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Abstract

Due to the rapid increase of COVID-19 infection cases in many countries such as the Philippines, efforts in 
forecasting daily infections have been made to better manage the pandemic and respond effectively. In this study, 
we considered the cumulative COVID-19 infection cases in the Philippines from 6 March 2020 to 31 July 2020, 
and forecasted the cases from 1–15 August 2020 using various mathematical models—weighted moving average, 
exponential smoothing, Susceptible-Exposed-Infected-Recovered (SEIR) model, Ornstein-Uhlenbeck process, 
Autoregressive Integrated Moving Average (ARIMA) model, and random forest. We compared the results to the 
actual data using traditional error metrics. Our results showed that the ARIMA (1,2,1) model had the closest 
forecast values to the actual data. Policymakers can use this result in determining which forecast method to 
use for their community to have data-based information for the preparation of their personnel and facilities.
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Introduction

The coronavirus disease 2019 (COVID-19), caused 
by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2), is a kind of viral pneumonia (Li 
et al. 2020). Since the pandemic started, there 
has been a rapid increase in daily infection rates 
and death toll. Prevention and control are vital to 
reduce the burden of our healthcare system and 
prevent further decline of the economy, especially 
with the entry of new variants of COVID-19. 
Effective modeling and forecasting are needed 
for data-based decisions and policy making. 

Since the COVID-19 outbreak, there have been 
many publications using various mathematical 
and machine learning (ML) models that forecast 
the spread and the epidemic peak globally 
(Dansana et al. 2020) for specific countries such 
as China, Taiwan, South Korea, Japan, Italy 
(Dansana et al. 2021), Brazil (Pereira et al. 2020), 
Russia, India, and Bangladesh (Nabi 2020), and 
the United States of America (Bertozzi et al. 2020).

The dynamics of the COVID-19 infection 
vary per country and depend on many factors 
such as the healthcare system’s capacity, testing 
and contact tracing efforts, quarantine and 
lockdown impositions, and the public’s reaction 
to the pandemic. In the Philippines, the first 
case of COVID-19 was reported on 30 January 
2020, while the first local transmission was 
confirmed on 7 March 2020 (WHO 2020a). 

On 17 March 2020, the Philippine government 
declared an enhanced community quarantine 
(ECQ) in the entire island of Luzon and other 
parts of the country (Republic of the Philippines 
2020). Months since the lockdown, the economy 
gradually reopened with less stringent quarantine 
regulations. Although the increase in the number 
of cases has slowed down, the threat of another 
surge is still present. Therefore, continuous effort 
to model and forecast the spread of the disease 
in the country is helpful in the fight against 
COVID-19.

Multiple mathematical methods such as 
Susceptible Exposed Infectious Recovered (SEIR) 
and computational models have been used to 
model and describe the COVID-19 dynamics 
in the country (Buhat et al. 2021a; Buhat et al. 
2021b). The heterogeneous characteristics of 
different age populations were incorporated in 
studying the effects of the ECQ in reducing the 
exponential growth of the disease as well as the 
forecasts of the transmission rate (Dizon 2020). 
A SEIR model considering the symptomatic and 
asymptomatic populations was developed by 
Arcede et al. (2020) to describe the dynamics 
of the disease. The group used the data on the 
confirmed cases and death from several countries 
including France, the Philippines, Italy, Spain, the 
United Kingdom, China, and the USA to calibrate 
the model.

This study forecasts the cumulative daily cases 
of COVID-19 in the Philippines using various 
mathematical models. We examined six models 
and determined which best suits the considered 
Philippine data. The models under comparison 
were weighted moving average, exponential 
smoothing, SEIR, Ornstein-Uhlenbeck process, 
Autoregressive Integrated Moving Average 
(ARIMA), and random forest. The data set was 
fitted using each of the models and subsequently, 
obtained forecasts for 1–15 August 2020. These 
forecasts were then compared to the actual values 
using various error metrics.

Data Framework

Since 12 April 2020, COVID-19 data in the 
country have been made available through the 
COVID-19 Tracker (DOH 2020) to promote 
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FIGURE 1     Actual cumulative COVID-19 cases of infection 
in the Philippines from 6 March 2020– 31 July 
2020

transparency and accountability of data in the 
country. The tracker provides a daily COVID-19 
data drop, which contains multiple COVID-19 
infection-related data based on multiple cases 
such as specimen collection, the release of the 
result, and date of reporting/confirmation of 
positive COVID-19 result. We only consider 
the infections based on the date of reporting/
confirmation of positive COVID-19 results, as 
this is the commonly reported data to the public. 
We noted that there is no adjustment made to the 
data reflecting the delays in daily reports. Figure 
1 illustrates the actual March 6 to July 31 data.

