The Geometry of Relevant Implication II

Alasdair Urquhart

Abstract

This note extends earlier results on geometrical interpretations of the logic **KR** to prove some additional results, including a simple undecidability proof for the four-variable fragment of **KR**.

1 The Logic KR

The logic **KR** results from logic **R** of relevant implication by adding the axiom *ex falso quodlibet*, that is to say, $(A \land \neg A) \rightarrow B$. The model theory for **KR** is elegantly simple. The usual ternary relational semantics for **R** includes an operation \ast designed to deal with the truth condition for negation

$$x \models \neg A \Leftrightarrow x^* \not\models A.$$

The effect of adding *ex falso quodlibet* to **R** is to identify x and x^* ; this in turn has a notable effect on the ternary accessibility relation. The postulates for an **R** model structure include the following implication:

$$Rxyz \Rightarrow (Ryxz \& Rxz^*y^*).$$

The result of the identification of x and x^* is that the ternary relation in a **KR** model structure (KRms) is *totally symmetric*. In detail, a KRms $\mathcal{K} = \langle S, R, 0 \rangle$ is a 3-place relation R on a set containing a distinguished element 0, and satisfying the postulates:

- 1. $R0ab \Leftrightarrow a = b;$
- 2. Raaa;
- 3. $Rabc \Rightarrow (Rbac \& Racb)$ (total symmetry);
- 4. $(Rabc \& Rcde) \Rightarrow \exists f(Radf \& Rfbe)$ (Pasch's postulate).

2 Modular lattices and geometrical frames

In this section, we state the main results of the earlier paper [12] to which the current paper is a sequel. The proofs can be found in [12].

Given a **KR** model structure $\mathcal{K} = \langle S, R, 0 \rangle$, we can define an algebra $\mathfrak{A}(\mathcal{K})$ as follows:

Definition 2.1 The algebra $\mathfrak{A}(\mathcal{K}) = \langle \mathcal{P}(S), \cap, \cup, \neg, \top, \bot, t, \circ \rangle$ is defined on the Boolean algebra $\langle \mathcal{P}(S), \cap, \cup, \neg, \top, \bot \rangle$ of all subsets of S, where $\top = S, \bot = \emptyset, t = \{0\}$, and the operator $A \circ B$ is defined by

$$A \circ B = \{c \mid \exists a \in A, b \in B(Rabc)\}.$$

The algebra $\mathfrak{A}(\mathcal{K})$ is a De Morgan monoid [1],[3] in which $a \wedge \overline{a} = \bot$, where \bot is the least element of the monoid; we shall call any such algebra a **KR**-algebra. Hence the fusion operator $A \circ B$ is associative, commutative, and monotone. In addition, it satisfies the square-increasing property, and t is the monoid identity:

$$A \circ (B \circ C) = (A \circ B) \circ C,$$
$$A \circ B = B \circ A,$$
$$(A \subseteq B \land C \subseteq D) \Rightarrow A \circ C \subseteq B \circ D$$
$$A \subseteq A \circ A,$$
$$A \circ t = A.$$

In what follows, we shall assume basic results from the theory of De Morgan monoids, referring the reader to the expositions in Anderson and Belnap [1] and Dunn and Restall [3] for more background. We have defined **KR**-algebras above as arising from De Morgan monoids by the addition of the axiom $a \wedge \neg a = \bot$. However, we could also have defined them using the construction of Definition 2.1, since any **KR**-algebra can be represented as a subalgebra of an algebra produced by that construction. This is not hard to prove by using the known representation theorems for De Morgan monoids – see for example [10]. **KR**-algebras are closely related to relation algebras. In fact, they can be defined as square-increasing symmetric relation algebras – for basic definitions the reader can consult the monograph [7] by Roger Maddux.

In a **KR**-algebra, we can single out a subset of the elements that form a lattice; this lattice plays a key role in the analysis of the logic **KR**.

Definition 2.2 Let \mathfrak{A} be a **KR**-algebra. The family $\mathcal{L}(\mathfrak{A})$ is defined to be the elements of \mathfrak{A} that are $\geq t$ and idempotent, that is to say, $a \in \mathcal{L}(\mathfrak{A})$ if and only if $a \circ a = a$ and $t \leq a$. If \mathcal{K} is a **KR** model structure, then we define $\mathcal{L}(\mathcal{K})$ to be $\mathcal{L}(\mathfrak{A}(\mathcal{K}))$.

The following lemma provides a useful characterization of the elements of $\mathcal{L}(\mathfrak{A})$; it is based on some old observations of Bob Meyer.

Lemma 2.3 Let \mathfrak{A} be a **KR**-algebra. Then the following conditions are equivalent:

a ∈ L(𝔅);
a = (a → a);
∃b[a = (b → b)].

