
The University of Manchester Research

IFISS3D: A computational laboratory for investigating finite
element approximation in three dimensions
DOI:
10.1145/3604934

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Papanikos, G., Powell, C. E., & Silvester, D. J. (2023). IFISS3D: A computational laboratory for investigating finite
element approximation in three dimensions. ACM Transactions on Mathematical Software.
https://doi.org/10.1145/3604934

Published in:
ACM Transactions on Mathematical Software

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:25. Aug. 2023

https://doi.org/10.1145/3604934
https://research.manchester.ac.uk/en/publications/2ffae882-e81d-4acd-8bd3-66c1d9852006
https://doi.org/10.1145/3604934

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

IFISS3D: A computational laboratory for investigating finite

element approximation in three dimensions

GEORGIOS PAPANIKOS, CATHERINE E. POWELL, and DAVID J. SILVESTER, The Univer-

sity of Manchester, United Kingdom

IFISS is an established MATLAB finite element software package for studying strategies for solving partial

differential equations (PDEs). IFISS3D is a new add-on toolbox that extends IFISS capabilities for elliptic

PDEs from two to three space dimensions. The open-source MATLAB framework provides a computational

laboratory for experimentation and exploration of finite element approximation and error estimation, as well

as iterative solvers. The package is designed to be useful as a teaching tool for instructors and students who

want to learn about state-of-the-art finite element methodology. It will also be useful for researchers as a

source of reproducible test matrices of arbitrarily large dimension.

ACM Reference Format:

Georgios Papanikos, Catherine E. Powell, and David J. Silvester. 2023. IFISS3D: A computational laboratory

for investigating finite element approximation in three dimensions. ACM Trans. Math. Softw. 1, 1 (June 2023),

14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND BRIEF HISTORY

The IFISS software [16] was developed by Elman, Ramage and Silvester [8]. It can be run in MAT-
LAB (developed by the MathWorks©) or Gnu Octave (free software). It is structured as a stand-
alone package for studying discretisation algorithms for partial differential equations (PDEs), and
for exploring and developing algorithms in numerical linear and nonlinear algebra for solving the
associated discrete systems. It can be used as a pedagogical tool for studying these issues, or more
elementary ones such as the properties of Krylov subspace iterative methods. Investigative nu-
merical experiments in a teaching setting enable students to develop deduction and interpretation
skills, and are especially useful in helping students to remember critical ideas in the long term.
IFISS is also an established starting point for developing code for specialised research applications
(as evidenced by the variety of citations to it, see [17]), and is extensively used by researchers in
numerical linear algebra as a source of reproducible test matrices of arbitrarily large dimension.
The development of the MATLAB functionality during the period 1990–2005 opened up the pos-

sibility of creating a problem-based-learning environment (notably the IFISS package) that could
be used together with standard teaching mechanisms to facilitate understanding of abstract theo-
retical concepts. The functionality of IFISS was significantly extended in the period between 2005
and 2015—culminating in the publication of the review article [9], which coincided with the pub-
lication of the second edition of the monograph [10].
A unique feature of IFISS is its comprehensive nature. For each problem it addresses, it enables

the study of both discretisation and iterative solution algorithms, as well as the interaction between

Authors’ address: Georgios Papanikos, papaniksgeo@gmail.com; Catherine E. Powell, catherine.powell@manchester.ac.uk;

David J. Silvester, david.silvester@manchester.ac.uk, The University of Manchester, Department of Mathematics, Manch-

ester, M13 9PL, United Kingdom.

Unpublished working draft. Not for distribution.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

0098-3500/2023/6-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2023-06-09 12:03. Page 1 of 1–14. ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 G. Papanikos et al.

the two and the resulting effect on solution cost. However, it is restricted to the solution of PDEs on
two-dimensional spatial domains. This limitation can be overcome by adding the new IFISS3D tool-
box [13] to the existing IFISS software. The three-dimensional finite element approximation and
error estimation strategies included in the new software are specified in the next section. Section 3
describes three reference problems that provide a convenient starting point for studying rates of
convergence of the approximations to the true solution. The structure of the IFISS3D package is
discussed in Section 4. The directory structure is intended to simplify the task of extending the
functionality to other PDE problems and higher-order finite element methods. Case studies of two
important aspects of three-dimensional finite element approximation are presented in Section 5.

2 DISCRETISATION AND ERROR ESTIMATION SPECIFICS

The IFISS3D software generates approximations to the solution of PDEs modelling physical prob-
lems in three spatial dimensions. The starting point for the process is a finite element partitioning
of a domain of interest � ⊂ R3 into =4 hexahedral (brick) elements �4 ⊂ � , 4 = 1, 2, 3, . . . , =4 so
that

�4 is open in R3

� = ∪
=4
4=1�4

�8 ∩ �9 = ∅, 8 ≠ 9 ,

where the upper bar represents the closure of the union.
An arbitrary element�4 is a hexahedronwith six faces andwith local vertex coordinates (G

4
8 , ~

4
8 , I

4
8),

8 = 1, 2, . . . , 8 ordered as shown in Fig. 1.