Results and Discussion

Weighted Moving Average

Preliminaries
The simple moving average (SMA) is a very 

basic forecasting technique. The standard formula 
to get the forecast for the nth day for an m-day 
SMA is given by

where Ci is the number of total confirmed cases at 
time i. It gives equal weights for all the data in a 
specific interval. On the other hand, the weighted 
moving average (WMA) gives custom weights for 
these data.

One of the most common weight functions 
used in WMA for the ith day in the m-day interval 
is

The standard formula to get the nth day forecast 
for an m-day WMA is given by

where Ci is the number of total confirmed cases 
at time i. Note that the sum of all the weights in 
any WMA should be equal to 1.

There are different intervals used in the 
literature regarding COVID-19 such as 3-day, 
5-day, 7-day, 10-day, and 14-day (Elmousalami 
and Hassanien 2020; He et al. 2020). In most 
cases, the 7-day interval is considered to cover 
both the incubation period and the time it takes 
from the first symptoms to occur to diagnosis (He 
et al. 2020).

We considered both SMA and WMA and 
notice that the forecasts for 1–15 August 2020 
using WMA, with increasing weights, were closer 
to the actual data compared to SMA. 

Numerical Implementation
We considered 3-day, 4-day, 7-day, and 

10-day WMA to have a comparison among 
different intervals. We applied WMA to the 
cumulative cases, but the result was undesirable. 
For example, the actual number of cumulative 
cases on July 31 is higher than the forecast total 
number of COVID-19 cases on August 1 using 
4-day WMA. This is inconsistent since the total 
cumulative cases must be increasing. Instead of 
applying WMA directly to the cumulative cases, 
we applied it to the daily cases. To get the forecast 
for the cumulative cases for August 1, we added 
the forecast for the daily cases on August 1 to the 
actual total cases as of July 31. 

We considered several weight functions  

for an m-day WMA, where r ∈ {1, 2, 4, 10}. Note 
that when r = 1, our custom weight function is 
equal to the common weight function, i.e., wr(i)   
= w(i). Table 1 shows the different weights for the 
4-day WMA. 

After comparing the results for the different 
values of r, we noticed that the higher the value 

SMAn =              Cn − i   ,
1
m ∑

i = 1

m

w(i) =                      .2i
m (m + 1)

WMAn =       w (m + 1 − i) Cn − i    ,∑
i = 1

m

wr(i) = 2(ir − r + 1)
m (mr − r + 2)
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4-day 
WMA r = 1 r = 2 r = 4 r = 10

wr (1) 10% 6.25% 3.57% 1.56%

wr (2) 20% 18.75% 17.86% 17.19%
wr (3) 30% 31.25% 32.14% 32.81%
wr (4) 40% 43.75% 46.43% 48.44%

Date
Weighted moving average

3-day 4-day 7-day 10-day 
08/01/2020 97297 96949 96272 96000
08/02/2020 101281 100727 99305 98704
08/03/2020 105255 104497 102441 101461
08/04/2020 109231 108244 105648 104269
08/05/2020 113207 112002 108878 107122
08/06/2020 117183 115758 112072 110013
08/07/2020 121159 119514 115243 112922
08/08/2020 125135 123270 118424 115828
08/09/2020 129111 127026 121611 118705
08/10/2020 133087 130782 124800 121567
08/11/2020 137063 134539 127987 124434
08/12/2020 141038 138295 131173 127307
08/13/2020 145014 142051 134359 130183
08/14/2020 148990 145807 137545 133061
08/15/2020 152966 149563 140732 135938

FIGURE 2      WMA with r = 10 forecast versus 
the actual data

Exponential Smoothing

Preliminaries
Exponential smoothing models are commonly 
used in time series forecasting. These models 
produce reliably accurate forecasts since they 
can also capture the trend, seasonality, or a 
combination of both. The simple exponential 
smoothing (SES) is the simplest smoothing model 
commonly used for data with no observable trend 
or seasonality. This method follows the following 
forecasting formula:

Forecast equation:    ŷt + h | t = lt

          with    lt = αyt + (1 − α)lt − 1

where at time t, yt, and ŷt + h represent the actual 
and forecast values, respectively, and lt represents 
the estimated level of the series with α as the 
smoothing factor.

