the class was
unclear from the composition were removed from the dataset.

The input waste streams, output classes, and the number
of samples for each are shown in Table II. For the results
that follow, we will not derive a classifier for any class label
within a dataset where the number of samples is less than 20%
of the total number of samples within that dataset; this is to
ensure that enough pieces are present for training and testing.
For example, we do not determine a classifier for aluminium
in the BIM dataset as there is only one piece available. On
the other hand, we can determine a classifier for brass as
this makes up a significant proportion of the BIM dataset
(Brass ∼65% / Not Brass ∼35%). If more than one metal
class is >20%, such as aluminium and brass in 3 to 8 mm
Zorba, we design two separate binary classifiers (one for each
metal) using all samples in the dataset. In practice, industrial
separators can only sort by binary classification (Class / Not
Class). To remove multiple materials, one metal would be
removed from the waste stream first, then the next metal by
re-testing the filtered material.

D. Machine learning

The python library Scikit-learn V0.22.2 [34] was used for
the training and implementation of the machine learning mod-
els. The models had different inputs depending on whether the
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colour was used as a feature. When the model used induction
only, there was a total of 60 inputs which consisted of the
real and imaginary components of each frequency measured.
When the colour components were used, there was a total of
66 inputs, which consists of the 60 induction measurements,
R, G, B, H, S and V.

All features are scaled between 0 and 1 prior to use; this is
essential for SVM and KNN algorithms [33]. It is important
to constrain a machine learning model’s hyperparameters to
reduce overfitting. The models were constrained by selecting a
predefined range for the hyperparameters. The GridSearchCV
function was used find the combination of hyperparameters
that achieved the highest accuracy.

SVM [37] has two hyperparameters: the first was the
regularisation, set to a range of 50 values between 0.01 and
100 increasing logarithmically. The second was the kernel,
which refers to either linear, polynomial or RBF. All three
kernels were evaluated. KNN has one hyperparameter: the
number of neighbours. The number of neighbours ranged from
1 to half the number of samples within the dataset.

RF and ET have two hyperparameters: the number of esti-
mators, which refers to the number of decision trees used, and
the maximum number of features to consider when looking
for the best split. The number of estimators and the maximum
number of features ranged from 1 to 20. Adaboost has only
one hyperparameter: the number of estimators which ranges
from 10 to 200 in step intervals of 10.

The algorithms used in this study are considered more
traditional machine learning algorithms. A disadvantage of
the traditional algorithms is that they are known to have high
variance [38]. In addition, small datasets lead machine learning
algorithms to overfit the training data [39]. Future training
of models would benefit from a larger dataset consisting of
more metal samples to reduce the risk of overfitting by the
model. Different techniques, such as dropout, can be applied
to algorithms such as deep artificial neural networks (ANNs)
to reduce overfitting, which would help with small datasets
[39]. Future design and research may benefit from the use of
more complex algorithms such as ANNs.

E. Analysis and comparison

The F1 score is used to compare performance between
algorithms and feature sets. The F1 score is the harmonic
mean of the precision and recall [33]; this means that the F1
score will only be high if both precision and recall are high
[33]. The precision and the recall are also calculated. In what
follows, we will refer to precision as purity-rate and recall
as recovery-rate. in line with the terminology more familiar
to the material recovery industry. Purity-rate describes the
proportion of correct material within the sorted product after
separation. Recovery-rate describes the proportion of material
correctly recovered from the total available within the input
waste stream. These terms are formally defined as follows,
noting the interchangeability with precision and recall:

Purity =
TP

TP+ FP
, Recovery =

TP

TP+ FN

TABLE III
RECOVERY AND PURITY RATES FOR HIGHEST F1 SCORED ALGORITHMS

THAT USE MAGNETIC INDUCTION ONLY.

