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Abstract. The classical Boltzmann machine is understood as a 
neural network proposed by Hinton and his colleagues in 
1985. They added noise interferences to the Hopfield model 
and called this network a Boltzmann machine drawing an 
analogy between its behaviour and physical systems with the 
presence of interferences. This study explains the definition 
of “simulated annealing” and “thermal equilibrium” using 
the example of a partial network. A technique for calculating 
the probabilities of transition states at different temperatures 
using Markov chains is described, an example of the 
application of the SA - travelling salesman problem is given. 
Boltzmann machine is used for pattern recognition and in 
classification problems. As a disadvantage, a slow learning 
algorithm is mentioned, but it makes it possible to get out of 
local minima. The main purpose of this article is to show the 
capabilities of the simulated annealing algorithm in solving 
practical tasks. 

Keywords: Boltzmann machine, simulated annealing, thermal 
equilibrium, travelling salesman problem. 

 

I. INTRODUCTION AND THEORETICAL BACKGROUND 
Two articles by Hopfield [1],[2] were essential to the 

notion of the connection between brain processes and 
physical systems. 

The disadvantage of Hopfield networks is their 
tendency to stabilize at local but not global energy function 
minima. This shortage is largely overcome by a class of 
artificial neural networks (ANN) known as the Boltzmann 
machine (BM). The classic BM machine is a neural 
network proposed by G. Hinton and his colleagues in 1985 
and described in the study [3]. In the BM changes in 
neuronal states are given by statistical, but not 
deterministic, relationships. There is a strong analogy 
between these methods and the process of cooling metal, so 

the methods themselves are often referred to as “simulated 
annealing” (SA). 

One possible type of BM machine architecture is shown 
in Fig. 1. 

 
Fig. 1. An example of Boltzmann machine.   

The elements of a BM are divided into two functional 
groups - a non-empty set of visible elements (neurons) and 
a (possibly empty) set of hidden elements. Visible elements 
(𝑋𝑋 and 𝑌𝑌 in Fig. 1) - the interface between the network and 
the external environment. During the training, the visible 
elements will be strengthened in specific positions, which 
are determined by the needs of the task to be solved, 
namely, any set of visible elements can be strengthened. 
The hidden elements ( 𝑆𝑆  in Fig. 1), if any, are never 
strengthened and are used to help describe the links in a set 
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of input vectors, which cannot be assigned directly as the 
relationship between the visible elements. 

The BM training procedure has 4 steps: 

(1) The “artificial temperature” 𝑇𝑇 is given a high initial 
value. 

(2) The input vectors are passed through the network, 
then the output values and the target function are 
calculated. 

(3) The weight values are changed, then network output 
values and the target function are recalculated. 

(4) If the value of the objective function is decreased 
(improved), the change in weight is retained. 

If the change in weight leads to an increase in the 
objective function, then the probability of maintaining this 
change is calculated using the Boltzmann distribution: 

                    𝑝𝑝(𝑐𝑐) = 𝑒𝑒−𝑐𝑐/𝑘𝑘𝑘𝑘                                  (1) 

where p - probability of target function change, 𝑘𝑘  - 
constant (analogous to Boltzmann constant), 𝑇𝑇 – “artificial 
temperature”. 

The concept of “artificial temperature” is related to the 
already mentioned SA. It is a stochastic optimization 
method used to optimize the objective function (energy). 

The SA method allows to find a global extremum for a 
function that has local minima. The principle of SA was 
announced in classical study [4] and developed in studies 
[5]-[10]. Nowadays, the SA method is considered to be an 
independent field of research and is separated from the 
ANN methods. SA is based on an analogy with statistical 
mechanics, specifically with solid-state physics elements. 
A practical example from metallurgy is what happens to the 
atomic structure of the body by rapidly cooling it, lowering 
its temperature. A sharp drop in temperature can lead to an 
asymmetrical structure of the system or, in other words, to 
a suboptimal state (with errors). Cooling eventually causes 
the system to freeze and thermal equilibrium is reached. 

The so-called Metropolis procedure [4] determines the 
iterative steps that control the achievement of the best 
solution. This algorithm is used to simulate equilibrium for 
a given temperature. In each step of this algorithm, the atom 
is given a small probable displacement - 𝑥𝑥𝑖𝑖  + у  and the 
system energy change E is calculated. 

If 𝐸𝐸 < 0, then the displacement is accepted and the 
configuration with the changed atomic states is used as the 
initial state in the next step. 

If 𝐸𝐸 >  0, then the probability, as a new state will be 
accepted, is: 

                 𝑃𝑃 (𝐸𝐸)  =  𝑒𝑒𝑥𝑥𝑝𝑝 (−𝐸𝐸 / 𝑘𝑘𝑇𝑇), 

where 𝑘𝑘 - is Boltzmann constant, 𝑇𝑇 -parameter 
“temperature”. 