The SES produces h-step ahead forecasts that 
are of the same value and are equal to the last 
level value. Holt’s linear trend method (HLTM) 
extends the SES method by using two smoothing 
equations, both of which are dependent on the 
estimated level and estimated trend of the series 
at a particular time. The h-step ahead forecasting 
formula is given by the following:

Forecast equation:   ŷt + h | t = lt + hbt

                 with   lt = αyt + (1 − α)(lt − 1 + bt − 1)

           and   bt = β(lt −  lt − 1) + (1 − β)bt − 1

w10(i) =                  .10i − 9
33

of r, the closer the forecasts to the actual values. 
Below are the forecasts for the different time 
intervals using r = 10 (Table 2 and Figure 2).

Based on the results, the forecast closest to the 
actual data among the types of moving average is 
the 3-day WMA with weight function

TABLE 1        Weights used for the 4-day weighted moving 
average (WMA)

TABLE 2   15-day ahead forecasts on the cumulative 
COVID-19 cases in the Philippines using 
weighted moving average (WMA)
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where at time t, yt and ŷt + h represent the actual 
and the forecast values, respectively, while lt and bt 
represent the estimated level and estimated trend 
of the data, respectively. Furthermore, α and β are 
the smoothing factors of the level and the trend, 
respectively, with 0 ≤ α, β ≤ 1.

Other epidemic models include SI (Susceptible-
Infected), SIS (Susceptible-Infected-Susceptible),  
that is suitable for data that exhibit trends. Its 
forecasts are also expected to exhibit the same. 
For longer forecast time horizons though, 
HLTM tends to over-forecast. To prevent this 
from happening, a parameter can be introduced 
to “dampen” the forecasts. The h-step ahead 
forecasting formula becomes

Forecast equation:   ŷt + h | t = lt + (ϕ + ϕ2 + . . . ϕn)bt

                 with   lt = αyt + (1 − α)(lt − 1 + ϕbt − 1)

           and   bt = β(lt −  lt − 1) + (1 − β)ϕbt − 1

Observe that when the damping parameter 
ϕ = 1, the formula is the same as that of the 
HLTM. When 0 < ϕ < 1, the short-term forecasts 
are trended, and the long-term forecasts become 
constant.

We can observe from Figure 1 that the data 
has an increasing trend but has no seasonality. 
Furthermore, we are only interested in the short-
term forecasts of 15 days ahead. Hence, we chose 
HLTM.

The confidence interval of the forecasts is given 
by

  [ŷt + h | t − 1.96σh , ŷt + h | t + 1.96σh]
where

          σ2 = σ2 [1 + (h − 1){α2 + αβh + β2h(2h − 1)}]
with σ as the variance of the forecast errors. 
Further discussions on these methods can be 
found in Hyndman and Athanasopoulos (2019).

Numerical Implementation
We set the initial values of the parameters to be 

α = 0.5 and β = 0.5 with l1 = y1 and b1 = y2− y1. We 
then calculate the 1-day forecasts and the sum of 
squared errors (SSE). With this, we obtained the 
values of α and β that minimize the SSE subject 
to the restrictions of α and β. The values of the 
parameters that minimize the SSE are α = 1 and 

β = 0.5742. These parameters are used to calculate 
the 15-day ahead forecasts as well as the forecast 
confidence interval of the cumulative daily 
COVID-19 cases in the Philippines. The summary 
is shown in Table 3.

As expected from the HLTM, we can see in 
Figure 3 that the 15-day ahead forecasts exhibit 
an increasing trend. Moreover, the majority of the 
actual values lie within the prediction interval, 
suggesting that the method produced reliable 
forecast values.

Date Forecast 95% 
lower cl

95% upper 
cl

08/01/2020 96966.78 96296.45 97637.11
08/02/2020 100582.56 99332.42 101832.7

08/03/2020 104198.33 102291.31 106105.4
08/04/2020 107814.11 105174.54 110453.7
08/05/2020 111429.89 107987.37 114872.4
08/06/2020 115045.67 110734.78 119356.6
08/07/2020 118661.45 113421.01 123901.9
08/08/2020 122277.22 116049.67 128504.8
08/09/2020 125893.00 118623.84 133162.2
08/10/2020 129508.78 121146.17 137871.4

08/11/2020 133124.56 123618.95 142630.2
08/12/2020 136740.33 126044.22 147436.4
08/13/2020 140356.11 128423.79 152288.4
08/14/2020 143971.89 130759.28 157184.5
08/15/2020 147587.67 133052.13 162123.2

FIGURE 3   Holt’s linear trend method forecasts versus 
the actual data

h

TABLE 3   15-day ahead forecasts on the cumulative 
COVID-19 cases in the Philippines using 
Holt’s linear trend method
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Susceptible Exposed Infectious Recovered 
(SEIR)