If $\mathcal{K} = \langle S, R, 0 \rangle$ is a **KR** model structure, then a subset A of S is a *linear* subspace if it satisfies the condition

$$(a, b \in A \land Rabc) \Rightarrow c \in A.$$

A non-empty linear subspace must contain 0, since Raa0 holds in any **KR** model structure.

A lattice is *modular* if it satisfies the implication

$$x \ge z \Rightarrow x \land (y \lor z) = (x \land y) \lor z.$$

We include a zero element satisfying the equality $x \vee 0 = x$ in the modular lattices discussed below, and use the notation \mathcal{M}_0 for the variety of modular lattices with zero. For background on modular lattice theory, the reader can consult the texts of Birkhoff [2] or Grätzer [5].

A chain in a lattice L is a totally ordered subset of L; the length of a finite chain C is |C| - 1. A chain C in a lattice L is maximal if for any chain D in L, if $C \subseteq D$ then C = D. If L is a lattice, $a, b \in L$ and $a \leq b$, then the interval [a, b] is defined to be the sublattice $\{c : a \leq c \leq b\}$.

Let L be a lattice with least element 0. We define the *height* function: for $a \in L$, let h(a) denote the length of a longest maximal chain in [0, a] if there is a finite longest maximal chain; otherwise put $h(a) = \infty$. If L has a largest element 1, and $h(1) < \infty$, then L has finite height.

Lemma 2.4 If \mathcal{K} is a **KR** model structure, then the elements of $\mathcal{L}(\mathcal{K})$ are exactly the non-empty linear subspaces of \mathcal{K} .

Theorem 2.5 If \mathfrak{A} is a **KR**-algebra, then $\mathcal{L}(\mathfrak{A})$, ordered by containment, forms a modular lattice, with least element t, and the lattice operations of join and meet defined by $a \wedge b$ and $a \circ b$.

Definition 2.6 Let L be a lattice with least element 0. Define a ternary relation R on the elements of L by:

$$Rabc \Leftrightarrow a \lor b = b \lor c = a \lor c,$$

and let $\mathcal{K}(L)$ be $\langle L, R, 0 \rangle$.

Theorem 2.7 $\mathcal{K}(L)$ is a **KR** model structure if and only if L is modular.

In Definition 2.6, if a, b, c are distinct points in a projective space, then Rabc holds if and only if the three points are collinear. Hence, the defined ternary relation can be considered as a generalized notion of collinearity that applies to any elements in a modular lattice.

Definition 2.8 If L is a lattice, then an ideal of L is a non-empty subset I of L such that

1. If $a, b \in I$ then $a \lor b \in I$;

2. If $b \in I$ and $a \leq b$, then $a \in I$.

The family of ideals of a lattice L, ordered by containment, forms a complete lattice I(L). The original lattice L is embedded in I(L) by mapping an element $a \in L$ into the *principal ideal* containing a, $(a] = \{b \mid b \leq a\}$. It is easy to verify that the mapping $a \mapsto (a]$ is a lattice isomorphism between L and a sublattice of I(L).

Theorem 2.9 Let L be a modular lattice with least element 0, and $\mathcal{K}(L) = \langle L, R, 0 \rangle$ the **KR** model structure constructed from L. Then $\mathcal{L}(\mathcal{K}(L))$ is identical with the lattice of ideals of L.

Corollary 2.10 Any modular lattice of finite height (hence any finite modular lattice) is representable as $\mathcal{L}(\mathcal{K})$ for some **KR** model structure \mathcal{K} . In addition, any modular lattice is representable as a sublattice of $\mathcal{L}(\mathcal{K})$ for some **KR** model structure \mathcal{K} .

3 Applications of the main construction

Theorem 3.1 Let \mathfrak{A} be a **KR**-algebra, and G a subset that freely generates \mathfrak{A} . If $G^* = \{a \to a : a \in G\}$, then G^* freely generates $\mathcal{L}(\mathfrak{A})$.

Proof. Let L be the sublattice of $\mathcal{L}(\mathfrak{A})$ generated by G^* . If M is a modular lattice with least element 0, and $f: G^* \mapsto M$ a function from G^* to M, then we need to show that f can be extended to a lattice homomorphism from L to M.

Using Definition 2.6, we can define the **KR** model structure $\mathcal{K}(M)$, and hence by Definition 2.1, the **KR**-algebra $\mathfrak{B} = \mathfrak{A}(\mathcal{K}(M))$. For $a \in G$, define $g(a) = f(a \to a)$. Since G freely generates \mathfrak{A} , g can be extended to a homomorphism h from \mathfrak{A} to \mathfrak{B} . By Theorem 2.9, $\mathcal{L}(\mathfrak{B})$ is identical with the lattice of ideals of M, so that we can identify M with a sublattice of $\mathcal{L}(\mathfrak{B})$ by the embedding $a \rightleftharpoons (a]$ that maps an element $a \in M$ into the principal ideal generated by a.

