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Abstract. Classical mereotopology is sometimes thought to be represented by General Extensional 
Mereotopology with Closure Conditions (GEMTC). One reason typically given in favour of GEMTC 
is its relation to set-theoretic topology. However, the connection primitive in GEMTC lacks an obvious 
topological interpretation, and the alignment between GEMTC and topology varies across possible 
interpretations. This paper identifies, among several natural candidates, an interpretation that best aligns 
GEMTC with topology. Ten possible topological interpretations of mereotopological connection are 
examined, and for each, we identify (i) the conditions under which topological spaces can provide 
models of GEMTC, and (ii) the extent to which the definitions of GEMTC agree with their topological 
analogues in these models. It is observed that when connection is interpreted as the intersection of one 
set with the closure of another, the non-empty sets of any symmetric topology are a model of GEMTC, 
with agreement between several mereotopological notions and their topological analogues. This 
represents a stronger relation between GEMTC and topology than has thus far been observed in the 
literature. The results of the investigation also bear on issues like Peirce’s puzzle, the possibility of 
external connection between regions, and our intuitive understanding of connection in terms of 
boundaries. 

             
 
Mereology is the study of the parthood relation. With mereological theories, we may go some way toward 
modelling and reasoning about the spatial structure of regions. For instance, we may describe Australia as 
the mereological sum of its states and territories, and describe Sydney as part of New South Wales; we may 
also infer from these descriptions and the transitivity of parthood that Sydney is part of Australia. However, 
mereology on its own has limitations. A mereological theory cannot describe the breaking of a glass cup, 
because the shattered and whole cups have all the same parts, albeit differently arranged. To make sense of 
such cases, we turn to mereotopology, which extends mereology with topological notions such as connection, 
interiors, boundaries, and the like. Mereotopological theories were initially formulated with the goal of 
modelling relations between temporal or spatial entities like events (Whitehead, 1919), temporal intervals 
(Bentham, 1983), and regions (Casati & Varzi, 1999), and have also found applications to document 
classification (Fujihara & Mukerjee, 1991), geographic informational systems (Winter, 2000), natural 
language processing (Asher & Vieu, 1995), robot navigation (Kuipers & Levitt, 1988), and visual 
representation (Gooday & Cohn, 1995), among other things. 
 
General Extensional Mereotopology with Closure Conditions (henceforth GEMTC) is a mereotopological 
theory sometimes held to represent classical mereotopology (Casati & Varzi, 1999; Varzi, 1996). One reason 
often given in favour of GEMTC is its close relation to set-theoretic topology. It is known that significant 
classes of topological spaces can provide models of GEMTC or sub-theories thereof. For instance, 
Rachavelpula (2017, pp. 9–12) showed that the non-empty sets of a Hausdorff topology are a model of 
GEMTC, and Grzegorczyk (1960) showed that the non-empty regular open sets of a Hausdorff topology 
are a model of General Extensional Mereotopology. Moreover, several mereotopological properties defined 
within GEMTC, such as self-connection, interior, closure, exterior, and boundary, have analogues in 
topology. The mereotopological and topological definitions of these notions are similar, and presumably 
are intended to align in topological models of GEMTC. Casati and Varzi take these relations between 
GEMTC and topology as indicative that the connection relation in GEMTC ‘is germane to that of standard 
set-theoretic topology,’ and hence that ‘GEMTC may be considered as the archetype of a mereotopology 
theory’ (Casati & Varzi, 1999, p. 59). 
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However, the topological aspect of GEMTC also has potentially unintuitive consequences, some of which 
are illustrated by Peirce’s puzzle (Peirce, 1933). The Northern and Southern hemispheres of Earth seem to 
connect without overlapping. According to GEMTC, the Equator exists as the boundary of these 
hemispheres, which raises the question: to which hemisphere does the Equator belong? If it is taken to 
belong to both hemispheres, this entails that they overlap; if neither, then there is a region between them 
that is not part of either—both seem unintuitive. And if the Equator is taken to belong to just one 
hemisphere, the choice would seem arbitrary. Peirce took cases like this to suggest that boundaries do not 
exist, while others have chosen to adopt non-classical approaches to boundaries (e.g., Weber & Cotnoir, 
2015). 
 
Furthermore, the relation between GEMTC and topology is somewhat uncertain. Despite the many points 
of analogy between the two, the connection relation in GEMTC lacks an obvious topological interpretation. 
While connection is defined in topology as a property of topological spaces and as a property of individual 
sets, it is not defined in topology as a binary relation, as it is in GEMTC. Indeed, interpretations of 
connection in topological models of mereotopological theories have been somewhat varied in the literature. 
Rachavelpula interpreted connection in terms of separation by open neighbourhoods, while Grzegorczyk 
interpreted connection as the intersection of one set with the closure of the other, as do others (Casati & 
Varzi, 1999; Varzi, 2007). In some other mereotopological theories, connection is interpreted as intersection 
of sets (Clarke, 1981; Gotts, 1996) or of closures (Cotnoir, 2010; Pratt-Hartmann, 2007; Russell, 2008). 
These interpretations turn out not to be generally equivalent: the open intervals (0,1)  and (1,2)  are 
connected if connection is interpreted as intersection of closures, but not if connection is interpreted as 
intersection of sets. And, the choice of interpretation affects the alignment between GEMTC and topology. 
As will be seen, the conditions under which topological spaces can provide models of GEMTC varies across 
different interpretations of connection. And in these models, whether the mereotopological and topological 
definitions of self-connection, interior, closure, and the like agree also depends on how connection is 
interpreted.  
 
This paper aims to resolve this uncertainty by identifying an interpretation of connection that best aligns 
GEMTC with topology. It will be observed that among several natural candidates for a topological 
interpretation of connection, one is superior to alternatives in the sense of admitting models of GEMTC 
in the broadest class of topological spaces and, in these models, countenancing the intended alignments 
between the definitions of GEMTC and their topological analogues to the greatest extent. Namely, when 
connection is interpreted as the intersection of one set with the closure of another, the non-empty sets of 
any symmetric topology are a model of GEMTC, with alignment between the mereotopological and 
topological definitions of (self-)connection, open and closed entities, interior, exterior, closure, and 
boundary, which is a stronger result than has thus far been shown in the literature. The results of the 
investigation will also bear on issues like Peirce’s puzzle, the possibility of external connection between 
open or closed regions, and our intuitive understanding of connection in terms of boundaries. 
 
§1 reviews the axioms and definitions of GEMTC. §2 reviews the relevant ideas from topology and 
identifies several intended points of analogy with mereotopology, which will provide desiderata for an 
interpretation of connection. §3 lays out ten possible interpretations, which §§4–5 assess against the 
desiderata. §6 summarises the results of the investigation and §7 discusses implications.  
 