Desired
metal

Dataset Algorithm F1
score

Recovery
rate (%)

Purity
rate (%)

Stainless 8 to 25 mm Zurik RF 0.9605 99.09 93.25
steel 25 to 75 mm WF RF, ET 1 100 100
Brass 3 to 8 mm Zorba ET 0.5387 54.67 53.82

BIM SVM 0.898 97.53 83.34
Zinc 8 to 25 mm WF SVM 0.7924 81.50 77.28
Aluminium 3 to 8 mm Zorba SVM 0.6024 70.33 52.73

Fridge metals SVM 0.8762 93.17 82.76
8 to 25 mm WF SVM 0.9003 89.45 90.64
25 to 75 mm WF SVM 0.8802 96.15 81.26

F1 = 2x
purity × recovery

purity + recovery
=

TP

TP+ FN+FP
2

where TP,TN,FP,FN are true positives, true negatives,
false positives and false negatives, respectively. Stratified K-
fold cross-validation is used to evaluate the machine learning
models. K-fold cross-validation splits the input dataset into
‘K’ predefined groups or folds, then trains with all the
data except for one-fold which is reserved for testing. This
process repeats until all folds have been evaluated as a test-
set. Stratified K-fold cross-validation also preserves the ratio
of each class within the folds. We choose K = 10 for the
work that follows.

The relatively small size of each dataset means that perfor-
mance can be sensitive to the order of the samples. Therefore,
the process explained in this section was repeated 10 times
with the datasets shuffled at each iteration to randomise the
order. Each algorithm was trained and tested with the same
combination of shuffled data to allow a fair comparison. The
mean average F1 score, purity and recovery rate from across
the 10 shuffles are used to present the results within this paper.

IV. RESULT AND DISCUSSION

In the first part of this section, we explore the efficacy of
using the magnetic induction spectra alone as a feature set,
using the apparatus and method described in section 3.A. In
the second part, we explore the improvement from combining
the magnetic induction spectra with sample colour to create
a wider feature set, with colour measured using the imaging
system described in section 3.B.

Fig. 5 shows the F1 scores when classifying stainless steel,
brass, zinc and aluminium across the six datasets described
in section 3.C. The results are obtained using five machine
learning models reported in section 2.B. The models include
the SVM and KNN algorithms, and the three ensemble clas-
sifiers: Random Forests (RF), Extra Randomised Trees (ET),
and Adaboost. Table. III summarises the highest performing
models according to the F1 score across each dataset, with
their associated purity and recovery rates, for the four different
output classes (metal types) using the magnetic induction
spectra as the sole feature set.

From Table. III, stainless-steel was classified with a >99%
recovery and >93% purity rate; this was achieved using
random forest and extra randomised trees.
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Fig. 5. Classification results of magnetic induction feature only of different machine learning algorithms.

TABLE IV
RECOVERY AND PURITY RATES FOR HIGHEST F1 SCORED ALGORITHMS

THAT USE MAGNETIC INDUCTION ONLY.

Dataset method F1 Recovery Purity
Oversampling 0.9488 93.23 96.63
Undersampling 0.8714 91.76 83.10
Oversampling and undersampling 0.9195 88.61 95.66

Brass within the BIM dataset obtained 97.53% recovery
and 83.34% purity rate using SVM. It is clear from Fig. 5
that this performance was consistent across all classifiers (F1
score from 0.866 to 0.898). The total number of brass samples
was 73 compared to the 19 non-brass samples; this imbalance
weighted towards brass could lead to better results. To test the
brass results within BIM, oversampling, undersampling, and a
combination of both were applied to the dataset, and the same
machine learning process was taken. Oversampling involves
copying the samples in the minority class, and undersampling
involves removing samples from the majority class. The BIM
dataset was reproduced using the following rules ten times
each, which produced 30 new datasets:

1) Oversampling: copy a random number, between 15 and
19, of non-brass pieces

2) Undersampling: remove a random number, between 18
and 25, of brass pieces

3) Oversampling and under sampling: apply both 1 and 2
to the dataset

The results obtained with the new BIM datasets are shown in
Table. IV. Only the undersampling case showed a reduced F1
score compared to table III, and only by a difference of 0.02.
This indicates that even with the class imbalance, the results
reported are what is expected.

This result for brass was not repeated with the 3 to 8 mm
Zorba dataset, where classification fell to 54.67% recovery and
53.82% purity rate. Zinc achieved 81.5% recovery and 77.28%
purity rate using random forest. The result was relatively
consistent across the machine learning models except for
KNN, which had an F1-score ∼0.1 lower than the median.

Aluminium achieved F1 scores between 0.87 to 0.90 across
three datasets, with recovery and purity rates between 89.45 to
96.15% and 81.26 to 90.64%, respectively. However, the 3 to
8 mm Zorba dataset obtained a lower recovery and purity rate
of 70.33% and 52.73%. The results for aluminium with the 3
to 8 mm Zorba were consistent with the brass classification

TABLE V
RECOVERY AND PURITY RATES FOR HIGHEST F1 SCORED ALGORITHMS

THAT USED MAGNETIC INDUCTION AND COLOUR FEATURES.