�4

(G41 ,~
4
1 , I

4
1) (G42 ,~

4
2 , I

4
2)

(G43 ,~
4
3 , I

4
3)(G44 ,~

4
4 , I

4
4)

(G45 ,~
4
5 , I

4
5) (G46 ,~

4
6 , I

4
6)

(G48 ,~
4
8 , I

4
8) (G47 ,~

4
7 , I

4
7)

G

I

~

(a)

5

3

2

1

4
6

(b)

Fig. 1. Hexahedral (brick) element (a) vertex numbering and (b) face numbering.

The simplest choice of a conforming finite element space in R3 is the Q1 approximation space
of piecewise trilinear polynomials on each element �4 . The continuity of the global approximation
is ensured by defining a Lagrangian basis for @41 at the eight vertices of the hexahedron, that is

q4
8 (x) =

{
1 if G = G48 , ~ = ~48 , I = I48 ,

0 at the other vertices
, 8 = 1, 2, . . . , 8.

Additional geometric flexibility (stretched grids) can be incorporated by constructing an isopara-
metric transformation from the reference cube [−1, 1]3 (denoted �★) to a general hexahedron �4 .
To this end we define the following basis functions for the reference element

ℓ8 (b, [, Z) = 1/8(1 + b8b) (1 + [8[) (1 + Z8Z), 8 = 1, 2, . . . , 8

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023. 2023-06-09 12:03. Page 2 of 1–14.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Extension of IFISS to three dimensions 3

�4

(G41 ,~
4
1 , I

4
1) (G42 ,~

4
2 , I

4
2)

(G43 ,~
4
3 , I

4
3)(G44 ,~

4
4 , I

4
4)

(G45 ,~
4
5 , I

4
5) (G46 ,~

4
6 , I

4
6)

(G48 ,~
4
8 , I

4
8) (G47 ,~

4
7 , I

4
7)

�★

(−1,−1,−1)
(1,−1,−1)

(1, 1,−1)(−1, 1,−1)

(−1,−1, 1) (1,−1, 1)

(−1, 1, 1) (1, 1, 1)

b

Z

[

Fig. 2. Isoparametric mapping from a reference cube.

where b8, [8, Z8 are node values of �★ and b, [, Z ∈ [−1, 1] and map to an arbitrary hexahedral
element �4 with vertices (G48 ,~

4
8 , I

4
8), 8 = 1, 2, . . . , 8 by the change of variables

G (b, [, Z) =

8∑

8=1

G48 ℓ
8 (b, [, Z), ~(b, [, Z) =

8∑

8=1

~48 ℓ
8 (b, [, Z), I(b, [, Z) =

8∑

8=1

I48 ℓ
8 (b, [, Z).

This mapping is illustrated in Fig. 2.
The IFISS3D software also provides the option of higher-order approximation using globally

continuous piecewise triquadratic polynomials (Q2). The continuity of the globalQ2 approximation
is ensured by defining a Lagrangian basis for @42 at the eight vertices of the hexahedron together
with the nineteen additional nodes shown in Fig. 3.

1 2

34

5 6

8 7

(a)
1 2

34

5 6

8 7

9

10

11

12
13

14
15

16

17
18

19

20

21

22

23

24

25

26
27

(b)

Fig. 3. (a) Q1 nodes and numbering and (b) Q2 nodes and numbering.

The Q2 isoparametric transformation is given by

G (b, [, Z) =

27∑

8=1

G48k
8 (b, [, Z), ~(b, [, Z) =

27∑

8=1

~48k
8 (b, [, Z), I(b, [, Z) =

27∑

8=1

I48k
8 (b, [, Z),

with reference basis functions

k 8 (b, [, Z) = # : (b) # ; ([) #< (Z), 8 = 1, 2, . . . , 27; :, ;,< = 1, 2, 3

where

1(b) = 1/2(b − 1)b, # 2(b) = 1 − b2, # 3 (b) = 1/2(1 + b)b.

Finite element approximation of a linear elliptic PDE problem invariably results is a sparse sys-
tem of algebraic equations (the so-called Galerkin system). A typical Galerkin system matrix is
assembled from element matrices that are associated with integrals of products of mapped deriva-
tives defined on the reference cube, see [12]. These integrals are computed exactly in IFISS3D

2023-06-09 12:03. Page 3 of 1–14. ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 G. Papanikos et al.

using tensor-product Gauss rules of appropriate degree, see [10, p. 30]. A key feature of the IFISS
code design is the inner-column indexing and data structure (two-dimensional element matrices
are stored as a three-dimensional array). This indexing ensures that all element matrix calcula-
tions and subsequent assembly can be efficiently vectorised and multi-threaded using the BLAS
functionality that is built into MATLAB.
Another fundamental feature of the IFISS software is the use of hierarchical error estimation.