 

1. GEMTC 
 
Casati and Varzi (1999) formulate the mereological aspect of GEMTC with the (improper) parthood 
relation 𝑃𝑥𝑦 as primitive. Parthood is stipulated to be reflexive, antisymmetric, and transitive: 
 

(1)  𝑃𝑥𝑥      (Reflexivity of P) 
(2) (𝑃𝑥𝑦 ∧ 𝑃𝑦𝑥) → 𝑥 = 𝑦    (Antisymmetry of P) 
(3)  (𝑃𝑥𝑦 ∧ 𝑃𝑦𝑧) → 𝑃𝑥𝑧    (Transitivity of P) 
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The overlap relation 𝑂𝑥𝑦 is defined in terms of parthood as the sharing of a part: 
 

𝑂𝑥𝑦 ≔ ∃𝑧(𝑃𝑧𝑥 ∧ 𝑃𝑧𝑦)     (Overlap) 
 
The extensional aspect of GEMTC comes from the antisymmetry of P together with the following Strong 
Supplementation axiom, which says that whenever one thing is not part of another, some part of the first 
thing has no part in common with the second: 
 

(4) ¬𝑃𝑦𝑥 → ∃𝑧(𝑃𝑧𝑦 ∧ ¬𝑂𝑧𝑥)   (Strong Supplementation) 
 
GEMTC countenances unrestricted composition, as given by the Fusion axiom schema: 
 

(5) ∃𝑥ϕ𝑥 → ∃𝑧∀𝑦(𝑂𝑦𝑧 ↔ ∃𝑥(ϕ𝑥 ∧ 𝑂𝑦𝑥))  (Fusion) 
 
Intuitively, Fusion says that for any satisfied property, there is an object that comprises just all bearers of 
that property. The extensionality of GEMTC guarantees the uniqueness of witnesses to ∃𝑧 in instances of 
Fusion, hence we may define (general) sums, products, and complements like so: 
 

𝑥 + 𝑦 ≔ ι𝑧∀𝑤8𝑂𝑤𝑧 ↔ (𝑂𝑤𝑥 ∨ 𝑂𝑤𝑦):   (Sum) 
σ𝑥ϕ𝑥 ≔ ι𝑧∀𝑦8𝑂𝑦𝑧 ↔ ∃𝑥(ϕ𝑥 ∧ 𝑂𝑦𝑥):   (General sum) 
𝑥 × 𝑦 ≔ ι𝑧∀𝑤8𝑂𝑤𝑧 ↔ (𝑂𝑤𝑥 ∧ 𝑂𝑤𝑦):   (Product) 
~𝑥 ≔ σ𝑧(¬𝑂𝑧𝑥)     (Complement) 

 
The topological aspect of GEMTC is formulated with the connection relation 𝐶𝑥𝑦  as an additional 
primitive. Connection is stipulated to be reflexive, symmetric, and monotonic with respect to parthood: 
 

(6) 𝐶𝑥𝑥      (Reflexivity of C) 
(7)  𝐶𝑥𝑦 → 𝐶𝑦𝑥     (Symmetry of C) 
(8) 𝑃𝑥𝑦 → ∀𝑧(𝐶𝑥𝑧 → 𝐶𝑦𝑧)    (Monotonicity) 

 
Connection is a binary relation between entities, but the related property of self-connection may be defined for 
individuals, which says that an object cannot be partitioned into disconnected parts. In Casati and Varzi’s 
formulation, self-connection is defined like so (the possibility of alternative definitions will be considered 
in §4): 
 

𝑆𝐶𝑥 ≔ ∀𝑦∀𝑧(𝑥 = 𝑦 + 𝑧 → 𝐶𝑦𝑧)   (Self-connection) 
 
The internal parthood relation, which roughly says that one thing is enclosed within another, is also defined 
in terms of connection: 
 

𝐼𝑃𝑥𝑦 ≔ 𝑃𝑥𝑦 ∧ ∀𝑧(𝐶𝑧𝑥 → 𝑂𝑧𝑦)   (Internal parthood) 
 
In terms of internal parts, interiors, exteriors, closures, and boundaries may be defined: 

 
𝑖𝑥 ≔ σ𝑧	𝐼𝑃𝑧𝑥      (Interior) 
𝑒𝑥 ≔ 𝑖(~𝑥)      (Exterior) 
𝑐𝑥 ≔ ~(𝑒𝑥)      (Closure) 
𝑏𝑥 ≔ ~(𝑖𝑥 + 𝑒𝑥)     (Boundary) 

 
Intuitively, the interior of an object comprises everything within its boundary, the exterior of an object 
comprises everything outside its boundary, and the closure of an object comprises it and its boundary. A 
region is mereotopologically open (closed) if it is equal to its own interior (closure), that is, if it excludes 
(includes) every part of its boundary. 
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The closure conditions of GEMTC govern the behaviour of interiors and closures and are given by the 
following axioms:1  
 

(9) ∃𝑧	𝐼𝑃𝑧𝑥 → 𝑃(𝑖𝑥)𝑥    (Inclusion) 
(10) ∃𝑧	𝐼𝑃𝑧𝑥 → 𝑖(𝑖𝑥) = 𝑖𝑥    (Idempotence) 
(11) (∃𝑧𝐼𝑃𝑧𝑥 ∧ ∃𝑧𝐼𝑃𝑧𝑦) → 𝑖(𝑥 × 𝑦) = 𝑖𝑥 × 𝑖𝑦 (Product) 

 
GEMTC is the mereotopological theory comprising axioms (1)–(11) and the above definitions.  
 

 
2. Set-theoretic topology 

 
It is known that the mereological aspect of GEMTC has models in set-theory (Cotnoir & Varzi, 2021; 
Lewis, 1991, 1993; Pietruszczak, 2018; Pontow & Rainer, 2006; Tarski, 1983). When parthood is interpreted 
as the inclusion relation ⊆, the non-empty subsets of a set 𝑋 are a model of axioms (1)–(5).2 Axioms (1)–
(3) are satisfied because ⊆ is a partial order, and axioms (4) and (5) follow from the standard axioms of set 
theory. In these models, the implied interpretations of the other mereological notions are as follows:3 
 

𝑂𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ 
𝑥 + 𝑦 ≡ x ∪ y 

σ𝑥ϕ𝑥 ≡O{x ⊆ X:ϕx} 
𝑥 × 𝑦 ≡ 𝑥 ∩ 𝑦 
~𝑥 ≡ X − x 

 
To model the topological aspect of GEMTC, we may give a collection of sets some topological structure.4 
A topology on a set 𝑋 is a collection 𝒯	of subsets of 𝑋 that includes ∅ and 𝑋, and that is closed under finite 
intersection and arbitrary union. A set with an associated topology (𝑋, 𝒯) is a topological space, in which the 
members of 𝒯 are the open sets of (𝑋, 𝒯) and their set-theoretic complements are the closed sets of (𝑋, 𝒯). In 
terms of open and closed sets, topological interiors, closures, exteriors, and boundaries can be defined. The 
interior of a set is the union of all open subsets of that set, and the closure of a set is the intersection of all 
closed supersets of that set. The exterior of a set is the set-theoretic complement of its closure, and the 
boundary of a set is the complement of its interior relative to its closure. The topological interior, closure, 
exterior, and boundary of a set 𝐴 will be denoted 𝐼𝑛𝑡(𝐴), 𝐴, 𝐸𝑥𝑡(𝐴), and ∂𝐴 respectively. Presumably, the 
topological and mereotopological definitions of these terms are intended to coincide in topological models 
of GEMTC. 
 
In topology, connection is not typically defined as a binary relation between sets, hence the intended 
interpretation of mereotopological connection is left somewhat open. Nevertheless, we have connection 
defined as a property of a single set. A set 𝑥 in a topological space is topologically connected if it cannot be 
partitioned into two non-empty subsets 𝑦 ∪ 𝑧 = 𝑥 admitting open sets 𝑌, 𝑍 such that 𝑦 ⊆ 𝑌, 𝑧 ⊆ 𝑍, and 
𝑦 ∩ 𝑍 = 𝑌 ∩ 𝑧 = ∅.  This property of topological connection will be denoted 𝑇𝐶𝑥 . Presumably, 
mereotopological self-connection is intended to align with topological connection. 
 
Ideally, the interpretation of mereotopological connection would be such that the axioms of (the topological 
aspect of) GEMTC can be satisfied while all the intended alignments just observed are countenanced. In 
fact, the desiderata can be simplified, because the relations between the topological notions of open and 

 
1 Axioms (9)–(11) parallel the Kuratowski closure axioms for topology. The significance of this parallel will be 
considered in §2. 
2 The restriction to non-empty sets is necessary because ∅ is a subset of every set, so models with ∅ would violate 
Strong Supplementation.  
3 We use ≔ to denote definition, ≡ to denote interpretation, and = to denote identity. 
4 The definitions and theorems in this paper concerning familiar topological concepts can be found in standard texts 
like Munkres (2014). 
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closed sets, interiors, exteriors, closures, and boundaries parallel those between the corresponding 
mereotopological notions. Namely, the following are known theorems of topology: 
 
Theorem 1. 𝐸𝑥𝑡(𝐴) = 𝐼𝑛𝑡(X − 𝐴) 
 
Theorem 2. 𝐴 = X − 𝐸𝑥𝑡(𝐴) 
 
Theorem 3. ∂𝐴 = X − 8𝐼𝑛𝑡(𝑥) ∪ 𝐸𝑥𝑡(𝑥): 
 
Theorem 4. 𝐴 is open iff 𝐴 = 𝐼𝑛𝑡(𝐴). 
 