Using the system energy as a target function and 
defining the system states with {𝑥𝑥𝑖𝑖} , the Metropolis 
procedure generates a series of states for a given 
optimization problem at a given temperature. 

The BM together with the SA can be used to solve 
optimization problems. To understand SA as an 
optimization method, the energy surface can be imagined 
as shown in Fig. 2. The ball will always look for a way 
down when starting from an arbitrarily chosen point. If 
such a system is disrupted by acting on it in some way (e.g. 
shaking), the ball will most often move from A to B, as the 
energy barrier is lower on the A side. If this exposure is 
slight, then it is obvious that the ball will move more often 
from A to B not from B to A. If the exposure is strong, the 
ball will cross the barrier faster and more often and it can 
move from both A to B and from B to A. 

 
Fig. 2. Energy surface (G- global minimum, L- local minimum). 

However, if you want to influence the movement of the 
ball, a good compromise would be to start with a stronger 
exposure and gradually reduce it. This would ensure that at 
some point the ball would pass through the global 
minimum. 

In order to use the SA method in practice, it is necessary 
to determine: 

1) the objective function 𝑊𝑊 (analogous to the energy 
surface), the minimization of which is the aim of the 
procedure. 

2) a set of possible solutions according to the energy 
surface or to the state of physical system. 

3) configuration state random change generator. 

4) control parameter 𝑇𝑇 , which characterizes the 
artificial system temperature, and cooling mode, which 
characterizes how the temperature will be lowered. 

The SA algorithm is based on Boltzmann's probabilistic 
distribution 𝑃𝑃𝑃𝑃(𝐸𝐸)[11]. This expression states that if the 
system is in thermal equilibrium at temperature 𝑇𝑇 , its 
energy is likely to be distributed between all the different 
energy states 𝐸𝐸 . Even at low temperatures, there is a 
possibility that the system may be in a high energy state. 
The system has a corresponding probability of moving 
from a local energy minimum state to a better, more global 
minimum. 

The steps of the SA algorithm in the pseudo-notation 
form are shown in Fig. 3. 
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Fig. 3. SA algorithm execution steps. 

Here: 𝑇𝑇0  – initial temperature; 𝑊𝑊𝑖𝑖 – current 
configuration; 𝑊𝑊𝑗𝑗  – selected configuration; 𝑇𝑇𝑓𝑓  – decrease 
temperature;  𝑒𝑒𝑥𝑥𝑝𝑝(−𝑊𝑊𝑖𝑖𝑗𝑗/𝑇𝑇) – Bolcmann factor. 

SA differs from other gradient descent optimization 
procedures in that it does not “get stuck” in the local 
minimum found. Although SA is a relatively slow 
procedure, it guarantees finding the optimal global 
solution. 

The main purpose of this article is to show the 
capabilities of the SA algorithm in solving practical tasks. 
One of the authors has already carried out research on a 
similar topic [12], [13]. In this article, the deficiencies 
found in the article [12] have been corrected and the 
description of the operation of the SA algorithm has been 
supplemented. An example of SA demonstration is taken 
from [13]. In the following, the essence of SA will be 
discussed in more detail. 

 

II. BOLTZMAN’S MACHINE OPERATION PRINCIPLE 
To understand the principles of BM operation, in future 

we will use the notation and a network with three nodes 
(neurons) from [5] (see Fig. 4): 

 
Fig. 4. The simple net nodes. 

For the above net, the following holds: 

1,i ij j i
i j

V if T V U
≠

= >∑  and 0,i ij j i
i j

V if T V U
≠

= <∑     (2)                                                                          

                     
where 𝑉𝑉𝑖𝑖   - activated state of the neuron,  

            𝑈𝑈𝑖𝑖   - threshold of the neuron; 𝑇𝑇𝑖𝑖𝑗𝑗  - weight 
coefficients between  neurons 𝑖𝑖 and 𝑗𝑗.  

                      ij j i
i j

T V U
≠

−∑                                         (3) 

is the activation of neuron. 

The temperature effect can be shown as a change in 
probabilities (see Fig. 5). (BFPF - Boltzmann probability 
activation function). 

 
(a) – threshold function       (b) - BFPF                   (c) - BFPF 

Fig. 5. The “temperature” effect. 

Hinton [3] showed that Boltzmann function correctly 
characterizes this effect: 

                            1(1)
1

p
Ae

T

=
−

+
                                 (4)                                                    

We will further use this formula to determine BFPF. 
This function is shown in Fig. 6 for temperatures 0.5 and 
0.25. 

 
Fig. 6. “S”- shaped BFPF. 