Desired
metal

Dataset Algorithm F1
score

Recovery
rate (%)

Purity
rate (%)

Stainless 8 to 25 mm Zurik RF 0.9692 100 94.04
steel 25 to 75 mm WF RF, ET 1 100 100
Brass 3 to 8 mm Zorba SVM 0.8501 89.09 87.2

BIM SVM 0.8956 98.63 82.05
Zinc 8 to 25 mm WF ET 0.8968 94.5 85.38
Aluminium 3 to 8 mm Zorba SVM 0.8221 91.00 75.00

Fridge metals ET 0.9704 95.09 99.07
8 to 25 mm WF RF 0.9899 98.16 99.83
25 to 75 mm WF SVM 0.8489 88.47 81.69

results, which also showed a marked performance drop across
the same dataset. This reduction is due to the presence of
aluminium alloys in the Zorba with similar conductivities
to brass. From (1), the induction spectra is a function of
the sample conductivity and morphology. When the induction
spectra is used as a feature-set, the machine learning models
effectively classify the material according to conductivity,
while minimising sensitivity to sample size and shape.

Aluminium as an element has a conductivity of 65% ICAS
[40]. However, within the 3 to 8 mm Zorba dataset, most
aluminium pieces present are cast AL-383 and AL-384, with
conductivities around 23% ICAS [40]. Cast aluminium con-
ductivity is similar to brass, with around 26% ICAS [41].
By contrast, other datasets are mostly wrought aluminium
alloys (AA-1100, AA-4343, AA-6070, AA-6151) with 42 to
59% ICAS [41]. For example, Zinc with 28% ICAS [42], is
well separated in the the window frame (WF) dataset because
it is mostly compared to wrought aluminum. The variation
in conductivity poses a limitation on this approach when
attempting to classify distinct elements with similar conductiv-
ities. This limitation should be acknowledged during training
a model as it would be better to group metals of similar
conductivity together, such as cast aluminium and brass when
only magnetic induction is used. However, it also presents an
opportunity to separate alloys with high conductivity contrasts,
for example, wrought from cast aluminium.

In Table III, we found poor performance within the Zorba
dataset between brass and aluminium with similar conduc-
tivity. We hypothesise adding sample colour to the magnetic
induction spectra as a combined feature set will improve this
result. Fig. 6 shows each machine learning model’s F1 score
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Fig. 6. Classification results of magnetic induction and colour features of different machine learning algorithms.
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Fig. 7. The change in F1 score when colour is used as a feature with magnetic induction.

when RGB and HSV parameters are included as features.
RGB and HSV are extracted using the method outlined in
section 3.B. Fig. 7 shows the difference between Fig. 6 and
the previous magnetic induction spectra results presented in
Fig. 5. Table V summarises the recovery and purity rates of
the highest performing results for each metal class.

Stainless steel, which already had a high F1 score across
the Zurik and window frame datasets, does not improve with
colour; this shows that MIS alone is sufficient to classify
stainless steel. Similarly, colour did not significantly improve
the classification accuracy for brass within BIM dataset; this is
unsurprising given the extent of surface contamination on the
BIM metal pieces caused by incineration, which leaves all the
pieces with a similar colour. On the other hand, zinc showed
a notable improvement in classification when using colour.
The recovery increased by 13 and purity by 8.1 percentage
points. The most significant improvement was for brass and
aluminium within the 3 to 8 mm Zorba dataset. For brass, the
improvement was most evident for the SVM model, where F1
score increased from 0.4142 to 0.8501, yielding a recovery and
purity rate of 89.09% and 87.2% respectively. Aluminium F1
scores increased with colour across all datasets apart from the
25 to 75 mm window frame. In the 3 to 8 mm Zorba dataset,
recovery and purity rate improved to 91% and 75%. These
results support our previous hypothesis that colour contrast
can improve the classification of metals when conductivities
are similar and no significant surface contamination is present.

A problem which was not addressed in this study is that on

an industrial conveyor the pieces may overlap, but this is a
potential challenge in all dry classification methods. However,
we expect that the use of a vibrator feeder would reduce the
chance of metals overlapping.