Preliminaries 

Differential equation-based models like the 
susceptible, exposed, infectious, recovered 
(SEIR) model give information that is useful 
in controlling different infectious diseases. 
These models describe disease dynamics at a 
macroscopic level (Özmen et al. 2016).  Other 
epidemic models include Susceptible-Infected 
(SI), Susceptible-Infected-Susceptible (SIS), 
Susceptible-Infected-Recovered (SIR), and 
Susceptible-Infected-Recovered-Susceptible 
(SIRS) models. A discrete Susceptible-Infected-
Recovered-Dead (SIRD) model was used in the 
paper of Corcino et al. (2021). In this paper, the 
COVID-19 disease spread in Central Visayas in 
the Philippines was studied, and controls such 
as social distancing and enhanced community 
quarantine were included in the model. 

The incubation period for COVID-19, which is 
the time between the transmission of infection 
and symptom onset, is on average 5–6 days and 
can be up to 14 days (WHO 2020b). To consider 
this period, we used the SEIR model to describe 
the dynamics of COVID-19 in the Philippines, 
considering the mortality due to infection. In this 
model, S, E, I, and R are the number of susceptible, 
exposed, infected, and recovered individuals, 
respectively. Susceptible individuals are those 
who can contract the disease and exposed 
individuals are those infected but are not yet 
infectious. Meanwhile, infected individuals are 
those who can transmit the disease, and recovered 
individuals are those who have recovered and are 
no longer infectious. Susceptible individuals may 
be in contact with infected individuals and are 
transferred to the exposed population at a rate 
β. Here, the parameter β > 0 is the transmission 
coefficient. A portion σ of the exposed individuals 
will become infected. Infected individuals die at 
rate d or recover from the disease at rate γ. The 
parameters d > 0 and γ > 0 are the death and 
recovery rates, respectively. 

The COVID-19 transmission dynamics are 
governed by the following set of equations:

  = −β

  = β     − σE

  = σE − γI − dI

  = γI

where

         β =

is the transmission coefficient and N = S + E + I + R 
represents the total population size (Buhat et al. 
2021a). Here, R0 is the basic reproduction number 
which is the expected number of secondary 
infections produced by an infected individual 
during their entire infectious period (Diekmann 
et al. 1990). Table 4 shows the parameters used 
in the model and their values obtained from 
previous studies on COVID-19 while Figure 4 
describes the inflows and outflows of individuals 
in each compartment. 

FIGURE 4   Flow diagram of the COVID-19 transmission 
model

Parameter Description Value Reference
R0 Reproduction 

number
1.15 Data fitted

σ Progression 
rate from 
exposure to 
infection

0.2 Data fitted

γ Recovery rate 0.0686 Data fitted

τ Infectious 
period

14 Buhat et al. 
(2021a)

d Death rate due 
to COVID-19

0.03/14 Chen (2020)

dR
dt

dS
dt
dE
dt
dI
dt

R0   S(0)+E(0)+I(0)
τ              S(0)
(          )

SI
N

SI
N

TABLE 4  Parameters of the COVID-19 transmission model



7 ojs.upmin.edu.phBANWA B (2023) 18: art-069

Sensitivity analysis is used to identify the effect 
of each parameter in the model output I. In this 
study, a global sensitivity analysis technique 
called partial rank correlation coefficient 
(PRCC) analysis is used (Marino et al. 2008). In 
Figure 5, each bar corresponds to a PRCC value 
at an instance, specifically in days t = 67 + 10k, 
k = 0, 1, 2, … , 13. A large absolute PRCC value 
implies a large correlation of the parameter with 
the output. The parameters with high PRCC 
values (>0.5 or <‒0.5) are R0, σ, γ, and τ. Moreover, 
R0 and σ have positive PRCC values implying that 
an increase in the values of these parameters will 
increase I. In contrast, γ and τ have negative 
PRCC values which means that a positive change 
in these parameters will decrease I. 

The output using the SEIR model is made 
close to the gathered data by estimating some 
of the parameters for which the model output 
is sensitive. Reported COVID-19 cases and 
recoveries in the Philippines are available on 
the COVID-19 tracker. We used these data sets 
to estimate R0, σ, and γ. The model output was 
found to have high sensitivity values on these 
parameters, which indicate the parameters’ 
influential effect on the outcome. We estimated 
these parameters by minimizing the error 
between the gathered data and the model output. 
The estimates are R0 = 1.5811, σ = 0.013, and 
γ = 0.0069. Figure 6 shows the reported data and 
the corresponding best fit.

Numerical Implementation
Using the values obtained in the parameter 

estimation and the values gathered from 
other studies on the disease, we forecasted the 
cumulative cases from August 1–15. Table 5 
shows the 15-day forecast using the SEIR model 
and Figure 7 displays the forecast vs actual data.