This strategy was developed for scalar elliptic PDEs by Bank & Smith [2], but has been extended
to more general PDE problems (including systems of PDEs) over the past two decades. Crucially,
the hierarchical approach yields reliable estimates of the error reduction that can be expected using
an enhanced approximation. It also provides a rigorous setting for establishing the convergence
of adaptive refinement strategies, such as those that are built into the T-IFISS package [3], and the
ML-SGFEM software [6] associated with the work of Crowder et al. [7] on multilevel stochastic
Galerkin finite element methods for parametric PDEs.
A posteriori error estimation in practical finite element software (such as deal.II [1], DUNE [4]

or FEniCS [12]) is typically done using residual error estimation strategies. This requires the com-
putation of norms of PDE residuals in the interior of each element and norms of flux jumps (edge
residuals) on inter-element faces. The additional computational cost of hierachical error estima-
tion is nontrivial but not overwhelming in practice. This is discussed further in Section 5. Having
generated a solution using Q1 approximation1, computed interior and edge residuals are input as
source data for element PDE problems that are solved numerically using an enhanced approxima-
tion space. In IFISS3D, one can construct the enhanced space using triquadratic basis functions on
the original element (Q2 (ℎ)), or trilinear basis functions defined on a subdivision of the original
element into 8 smaller ones (Q1(ℎ/2)). These basis or ‘bubble’ functions are associated with the
white nodes illustrated in Fig. 4(a), leading to linear algebra systems of dimension nineteen. Alter-
natively, reduced versions of these spaces of dimension 7, denoted QA2(ℎ) and Q

A
1 (ℎ/2), can also be

constructed by incorporating only the basis functions associated with the interior node and the
central nodes on each face, as illustrated in Fig. 4(b). In all four cases, a low-dimensional system
must be solved for every element in the mesh. This calculation is efficiently vectorised in IFISS.

(a) (b)

Fig. 4. White nodes associated with bubble functions used to construct (a) full Q2 (ℎ) or Q1 (ℎ/2) and (b)

reduced QA2 (ℎ) and Q
A
1 (ℎ/2) error estimation spaces.

3 REFERENCE PROBLEMS

Three test problems are built into the IFISS3D toolbox. Illustrative results for these problems are
discussed in this section. The reported timings were obtained on a 2.9 GHz 6-Core Intel Core i9

1Hierachical error estimation for Q2 approximation is not included in the current release of IFISS3D.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023. 2023-06-09 12:03. Page 4 of 1–14.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Extension of IFISS to three dimensions 5

MacBook using the tic toc functionality built into MATLAB. In all cases, we compute an approx-
imation Dℎ ∈ -ℎ to D ∈ - ⊂ � 1 (�) satisfying the standard weak formulation of the following
Poisson problem

−∇2D = 1 in � ⊂ R3 (1)

D = 0 on m�. (2)

Test problem 1 (convex domain). A Q1 finite element solution to (1)–(2) defined on the domain
� = [−1, 1]3 is shown in Fig. 5. In this computation the cube-shaped domain has been subdivided
uniformly into 323 elements. The dimension of the resulting linear algebra system is 35,937 (the
boundary vertices are retained when assembling the system). The MATLAB R2021b sparse direct
solver (\) solves this system in about half a second. The solution and estimated errors plotted in
the cross section shown in Fig. 5 are consistent with the plots that are generated when solving
(1)–(2) using IFISS software on the two-dimensional domain � = [−1, 1] × [−1, 1]; see Fig 1.1 in
[10]. As expected, the largest error is concentrated near the sides of the cube.

Fig. 5. Solution and estimated energy error distribution for test problem 1.

Exploiting Galerkin orthogonality, the exact energy error can be estimated by comparing the
energy of a reference solution2 with the energy of the computed finite element solution ‖Dref −

Dℎ ‖
2
�
= ‖Dref ‖

2
�
− ‖Dℎ ‖

2
�
. Estimated errors that are computed using this strategy are presented in

Table 1.
We observe that theQ1 energy errors are reducing by a factor of 2 with each grid refinement. This
is consistent with the optimal $ (ℎ) rate of convergence predicted theoretically in the case of a
� 2-regular problem. The Q2 energy errors are reducing more rapidly with grid refinement. The
observed rate is slightly less than $ (ℎ2) which is the expected rate when solving a � 3-regular
problem using triquadratic approximation.
2 ‖Dref ‖

2
�
:=

∫
�
∇Dref · ∇Dref = 0.64539192 computed using Q2 approximation on a grid of 643 elements.

2023-06-09 12:03. Page 5 of 1–14. ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 G. Papanikos et al.

Table 1. Estimated energy errors for convex domain test problem.