Rigorous performance measurements of calculation speed
for the machine learning models is beyond the scope of the
present work. However, our preliminary estimates indicate
classification times of less than 1 ms for all algorithms, apart
from Adaboost which was slightly longer classifying in <3 ms.
A classification speed of <1 ms is practical for an industrial
separator. For example, typical conveyor speed of ∼2 m/s,
and distances of up to 0.5 m between the sensing element and
ejector manifold would yield 250 ms of available classification
time.

V. CONCLUSION

Magnetic induction spectroscopy offers a new approach for
the classification of non-ferrous scrap metals in the recycling
and waste recovery sector. The authors first posited an MIS
approach using two-frequency component classification [28].
However, the effectiveness was found to be limited on classes
of waste pulled from commercial production lines [9].

This paper presents the first results on using multi-
frequency magnetic induction spectroscopy. This progression
from O’Toole et al. [9] uses more frequencies across a
wider spectrum to derive features for classification; trading
the simplicity of a two-frequency-component approach for
the information provided by a fuller induction spectra. We
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demonstrate the use of multi-frequency MIS to successfully
classify valuable non-ferrous scrap metals, including stain-
less steel, brass, aluminium, and zinc, from within different
industry-standard waste streams (datasets), such as Zorba
and Zurik. Magnetic induction spectroscopy could achieve
a >99% recovery rate and >93.25% purity rate when clas-
sifying stainless steel. Good classification performance was
found generally across the different metals and datasets, with
recovery and purity rates greater than 80% in most cases. MIS
achieved 98.63% recovery and 82.05% purity of brass from the
biomass incinerator metals (BIM) dataset, indicating immunity
to surface contamination in contrast to optical or some x-
ray techniques. The exception in performance was the 3 to 8
mm Zorba dataset, where aluminium and brass classification
fell to between 50% and 70% purity and recovery rates. This
is attributed to the aluminium AL-384 alloy present in the
dataset, which has a conductivity of 23% ICAS, close to the
conductivity of brass and provoking misclassification.

Introducing colour components (RGB, HSV) as additional
features combined with MIS improved classification perfor-
mance for brass, zinc and aluminium metals across the major-
ity of datasets. This improvement was the most marked across
the previously poorly performing 3 to 8 mm Zorba, where the
recovery and purity rates improved to a more acceptable 91%
and 75% respectively for aluminium, and 89.09% and 87.2%
for brass. Across the different machine learning models used,
random forest, extra randomised trees, and SVM yielded better
results than other algorithms.

Magnetic induction spectroscopy independently or com-
bined with colour parameters is shown to be an effective
and robust method for the classification and recovery of non-
ferrous scrap metals. MIS alone is insensitive to surface
contamination on the sample, although limited where con-
ductivity contrasts between metals are poor. The support of
colour components substantially improves performance in this
case at the cost of being subject to surface contamination.
There is some balance to be achieved in weighting MIS
measurements against colour between classification capability
and sensitivity to surface contamination, dependent on the
characteristics of the waste stream being sorted. Nevertheless,
our findings suggest that for general zorba as tested here,
the combination of the two approaches will supersede either
method individually.

The effectiveness of colour is subject to good lighting
conditions, which was achieved in this study with the lighting
dome. However, industrial conditions would certainly present
a more variable and challenging environment to deliver this
consistent illumination, noted by Kutila et al. [22]. There is
scope for the use of enclosures or hoods over the conveyor
to control light sources, such as the scheme in Tachwali et
al. [43], using diffused and polarised light sources such as
in Pramerdorfer and Kampel [44], or elliptical reflectors in
Barnabé et al. [45]. This could further be complemented with
air to blow away any dust particles – a standard approach
in industry. An MIS and colour system would need to be
partnered with a mechanical mechanism to eject the classi-
fied scrap metal into the required bins. Ejection could be
achieved with air jets, which is industry standard [4], [10].

A limitation of the magnetic induction and colour sensors is
the inability to separate non-ferrous metals which have similar
conductivity and surface contamination. Additional limitations
of this method are that induction measurements ideally require
a metal piece close to the sensor, which can be difficult with
a bouncing conveyor and rolling pieces. The feasibility of this
technology has been demonstrated herein, and we continue to
develop a mixed-metal separation solution for high-throughput
and mid-cost recovery of some of the most common and
valuable non-ferrous materials.
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