Although a similar trend can be perceived in 
the estimates and the actual data, observe that 
the SEIR model gave low estimates, and the error 
increases as time passes. This may be attributed 
to the sudden rise of cases in the month of August 
as COVID-19 testing in the country improved.

FIGURE 6     Model fitted curve vs actual cumulative cases 
and recoveries

FIGURE 5  Partial rank correlation coefficient (PRCC) 
values showing the sensitivities of the  model 
output I with respect to the parameters
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Date Forecast
08/01/2020 94319.40
08/02/2020 96819.00
08/03/2020 99381.97
08/04/2020 102009.77
08/05/2020 104703.86
08/06/2020 107465.76
08/07/2020 110296.98
08/08/2020 113199.09
08/09/2020 116173.66
08/10/2020 119222.28
08/11/2020 122346.60
08/12/2020 125548.25
08/13/2020 128828.91
08/14/2020 132190.28
08/15/2020 135634.08

FIGURE 7     SEIR model forecasts versus the actual data

Ornstein-Uhlenbeck Process

Preliminaries
In this section, we assumed that the daily cases 

denoted by Xt, in the discrete sense, is governed 
by Ornstein-Uhlenbeck (OU) process by the 
stochastic differential equation

dXt = α (β − Xt)dt + σdWt                                (1)

where α is the mean reversion, β is the drift 
of the process, σ is the volatility, and Wt is a 

standard Weiner process. The parameters of Xt 
are determined using the maximum likelihood 
estimation. The explicit solution of (1) is given by

   Xt = Xse
−α(t − s) + β(1 − e−α(t − s)) + σe−αt ∫ eαu dWu     (2)

Using the Euler-Maruyama approximation, the 
discrete version of (2) is given by

(3)

where ωk + 1 is a sequence of IID standard normal 
random variables.

Let Θ = (α, β, σ) be the set of parameters needed, 
and using the maximum likelihood estimation, it 
can be derived that the best estimate for β and σ

 Xk − Xk − 1e
−αΔk

 1 + e−αΔk

 1 − e−αΔk

 1 + e−αΔk

and

              2α       (Xk − β − (Xk − 1 − β)e−αΔk)2

                n        1 − e−2αΔk

where α can be derived from the optimization 
problem given by

Numerical Implementation
From the data set, we determine the parameters 

of the OU process using the previous subsection’s 
methodology. The estimated parameters of the 
model in terms of daily cases are as follows: α 
= 0.05948791, β = 1085.746, and σ = 372.6143. 
Using these parameters, we determined a 15-day 
forecast depicted in Table 6.

Figure 8 shows the plot of the forecasted values 
generated by the OU process against the actual 
recorded values on August 1–15. If Xk is the 
forecasted value at time k,

Xk = E[Xk | X0] = X0e
−αk + β(1 − e−αk)

Xk + 1 = Xke
−αΔk + β(1 − e−αΔk) + σ                     ωk + 1

1 − e−2αΔk

2α√

t

s

ˆ
∑

k = 1

n

∑
k = 1

n

ˆ

ˆ

ˆ

β : = f(α) = ˆ̂

σ : = g(β, α) = ˆ ˆ ˆ ∑
k = 1

n

√

(Xk − f(α) − (Xk − 1 − f(α))e−αΔk)2

      1 − e−2αΔk∑
k = 1

n        α
g(f(α), α)2 }

∑
k = 1

n

−          log(1 − e−2αΔk) −1
2

−    logn
2{ g(f(α), α)

2α[min
α ]

TABLE 5     15-day ahead forecasts on the cumulative   
                  COVID-19 cases in the Philippines 
                  using the Susceptible-Exposed-  
                  Infected-Recovered (SEIR) model
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Date Forecast
08/01/2021 97242.05
08/02/2021 100971.09
08/03/2021 104547.47
08/04/2021 107980.01
08/05/2021 111277.02
08/06/2021 114446.32
08/07/2021 117495.28
08/08/2021 120430.87
08/09/2021 123259.62
08/10/2021 125987.70
08/11/2021 128620.94
08/12/2021 131164.80
08/13/2021 133624.45
08/14/2021 136004.76
08/15/2021 138310.30

where X0 is the actual value on July 31. Notice 
from the plot that the forecast values are slightly 
bent compared to the actual values, and this is 
because as k increases, the white noise generated 
by the actual value from the forecast relatively 
increases. The noise attributed is 

σe−αk ∫ eαudWu 

and becomes zero in getting the forecasts.