Theorem 5. 𝐴 is closed iff 𝐴 = 𝐴. 
 
These theorems imply that if mereological complement is interpreted as set-theoretic complement and the 
mereotopological and topological definitions of ‘interior’ align, so will those for ‘exterior’, ‘closure’, 
‘boundary’, ‘open’, and ‘closed’. Moreover, topological interiors are known to satisfy the Kuratowski closure 
axioms, namely 
 
Theorem 6. 𝐼𝑛𝑡(𝐴) ⊆ 𝐴 
 
Theorem 7. 𝐼𝑛𝑡8𝐼𝑛𝑡(𝐴): = 𝐼𝑛𝑡(A) 
 
Theorem 8. 𝐼𝑛𝑡(𝐴 ∩ 𝐵) = 𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐵) 
 
So an interpretation of mereotopological connection under which the mereotopological and topological 
definitions of ‘interior’ agree will also satisfy axioms (9)–(11) of GEMTC (regardless of how ~𝑥  is 
interpreted). Therefore, with parthood interpreted as ⊆, for a topological model comprising all the non-
empty subsets of a set to satisfy the axioms of GEMTC while yielding all the desired alignments, it is 
necessary and sufficient that connection be interpreted such that we have 

(a) axioms (6)–(8) of GEMTC satisfied, 
(b) 𝑆𝐶𝑥 ↔ 𝑇𝐶𝑥 for all 𝑥, and 
(c) 𝑖𝑥 = 𝐼𝑛𝑡(𝑥) for all 𝑥. 

 
Anticipating cases to be considered later, we might consider how these desiderata play out in topological 
models where mereotopological complement is not interpreted as set-theoretic complement. Call a set 𝑥 in 
a topological space regular open if 𝑥 = 𝐼𝑛𝑡(𝑥). Maintaining the interpretation of parthood as ⊆, it is known 
that the non-empty regular open (henceforth NERO) sets of a topological space are a model of axioms (1)–
(5) with the implied interpretations of the other mereological notions like so:5 
 

𝑂𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ 
𝑥 + 𝑦 ≡ 𝐼𝑛𝑡8x ∪ y: 

σ𝑥ϕ𝑥 ≡ 𝐼𝑛𝑡 aO{𝑥: x ⊆ X,ϕx}b 

𝑥 × 𝑦 ≡ 𝑥 ∩ 𝑦 
~𝑥 ≡ 𝐼𝑛𝑡(X − x) 

 
In such models, if 𝑖𝑥 = 𝐼𝑛𝑡(𝑥), axioms (9)–(11) will be satisfied, and the mereotopological and topological 
definitions of ‘interior’, ‘open’, and ‘exterior’ will agree. However, under this interpretation of ~𝑥, if we 
have 𝑖𝑥 = 𝐼𝑛𝑡(𝑥) generally, this also implies 𝑐𝑥 = 𝑥 generally; so the mereotopological closures of non-
(topologically-)closed sets will not be their topological closures. Therefore, under a restriction to NERO 

 
5 A restriction to the non-empty open (or closed) sets of a topological space is insufficient, because it is not guaranteed 
that these sets satisfy Strong Supplementation. 
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sets, we can at best have a topological model of GEMTC in which the mereotopological definitions of 
‘connection’, ‘interior’, ‘open’, and ‘exterior’ agree with their topological analogues. This optimal result 
would still be represented by desiderata (a)–(c). 
 
Dually, call a set 𝑥 regular closed if 𝑥 = 𝐼𝑛𝑡(𝑥). The non-empty regular closed (henceforth NERC) sets of a 
topological space are a model of axioms (1)–(5) of GEMTC (when parthood is interpreted as ⊆) with the 
other mereological notions interpreted so: 
 

𝑂𝑥𝑦 ≡ 𝐼𝑛𝑡(𝑥) ∩ Int(𝑦) ≠ ∅ 
𝑥 + 𝑦 ≡ x ∪ y 

σ𝑥ϕ𝑥 ≡O{x ⊆ X:ϕx} 

𝑥 × 𝑦 ≡ 𝐼𝑛𝑡(𝑥 ∩ 𝑦) 
~𝑥 ≡ X − x 

 
With only NERC sets in view, it would not be reasonable to have 𝑖𝑥 = 𝐼𝑛𝑡(𝑥) as a desideratum because 
topological interiors are topologically open. Instead, it would make more sense to expect 𝑐𝑥 = 𝑥 (this is 
equivalent to 𝑖𝑥 = 𝐼𝑛𝑡(𝑥) in models comprising all non-empty subsets of a set). If this desideratum is 
satisfied, the mereotopological and topological definitions of ‘closed’ and ‘closure’ will agree. But under the 
present interpretation of ~𝑥, 𝑐𝑥 = 𝑥 implies (and is equivalent to) 𝑖𝑥 = 𝑥, so the definitions of ‘open’, 
‘interior’, and ‘exterior’ will not align for non-open sets. Nevertheless, 𝑖𝑥 = 𝑥 also implies that axioms (9)–
(11) are satisfied. So under a restriction to NERC sets, an interpretation of connection that satisfies 
desiderata (a)–(b) and 𝑐𝑥 = 𝑥  will admit topological models of GEMTC in which the definitions of 
‘connection’, ‘closed’, and ‘closure’ align. 
 

 
3. Interpretations of connection 

 
Anthony Cohn and Achille Varzi (2003) considered three possible interpretations of connection, as follows 
(the predicate symbols have been changed to anticipate other candidate interpretations to come):  
 

𝐶!𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ 
𝐶"𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ or 𝑥 ∩ 𝑦 ≠ ∅ 
𝐶#$𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ 
 

These interpretations represent some of the more popular interpretations in the literature. Connection is 
interpreted as 𝐶! in the theories of Clarke (Clarke, 1981, 1985), the Region Connection Calculus (Cohn et 
al., 1995; Randell et al., 1992),6 Roeper’s region-based topology (Lando & Scott, 2019; Roeper, 1997), and 
others (Chen, 2020; White, 1974). Haemmerli and Varzi (2014), as well as Weber and Cotnoir (2015), 
formulate mereotopological theories in which connection is interpreted as 𝐶" . Cotnoir (2010), Pratt-
Hartmann (2007), and Russell (2008) adopt interpretation 𝐶#$ . 
 
