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ABSTRACT 

The wide range of physical phenomena of industrial interest 

which can be properly represented by advection-diffusion 

transport models motivates a constant effort in the development 

of new numerical methods capable of dealing with strong 

advective effects such as compressibility ones. The recent direct 

interpolation technique (DIBEM) proved to be an accurate and 

reliable tool for the representation of problems with constant 

velocity field and initial tests were also performed for problems 

with variable velocity field, where the results are reasonably 

satisfactory, but not so robust, since the integral relative to the 

velocity divergence, in general, seems to disturb the performance 

of the formulation. The current article presents a new formulation 

of the direct interpolation technique for solving variable velocity 

problems with non-zero velocity divergence. The accuracy of the 

new proposal is measured against a known analytical solution and, 

also, contrasted with the classical formulation of DIBEM and dual 

reciprocity technique (DRBEM) for the same case. Preliminary 

results show that the alternative DIBEM formulation proposed 

promotes a consistent improvement in precision, outperforming 

the two techniques in cross-comparison. 

Keywords: diffusive-advective models; direct interpolation 

technique; boundary element method; variable velocity field 

NOMENCLATURE 

A auxiliar vector 

b scalar product 

c  boundary shape coefficient 

F    radial basis function (RBF) 

G*        Galerkin’s Tensor 

G BEM’s traditional matrix 

H BEM’s traditional matrix 

M advective transport matrix 

n   director cosine 

N auxiliar variable  

P auxiliar flux 

q   normal derivate of the scalar field 

q*  normal derivate of the fundamental solution 

r Euclidean distance 

S auxiliar variable 

u a generic scalar field 

u* Laplace/Poisson fundamental solution 

vi velocity field 

X field point 

Z auxiliar vector 

Greek symbols 

λ diffusion coefficient 

α         coefficient matrix  

β         approximation coefficient 

Λ  diagonal auxiliar matrix 

ξ         source point 

ε         average error 

η         DIBEM auxiliar variable of RBF approximation 

or DRBEM matrix 

ψ  DIBEM radial basis function primitive or 

DRBEM matrix 

Ω        domain representation 

Γ         boundary representation 

Subscripts 

i,j,k index notation   

, differentiation operation 

Superscripts 

* variables associated to Green’s problem

j discretization elements

INTRODUCTION 

In the context of boundary element method 

(BEM) formulations based on radial basis 

approximations (Buhmann, 2003), the Dual 

Reciprocity Technique (DRBEM) proposed in the 

works of Nardini and Brebbia (1983) gives flexibility 

to the BEM, since it allows the use of a simpler Green's 
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fundamental solution and provides an adequate 

approximation of the remaining domain integrals to 

the boundary using radial basis approximation. 

DRBEM was pioneered in its proposal and tested on 

several relevant scalar field problems (Partridge and 

Brebbia, 2012). In advective-diffusive models, in a 

general overview, the DRBEM technique has been 

barely tested in isolation, and its principal known 

limitation, when applied in pure form, consists in the 

restriction to low Péclet situations, in alignment with 

the work of Wrobel and DeFigueiredo (1991a). There 

is an alternative formulation, which circumvents this 

limitation, as can be seen in the work of Wrobel and 

DeFigueiredo (1991b). This formulation is based on 

decomposing the velocity field into an average plus 

fluctuation, where the average is treated via the 

fundamental correlated Green's solution and the 

fluctuation terms approximated by radial bases. In 

addition to the above, most work in the literature with 

the DRBEM technique on advection-diffusion models 

is simulated with constant element discretization. 

As an alternative to DRBEM, Loeffler et al. 

(2015a) proposed the Direct Interpolation technique 

(DIBEM), also based on approximations by radial 

basis functions. The technique has already been 

extensively tested in relevant scalar field problems 

such as situations with domain actions (Loeffler et. al., 

2015a), Helmholtz problems (Loeffler et al., 2015b), 

eigenvalue and self-equilibrium model in two 

dimensions (Loeffler & Mansur, 2017), and, also in 

the three-dimensional domain (Barbosa et al., 2019). 