For $a \in G^*$, let $a = b \rightarrow b$, for $b \in G$. Then

$$h(a) = h(b \to b) = h(b) \to h(b) = g(b) \to g(b)$$
$$= f(b \to b) \to f(b \to b) = f(a) \to f(a) = f(a).$$

Thus, h restricted to L is a lattice homomorphism from L to M extending f, showing that G^* freely generates L.

To complete the proof of the theorem, we show that $L = \mathcal{L}(\mathfrak{A})$. Define

$$X = \{ a \in \mathfrak{A} : a \to a \in L \}.$$

Since $G^* \subseteq L$, $G \subseteq X$, and in addition, X is closed under \wedge and \circ , since L is closed under these operations. If $a \in X$, then $(\neg a \rightarrow \neg a) = (a \rightarrow a) \in L$, so that $\neg a \in X$. Since G generates \mathfrak{A} , it follows that $X = \mathfrak{A}$, so that $L = \mathcal{L}(\mathfrak{A})$. \Box

Corollary 3.2 In the logic **KR**, there are infinitely many distinct formulas built from the formulas $p \rightarrow p, q \rightarrow q, r \rightarrow r$ and $s \rightarrow s$ using only the connectives \land and \circ .

Proof. Theorem 3.1 shows that the formulas $p \to p, q \to q, r \to r$ and $s \to s$ generate an algebra of formulas isomorphic to the free modular lattice on four generators. This algebra is infinite [2, p. 64].

Corollary 3.2 was the only consequence deduced in [12] from Theorem 3.1. However, there are quite a few added conclusions that we can draw, as we explain in what follows.

Theorem 3.3 The free **KR**-algebra on three generators is finite.

Proof. Let \mathfrak{A}_3 be the free **KR**-algebra on three generators. By Theorem 3.1, $\mathcal{L}(\mathfrak{A}_3)$ is an \mathcal{M}_0 lattice freely generated by three elements. This lattice is finite [2, pp. 63-64], so the **KR**-model structure \mathcal{K}_3 constructed from this lattice is finite. Since by Corollary 2.10, \mathfrak{A}_3 is isomorphic to $\mathcal{L}(\mathcal{K}_3)$, it follows that it is finite.

Corollary 3.4 The decision problem for **KR** for formulas in three variables is solvable.

The main problem discussed in the paper [11], written in honour of my old friend Bob Meyer, was this: given a logic **L** intermediate between **T-W** +**A15** and **KR**, what is the smallest number of variables for which the decision problem for **L** is unsolvable? (**A15** is the axiom scheme $[(A \rightarrow B) \land A \land t] \rightarrow B$.) The main theorem of that paper shows that this number is at most four. For **KR**, Corollary 3.4 shows that this number is *exactly* four.

The construction proving the main theorem of [11] is a fairly intricate computation in coordinate frames. This seems to be necessary for logics weaker than \mathbf{KR} ; however, for \mathbf{KR} itself, we can give a very quick and easy undecidability proof by exploiting some deep results from the theory of modular lattices.

Theorem 3.5 The decision problem for KR in four variables is unsolvable.

Proof. Define a *lattice formula* to be one built from $p \rightarrow p, q \rightarrow q, r \rightarrow r$ and $s \rightarrow s$ using only the connectives \land and \circ , and a *lattice implication* to be a formula of the form $A \rightarrow B$, where A and B are lattice formulas.

If φ is a term in the theory of modular lattices in the variables x_1, x_2, x_3, x_4 , we define its translation φ^{τ} as the lattice formula constructed from φ by replacing x_1, x_2, x_3, x_4 by $p \to p, q \to q, r \to r, s \to s$ and the lattice join \vee by the fusion connective \circ . Theorem 3.1 shows that an inequality $\varphi \leq \psi$ in four variables holds in the free modular lattice if and only if $\varphi^{\tau} \to \psi^{\tau}$ is a theorem of **KR**.

Ralph Freese showed [4] that the word problem for the free modular lattice in five free generators is unsolvable. This was improved by Christian Herrmann [6] to four free generators. The results of Freese and Herrmann complete the proof of the theorem. \Box

4 Free associative connectives

Bob Meyer and his collaborators had an ingenious plan for proving \mathbf{R} undecidable. The idea was to search for a free associative connective in \mathbf{R} that could then be used to encode an undecidable problem in the theory of semigroups. As part of this search, they developed a suite of programs to help in the investigation. Their research program is described in the monograph by Thistlewaite, McRobbie and Meyer [9].