Q1 Q2

=4 ℎ ‖Dℎ ‖
2
�

‖Dref − Dℎ ‖� =4 ‖Dℎ ‖
2
�

‖Dref − Dℎ ‖�
83 0.2500 0.6233020 0.148627 43 0.6434550 0.044011
163 0.1250 0.6397600 0.075046 83 0.6452138 0.013348
323 0.0625 0.6439755 0.037636 163 0.6453773 0.003826
643 0.0313 0.6450372 0.018833 323 0.6453909 0.001029
1283 0.0156 0.6453033 0.009416 643 0.6453919 —

Test problem 2 (Nonconvex domain). AQ1 finite element solution to the Poisson problem (1)–(2)
defined on the domain � = [−1, 1]3 \ [−1, 0) × [−1, 0) × [−1, 1] is shown in Fig. 6. In this compu-
tation the stair-shaped domain has been subdivided uniformly into 323 − 162 × 32 elements. The
dimension of the resulting linear algebra system is 27,489. The MATLAB R2021b sparse direct
solver solves this system in about one fifth of a second. The error plot illustrates the edge singu-
larity in the solution along the reentrant corner edge (G = 0,~ = 0, I).

Fig. 6. Solution and estimated energy error distribution for test problem 2.

Estimated errors for the second test problem are presented in Table 2. In this casewe observe that
theQ1 and Q2 energy errors are both reducing by a factor of less than 2 with each grid refinement.
This is exactly what one would expect—the edge singularity limits the rate of convergence that is
possible using uniform grids. The second notable feature is that the Q2 energy error is a factor of
2 smaller than the Q1 error for the same number of degrees of freedom (the results on the same
horizontal line). This behaviour is also consistent with expectations; see Schwab [15].

Test problem 3 (borehole domain). A Q1 finite element solution to the Poisson problem (1)–(2)
defined on the cut domain � = [−1, 1]3 \ (−n, n) × [0, 1] × (−n, n) with n = 0.01 is shown in Fig. 7.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023. 2023-06-09 12:03. Page 6 of 1–14.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Extension of IFISS to three dimensions 7

Table 2. Estimated energy errors for the staircase domain test problem.

Q1 Q2

=4 ℎ ‖Dℎ ‖
2
�

‖Dref − Dℎ ‖� =4 ‖Dℎ ‖
2
�

‖Dref − Dℎ ‖�
384 0.2500 0.2743216 0.149663 48 0.2933030 0.058461
3, 072 0.1250 0.2905480 0.078566 384 0.2958987 0.028670
24, 576 0.0625 0.2949834 0.041680 3, 072 0.2964596 0.016157
196, 608 0.0313 0.2962188 0.022402 24, 576 0.2966318 0.009424
1, 572, 864 0.0156 0.2965759 0.012030 196, 608 0.2967206 —

Fig. 7. Solution and estimated energy error distribution for test problem 3.

In this computation the borehole domain has been subdivided into a tensor-product grid of
48×32×48 elementswith geometric stretching in the G and I direction so as to capture the geometry
without using an excessive number of elements. The grid spacing increases from ℎmin = 0.01 = n

within the hole to ℎmax = 0.0625 next to the boundary, so the maximum element aspect ratio
(adjacent to the hole) is 6.25. The dimension of the resulting linear algebra system is 85,833 and
the MATLAB R2021b sparse direct solver solves the system in about 6 seconds. As anticipated, the
error in the approximation is concentrated in a small region in the neighbourhood of the borehole,
making this a very challenging problem to solve efficiently.

4 STRUCTURE OF THE SOFTWARE PACKAGE

IFISS is designed for theMATLABcoding environment. Thismeans that the source code is readable,
portable and easy to modify. All local calculations (quadrature in generating element matrices,
application of essential boundary conditions, a posteriori error estimation) are vectorised over
elements—thus the code runs efficiently on contemporary Intel processor architectures. IFISS3D

2023-06-09 12:03. Page 7 of 1–14. ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 G. Papanikos et al.

has been developed for MATLAB (post 2018b) and tested with the current release (7.2) of Gnu
Octave. The main directory is called diffusion3D and this needs to be added as a subdirectory of
the main IFISS directory. The subdirectories of diffusion3D are organised as follows.
•/grids/

This directory contains all the functions associated with domain discretisation. Three types of
domain are included in the first release. Introducing a new domain type is straightforward. A
new function needs to be included that saves nodal information (arrays xyz, bound3D) and (tri-
quadratic) element information (mv, mbound3D) in an appropriately named datafile. This file will
be subsequently read by an appropriate driver function associated with the specific PDE being
solved.
•/graphs/

This directory contains the functions associated with the visualisation of the computed solution
(nodal data) and the estimated errors (element data). The tensor-product subdivision structure
simplifies the code structure substantially—plotting can be efficiently done using the built-in slice
functionality. Similarly, solution data defined on a one-dimensional incision into the domain of
interest can be plotted using the function xyzsectionplot. An illustration is shown in Fig. 8.

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
x-section solutions

y=0

y=0.5

y=-0.5

Fig. 8. Incisions through the borehole test problem solution visualised in Fig. 7. The incisions show the

solution in the G direction in the plane I = 0 for three different height values ~.