The structure of the DIBEM proposal is, in a way, 

similar to the dual reciprocity, however, it proposes the 

approximation of the entire kernel of the domain 

integral, and mathematically, it resembles a classical 

interpolation procedure, which gives rise to its 

nomenclature. Regarding advective-diffusive models, 

systemic tests have recently been performed with 

constant velocity field situations (Pinheiro et al., 2022) 

in parallel with the dual reciprocity technique for 

moderate Péclet numbers. The DIBEM technique has 

been shown to be reasonably more accurate in this type 

of scenario and the direction of research pointing to 

variable velocity fields becomes natural. 

In the context of advective-diffusive problems 

with variable velocity field some aspects are worth 

noting. First, it is interesting to point out that the 

variable velocity field, in the general case, demands 

the treatment of a non-null velocity divergent. In the 

case of DRBEM, since there is an approximation in the 

original structure of the domain integral of the 

advective side of the governing sentence (Partridge & 

Brebbia, 2012), this divergent remains implicit in the 

formulation. In contrast, in the classical DIBEM 

formulation, shown in Loeffler et al. (2020), the 

divergent appears in an explicit way and accounted for 

an exclusive integral, approximated by radial bases. 

Also, in Loeffler et al. (2020) preliminary tests of the 

classical DIBEM formulation are performed and 

contrasted with the DRBEM. Dual reciprocity 

demonstrates reasonably higher accuracy than DIBEM 

in these tests, which contradicts what was expected, 

since in constant velocity cases DIBEM had already 

demonstrated a solid advantage (Pinheiro et al., 2022). 

In this work DRBEM also demonstrates a sharper 

sensitivity to internal poles, comparable to that of 

DIBEM, a behavioral trait that is not present in the 

constant velocity tests. With the preliminary tests 

performed with the classical DIBEM formulation for 

variable velocity fields, it emerges in this paper the 

proposal of an alternative formulation for direct 

interpolation, with its absolute accuracy measured 

against the analytical solution and relative accuracy in 

parallel with the double reciprocity technique, which 

has proven robustness in problems of this nature with 

the use of linear elements. 

DIBEM ALTERNATIVE FORMULATION 

The governing equation of an advective-diffusive 

model in steady-state regime in an isotropic medium 

comes, physically, from the energy conservation 

sentence from continuum mechanics (Reddy, 2013) 

and can be algebraized in indicial notation, convenient 

in the form of Eq. (1) below. 

λu,ii (X) = vi(X)u,i (X) (1) 

In Eq. (1), λ represents the thermal diffusivity of 

the continuous medium, u, the scalar field of interest 

or primal variable and vi the velocity field imposed on

the domain. Strategies of the boundary element 

method that rely on approximations by radial basis 

functions make use of a simpler Green's solution, 

Poisson/Laplace’s for example.  (Brebbia and 

Dominguez, 1994). Thus, to simplify the algebra, we 

will consider the properties of the unit medium (λ=1) 

and one can then write the strong integral formulation 

of the problem in the following way 

∫ u,ii (X)u∗(ξ, X)

Ω

dΩ

= ∫ vi(X)u,i (X)u∗(ξ, X)

Ω

dΩ 

(2) 

Eq. (2) can be analyzed considering a diffusive 

(DS) side, the left of the equality, whose treatment is 

already known, and the right side, which accounts for 

advection effects (AS) which presents a challenging 

treatment. The formulations based on approximations 

via radial bases only differ in the treatment of the 

advective (AS) side. Thus, the diffusive side has its 

inverse integral formulation already well known, 

based on the best boundary element literature (Brebbia 

et al., 2012), and given by Eq. (3), where ξ represents 

the source points, X the coordinates of the field points, 

and q* and q the fluxes associated with the gradients 

of the potentials. 
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 DS = c(ξ)u(ξ) + ∫ 
Γ

u(X)q∗(ξ, X)dΓ

− ∫ 
Γ

q(X)u∗(ξ, X)dΓ 

(3) 