This monograph does not give a precise formal definition of the notion of free associative connective. However, the discussions in [9] and the examples given there suggest the following definition. Let \mathbf{L} be a logic in the language of \mathbf{R} , and $p \odot q$ a formula of \mathbf{L} with two free variables. If σ is a term in the theory of semigroups with the free variables x_1, \ldots, x_n , then we define the translation of σ into \mathbf{L} as the formula σ^t of \mathbf{L} that results by replacing x_1, \ldots, x_n by the propositional variables p_1, \ldots, p_n and the semigroup operation by the defined connective \odot . Then we define \odot to be a *free associative connective in* \mathbf{L} if an equation $\sigma = \tau$ holds in the free semigroup if and only if $\sigma^t \leftrightarrow \tau^t$ is provable in the logic \mathbf{L} .

The paper [11] contains a discussion of the question of the existence of such a connective in \mathbf{R} , as well as the problem of proving or disproving its existence. However, for \mathbf{KR} , we can settle the question easily.

Theorem 4.1 There is no free associative connective in KR.

Proof. Let $p \odot q$ be a formula of \mathbf{L} with two free variables. Define an infinite sequence of semigroup terms in one variable x by setting $s_1 = x$ and $s_{k+1} = x \cdot s_k$, and let σ_i be the translation s_i^{τ} of the term s_i in **KR**. Since by Theorem 3.3, the free **KR**-algebra \mathfrak{A}_1 in a single generator is finite, it follows that in the infinite sequence $\sigma_1, \sigma_2, \ldots, \sigma_k \ldots$ there are distinct formulas σ_i and σ_j that take the same value in \mathfrak{A}_1 . Hence, $\sigma_i \leftrightarrow \sigma_j$ is a theorem of **KR**. However, the terms s_i and s_j correspond to distinct elements in the free semigroup in one generator, so that the connective \odot is not freely associative.

At first sight, Theorem 4.1 appears to conflict with the undecidability of **KR**, since that result is proved by encoding a finitely presented semigroup in the logic. However, this problem is easily resolved by observing that the undecidability proof does not proceed by employing a free associative connective as defined above. The encoding of the semigroup operation $x \cdot y$ uses two auxiliary variables c_{23} and c_{31} , so that the key definition is:

$$x \cdot y = (x \otimes c_{23}) \otimes (c_{31} \otimes y),$$

where $b \otimes d$ is the operation defined on a modular *n*-frame as in §2 of [11]. Furthermore, the proof of associativity for the defined operation uses a number of added assumptions that formalize the concept of a three-dimensional coordinate frame.

The method used in the proof of Theorem 4.1 does not extend to \mathbf{R} . This is because Meyer proved in [8] that the formulas in one free variable in the infinite

sequence $p, p \circ p, (p \circ p) \circ p, \ldots$ are all mutually non-equivalent. Consequently, the questions of the existence of a free associative connective in **R** and the decidability of the one-variable fragment of **R** remain open.

References

- A. R. Anderson and N. D. Belnap. *Entailment*, volume 1. Princeton University Press, Princeton, NJ, 1975.
- [2] G. Birkhoff. *Lattice Theory*. American Mathematical Society, 1967. A.M.S. Colloquium Publications Volume XXV.
- [3] J. Michael Dunn and Greg Restall. Relevance logic. In D.M. Gabbay and F. Guenthner, editors, *Handbook of Philosophical Logic, 2nd Edition*, volume 6, pages 1–128. Kluwer Academic Publishers, Dordrecht, Boston and London, 2002.
- [4] Ralph Freese. Free modular lattices. Trans. Amer. Math. Soc., 261:81–91, 1980.
- [5] George Grätzer. General Lattice Theory. Academic Press, 1978.
- [6] Christian Herrmann. On the word problem for the modular lattice with four free generators. *Mathematische Annalen*, 265:513–527, 1983.
- [7] Roger D. Maddux. *Relation Algebras*. Elsevier, 2006. Studies in Logic and the Foundations of Mathematics Volume 150.
- [8] Robert.K. Meyer. R_I the bounds of finitude. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 16:385–387, 1970.
- [9] P.B. Thistlewaite, M.A. McRobbie, and R.K. Meyer. Automated theoremproving in non-classical logics. Pitman, London, 1988.
- [10] Alasdair Urquhart. Duality for algebras of relevant logics. Studia Logica, 56:263–276, 1996.
- [11] Alasdair Urquhart. Four variables suffice. Australasian Journal of Logic, 5:66-73, 2007.
- [12] Alasdair Urquhart. The geometry of relevant implication. IFCoLog Journal of Logics and their Applications, 4:3:591–604, 2017.