𝐶" suggests that the following might also be a possible interpretation, though this interpretation is not 
typically considered in the literature: 
 

𝐶%𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ and 𝑥 ∩ 𝑦 ≠ ∅ 
 
Cohn and Varzi suggested in a note (2003, n.2) that interpretations in terms of interiors might be possible, 
so we shall also consider the duals of interpretations 𝐶% to 𝐶#$ 
 

𝐶&𝑥𝑦 ≡ 𝐼𝑛𝑡(𝑥) ∩ Int(𝑦) ≠ ∅ 
 

6 Topological models of the Region Connection Calculus typically restrict consideration to just the NERC sets of a 
topological space. Under this restriction, all three interpretations here are equivalent. 
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𝐶'𝑥𝑦 ≡ Int(𝑥) ∩ 𝑦 ≠ ∅ and 𝑥 ∩ Int(𝑦) ≠ ∅ 
𝐶(𝑥𝑦 ≡ Int(𝑥) ∩ 𝑦 ≠ ∅ or 𝑥 ∩ Int(𝑦) ≠ ∅ 

 
In this order, 𝐶& ,	𝐶' ,	𝐶( ,	𝐶! ,	𝐶% ,	𝐶" , and	𝐶#$  decrease in strength. It follows from known topological 
properties of interiors and closures that 𝐶)xy  implies 𝐶*𝑥𝑦  whenever 𝑗 > 𝑖  or 𝑗 = 7𝑐 , and there are 
counterexamples to the converses in the standard topology of the real numbers: 

(0,1) and (1,2) are related by 𝐶#$ but not 𝐶", 
(0,1) and [1,2] are related by 𝐶" but not 𝐶%, 
(0,1) ∪ [2,3] and [1,2) are related by 𝐶% but not 𝐶!, 
[0,1] and [1,2] are related by 𝐶! but not 𝐶(, 
(0,2) ∪ {3} and (2,4) are related by 𝐶( but not 𝐶', 
(0,2) ∪ {3} and (2,4) ∪ {1} are related by 𝐶' but not 𝐶&. 

 
While enumerating possible topological interpretations of mereotopological connection, it might be helpful 
also to consider a few topological ideas relating to separation. In topological spaces, separation properties 
are sometimes considered, which describe various ways in which sets may be disconnected in some sense. 
 
Definition 9. Sets 𝑎 and 𝑏 are topologically distinguishable if there is an open set 𝐴 such that either 𝑎 ⊆ 𝐴 and 
𝑏 ∩ 𝐴 = ∅, or 𝑏 ⊆ 𝐴 and 𝑎 ∩ 𝐴 = ∅.7 
 
Definition 10. Sets 𝑎 and 𝑏 are separated if there are open sets 𝐴, 𝐵 such that 𝑎 ⊆ 𝐴, 𝑏 ⊆ 𝐵, and 𝑎 ∩ 𝐵 =
𝐴 ∩ 𝑏 = ∅. 
 
Definition 11. Sets 𝑎 and 𝑏 are separated by open neighbourhoods if there are open sets 𝐴, 𝐵 such that 𝑎 ⊆ 𝐴, 
𝑏 ⊆ 𝐵, and 𝐴 ∩ 𝐵 = ∅. 
 
Definition 12. Sets 𝑎 and 𝑏 are separated by closed neighbourhoods if there are open sets 𝐴, 𝐵 such that 𝑎 ⊆ A, 
𝑏 ⊆ 𝐵, and 𝐴 ∩ 𝐵 = ∅. 
 
Definition 13. Sets 𝑎 and 𝑏 are separated by a continuous function if there is a continuous8 𝑓: (𝑋, 𝒯) → ℝ such 
that 𝑓(𝑎) ⊆ {0} and 𝑓(𝑏) ⊆ {1}.9 
 
The negations of separation properties might yield viable interpretations of mereotopological connection. 
Indeed, 𝐶% above is equivalent to topological indistinguishability, 	𝐶" is equivalent to non-separation, and 
the interpretation of connection adopted by Rachavelpula (2017, p. 9) is non-separation by open 
neighbourhoods. After defining predicates corresponding to the negations of Definitions 11–13, we arrive 
at the following list of ten candidate interpretations: 
 

𝐶&𝑥𝑦 ≡ Int(𝑥) ∩ Int(𝑦) ≠ ∅  
𝐶'𝑥𝑦 ≡ Int(𝑥) ∩ 𝑦 ≠ ∅ and 𝑥 ∩ Int(𝑦) ≠ ∅  
𝐶(𝑥𝑦 ≡ Int(𝑥) ∩ 𝑦 ≠ ∅ or 𝑥 ∩ Int(𝑦) ≠ ∅  
𝐶!𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅    
𝐶%𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ and 𝑥 ∩ 𝑦 ≠ ∅  
𝐶"𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ or 𝑥 ∩ 𝑦 ≠ ∅  
𝐶#+𝑥𝑦 ≡ 𝑥 and 𝑦 are not separated by open neighbourhoods 

 
7 Topological distinguishability is typically defined only for points. Here, the definition has been extended to include 
sets in general. It may be verified that for pairs of singleton sets containing just a point each, the definition here 
coincides with the usual definition of topological distinguishability. 
8 A function is continuous if the preimage of every open set is open.  
9 The property of being precisely separated by a continuous function is also sometimes defined, in which 𝑓 satisfies the 
additional condition that only points in 𝑎 and 𝑏 are mapped to 0 and 1. This property will not be considered here 
because the interpretation of connection that comes from it is not monotonic with respect to parthood—[0,1] and 
[2,3] are precisely separated by a continuous function but (0,1) and (2,3) are not. 
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𝐶#$𝑥𝑦 ≡ 𝑥 ∩ 𝑦 ≠ ∅ 
𝐶,𝑥𝑦 ≡ 𝑥 and 𝑦 are not separated by closed neighbourhoods 
𝐶-𝑥𝑦 ≡ 𝑥 and 𝑦 are not separated by a continuous function 

 
It is known that the separation properties, in the order of the definitions above, strictly increase in strength. 
Hence, we have implications between the candidate interpretations as follows: 
 
Theorem 14. 𝐶)𝑥𝑦 → 𝐶*𝑥𝑦 for all 𝑥 and 𝑦 iff one of the following holds 

(i) 𝑖 < 𝑗, 
(ii) 𝑖 < 7 and 𝑗 = 7𝑐 or 7𝑜, or  
(iii) 𝑖 = 7𝑐 or 7𝑜 and 𝑗 > 7. 

 
𝐶#+𝑥𝑦 → 𝐶#$𝑥𝑦, 𝐶#$𝑥𝑦 → 𝐶#+𝑥𝑦, and the converse implications do not generally hold. However, some 
converses hold in restricted classes of sets. With only open sets in view, all of 𝐶& to 𝐶#+ (excluding 𝐶#$) are 
equivalent, and 𝐶#$  is equivalent to 𝐶, . With only closed sets in view, interpretations from 𝐶!  to 𝐶#$ 
(excluding 𝐶#+) are equivalent. 
 
The ten interpretations listed above by no means exhaust all the possibilities, but they perhaps represent 
some of the more natural options for interpreting connection in topological models, and include the popular 
interpretations in the literature. Furthermore, it may be verified that under any of these interpretations, 
connection is reflexive, symmetric, and monotonic with respect to parthood. So these interpretations all 
satisfy desideratum (a), which implies that any interpretation among these satisfying desideratum (c) will 
admit topological models of GEMTC.  
 

 
4. Self-connection 

 
We first consider the possibility of satisfying desideratum (b) in models comprising all the non-empty sets 
of a topological space. The definition of topological connection can be stated in terms of 𝐶": a set 𝑥 is 
topologically connected if it cannot be partitioned into two separated subsets; that is, if for every partition 
𝑦 ∪ 𝑧 = 𝑥, we have 𝐶"𝑦𝑧. This definition would coincide with that of mereotopological self-connection if 
connection is interpreted as 𝐶"; therefore, 𝐶" satisfies desideratum (b). 
 
If an interpretation other than 𝐶" is adopted, Theorem 14 implies that one direction of 𝑆𝐶𝑥 ↔ 𝑇𝐶𝑥 will 
still generally hold, but the converse will not. For instance, if connection is interpreted as 𝐶,, 𝑇𝐶𝑥 → 𝑆𝐶𝑥 
generally holds. For, given any topologically connected 𝑥 and every partition 𝑥 = 𝑦 + 𝑧, the definition of 
topological connection implies 𝐶"𝑦𝑧 , which further implies 𝐶,𝑦𝑧  by Theorem 14; hence 𝑥  is self-
connected. But it is not generally the case that 𝑆𝐶𝑥 → 𝑇𝐶𝑥 under this interpretation, with counterexamples 
given by pairs of sets that are related by 𝐶, but not by 𝐶". In the real numbers with the standard topology, 
(0,1) ∪ (1,2) is not topologically connected because (0,1) and (1,2) are separated, but (0,1) ∪ (1,2) is 
mereotopologically self-connected under interpretation 𝐶,. In particular, (0,1) and (1,2) are related by 𝐶, 
because the closures of their smallest open neighbourhoods (namely themselves) intersect. Similarly, if 
connection is interpreted as 𝐶) for 𝑖 < 6, 𝑆𝐶𝑥 → 𝑇𝐶𝑥 will generally hold but 𝑇𝐶𝑥 → 𝑆𝐶𝑥 will not, with 
counterexamples given by pairs of sets that satisfy 𝐶" but not 𝐶) , such as [0,2] with the partition [0,1) ∪
[1,2]. 
 