Preliminary test results using the classical 

DIBEM formulation exhibited in Loeffler et al. (2020) 

and Loeffler et al. (2022) motivated the proposition of 

a formulation that could potentially respond better in 

cases of non-null divergent. The explicit nature of the 

divergent in the classical formulation appears to create 

numerical difficulties, and a proposal where there is an 

implicit accounting for this term, as the dual 

reciprocity does, could perhaps show accuracy 

improvement for some types of physical cases.  

The demonstration of the new proposal begins by 

rewriting the advective side that must be treated by 

defining a variable b as the scalar product between the 

velocity field and the gradient of the primal field, as in 

Eq. (4). 

 AS = ∫  
Ω

vi(X)u,i(X)u∗(ξ; X)dΩ

= ∫  
Ω

b(X)u∗(ξ; X)dΩ 

(4) 

For the advective-diffusive model the definition 

of this scalar product, in a way, already refers to the 

dual reciprocity algorithm, which would approximate 

this term by radial basis functions. This fact gives rise 

to some structural similarities between the 

formulations of the classical DRBEM and the 

alternative DIBEM proposed here. 

In the current proposal we will proceed by 

another path, however partially known. We will use 

the regularization procedure (Loeffler and Mansur, 

2017), as in the version of the classical DIBEM, but 

this time, applied to the scalar product b(X). With this 

one can arrive at the following expression: 

 ∫  
Ω

b(X)u∗(ξ; X)dΩ

= ∫  
Ω

[b(X)

− b(ξ)]u∗(ξ; X)dΩ

+ ∫  
Ω

b(ξ)u∗(ξ; X)dΩ 

(5) 

Eq. (5) rewrites the advective side in terms of a 

regularized domain integral, followed by an excess 

integral. The former will be approximated by radial 

basis by DIBEM, while the latter will be taken to the 

boundary using Galerkin’s tensor. The steps of the 

treatment of each integral are explained in detail in the 

following.  

Taking the entire kernel of the first domain 

integral of the right-hand side of Eq. (5), according to 

the direct interpolation technique, the approximation 

by radial bases is exposed in Eq. (6). 

 [b(X) − b(ξ)]u∗(ξ; X) = αj
ξ

Fj(Xj; X) (6) 

Inserting the DIBEM approximation from Eq. (6) 

into the first integral on the right-hand side of Eq. (5), 

one then has, and naming a variable b'(X)= b(X)-b(ξ), 

one has: 

 ∫  
Ω

b′(X)u∗(ξ; X)dΩ ≅ ∫  
Ω

αj
ξ

Fj(Xj; X)dΩ (7) 

Now, by adopting a primitive ψ of the selected 

radial basis function such that 𝐹𝑗 = 𝜓,𝑗𝑗 and inserting

this equality into the approximation in Eq. (7) it is 

possible to arrive at the following simplification. In 

Eq. (8) (𝑋𝑗; 𝑋) is the pair of interpolation points and

the product 𝑛𝑗𝜓,𝑗, can be condensed into a single

variable called 𝜂𝑗.

 ∫  
Ω

αj
ξ

FjdΩ = ∫  
Ω

αj
ξ

ψ,jj dΩ

= ∫  
Ω

( αj
ξ

ψ,j )
,j
dΩ

= αj
ξ

∫ 
Γ

njψ,j dΓ

= αj
ξ

∫ 
Γ

ηj(Xj; X)dΓ 

(8) 

Thus, the integrals of 𝜂𝑗 can be easily calculated

with numerical integration procedures, leaving as 

unknowns only the values of the α coefficients, which 

will be determined in due course. 

The second integral of the right-hand side of Eq. 