t

s

Autoregressive Integrated Moving Average 
(ARIMA)

Some of the widely used time series models are 
the autoregressive (AR) and moving average 
(MA) models. The AR model is in the same 
form as the multiple linear regression with the 
past values serving as the explanatory variables. 
The MA model tells us that the observation at a 
time t is a weighted average of past shocks. The 
autoregressive moving average (ARMA) model 
combines the AR and MA models into a compact 
form. The general form of an ARMA (p,q) model, 
p and q refer to the number of AR and MA 
parameters, respectively, is given by

 xt = 0 +      ixt − i + at −    θiat − i  , 

where {ai} is a white noise series, i, i = 1, 2, …, p are 
the AR parameters, {𝜃𝑖} are the MA parameters, 
and 0 is a constant. In time series modeling, 
differencing is one method to transform a 
nonstationary time series into a stationary 
time series. A time series follows autoregressive 
integrated moving average (ARIMA) with 
parameters p, d, and q if the differenced data 
set of order d, that is, yt = (1 − B)dxt, follows an 
ARMA(p,q) model. Here, we use the Box-Jenkins 
backshift operator Bmxt = xt − m. Hence, the general 
form of an ARIMA (p,d,q) model is 

1 −     iB
i  yt = 0 +    1 −     𝜃𝑖Bi   at . 

Please refer to Box et al. (1994) and Tsay (2010) for 
more discussion of these models.

Preliminaries
The increasing trend in the data set as observed 

in Figure 1 means that the data set is non-
stationary. To remove the trend, we performed 
successive first-order differencing to achieve a 
stationary data set. Using the augmented Dickey-
Fuller (ADF) test for stationarity, it was found that 
the second-order differenced data set is stationary 
at α = 0.05 as illustrated in Figure 9. 

Numerical Implementation
We executed a correlogram analysis on the 

second-order differenced data set and the 
autocorrelation (ACF) and partial autocorrelation 

∑
i = 1

q

∑
i = 1

p

∑
i = 1

p

∑
i = 1

q( () )
FIGURE 8    Ornstein-Uhlenbeck process forecast versus 

the actual data

TABLE 6   15-day ahead forecasts on the cumulative 
COVID-19 cases in the Philippines following 
Ornstein-Uhlenbeck process
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(PACF) plots are presented in Figure 10. 
Significant spikes at lag one in the ACF and PACF 
suggest that AR and MA processes at that lag 
may help explain the data. We examined several 
models for different values of p and q, capped at 5. 
We compared these models based on the Akaike 
information criterion (corrected for small sample 
sizes, AICc) and Schwarz’s criterion (SBC). Based 
on the AICc, the best fit model is ARIMA(5,2,4), 
while on SBC is ARIMA(1,2,1). The comparison 
of the models based on AICc and SBC is shown 
in Table 7.

Using the goodness-of-fit statistics for 
the two models presented in Table 8, we 
perform the likelihood ratio test. At α = 0.05, 
the ARIMA(5,2,4) model does not fit the data 
significantly better than ARIMA(1,2,1). Therefore, 
the final ARIMA model is ARIMA(1,2,1) and its 
parameters are presented in Table 9. In Figure 11, 
ARIMA(1,2,1) is plotted against the original time 
series. 

Based on the model, the 15-day forecasts of 
the daily cumulative cases are presented in Table 
10.

Random Forest

Preliminaries
Random forest (RF) is an ML method based on 
the classification and regression tree and bagging 
(Dudek 2015; Mei et al. 2014). A combination of 
decision trees is generated and is bootstrapped 
from the learning sample. These samples are 
obtained from a subset of random features from 
each chosen node. Every decision tree generated 
will be built on a subset of learning points and 
features that are considered from each chosen 
node to split on. Each tree will be grown to 
the largest extent possible, and there will be no 
pruning. After the trees are fitted, a new forecast 
is generated by averaging the forecasts of the trees 
(Dudek 2015) as shown in Figure 12.