BM characteristics require: 

1) For each state 𝑉𝑉1𝑉𝑉2𝑉𝑉3  calculate the activation 
function according to the formula (3).  

For example: 𝑉𝑉1𝑉𝑉2𝑉𝑉3 = 010: 

 𝐴𝐴1  =  𝑇𝑇12𝑉𝑉2  +  𝑇𝑇13𝑉𝑉3  −  𝑈𝑈1  = −0.5 + 0.1 =  −0.4 
 𝐴𝐴2 =  𝑇𝑇12𝑉𝑉1  +  𝑇𝑇23𝑉𝑉3  −  𝑈𝑈2  =  0 +  0 +  0.2 = 0.2 
𝐴𝐴3 =  𝑇𝑇13𝑉𝑉1  +  𝑇𝑇23𝑉𝑉2  −  𝑈𝑈3 =  0.5 −  0.7 =  −0.2 
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2) For each neuron, the probability is calculated using 
formula (4) at different temperatures [𝑝𝑝(0) = 1 −
𝑝𝑝(1)] (see Table 1). 

TABLE 1 PROBABILITIES AT DIFFERENT TEMPERATURES 

Neuron 
number 

        T=0.25           T=1.0 

 p(1) p(0) p(1) p(0) 

          1 0.17 0.83 0.4 0.6 
          2 0.69 0.31 0.55 0.45 
          3 0.3 0.7 0.45 0.55 

 
3) Using the values from point 2), it is necessary to 

calculate the transition probabilities to other states. In the 
general case - if the network consists of 𝑁𝑁 elements - you 
can stay in the same state or go to 𝑁𝑁  other states. For 
example, from state 010 the following transitions can be 
obtained:  

The transition probabilities can be calculated by the 
formula: 

            [𝑉𝑉𝑗𝑗(𝑝𝑝(1)𝑗𝑗 + (1 −  𝑉𝑉𝑗𝑗)𝑝𝑝(0)𝑗𝑗] / 3                  (5)                                                                        

We define for 𝑇𝑇=1: 

010 ->   110   - 𝑝𝑝(1)1=0.13 
010 ->   000   - 𝑝𝑝(0)2=0.15 
010 ->   011   - 𝑝𝑝(1)3=0.15 
010 ->   010   - 𝑝𝑝=0.57 

The result of applying this formula for state 010 for 
each neuron for various temperatures is shown in Fig.7. 

 
  (a) Boltzmann behavior (𝑇𝑇=1.0)                     (b) 𝑇𝑇=0.25 

Fig. 7. Transition probabilities for different temperatures. 

4) Having obtained transition diagrams for all states, it 
is possible to draw a BM state diagram for each 
temperature. In practice, this turns out to be a laborious 
process, so another method is used. A chain of events 
𝑆𝑆0 , 𝑆𝑆1,  𝑆𝑆2, … 𝑆𝑆𝑚𝑚−1  is given and a system is known for 
which these events that follow each other with known 
probabilities 𝑝𝑝(𝑖𝑖, 𝑗𝑗). The system can be represented by an 
𝑚𝑚 × 𝑚𝑚 matrix. This method is known as Markov chain and 
makes it possible to find out the probability of system 
position in any state and at any time. The results are shown 
in Fig. 8.  and Fig. 9. The shaded column is the state used 
for the example. 

If the probability at time t is equal to 𝑃𝑃𝑖𝑖(𝑡𝑡), then the 
probability 𝑃𝑃𝑗𝑗(𝑡𝑡 + 1) of being in state 𝑆𝑆𝑗𝑗  at time 𝑡𝑡 + 1 can 
be calculated using the formula: 

              𝑃𝑃𝑖𝑖(𝑡𝑡 + 1)  = ∑𝑃𝑃𝑖𝑖(𝑡𝑡)𝑝𝑝(𝑖𝑖, 𝑗𝑗)                      (6)                                                             

 

 
Fig. 8. Markov chains for T=0.25. 

 
Fig. 9. Markov chains for 𝑇𝑇=1.00. 

For example, knowing that the probabilities of being in 
the time period 𝑡𝑡 = 0 in any state are equal to 0.125 (i.e. 
1/8). Then the probability of the system being in state 𝑆𝑆3 
can be calculated (see Fig. 9): 

𝑃𝑃3(1) = 𝑃𝑃0(0)𝑝𝑝(0,3) + 𝑃𝑃1(0)𝑝𝑝(1,3) + 𝑃𝑃2(0)𝑝𝑝(2,3) 

+𝑃𝑃3(0)𝑝𝑝(3,3) + 𝑃𝑃4(0)𝑝𝑝(4,3) +  𝑃𝑃5(0)𝑝𝑝(5,3) 

+ 𝑃𝑃6(0)𝑝𝑝(6,3) + 𝑃𝑃7(0)𝑝𝑝(7,3) =  

= 0.125 ∗ 0 +  0.125 ∗ 0.22 +  0.125 ∗ 0.15 +  

+ 0.125 ∗ 0.54 +  +0.125 ∗ 0 + 0.125 ∗ 0 +  

+ 0.125 ∗ 0 + 0.125 ∗ 0.17 = 

=  0.125(0.22 + 0.15 + 0.54 + 0.17) =  𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏. 