•/approximation/

This directory contains all the functions associated with setting up the discrete matrix system
associated with the PDE of interest. The functions femq1_diff3D and femq2_diff3D set up the
stiffness andmassmatrices associatedwith the problems discussed in Section 3. Essential boundary
conditions are imposed by a subsequent call to the function nonzerobc3D. Extending the function-
ality by combining components of IFISS with IFISS3D to cover (a) nonisotropic diffusion and (b)
Stokes flow problems (using Q2–Q1 mixed approximation) is a straightforward exercise. Efficient
approximation of the solution of the heat equation on a three-dimensional domain can also be
done with ease: either using the adaptive time stepping functionality built into IFISS or using one
of the ODE integrators built into MATLAB. The functions associated with a posteriori error esti-
mation can be found in four separate subdirectories associated with the four options described in
Section 2.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023. 2023-06-09 12:03. Page 8 of 1–14.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Extension of IFISS to three dimensions 9

•/solvers/

The MATLAB sparse direct solver (\) has far from optimal complexity in a three-dimensional set-
ting. This is explored in a case study in the next section. Algebraic multigrid (AMG) functionality
is included in this directory to enable exploration of an optimal solution strategy. If one does not
have access to an efficient AMG setup routine then the linear solver that is recommended when
the dimension of the system exceeds 105 is MINRES (Minimum Residual) iteration preconditioned
by an incomplete Cholesky factorisation of the system matrix with zero fill-in.3 This strategy is
encoded in the it_solve3D function with a residual stopping tolerance of 10−10. Solving the sys-
tem in Example 3 using this strategy gives a solution in 66 iterations. The associated CPU time is
half a second. This is over 10 times faster than the corresponding backslash solve!
•/test_problems/

This directory contains all the high-level driver functions such as diff3D_testproblem (the main
driver). It also contains the functions associated with the problem data (right-hand side function
and essential boundary specifications). The structure makes it straightforward to solve (1) together
with nonzero boundary data D = 6� on m� .

Help for IFISS is integrated into the MATLAB help facility. The command helpme_diff3Dgives
information on solving a Poisson problem in three dimensions. Starting from the main IFISS direc-
tory, typing help diffusion3D/〈subdirectory name〉 gives a complete list of the files in that
subdirectory. Using MATLAB, the function names are “clickable” to give additional information.
The initial release of IFISS3D comprises ∼70 individual functions and script files. Simply type help
<file-name> for further information on any of these.

5 CASE STUDIES

Two important aspects of three-dimensional finite element approximation that can be investigated
easily in IFISS3D are discussed in this section.

5.1 Effectivity of a posteriori error estimation strategies

The effectiveness of hierarchical error estimation is well established in a two-dimensional setting;
see, for example, Elman et al. [10, Table 1.4]. The IFISS3D software offers a choice of 4 such error
estimation strategies in conjunction with Q1 approximation. Computed error estimates obtained
when solving the first test problem discussed in Section 3 are presented in Table 3. The four esti-
mates are associated with the white nodes shown in Fig. 4. The estimated energy errors should be
compared with the reference energy errors listed in Table 1.

Table 3. Computed error estimates [• for the first test problem using four different hierarchical strategies.

=4 ℎ [Q2 (ℎ) [QA2 (ℎ) [Q1 (ℎ/2) [QA1 (ℎ/2)
83 0.1250 0.150207 0.137906 0.129842 0.115359
163 0.0625 0.075177 0.069772 0.065255 0.058216
323 0.0313 0.037648 0.035050 0.032655 0.029215
643 0.0156 0.018837 0.017561 0.016326 0.014631
1283 0.0078 0.009420 0.008789 0.008161 0.007321

Table 4 lists the associated effectivity indices. The indices get closer to 1 as the mesh is refined
when the Q2(ℎ) and Q

A
2 (ℎ) strategies are employed. On the other hand, the effectivity indices

for the Q1 (ℎ/2) and Q
A
1(ℎ/2) strategies stagnate around 0.87 and 0.77 respectively. All four error

estimates are correctly reducing by a factor of 2 with each grid refinement. In light of these results,

3The incomplete factorisation function ichol provided in MATLAB R2021b is highly optimised.

2023-06-09 12:03. Page 9 of 1–14. ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 G. Papanikos et al.

the relatively cheap QA2(ℎ) is set to be the default option in IFISS3D. Extensive testing on other
problems indicates that this estimator consistently underestimates the error by a small amount.

Table 4. Effectivity indices \• ≔ [•/‖Dref − Dℎ ‖� for test problem 1.