Aside from model fitting, RF has been 
recently used to analyze, predict, and evaluate 
COVID-19 in India and COVID-19 patient 
health (Iwendi et al. 2020; Kolla 2020). Kolla's 
study (2020) showed COVID-19 predictions in 
India and results from RF outperformed other 
ML methods that were considered in their 

FIGURE 10   Autocorrelation (ACF) and partial 
autocorrelation (PACF) plots of the second-
order differenced data

FIGURE 9 Second-order differenced data on the   
cummulative cases of infection in the 
Philippines
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FIGURE 12     Forecasting process using random forest 
                      given n number of trees

p q AICc SBC
1 1 1969.901 1978.526
1 2 1971.900 1983.340
1 3 1974.060 1988.281
1 4 1975.548 1992.519
1 5 1976.678 1996.364
2 1 1972.674 1984.114
2 2 1971.253 1985.474
2 3 1976.241 1993.211
2 4 1977.894 1997.581
2 5 1979.117 2002.718
3 1 1972.936 1987.157
3 2 1975.193 1992.164
3 3 1977.936 1997.623
3 4 1978.520 2000.888
3 5 1967.8840 2003.468
4 1 1975.091 1992.062
4 2 1977.234 1996.920
4 3 1973.700 1996.068
4 4 1974.510 1999.525
4 5 1979.347 2006.973
5 1 1980.538 1995.572
5 2 1979.330 2001.698
5 3 1981.525 2006.540
5 4 1967.334 1994.960
5 5 1978.153 2008.353

Statistics ARIMA(1,2,1) ARIMA(5,2,4)
SSE 11073309.7 9359918.43
MSE 79664.0989 67337.5426
RMSE 282.248293 259.494783
WN Variance 79664.0989 67337.5426
MAPE(Diff) 174.524932 182.852761
MAPE 2.68510318 2.58111358
-2Log(Like.) 1963.72275 1945.61506
FPE 80818.651 72362.7324
AICc 1969.90053 1967.33381
SBC 1978.52617 1994.9598

   AR(1)   MA(1)
Value 0.125 −0.722
Hessian standard error (HSE) 0.131 0.094
Lower bound for 95% 
confidence level (HSE)

−0.132 −0.905

Upper bound for 95% 
confidence level (HSE)

0.381 −0.538

Asymptotic standard error 
(ASE)

0.128 0.089

Lower bound for 95% 
confidence level (ASE)

−0.127 −0.897

Upper bound for 95% 
confidence level (ASE)

0.376 −0.547

FIGURE 11     ARIMA(1,2,1) model versus the actual data

TABLE 8     Goodness-of-fit statistics of the two 
                  ARIMA models

TABLE 7     Comparison of the two ARIMA models 
                  based on AICc and SBC

TABLE 9     Parameters of ARIMA(1,2,1)
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method. Table 11 shows the results.
From Figure 13, notice that RF produced 

underestimates compared to the actual values 
for the August 1–15 COVID-19 infection cases. 
Some of the initial values were almost captured 
on the interval, but the further increase of actual 
cases was not captured. An abundance of data 
is necessary for a better forecast for an ML 
algorithm, which was not evident in this case. 
Increasing the number of trees did not also differ 
from the result generated with 1000 trees.

study. Thus, we implemented RF to forecast the 
COVID-19 cumulative cases of infection in the 
Philippines.

Using the RF package in R (Liaw and Wiener 
2002), we first set the training data and testing 
data to 148 (number of days from March 6 to 
July 31) and 15 (number of days to be forecasted), 
respectively. After which, we fitted RF on the 
training data set with the following parameter 
inputs:

Training data: COVID-19 cumulative cases of 
infection in PH from March 6 to July 31, 2020

Type of RF: Regression
Number of trees: 1000
Number of candidate-split variables 

at each split: 1

We then set up a data frame to hold the RF 
model predictions since we are forecasting cases 
that have not been observed yet. We set up a 
97.5% confidence interval for our predictions and 
compute the forecasts (point) with an upper and 
lower bound and its standard deviation.

Numerical Implementation
We simulate 15-day ahead forecasts for the RF FIGURE 13     Random forest forecasts vs the actual data

Date Forecast
08/01/2020 97432.88
08/02/2020 101517.1
08/03/2020 105601.6
08/04/2020 109686.2
08/05/2020 113770.8
08/06/2020 117855.3
08/07/2020 121939.9
08/08/2020 126024.5
08/09/2020 130109.1
08/10/2020 134193.6
08/11/2020 138278.2
08/12/2020 142362.8
08/13/2020 146447.3
08/14/2020 150531.9
08/15/2020 154616.5

Date Forecast 97.5% 
lower cl

97.5% 
upper cl

08/01/2020 86572.08 72374.94 93351
08/02/2020 87229.36 72699.45 93351
08/03/2020 86722.70 72374.94 93351
08/04/2020 86623.09 73127.31 93351
08/05/2020 86660.43 72374.94 93351
08/06/2020 86623.09 73127.31 93351
08/07/2020 86778.93 73451.29 93351
08/08/2020 86778.93 73451.29 93351
08/09/2020 86711.77 72699.45 93351