(5) is conducted to the boundary using the concept of

Galerkin’s Tensor (G*), which is the primitive of

Green's solution (u*). Thus adopting 𝐺,𝑘𝑘
∗ = 𝑢∗, and

substituting into the integral, one has:

 b(ξ)∫  
Ω

u∗(ξ; X)dΩ = b(ξ)∫  
Ω

G∗
,kkdΩ

= b(ξ)∫  
Ω

(G∗
,k),k

dΩ

= b(ξ)∫ 
Γ

nkG
∗
,kdΓ

(9) 

In Eq. (9), the directional derivative of the 

Galerkin’s tensor G*(ξ;X) is given by: 

G∗,k (ξ; X)nk(X) = ξPX

=
1

4π
{0.5

− ln [r(ξ; X)]}rknk 

(10) 

The discretization process applied to Eq. (9), 

considering the directional derivative in Eq. (10), leads 

to writing the vector (Z) as follows: 
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  (
Z1

⋮
Zn

)

=

[

[∫  
1

1

P1dΓ1 + ⋯+ ∫  
1

1

PndΓn] … 0

⋮ ⋱ ⋮

0 … [∫  
n

1

P1dΓ1 + ⋯ + ∫
n

1

PndΓn]
]
 

{

u1

⋮
un

} (11) 

Determination of the Alpha Matrix 

Discretizing into elements and expanding the 

approximation of Eq. (6) to a discrete system with n 

degrees of freedom, and pre-multiplied by [F]−1 
results in Eq. (12). 

{α}ξ
= [F]−1 [Λ]ξ {b′} (12) 

The domain integral approximated by the 

DIBEM technique results in the discrete system 

formed by the product of two vectors {N} and {α}, 

which we adopt here to call Aξ, as can be appreciated 

in the paper by Loeffler and Mansur, 2017.  Since {N} 

is the vector formed by the integrals of 𝜂𝑗, from Eq.

(8), it is possible with the sentence of the coefficients 

α, Eq. (12), to write the approximate integral in the 

discrete domain as follows: 

  Aξ = (N1 N2  ⋯ Nn)(

α1
ξ

αn
ξ

)

= (N1 N2  ⋯ Nn) [
F11 ⋯ F1n

⋮ ⋱ ⋮
Fn1 ⋯ Fnn

]

−1

[
Λ1

ξ

⋱

Λn
ξ

] {b′} (13) 

One can group the entire product of terms, 

excluding {b'}, on the right-hand side in Eq. (13) into 

a vector ξ{S}, as follows, from Eq. (14). 

{S}
ξ

= (Sξ1 Sξ2  ⋯ Sξn)

= (N1 N2  ⋯ Nn) [
F11 ⋯ F1n

⋮ ⋱ ⋮
Fn1 ⋯ Fnn

]

−1

[
Λ1

ξ

⋱

Λn
ξ

] (14) 

The expansion of the discrete system with the 

scanning of the source points ξ, leads to the formation 

of the following matrix [S] that multiplies the vector 

{b'}, described by Eq. (15). 

[S] = [N][F]−1 [Λ]ξ (15) 

At this point it is interesting to note that the 

integral approximated by direct interpolation becomes 

the product of the matrix [S], defined in Eq. (15) with 

the vector {b'}, which will be treated mathematically 

in due course. One can then write that the vector [A], 

in Eq. (16) that follows. 

[A] = [S]{b′} (16) 

Determination of the Scalar Product 

We now return to the scalar product b highlighted at 

the beginning of the proposed formulation. For the 

sake of simplicity, we highlight it here in Eq. (17). 

 b′ = viu,i (17) 

To better handle Eq. (17), we will resort to a 

process identical to that used in the dual reciprocity 

technique (DRBEM) to approximate the derivatives of 

the primal field u(X) (Partridge and Brebbia, 2012). To 

this end it is proposed that the field can be 

approximated, as in Eq. (18) by the product of a 𝛽 

coefficient by a radial basis function F selected. In this 

way the 𝛽 coefficient can be determined by pre-

multiplying by [F-1] as follows. 

 u = βF  ∴   β = F−1u (18) 

Now, in possession of the field approximation, 

one can then differentiate Eq. (18) with respect to the 

spatial coordinates, obtaining the directional 

derivatives u,i and using the expression of the 

coefficient 𝛽, to obtain a final expression for the 

derivatives as a function of the primal field u(X) and 

the chosen radial basis function as evidenced by Eq. 