III. SIMULATED ANNEALING COUNTING 
Using the possibility to calculate the probabilities of 

network nodes in any state and at any time, we can see what 
happens if the temperature of network changes. Let us turn 
to formula (6) and, using the Markov chain for 𝑇𝑇 = 1 and 
𝑇𝑇 = 0.25 , calculate the probabilities of finding network 
states at time 𝑡𝑡. The results are shown in Fig. 10. 

 
Fig. 10. Network states at time 𝑡𝑡. 

Starting with equal probabilities (1/8) the system 
reaches time=7 at temperature 𝑇𝑇 = 1. Having 
experimentally verified the following steps, it is clear that 

010

000110 011

010
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at this temperature the probabilities practically do not 
change further. According to Hinton, this phenomenon is 
called “Thermal equilibrium”. The probabilities begin to 
change when the temperature changes. Fig. 10. shows that 
the temperature drops to 0.25. Thermal equilibrium is 
reached again at time=15. If at this point we go to 𝑇𝑇 = 0, 
we can get the final state of the network: 

 
At the end of the annealing process, the system reaches 

a stable position. If the initial conditions of the network 
from point 2) are met, then it is clear that the state 𝑆𝑆2 with 
the lowest energy ( -0.2) has the highest final probability - 
0.494; 𝑆𝑆4  - with energy -0.1 at the beginning has a final 
probability - 0.313; and finally - 𝑆𝑆7 has the smallest final 
probability. For all other states, the final probabilities are 
zero. 

The purpose of Boltzmann approximation was to prove 
that the final probabilities in a partial state strongly depend 
on the state energy. 

IV. USING THE SA METHOD FOR OPTIMIZATION PURPOSES 
The SA method is widely used in many combinatorial 

optimization tasks. It is used in graph theory, neural 
networks and other applications. As an application of the 
SA algorithm, the well-known combinatorics problem - the 
traveling salesman problem (TSP) - is proposed, the goal 
of which is to find the shortest path between N cities - 
visiting each city only once and returning to the original 
city at the end. It is a fairly well-known problem in 
combinatorics, which can be solved by various 
combinatorics or graph theory techniques. Methods of 
solving TSP with the SA algorithm have also been 
reviewed in the literature [14], [15]. 

The task of TSP is to minimize the objective function 
in all possible permutations. If 𝑛𝑛 cities are located in 2-
dimensional Euclidean space, then 𝑑𝑑𝑖𝑖𝑗𝑗  is the Euclidean 
distance between cities 𝑖𝑖 and 𝑗𝑗, then 𝐶𝐶𝑖𝑖𝑗𝑗 is the shortest path 
for the given distance matrix 𝐷𝐷. 

In order to use the SA algorithm for this type of task, 
some concepts need be introduced. For each path, we can 
define a neighbour as the set of paths that can be reached 
from the current path during one transition. Such a 
mechanism of neighbour structures for TSP is called 𝑘𝑘-opt 
transitions. 

For the purpose of the experiment, a study was carried 
oud: to find the shortest path between 8 milk processing 
companies. It is necessary to solve the task of TSP-8 with 
the help of the SA method, i.e., find the shortest path 
between 8 objects. Locations of objects are given with GPS 
coordinates. 

In this case, the SA algorithm executes in 20 steps, i.e., 
as a result of the experiment, it was determined that the 
state of thermal equilibrium was reached in the 20 −
𝑡𝑡ℎ step (see Fig. 11). The shortest path calculated by the SA 
algorithm was 648 km (see Fig. 12.). 

  

 
Fig. 11. Thermal equilibrium is reached. 

 
Fig. 12. The shortest path between objects. 

V. CONCLUSION 
This article describes an optimization method called 

simulated annealing. The SA method is widely used in 
various combinatorial optimization tasks. SA is a stochastic 
optimization method that can be used to minimize a given 
cost function when a combinatorial system with multiple 
degrees of freedom is used. This method allows you to find 
a global extremum for a function that has local minima. 
This article demonstrates the application of the SA method 
to a well-known combinatorial analysis problem, the 
Traveling Salesman Problem, and performs an experiment 
to find the shortest path between 8 companies. 

The SA method is used to implement the BM operation. 
The purpose of this article was to show the capabilities of 
the SA algorithm in solving practical combinatorics 
problems. 
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