Nevertheless, even under an interpretation other than 𝐶", there might still be ways of satisfying desideratum 
(b). Three possible strategies will be explored here. First, the mereotopological definition of self-connection 
could be revised, so that 𝑆𝐶  lines up with 𝑇𝐶  under the revised definition of 𝑆𝐶  and the adopted 
interpretation of connection. For instance, Clarke (1985), while formulating another mereotopological 
theory, defined self-connection equivalently to 
 

𝑆𝐶𝑥 ≔ ∀𝑦∀𝑧(𝑥 = 𝑦 + 𝑧 → (𝐶(𝑐𝑦)z ∨ 𝐶𝑦(𝑐z)) 
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Clarke interpreted 𝐶 as 𝐶!, which makes this definition equivalent to  
 

𝑆𝐶𝑥 ≔ ∀𝑦∀𝑧(𝑥 = 𝑦 + 𝑧 → C"yz) 
 
which coincides with the definition of topological connection.  
 
A second way of satisfying desideratum (b) is to consider a restricted subclass of sets in the topological 
spaces under consideration. In models comprising just NERC sets, the definition of 𝑆𝐶𝑥 is weaker than 
the original (because the quantifiers are restricted to NERC sets), while the definition of topological 
connection remains unchanged. So for any given interpretation of connection, if 𝑇𝐶𝑥 → 𝑆𝐶𝑥 generally 
holds in models comprising all the non-empty sets of a topological space, this will also be in the case in 
models comprising the NERC sets of a topological space. Moreover, it was observed in §3 that 
interpretations 𝐶! to 𝐶#$ (excluding 𝐶#+) are equivalent for closed sets, so 𝑇𝐶𝑥 → 𝑆𝐶𝑥 also generally holds 
under these interpretations when only NERC sets are in view. Toward the converse, we observe that for a 
NERC set 𝑥 , if 𝑦 ∪ 𝑧 = 𝑥  and ¬𝐶"𝑦𝑧 , 𝑦  and 𝑧  are NERC. 10  So whenever 𝑥  is NERC and not 
topologically connected, there are NERC 𝑦 and 𝑧 such that 𝑦 ∪ 𝑧 = 𝑥 and ¬𝐶"𝑦𝑧; hence 𝑥 is not self-
connected under interpretations 𝐶&  to 𝐶#$  (excluding 𝐶#+ ). So while 𝑆𝐶𝑥 ↔ 𝑇𝐶𝑥  generally holds only 
under interpretation 𝐶" when all non-empty sets are in view, the biconditional holds under interpretations 
𝐶! to 𝐶#$ when consideration is restricted to NERC sets. 
 
Another natural option to consider is a restriction to NERO sets. With only NERO sets in view, 𝑇𝐶𝑥 →
𝑆𝐶𝑥 generally holds under interpretations 𝐶#$ , 𝐶, and 𝐶- . For, if some NERO 𝑥 is not self-connected 
under these interpretations, then 𝑥 = 𝐼𝑛𝑡8𝑦 ∪ 𝑧: for some NERO 𝑦, 𝑧 where ¬𝐶#$𝑦𝑧, from which it 
follows that 𝑥 = 𝑦 ∪ 𝑧 and ¬𝐶"𝑦𝑧,11 and that 𝑥 is not topologically connected. But 𝑇𝐶𝑥 → 𝑆𝐶𝑥 does not 
hold for the other interpretations, under which (0,2) = 𝐼𝑛𝑡 u(0,1) ∪ (1,2)v is not self-connected despite 
being topologically connected. The converse 𝑆𝐶𝑥 → 𝑇𝐶𝑥 generally holds under interpretations 𝐶& to 𝐶#+ 
(excluding 𝐶#$). For, if a NERO set 𝑥 is not topologically connected, then 𝑥 = 𝑦 ∪ 𝑧 where ¬𝐶"𝑦𝑧. From 
this it follows that 𝑦 and 𝑧 are NERO,12 and that 𝑥 = 𝐼𝑛𝑡(𝑥) = 𝐼𝑛𝑡8𝑦 ∪ 𝑧: with ¬𝐶#+𝑦𝑧 (because 𝐶" is 
equivalent to 𝐶#+ for NERO sets); hence 𝑥 is not self-connected. But for the other interpretations, the 
union of two open balls of radius 1 centred at (0,0) and (2,0) is self-connected in the standard topology 
of the Euclidean plane despite being not topologically connected. Therefore, no interpretation among the 
candidates satisfies desideratum (b) generally. 
 
A third possible strategy is to restrict consideration to a subclass of topological spaces. In topology, separation 
axioms are sometimes stipulated to hold of topological spaces, which entail that sets meeting certain 
conditions are separated in some sense. For instance, completely normal topological spaces are characterised 
by the property that separated sets are separated by open neighbourhoods. In these spaces, 𝐶#+ entails 𝐶"; 

 
10 Proof. It suffices to show that 𝑦 = 𝐼𝑛𝑡(𝑦). Since 𝐼𝑛𝑡(𝑦) ⊆ 𝐼𝑛𝑡(𝑥) = 𝑥, and 𝐼𝑛𝑡(𝑦) ⊆ 𝑦 which is disjoint from 𝑧, 
we have 𝐼𝑛𝑡(𝑦) ⊆ 𝑦. Conversely, let 𝑝 ∈ 𝑦. Since 𝑦 and 𝑧 are separated, there is an open set 𝑈 ⊇ 𝑦 ∋ 𝑝 disjoint from 
𝑧. Now suppose toward a contradiction that 𝑝 ∉ 𝐼𝑛𝑡(𝑦). Then there is an open set 𝑉 ∋ 𝑝 disjoint from 𝐼𝑛𝑡(𝑦). Since 
𝑝 ∈ 𝑥 = 𝐼𝑛𝑡(𝑥), 𝑈 ∩ 𝑉 intersects 𝐼𝑛𝑡(𝑥), and 𝑊 = 𝑈 ∩ 𝑉 ∩ 𝐼𝑛𝑡(𝑥) is open. Since 𝑊 is disjoint from 𝑧, 𝑊 is an 
open subset of 𝑉 and 𝑦, contradicting that 𝑉 is disjoint from 𝐼𝑛𝑡(𝑦). Hence, 𝑦 ⊆ 𝐼𝑛𝑡(𝑦). 
11 Proof. To show 𝑥 = 𝑦 ∪ 𝑧, it suffices to show that 𝑦 ∪ 𝑧 = 𝐼𝑛𝑡B𝑦 ∪ 𝑧C. Since 𝑦 is an open set in 𝑦 ⊆ 𝑦 ∪ 𝑧, we 
have 𝑦 ⊆ 𝐼𝑛𝑡B𝑦 ∪ 𝑧C; and likewise for 𝑧. Conversely, if 𝑝 ∈ 𝐼𝑛𝑡B𝑦 ∪ 𝑧C, there is an open set 𝑈 with 𝑝 ∈ 𝑈 ⊆ 𝑦 ∪ 𝑧. 
Since the closures of 𝑦 and 𝑧 do not intersect, 𝑝 is not in both their closures—say 𝑝 ∉ 𝑧. Then there is an open set 𝑉 
disjoint from 𝑧 with 𝑝 ∈ 𝑉. 𝑈 ∩ 𝑉 is an open set containing 𝑝 in 𝑦, hence 𝑝 ∈ 𝐼𝑛𝑡(𝑦) = 𝑦. ¬𝐶!𝑦𝑧 follows from 
Theorem 14. 
12 Proof. It suffices to show that 𝑦 = 𝐼𝑛𝑡(𝑦). Since 𝐼𝑛𝑡(𝑦) ⊆ 𝐼𝑛𝑡(𝑥) = 𝑥 and 𝐼𝑛𝑡(𝑦) ⊆ 𝑦 which is disjoint from 𝑧, 
we have 𝐼𝑛𝑡(𝑦) ⊆ 𝑦. Conversely, let 𝑝 ∈ 𝑦 ⊆ 𝑥 = 𝐼𝑛𝑡B𝑦 ∪ 𝑧C. Then there is an open set 𝑈 ∋ 𝑝 contained in 𝑦 ∪ 𝑧. 
Since 𝑦 and 𝑧 are separated, there is an open set 𝑉 ⊇ 𝑦 ∋ 𝑝 disjoint from 𝑧. 𝑈 ∩ 𝑉 is now an open set containing 𝑝 
and contained in 𝑦, hence 𝑝 ∈ 𝐼𝑛𝑡(𝑦). 
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so 𝑆𝐶𝑥 → 𝑇𝐶𝑥 holds under interpretation 𝐶#+ in models comprising all the non-empty sets of a completely 
normal topological space. This strategy can also be used in conjunction with the previous one. For instance, 
normal topological spaces are characterised by the property that disjoint closed sets are separated by a 
continuous function. In models comprising just the NERC sets of a normal topological space, 𝐶-𝑥𝑦 entails 
𝐶!𝑥𝑦, so all interpretations from 𝐶! to 𝐶- (including 𝐶#+ and 𝐶#$) are equivalent and 𝑆𝐶𝑥 ↔ 𝑇𝐶𝑥 holds 
under each. 
 