(19). 

 u,i = F,iβ  ∴  u,i = F,iF
−1u (19) 

The expansion of Eq. (19) after discretization 

with n degrees of freedom results in a vector b, formed 

by scalar components, in the following form of Eq. 

(20): 

  {
b′1
⋮

b′n

}

= {[
v1

1

⋱
v1

n
] [

F,1
11 ⋯ F,1

1n

⋮ ⋱ ⋮
F,1

n1 ⋯ F,1
nn

] [
F11 ⋯ F1n

⋮ ⋱ ⋮
Fn1 ⋯ Fnn

]

−1

+ [
v2

1

⋱
v2

n
] [

F,2
11 ⋯ F,2

1n

⋮ ⋱ ⋮
F,2

n1 ⋯ F,2
nn

] [
F11 ⋯ F1n

⋮ ⋱ ⋮
Fn1 ⋯ Fnn

]

−1

} {

u1

⋮
un

} 

(20) 

For simplicity of mathematical writing, we will 

call [M′] the matrix that pre-multiplies the vector of 

unknowable field values, {u}, in Eq. (20). In this way, 

in a simpler way, one can say that the vector, {b′}, can 

be written as in Eq. (21): 

 {b′} = [M′]{u} (21) 

With this the final matrix formulation in the new 

DIBEM formulation can be written as: 

 [H]{u} − [G]{q} = {A + Z}
= [M]ID{u} 

(22) 

The matrix [M]ID is here called the advective

transport matrix, as it is connected here to the 

advective side of the governing equation of the 

phenomenon. The dual reciprocity technique arrives at 
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a final discrete system of the same form, given below 

by Eq. (23). One focus of the current preliminary paper 

is to determine which of the transport matrices has a 

better constitution, and thus a better domain 

representation. 

 [H]{u} − [G]{q} = [Hψ − Gη]{b}
= [M]DR{u} 

(23) 

METHODOLOGY 

The numerical tests in the present paper are 

performed on perfectly structured meshes, illustrated 

by Figure 1, i.e., with the control variable 𝛼 = 1 in a 

square domain of unit dimensions, L=1. The radial 

basis approximations of all the exposed techniques are 

performed using the thin plate radial basis function, 

r2lnr. The boundary discretization is done with linear 

elements for all formulations and the double nodes are 

spaced using d=0.02le. 

Figure 1- Computational Domain Scheme. 

Preliminary tests are first performed with 

respect to convergence, where intermediate 

meshes are tested by gradually increasing the 

internal poles (IP) in the domain. As a sequence of 

the results a parametric analysis gradually 

accelerating the velocity field is performed to infer on 

the stability of the formulations in moderate 

advection physical scenarios. The results of the 

proposed alternative DIBEM formulation are 

compared simultaneously with the classical 

DIBEM formulation (Loeffler et al. 2020) and 

with DRBEM. The accuracy of the techniques is 

measured by the following mean error expression in 

Eq. (24), as the average of the three edges on which 

the fluxes are prescribed. 

 𝜀𝑚𝑒𝑎𝑛 =
1

𝑛
∑

|𝑢𝑖 − 𝑢𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙|

max 𝑢𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

𝑛

𝑖=1

(24) 

NUMERICAL TESTS 

The numerical tests are generated on a 

compressible advective-diffusive case, with variable 

velocity field and nonzero velocity divergent. In order 

that the compressible problem can be adequately 

represented by a simple advection-diffusion equation 

such as Eq. (1), a coordinate transformation procedure 

shown in detail in the work of Loeffler and Dan (2004) 

was required. The boundary conditions and velocity 

field imposed on the domain are shown below in 

Figure 2. 