=4 \Q2 (ℎ) \QA2 (ℎ) \Q1 (ℎ/2) \QA1 (ℎ/2)
83 1.0106 0.9279 0.8736 0.7762

163 1.0017 0.9297 0.8695 0.7757

323 1.0003 0.9313 0.8677 0.7762

643 1.0002 0.9325 0.8669 0.7769

All the errors reported in Table 3 were computed after making a boundary element correction.
This is a postprocessing step wherein the local problems associated with elements that have one or
more boundary faces are modified so that the (zero) error on the boundary is enforced as an essen-
tial boundary condition. The motivation for making this correction is to recover the property of
asymptotic exactness in special cases.4 The correction is, however, difficult to vectorise efficiently,
raising the question as to whether it is worth including in a three-dimensional setting.
Computed effectivity indices for the special case of solving the Poisson problem

−∇2D = 5 in � = [−1, 1]3 (3)

D = 0 on m� (4)

with the right-hand side function 5 chosen so that the exact solution is the triquadratic function

D (x) = (1 − G2) (1 − ~2) (1 − I2), (5)

are presented in Table 5. The second and fourth columns are the results computed after making
the boundary correction. The asymptotic exactness of the Q2(ℎ) strategy can be clearly seen. The
third and fifth columns list the results that are computedwhen the boundary correction is notmade.
Comparing results with the second and fourth columns it is evident that the boundary correction
reduces the estimated error and, more importantly, that the size of correction tends to zero in the
limit ℎ → 0. The QA2(ℎ) strategy is not asymptotically exact so to speed up the computation the
default setting in IFISS3D is to simply neglect the boundary correction. Thus, in the case of the
finest grid in Table 5 (over 2 million elements) the [∗

QA2 (ℎ)
error estimate is computed in less than 9

seconds. This is significantly less than the time taken to compute the finite element solution itself
(the it_solve3D linear system solve took over 23 seconds).

Table 5. Effectivity indices \• ≔ [•/‖D − Dℎ ‖� for the Poisson problem (3)–(5). The superscript \∗• indicates

that the boundary correction is omi�ed in the computation of [•.

=4 \Q2 (ℎ) \ ∗
Q2 (ℎ)

\QA2 (ℎ) \ ∗
QA2 (ℎ)

163 0.99944 1.2914 0.97044 0.99647

323 0.99990 1.1508 0.97087 0.98289

643 0.99998 1.0771 0.97110 0.97686

1283 1.00000 1.0390 0.97123 0.97405

4An estimator is said to be asymptotically exact if the effectivity of the estimator tends to 1 when ℎ → 0.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023. 2023-06-09 12:03. Page 10 of 1–14.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Extension of IFISS to three dimensions 11

5.2 Fast linear algebra

The solution of the (Galerkin) linear system is the computational bottleneck when solving a Pois-
son problem in three dimensions. To illustrate this point, a representative timing comparison of the
distinct solution components when solving the first test problem using Q1 approximation with de-
fault settings is presented in Table 6. The system assembly includes the grid generation. The overall
time is the elapsed time from start to finish and includes the time taken to visualise the solution
and the associated error. What is immediately apparent is the fact that the system assembly times
and the error estimation times scale approximately linearly with the number of elements (or equiv-
alently, the dimension = of the system matrix). The backslash solve times, in contrast, grow like
the square of the number of elements on the most refined grids. The memory requirement for the
sparse factors of the system matrix also increases at a much faster rate than$ (=). Iterations counts
and representative solution times for solving the linear systems in Table 6 using preconditioned
MINRES are presented in Table 7.

Table 6. Representative component timings (in seconds) when solving test problem 1

=4 assembly solve (\) estimation overall

163 0.171 0.016 0.617 1.10

323 0.669 0.339 1.481 4.81

643 7.100 25.29 11.49 58.1

1283 90.16 > 10
3 98.45 > 10

3

Table 7. MINRES iteration counts and timings (in seconds) when solving test problem 1 with incomplete

Cholesky preconditioning and a residual stopping tolerance of 10−10.

=4 factorisation solve # iterations

163 0.001 0.009 17
323 0.011 0.114 30
643 0.092 1.605 55
1283 0.550 24.74 102

The optimal$ (=) complexity of the overall solution algorithm can be recovered by solving the
linear system using a short-termKrylov subspace iteration such asMINRES in combinationwith an
algebraic multigrid (AMG) preconditioning strategy; see [10, sec. 2.5.3]. The set up phase of AMG
is a recursive procedure: heuristics associated with algebraic relations (“strength of connections”)
between the unknowns are used to generate a sequence of progressively coarser representations
�ℓ , ℓ = 1, 2, . . . , ! of the Galerkin system matrix � ≔ �1. The solution (preconditioning) phase
approximates the action of the inverse of � on a vector by cycling through the associated grid se-
quence. At each level, a fixed-point iteration (typically point Gauss-Seidel) is applied to “smooth”
the residual error that is generated by interpolation or restriction of the error vector generated at
the previous level. If coarsening is sufficiently rapid then the work associated with the precondi-
tioning step will be proportional to the number of unknowns in the original system matrix.
The algorithmic complexity of any AMG coarsening strategy can be characterised by a few

parameters. First, the grid complexity is defined as

2� ≔
1

=1

!∑

ℓ=1

=ℓ ,

where =ℓ is the dimension of the coarse grid matrix �ℓ at level ℓ . Starting from a uniform grid of
Q1 elements, if full coarsening (in each spatial direction) is done at each level then =ℓ reduces by a

2023-06-09 12:03. Page 11 of 1–14. ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 G. Papanikos et al.