 
5. Interior 

 
We turn now to desideratum (c)—the alignment of 𝑖𝑥 with 𝐼𝑛𝑡(𝑥). The following is a known property of 
topological interiors: 
 
Theorem 15. A point 𝑦 ∈ 𝐼𝑛𝑡(𝑥) iff there is an open set 𝑌 such that 𝑦 ∈ 𝑌 ⊆ 𝑥. Hence, a set 𝑦 ⊆ 𝐼𝑛𝑡(𝑥) 
iff there is an open set 𝑌 such that 𝑦 ⊆ 𝑌 ⊆ 𝑥. 
 
Intuitively, Theorem 15 says that to be in the topological interior of a region is to be enclosed within that 
region, in the sense of admitting a neighbourhood fully contained in the region. The internal parthood 
relation also says that one region is enclosed within another, but in the sense of being disconnected from 
its complement. Aligning the topological and mereotopological notions of interior, therefore, is a matter of 
interpreting connection such that these two senses of enclosure agree. However, it turns out that in models 
comprising all the non-empty sets of a topological space, none of the candidate interpretations countenance 
this alignment.  
 
Under interpretations 𝐶) with 𝑖 < 6, all open subsets of 𝑥 are internal parts of 𝑥. Theorems 1 and 2 imply 
that 𝑋 − 𝐼𝑛𝑡(𝑥) = 𝑋 − 𝑥, so any open subset of 𝑥, because it does not intersect 𝑋 − 𝐼𝑛𝑡(𝑥), also does 
not intersect 𝑋 − 𝑥. These subsets are thus not connected to the complement of 𝑥 under interpretation 𝐶% 
and, by Theorem 14, under any interpretation 𝐶) with 𝑖 < 6. So for these interpretations, regions within 
the topological interior of 𝑥 also fall within an internal part of 𝑥, and we have	𝐼𝑛𝑡(𝑥) ⊆ 𝑖𝑥.	But 𝑖𝑥 ⊆
𝐼𝑛𝑡(𝑥) would not generally hold, with [0,1] as a counterexample. [0,1] is not connected to its complement 
under these interpretations, and is hence an internal part of itself; but [0,1] ⊈ 𝐼𝑛𝑡([0,1]). 
 
Under interpretations 𝐶)  with 𝑖 ≥ 6 , every internal part of 𝑥  admits an open neighbourhood fully 
contained within 𝑥 . By Theorem 14, for 𝑦 not to be connected to the complement of 𝑥  under these 
interpretations is for it not to be so connected under interpretation 𝐶". And if 𝑦 does not intersect the 
closure of 𝑋 − 𝑥, then 𝑦 admits an open neighbourhood not intersecting 𝑋 − 𝑥 and hence fully contained 
within 𝑥. So for these interpretations, we have 𝑖𝑥 ⊆ 𝐼𝑛𝑡(𝑥). But now 𝐼𝑛𝑡(𝑥) ⊆ 𝑖𝑥 will not generally hold. 
As a counterexample, consider the topology on {0,1} in which ∅, {1}, and {0,1} are open. Since {1} is 
open, 1 is in the interior of {1}; but since {1} = {0,1}, {1} is related to its complement by 𝐶" (and hence 
by 𝐶) for any 𝑖 ≥ 6) and {1} is not an internal part of itself. 
 
Nevertheless, it might still be possible to satisfy desideratum (c) by employing some of the strategies 
suggested in §4. Alternative definitions of the relevant mereotopological ideas (such as interior or internal 
part) are not often considered in the literature, so we will focus on the possibility of restricting the sets or 
topological spaces under consideration. 
 
With only NERO sets in view, it can be shown that 𝑖𝑥 ⊆ 𝐼𝑛𝑡(𝑥) generally holds, and that we have 
𝐼𝑛𝑡(𝑥) ⊆ 𝑖𝑥 under interpretations 𝐶& to 𝐶#+ (excluding 𝐶#$). 𝑖𝑥 ⊆ 𝐼𝑛𝑡(𝑥) follows from the observations 
that all internal parts of 𝑥 are subsets of 𝑥, and that 𝑥 = 𝐼𝑛𝑡(𝑥) when 𝑥 is topologically open. For the 
converse, we note that for any 𝑦 ⊆ 𝐼𝑛𝑡(𝑥), 𝐼𝑛𝑡(𝑥) is a NERO set containing 𝑦. At the same time, 𝐼𝑛𝑡(𝑥) 
is a subset of 𝑥 , so 𝐼𝑛𝑡(𝑥) ∩ 𝐼𝑛𝑡(𝑋 − 𝑥) = ∅ , and 𝐼𝑛𝑡(𝑥)  does not intersect the mereotopological 
complement of 𝑥. 𝐼𝑛𝑡(𝑥) is thus an internal part of 𝑥 under any interpretation equivalent to 𝐶!, namely all 
interpretations from 𝐶& to 𝐶#+. Under these interpretations, 𝑦 ⊆ 𝑖𝑥 and hence 𝐼𝑛𝑡(𝑥) ⊆ 𝑖𝑥. 
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With only NERC sets in view, we seek to have 𝑥 = 𝑐𝑥 generally instead of desideratum (c). It can be shown 
that 𝑥 ⊆ 𝑐𝑥 generally holds, and that we have 𝑐𝑥 ⊆ 𝑥 under interpretations 𝐶& to 𝐶#$ (excluding 𝐶#+). To 
see this, we observe that the desideratum is equivalent to the condition that 𝑖𝑥 = 𝑥 generally, because 𝑐𝑥 =
~𝑖(~𝑥) and 𝑥 = 𝑥 = ~(~𝑥). Since all internal parts are subsets, we always have 𝑖𝑥 ⊆ 𝑥 and hence 𝑥 ⊆
𝑐𝑥. Conversely, for any NERC 𝑦 ⊆ 𝐼𝑛𝑡(𝑥), 𝑦 and the mereotopological complement of 𝑥 (namely 𝑋 −
𝐼𝑛𝑡(𝑥)) are non-intersecting closed sets. So under any interpretation from 𝐶& to 𝐶#$ (excluding 𝐶#+), 𝑦 is 
an internal part of 𝑥. Under these interpretations, 𝑥 = 𝐼𝑛𝑡(𝑥) =∪ {𝑦: 𝑦 ⊆ 𝐼𝑛𝑡(𝑥)} ⊆ σ𝑦	𝐼𝑃𝑦𝑥 = 𝑖𝑥 and 
hence 𝑐𝑥 ⊆ 𝑥. 
 