Figure 2- Sketch of the physical problem. 

The accuracy of the numerical tests performed is 

measured in comparison with the analytical solution of 

the potential field, which can be found in the work of 

Dan et al. (2012). The parameter m present in the 

velocity field of Figure 2 and in the analytical solution 

serves to control the relative intensity of the advective 

effects. 

The first numerical test performed consists of a 

convergence analysis where boundary meshes with 80, 

120 and 160 boundary elements (BE) are fixed, and 

internal poles (IP) are gradually inserted to enrich the 

radial basis approximation of the tested formulations. 

The graph in Figure 3(a) compares the results 

generated by the classical versus alternative DIBEM 

formulation. An interesting behavior of the new 

proposed formulation is observed, where the error 

levels decay rapidly to low levels even with a small 

number of interpolating poles. The graph in Figure 

3(b) compares the alternative DIBEM formulation 

with the DRBEM. The error levels are similar for a 

more enriched domain of internal poles, however there 

is a relevant advantage with the use of few internal 

poles for the novel DIBEM formulation. The behavior 

demonstrated by the new proposal closely resembles 

that of DRBEM in advective-diffusive problems with 

constant velocity field. However, in the context of 

situations with variable velocity field the dual 

reciprocity apparently demands more internal poles 

for reasonable accuracy. Along these lines, this 

formulation demands tests in other physical situations, 

but it seems to demonstrate a lower demand for 

internal poles to achieve low error thresholds. 

Next, a parametric analysis is performed with the 

parameter m, which controls the relative intensity of 

the advective effects in the governing model. This type 

of analysis is of great importance, because a central 

challenge for formulations that use approximations via 

radial bases is to maintain accuracy in the face of 

moderate and intense effects of the transport term. In 

this case, the graph in Figure 4(a) compares the 

classical DIBEM formulation with its alternative 
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formulation, and Figure 4(b) compares this alternative 

formulation with the dual reciprocity technique. 

First, in an overview of Figure 4(a) and 4(b) to 

compare the classical formulations of DIBEM with 

DRBEM, represented by black curves in both graphs, 

it can already be seen that in this case DRBEM takes a 

wide advantage over DIBEM in its classical version. 

Even with the greater sensitivity of DIBEM to internal 

pole arrangement and the possibility of improving the 

results by calibrating the parameter 𝛼, the dual 

reciprocity shows superiority in the case tested.  

However, when evaluating the alternative 

formulation, it is consistently superior to the classical 

DIBEM as shown in Figure 4(a), and, also more 

accurate than the DRBEM as shown by the curves in 

Figure 4(b). 

Figure 3- Convergence Analysis: (a) Classical 

DIBEM vs. Alternative DIBEM (b) Alternative 

DIBEM vs. DRBEM 

Figure 4- Parametric Analysis with m: (a) 

Classical DIBEM vs. Alternative DIBEM (b) 

Alternative DIBEM vs. DRBEM 

CONCLUSIONS 

The alternative direct interpolation formulation 

proposed in this paper proved to be accurate and robust 

in the preliminary tests performed, when compared to 

the classical direct interpolation techniques (DIBEM) 

and to the dual reciprocity (DRBEM), presenting 

results superior to both. The similarity between the 

final matrix equation of the dual reciprocity and the 

new formulation proposed here is remarkable, and it 

can be inferred that the final transport matrix generated 

by the proposed formulation tends to be more 

consistent, representing better the computational 

domain information than the one generated by 

DRBEM. The tests performed in this paper are initial 
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and serve as motivation and generate a research vector 

in the direction of testing the new formulation in 

several other physical situations with variable velocity 

field to know its behavior systematically against 

strong advective effects and compressibility effects. 

 There is also an interest in extending future 

simulations to advective-diffusive models with the 

presence of reactive and source terms, to measure the 

flexibility and accuracy of this alternative formulation 

including other types of transport terms. 
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