08/10/2020 86778.93 73451.29 93351
08/11/2020 86615.32 72814.91 93351
08/12/2020 86615.32 72814.91 93351
08/13/2020 86595.98 72374.94 93351
08/14/2020 87161.19 74044.07 93351
08/15/2020 87161.19 74044.07 93351

TABLE 10   15-day ahead forecasts on the cumulative 
COVID-19 cases in the Philippines using 
ARIMA(1,2,1)

TABLE 11   15-day ahead forecasts on the cumulative 
COVID-19 cases in the Philippines 
usingrandom forest
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Analysis of Forecast Errors

We plot the 15-day ahead forecasts for 1–15 
August 2020 from the six models: 3-day WMA, 
HLTM, SEIR, OU process, ARIMA, and RF. We 
then compare them to the actual cumulative cases 
of infection data in the Philippines.

From Figure 14, notice that all models except 
RF were able to follow the trend of the actual data. 
The RF model failed to observe an increasing 
trend compared to the other models and was 
not able to forecast the data well. Of the models 
that continued to increase, the ARIMA model, 
3-day WMA, and HLTM were able to maintain 
a difference of fewer than 10,000 cases from the 
actual data, given the considered forecast period. 
As the 15th-day forecast was approached, the 
ARIMA(1,2,1) model is closest to the actual 
values.

An error analysis of the deviations among the 
model forecasts is shown in Table 12. The error 
metrics used are root mean square error (RMSE) 
given by 

absolute mean error (MAE) computed as

 

and relative absolute error (RAE) obtained by 

 

From all the error metrics, the ARIMA(1,2,1) 
model forecasts have the least errors while 
the random forest forecasts have the highest. 

FIGURE 14   Plot of 15-day-ahead forecast points of the cumulative COVID-19 cases in the Philippines of various  
mathematical models versus the actual data

Error metric

Root 
mean 

square 
error

Mean 
absolute 

error

Relative 
absolute 

error

3-day WMA 2150.65 1701.00 0.113736
HLTM 5265.00 4536.51 0.325803
SEIR Model 14036.70 12973.74 0.856841
OU 9357.66 7389.56 0.622168
ARIMA (1,2,1) 1330.69 1002.01 0.065484
RF 43934.17 40038.51 1.000000

(ck − ck)
2      ,√ ∑K

k = 1
1
K ˆ

| ck − ck |   ,∑
k = 1

1
K ˆ

K

| ck − ck |   ˆ∑k = 1
K

| c − ck |   ˆ−∑k = 1
K

.

TABLE 12     Error metrics for the forecasted values
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Therefore, among the six models used in this 
study, ARIMA(1,2,1) has the best forecasts of 
cumulative COVID-19 cases in the Philippines 
from 1–15 August 2020.

Conclusions and Recommendations

We obtained 15-day ahead forecasts for the daily 
cumulative COVID-19 cases in the Philippines 
using mathematical models namely 3-day 
weighted moving average, exponential smoothing 
using Holt’s linear trend method, SEIR model, 
Ornstein-Uhlenbeck process, ARIMA(1,2,1) 
model, and random forest. We considered the 6 
March to 31 July 2020 COVID-19 infection data 
retrieved from the DOH COVID-19 Data Drop. 
All models except the random forest produced 
forecasts that exhibit an increasing trend, with 
ARIMA(1,2,1) having the closest forecast values 
to the actual August 1–15 data based on the error 
analysis.

Results from the study can be used by 
policymakers in determining which forecast 
method to use/adapt in their community, 
especially for those with case behavior similar 
to the Philippines. These 15-day ahead forecasts 
provide data-based information for the 
preparation of the personnel and facilities, and 
delivery of an effective response. Others may 
also replicate the methods used and may have a 
different “best model” for their community. We 
do note that all models used in the study were 
based on the retrieved data drop only. Thus, 
factors that might affect the actual data such as 
delay or error in reporting were not considered 
and might affect the result of this study. For 
future studies, a paper that focuses on delays 
from symptom onset to public confirmation may 
be done. This can have a big impact on improving 
the forecast values. Furthermore, a larger amount 
of data with updates on parameters can improve 
the model and may produce better forecast results 
(Buhat 2021). We only considered cumulative 
cases based on the public confirmation date. 
Thus, further studies may consider other fields 
in the data drop, and may look into providing 
daily forecasts rather than cumulative. We 
also recommend doing pattern recognition to 

determine which models or ensemble of models 
can be more accurate, e.g., another ML method 
since the RF model did not do well on our data.

Notes

The codes/programs used in the study can be found 
here: https://github.com/alvinbuhat/forecasts

The datasets generated during and/or analyzed 
during the current study are available from the 
corresponding author on reasonable request.
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