For interpretations 𝐶) with 𝑖 > 5, it is also possible to restrict the topological spaces under consideration 
such that 𝐼𝑛𝑡(𝑥) ⊆ 𝑖𝑥  generally holds without restrictions on sets. Symmetric topological spaces are 
characterised by the property that for any open set 𝐴 and point 𝑦 ∈ 𝐴, {𝑦} ⊆ 𝐴. In such spaces, 𝑦 ∈
𝐼𝑛𝑡(𝑥) implies that {𝑦} and 𝑋 − 𝑥 are separated by the closed sets {𝑦} and 𝑋 − 𝐼𝑛𝑡(𝑥). Hence {𝑦} is an 
internal part of 𝑥 under interpretations 𝐶" and 𝐶#$ . If moreover the topologies are assumed to be normal, 
the disjoint closed sets {𝑦} and 𝑋 − 𝐼𝑛𝑡(𝑥) are separated by a continuous function, so {𝑦} is also an 
internal part of 𝑥 under interpretations 𝐶, and 𝐶-. 
 
For 𝐶#+, we may consider regular topological spaces, whose characteristic property is that for any open set 
𝐴 and point 𝑦 ∈ 𝐴, there is an open set 𝑌 such that 𝑦 ∈ 𝑌 ⊆ 𝑌 ⊆ 𝐴. In regular spaces, 𝑦 ∈ 𝐼𝑛𝑡(𝑥) implies 
that 𝑦 ∈ 𝑌 ⊆ 𝑌 ⊆ 𝐼𝑛𝑡(𝑥) for some open 𝑌. Now 𝑌 and 𝑋 − 𝑥 are separated by the disjoint open sets 𝑌 
and 𝑋 − 𝑌, hence 𝑌 is an internal part of 𝑥.  
 
 

6. Taking stock 
 
Summarising the results of the investigation so far, each direction of 𝑆𝐶𝑥 ↔ 𝑇𝐶𝑥 holds in the following 
topological models (keeping the definitions in the initial formulation of GEMTC): 
 
 𝑆𝐶𝑥 → 𝑇𝐶𝑥 𝑇𝐶𝑥 → 𝑆𝐶𝑥 
𝐶! In all cases considered above – 
𝐶" In all cases considered above – 
𝐶# In all cases considered above – 
𝐶$ In all cases considered above All NERC sets of any topological space 
𝐶% In all cases considered above All NERC sets of any topological space 
𝐶& In all cases considered above All non-empty sets or NERC sets of any topological space 
𝐶'( All non-empty sets of any completely normal space, or all 

NERC sets of any normal space, or NERO sets of any space 
All non-empty sets or NERC sets of any topological space 

𝐶') All NERC sets of any topological space In all cases considered above 
𝐶* All NERC sets of any normal topological space In all cases considered above 
𝐶+ All NERC sets of any normal topological space In all cases considered above 
Table 1. Sufficient conditions for aligning mereotopological self-connection with topological connection. 

 
And each direction of 𝑖𝑥 = 𝐼𝑛𝑡(𝑥) or 𝑥 = 𝑐𝑥 holds under the following conditions: 
 
 𝑖𝑥 ⊆ 𝐼𝑛𝑡(𝑥) or 𝑥 ⊆ 𝑐𝑥 𝐼𝑛𝑡(𝑥) ⊆ 𝑖𝑥 or	𝑐𝑥 ⊆ 𝑥 
𝐶! All NERC sets or NERO sets of any topological space In all cases considered above 
𝐶" All NERC sets or NERO sets of any topological space In all cases considered above 
𝐶# All NERC sets or NERO sets of any topological space In all cases considered above 
𝐶$ All NERC sets or NERO sets of any topological space In all cases considered above 
𝐶% All NERC sets or NERO sets of any topological space In all cases considered above 
𝐶& In all cases considered above All non-empty sets of any symmetric topological space, or all 

NERO sets of any space, or all NERC sets of any space 
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𝐶'( In all cases considered above All non-empty sets of any regular topological space, or all NERO 
sets of any topological space 

𝐶') In all cases considered above All non-empty sets of any symmetric topological space, or all 
NERC sets of any topological space 

𝐶* In all cases considered above All non-empty sets of any normal symmetric topological space 
𝐶+ In all cases considered above All non-empty sets of any normal symmetric topological space 

Table 2. Sufficient conditions for aligning the definitions of interior or closure. 
 
It may be observed that all the interpretations considered admit sufficient conditions under which either 
𝑖𝑥 = 𝐼𝑛𝑡(𝑥) or 𝑥 = 𝑐𝑥 holds. Therefore, under each of these interpretations, there are topological models 
of GEMTC in a significant class of topological spaces, in which some key mereotopological ideas align with 
their topological analogues. Moreover, interpretations 𝐶" and 𝐶#+ admit sufficient conditions under which 
desideratum (b) is additionally satisfied without any restriction on the sets under consideration (apart from 
the exclusion of ∅). Hence, these two interpretations admit topological models of GEMTC in which all the 
topological definitions in §2 align with their mereotopological analogues as intended. In summary: 
 
 Model of GEMTC Definitions aligned 
𝐶! NERO sets of any topological space Interior, open, exterior 
𝐶" NERO sets of any topological space Interior, open, exterior 
𝐶# NERO sets of any topological space Interior, open, exterior 
𝐶$ NERC sets of any topological space Connection, closure, closed 
𝐶% NERC sets of any topological space Connection, closure, closed 
𝐶& Non-empty sets of any symmetric space Connection, interior, open, exterior, closure, closed, boundary 
𝐶'( Non-empty sets of any completely normal regular space Connection, interior, open, exterior, closure, closed, boundary 
𝐶') Non-empty sets of any symmetric space Interior, open, exterior, closure, closed, boundary 
𝐶* Non-empty sets of any normal symmetric space Interior, open, exterior, closure, closed, boundary 
𝐶+ Non-empty sets of any normal symmetric space Interior, open, exterior, closure, closed, boundary 

Table 3. Models of GEMTC with mereotopological-topological alignment. 
 
Of particular interest might be interpretation 𝐶", for which we have the closest observed relation between 
GEMTC and topology. The stipulation of the symmetric property is relatively weak compared to the other 
separation axioms mentioned thus far,13 so if one is interested just in seeking stronger relations between 
GEMTC and topology, 𝐶"  seems to be the interpretation that best relates the two, aligning the most 
mereotopological ideas in the broadest class of topological spaces with the weakest restriction on sets. In 
particular, all Hausdorff spaces are symmetric, but not conversely. Hence, this relation between GEMTC 
and topology is stronger than those observed thus far in the literature. 
 
Moreover, the stipulation of the symmetric property is the minimal condition under which the given 
alignments hold under interpretation 𝐶" without further restrictions on the sets considered.  
 
Theorem 16. When parthood is interpreted as ⊆ and connection as 𝐶", in models comprising the non-
empty sets of a non-symmetric topological space (𝑋, 𝒯), there is an 𝑥 ⊆ 𝑋 such that: 

(a) 𝑖𝑥 ≠ 𝐼𝑛𝑡(𝑥), 
(b) 𝑥 is topologically open but not mereotopologically open, 
(c) 𝑒(~𝑥) ≠ 𝐸𝑥𝑡(𝑋 − 𝑥), 
(d) 𝑐(~𝑥) ≠ 𝑋 − 𝑥, 
(e) ~𝑥 is topologically closed but not mereotopologically closed. 