factor of 8 at each level, in which case we obtain 2� ≈ 8/7. A value of 2� higher than this suggests
that coarsening has not been done isotropically. The operator complexity is typically defined by

2� ≔
1

nnz(�1)

!∑

ℓ=1

nnz(�ℓ),

where nnz(�) is the number of nonzeros in the matrix. This parameter provides information about
the associated storage requirements for the coarse grid matrices generated. If uniform coarsening
is done and the coarse grid matrices correspond to the usual finite element discretisation on those
grids then we would expect 2� ≈ 2� . In practice however, the coarse grid matrices become progres-
sively denser, with larger stencil sizes, as the level number increases. If the matrices become too
dense then this may cause an issue with the computational cost of applying the chosen smoother.
To quantify this, the average stencil size

2(:=
1

!

!∑

ℓ=1

nnz(�ℓ)

=ℓ
,

should be compared with the average stencil size at the finest level, that is,

21 ≔
nnz(�1)

=1
.

An implementation of the coarsening strategy developed by Ruge and Stüben [14] is included
in the original IFISS software. The corresponding IFISS3D function amg_grids_setup3D can be
edited in order to explore algorithmic options or change the default threshold parameters. The
MATLAB implementation of the coarsening algorithm is far from optimal however. There is a
marked deterioration in performance when solving problems on fine grids that is evident even
when solving Poisson problems in two dimensions. To address this issue an interface to the efficient
Fortran 95 implementation [11] of the same coarsening algorithm is included in IFISS3D.5

Table 8. AMG grid complexity data and representative linear solver timings for test problem 1.

Q1 Q2

=4 163 323 643 1283 163 323 643

=1 4,913 35,937 274,625 2,146,689 35,937 274,625 2,146,689
21 16.49 21.14 23.90 25.41 47.06 54.96 59.33

! 7 11 16 14 11 14 16
2� 1.24 1.32 1.37 1.39 1.27 1.32 1.32
2� 1.58 1.77 1.88 1.93 1.61 1.70 1.76
2(22.9 39.2 62.8 97.6 65.59 106.1 138.8

setup∗ time 0.01 0.07 0.58 5.12 0.15 1.22 11.49

total time 0.02 0.16 1.49 13.07 0.42 3.48 33.60

AMG complexities and timings obtained when solving test problem 1 are presented in Table 8.
The total times reported for the Q1 approximation should be compared with the corresponding
backslash solve timings recorded in Table 6 and Table 7. The setup times were recorded using the
interface to the HSL_MI20 code and scale close to linearly with the problem dimension. This be-
haviour is consistent with the results that were reported for the same problem and discretisation by
Boyle et al. [5, Ex. 4.5.1]. Looking at the AMG grid data in Table 8, we note that the grid complexity

5The HSL_MI20 source code and associated MATLAB interface is freely available to staff and students of recognised edu-

cational institutions. The inclusion of the compiled mex file is prohibited by the terms of the HSL academic licence.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023. 2023-06-09 12:03. Page 12 of 1–14.

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Extension of IFISS to three dimensions 13

is under control and stays close to the optimal value using either of the two approximation strate-
gies. The operator complexity results are also encouraging—increasing slowly as the dimension of
the problem is increased. The growth in the average stencil size is not unexpected. The value of
2(is within a factor of 3 of 21 when using Q2 approximation on the finest grid. The difference be-
tween the highlighted total time and the associated setup time is the time taken by preconditioned
MINRES to reach the residual stopping tolerance of 10−10 with the default smoothing parameters
(that is, two pre- and post-smoothing sweeps using point Gauss-Seidel).

6 SUMMARY AND FUTURE DEVELOPMENTS

The IFISS3D toolbox extends the capabilities of IFISS [16] to facilitate the numerical solution of
elliptic PDEs on three-dimensional spatial domains that can be partitioned into hexahedra. In par-
ticular, it allows users to investigate the convergence properties of trilinear (Q1) and triquadratic
(Q2) finite element approximation for test problems whose solutions have varying levels of spa-
tial regularity and the performance of a range of iterative solution algorithms for the associated
discrete systems, including an optimal AMG solver. For Q1 approximation, the effectivity of four
distinct state-of-the-art hierarchical error estimation schemes can also be explored. The IFISS3D
software is structured in such a way that, when integrated into the existing IFISS software, users
can easily solve a range of other PDE problems, including time-dependent ones, using Q1 and
Q2 elements on three-dimensional spatial domains. IFISS together with IFISS3D is intended to be
useful as a teaching tool, and can be used to produce matrices of arbitrarily large dimension for
testing linear algebra algorithms. Future developments of IFISS3D will be documented on GitHub.

ACKNOWLEDGMENTS

This work is supported by EPSRC under grant numbers EP/V048376/1 and EP/W033801/1.

REFERENCES

[1] Daniel Arndt, Wolfgang Bangerth, Denis Davydov, et al. 2021. The deal.II finite element library: Design, features, and

insights. Comput. Math. Appl. 81 (2021), 407–422. https://doi.org/10.1016/j.camwa.2020.02.022.