 

 
13 Roughly, the separation axioms defining symmetric, Hausdorff, regular, normal, and completely normal topological 
spaces, in this order, strictly increase in strength. More precisely, Hausdorff topological spaces are always symmetric, 
and completely normal topological spaces are always normal. If the topological spaces in question are Kolmogorov (a 
property corresponding to another separation axiom), regular topological spaces are Hausdorff. If moreover the 
topological spaces in question are also accessible (a strictly stronger property than being Kolmogorov), normal 
topological spaces are regular. Most typical cases of topological spaces are accessible, so for the most part, regular 
topological spaces are a subclass of Hausdorff topological spaces, and so on. 
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Proof. Since (𝑋, 𝒯) is non-symmetric, there is a topologically open set 𝑥 and a point 𝑦 ∈ 𝑥 such that {𝑦} ⊈
𝑥. Since 𝑥 is topologically open, 𝑦 ∈ 𝐼𝑛𝑡(𝑥). We first show that 𝑦 ∉ 𝑖𝑥. Suppose toward a contradiction 
that there is an internal part 𝑌 of 𝑥 such that 𝑦 ∈ 𝑌. By the interpretation of connection, 𝑌 ∩ ~𝑥 = ∅, 
hence 𝑌 is a topologically closed set in 𝑥 containing 𝑦, contradicting {𝑦} ⊈ 𝑥 . Hence 𝑦 ∉ 𝑖𝑥 and 𝑖𝑥 ≠
𝐼𝑛𝑡(𝑥) , which yields (a). Since 𝑥  is not equal to its own mereotopological interior, it is not 
mereotopologically open, which yields (b). We have (c) from 𝑒(~𝑥) = 𝑖(𝑥) ≠ 𝐼𝑛𝑡(𝑥) = 𝐸𝑥𝑡(𝑋 − 𝑥) and 
(d) from 𝑐(~𝑥) = ~𝑖(𝑥) ≠ ~𝐼𝑛𝑡(𝑥) = 𝑋 − 𝑥. Now ~𝑥 = 𝑋 − 𝑥 is topologically closed and hence equal 
to its own topological closure, which is unequal to its mereotopological closure; hence (e). 
 
The upshot is that insofar as the relation between GEMTC and set-theoretic topology is taken to be a 
reason in favour of GEMTC as a mereotopological theory, the case for GEMTC would best be served by 
interpretation 𝐶" . And under this interpretation, the strongest possible relation between GEMTC and 
topology is the one identified above. 
 
 

7. Discussion 
 
The results above suggest that those who endorse GEMTC have reasons to interpret connection as the 
intersection of one set with the closure of the other. This choice of interpretation has several implications; 
here we mention three. 
 
First, how connection is interpreted may provide some (though perhaps non-decisive) guidance when 
attempting to make sense of cases like those that arise in Peirce’s puzzle. It initially appears that there are 
three ways in which the Northern and Southern hemispheres may be connected: either the Equator belongs 
to both hemispheres, or to just one, or to neither. But if connection is interpreted as the intersection of one 
set with the closure of another, then the latter is no longer an option. For, the closure of each hemisphere 
comprises just itself and the Equator, so if neither hemisphere contains the Equator, then neither intersects 
the closure of the other. The choice for those who adopt interpretation 𝐶", therefore, is between holding 
that the two hemispheres overlap, and holding that they are asymmetric in the sense of one being open and 
the other closed. Generalising over interpretations of connection: if connection is interpreted as 𝐶) , and the 
Northern and Southern hemispheres are connected, then the Equator cannot belong to neither hemisphere 
iff 𝑖 is between 1 and 7𝑜 (excluding 7𝑐), and the Equator cannot belong to just one hemisphere iff 𝑖 ≤ 5.  
 
Relatedly, the possibility of external connection between open or closed regions is also affected by how 
connection is interpreted. When overlap is interpreted as intersection (as in many typical cases), the last 
sentence of the previous paragraph can be stated in terms of external connection: if connection is 
interpreted as 𝐶) , two open regions cannot be externally connected iff 𝑖 is between 1 and 7𝑜 (excluding 
7𝑐), and a closed region cannot be externally connected with an open region iff 𝑖 ≤ 5. It may also be 
verified that two closed regions cannot be externally connected if 𝑖 is between 1 and 7𝑐 (excluding 7𝑜),14 
and external connection is altogether ruled out iff 𝑖 ≤ 4. In particular, under interpretation 𝐶", even when 
a book is resting on a desk, the two objects would not be connected (assuming that the book and desk are 
closed, that is, that they contain their surfaces).  
 
Third, under interpretation 𝐶" , we have what is sometimes taken to be an intuitive understanding of 
connection in terms of boundaries. According to Casati and Varzi, it is part of ‘standard’ set-theoretic 
topology that two things are connected iff they share a boundary (Casati & Varzi, 1999, p. 59), that is: 
 

𝐶𝑥𝑦 ↔ (𝑂𝑥𝑦 ∨ 𝑂𝑥(𝑐𝑦) ∨ 𝑂(𝑐𝑥)𝑦) 
 
If connection is interpreted as the intersection of one set with the closure of another and overlap is 
interpreted as intersection, this biconditional holds in all topological models where the mereotopological 
and topological definitions of closure align. Under alternative interpretations of connection, this might not 

 
14 Whether the converse is true depends on whether space is well-characterised by normal topological spaces. 
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be the case. For instance, if connection is interpreted as intersection, (0,1) and [1,2] are not connected 
despite sharing a boundary, and despite the latter overlapping the closure of the former. Insofar as it is 
intuitive to characterise connection by boundary-sharing, the fact that this characterisation is endorsed more 
naturally under interpretation 𝐶" than under alternatives might be further reason to think that classical 
mereotopology might incline toward this interpretation. 
 
The investigation above has largely focused on relating mereotopology with topology, without considering 
other factors that might provide independent reasons to consider a restricted class of topological spaces, 
or a restricted class of sets within each topological space. The results of the investigation can also help in 
identifying the interpretations of connection that best relate mereotopology with topology subject to such 
considerations. We conclude this paper with an example. 
 
GEMTC may be extended to give an atomless or atomic theory, where the former holds that everything has 
proper parts, and the latter holds that everything is ultimately composed of objects without proper parts. 
Topological models of GEMTC given by all the non-empty subsets of a topological space are models of 
atomic GEMTC, because a set containing just a point has no proper parts. However, it might be thought 
that atomless GEMTC comes closer to the way we intuitively think about space, because we do not perceive 
indivisible objects (at least not directly). To model the atomless property topologically, we require a 
restriction to regular topological spaces, and a restriction to either the NERO or the NERC sets of these 
spaces. Consider first models comprising the NERO sets of a regular topological space. The results above 
suggest that no further restrictions on sets or topological spaces are necessary to yield models of atomless 
GEMTC under interpretations 𝐶& to 𝐶#+ (which are equivalent). However, it was also observed above that 
when overlap is interpreted as intersection, as it is under a restriction to NERO sets, external connection is 
ruled out. We might thus think that these models, despite being formal models of atomless GEMTC, do 
not represent the theory as intended. Now consider models comprising the NERC sets of a regular 
topological space. The results above suggest that no further restrictions on sets or topological spaces are 
necessary to yield models of atomless GEMTC under interpretations 𝐶& to 𝐶#$ (excluding 𝐶#+). Moreover, 
interpretations 𝐶! to 𝐶#$  (which are equivalent) allow for external connection between NERC regions. 
Therefore, it seems, those who endorse atomless GEMTC have reasons to interpret connection as 
intersection in these models. 
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