[2] Randolph B. Bank and R. Kent Smith. 1993. A posteriori error estimates based on hierarchical bases. SIAM J. Numer.

Anal. 30, 4 (1993), 921–935. https://www.jstor.org/stable/2158183.

[3] Alex Bespalov, Leonardo Rocchi, and David J. Silvester. 2021. T-IFISS: a toolbox for adaptive FEM computation. Com-

put. Math. Appl. 81 (2021), 373–390. https://doi.org/10.1016/j.camwa.2020.03.005.

[4] Markus Blatt, Ansgar Burchardt, Andreas Dedner, et al. 2016. The Distributed and Unified Numerics Environment,

Version 2.4. Arch. Num. Soft. 4, 100 (2016), 13–29. https://doi.org/10.11588/ans.2016.100.26526

[5] Jonathan Boyle, Milan Mihajlović, and Jennifer Scott. 2010. HSL_MI20: an efficient AMG preconditioner for finite

element problems in 3D. Int. J. Numer. Meth. Engng. 82 (2010), 64–98.

[6] Adam J. Crowder, Georgios Papanikos, and Catherine E. Powell. 2022. ML-SGFEM (Multilevel Stochastic Galerkin

Finite Element Method) Software, Version 1.0. https://github.com/ceapowell/ML_SGFEM.

[7] Adam J. Crowder, Catherine E. Powell, and Alex Bespalov. 2019. Efficient adaptive multilevel stochastic Galerkin

approximation using implicit a posteriori error estimation. SIAM J. Sci. Comput. 41, 3 (2019), A1681–A1705.

[8] Howard Elman, Alison Ramage, and David Silvester. 2007. Algorithm 866: IFISS, a Matlab toolbox for modelling

incompressible flow. ACM Trans. Math. Softw. 33 (2007), 2–14. http://dx.doi.org/10.1145/1236463.1236469.

[9] Howard Elman, Alison Ramage, and David Silvester. 2014. IFISS: A computational laboratory for investigating incom-

pressible flow problems. SIAM Rev. 56, 2 (2014), 261–273. http://dx.doi.org/10.1137/120891393.

[10] Howard Elman, David Silvester, and Andy Wathen. 2014. Finite Elements and Fast Iterative Solvers: with Applications

in Incompressible Fluid Dynamics. Oxford University Press, Oxford, UK. Second Edition.

[11] HSL 2015. HSL Mathematical Software Library. https://www.hsl.rl.ac.uk/catalogue/hsl_mi20.html.

[12] Anders Logg, Kent-Andre Mardal, Garth N.Wells, et al. 2012. Automated Solution of Differential Equations by the Finite

Element Method. Springer. https://doi.org/10.1007/978-3-642-23099-8 https://fenicsproject.org/.

[13] Georgios Papanikos, Catherine E. Powell, and David Silvester. 2022. Incompressible Flow and Iterative Solver 3D

Software (IFISS3D), version 1.0. https://github.com/mcbssds/IFISS3D.

2023-06-09 12:03. Page 13 of 1–14. ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023.

https://doi.org/10.1016/j.camwa.2020.02.022
https://www.jstor.org/stable/2158183
https://doi.org/10.1016/j.camwa.2020.03.005
https://doi.org/10.11588/ans.2016.100.26526
https://github.com/ceapowell/ML_SGFEM
http://dx.doi.org/10.1145/1236463.1236469
http://dx.doi.org/10.1137/120891393
https://www.hsl.rl.ac.uk/catalogue/hsl_mi20.html
https://doi.org/10.1007/978-3-642-23099-8
https://fenicsproject.org/
https://github.com/mcbssds/IFISS3D

Un
pu
bl
ish
ed
w
or
ki
ng
dr
af
t.

N
ot
fo
r d
ist
rib
ut
io
n.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 G. Papanikos et al.

[14] John Ruge and Klaus Stüben. 1987. Algebraic multigrid. In Multigrid Methods, S. F. McCormick (Ed.). Frontiers in

Applied Mathematics, Vol. 3. SIAM, Philadelphia, PA, 73–130.

[15] Christoph Schwab. 1998. p- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics.

Oxford University Press, Oxford, UK.

[16] David Silvester, Howard Elman, and Alison Ramage. 2019. Incompressible Flow and Iterative Solver Software (IFISS),

version 3.6. http://www.manchester.ac.uk/ifiss/.

[17] swMATH 2022. An information service for mathematical software. https://swmath.org/software/4398.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: June 2023. 2023-06-09 12:03. Page 14 of 1–14.

http://www.manchester.ac.uk/ifiss/
https://swmath.org/software/4398

	Abstract
	1 Introduction and brief history
	2 Discretisation and Error Estimation Specifics
	3 Reference problems
	4 Structure of the software package
	5 Case studies
	5.1 Effectivity of a posteriori error estimation strategies
	5.2 Fast linear algebra

	6 Summary and future developments
	Acknowledgments
	References

