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Abstract
Aquantitative understanding of societies requires useful combinations of empirical data and
mathematicalmodels.Models of cultural dynamics aim at explaining the emergence of culturally
homogeneous groups through social influence. Traditionally, the initial cultural traits of individuals
are chosen uniformly at random, the emphasis being on characterizing themodel outcomes that are
independent of these (‘annealed’) initial conditions.Here,motivated by an increasing interest in
forecasting social behavior in the real world, we reverse the point of view and focus on the effect of
specific (‘quenched’) initial conditions, including those obtained from real data, on thefinal cultural
state.We study the predictability, rigorously defined in an information-theoretic sense, of the social
content of the final cultural groups (i.e. who ends up inwhich group) from the knowledge of the initial
cultural traits.Wefind that, as compared to randomand shuffled initial conditions, the hierarchical
ultrametric-like organization of empirical cultural states significantly increases the predictability of
thefinal social content by largely confining cultural convergence within the lower levels of the
hierarchy.Moreover, predictability correlates with the compatibility of short-term social coordination
and long-term cultural diversity, a property that has been recently found to be strong and robust in
empirical data.We also introduce a nullmodel generating initial conditions that retain the ultrametric
representation of real data. Using this ultrametricmodel, predictability is highly enhancedwith
respect to the randomand shuffled cases, confirming the usefulness of the empirical hierarchical
organization of culture for forecasting the outcome of social influencemodels. These results appear to
be highly independent of the empirical data source.

1. Introduction

Understanding the self-organization and emergence of large-scale patterns in real societies is one of themost
fascinating, yet extremely challenging problems ofmodern social science [1]. A prominent field of research
studies the spontaneous emergence of groups of culturally homogeneous individuals. One of themechanisms
that are believed to play a key role in this process is social influence, i.e. the gradual convergence of the cultural
traits, attitudes and opinions of individuals subject tomutual social interactions—this is a restricted definition
that is implicit in this study and in previous work that this study builds on; see [2] for amore generic definition.
Stylizedmodels of cultural dynamics under social influence have attracted the interest of an interdisciplinary
community of sociologists, computational social scientists and statistical physicists [3].

One of the prototypicalmodels in this context is the popular Axelrodmodel [4], which has been studied in
many variants over the last two decades [5–13]. Themodel ismulti-agent, with a cultural vector associated to
each agent. One cultural vector is a sequence of subjective cultural traits (opinions, preferences, beliefs) that each
agent possesses, with respect to a predefined set of features (variables, topics, issues). The dynamics is driven by
social influence, which iteratively increases the similarity of the cultural vectors of pairs of interacting
individuals. However, interactions are only allowed among pairs of individuals whose vectors are already closer
than a certain (implicit or explicit) threshold distance, amechanism known as bounded confidence and having its
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origins in the so-called ‘assimilation-contrast theory’ [14] in social science. The intuition behind themodel,
successfully confirmed via numerical simulations and analytic calculations, is that social influence increases
cultural similarity, yet full convergence is precluded by bounded confidence. The net result is the emergence of a
certain number of cultural domains, each containing several individuals with identical cultural vectors and
mutually separated by a distance larger than the bounded confidence threshold, thus no longer interactingwith
each other. The value of themodel is the identification of a viable, decentralizedmechanism according towhich
cultural diversity can persist at a global (inter-domain) scale, even if it vanishes at a local (intra-domain) scale.

Given the focus on the qualitative aspect of such an emergent pattern, the Axelrodmodel has been
traditionally studied by specifying uniformly random initial conditions for the cultural vectors of all individuals,
i.e. by drawing each cultural trait independently from a probability distribution that isflat over the set of possible
realizations. Consistently with this uninformative (and deliberately unrealistic) choice, the focus ofmany studies
has been the characterization of the outcomes of themodel that are robust upon averaging overmultiple
realizations of the initial randomness. Since the cultural dynamics evolving the initial state is also stochastic, a
second average over the dynamics is also required.Wemay therefore say that this is the ‘annealed’ version of the
model. Examples of quantities that are stable acrossmultiple realizations of uniformly random initial conditions
are the expected number and expected size offinal cultural domains. An obvious counter-example is the values of
the vectors ending up in such domains: as follows from the complete symmetry in cultural space implied by the
uniformity of the initial randomness, such values are by constructionmaximally unpredictable.

On the other hand, recent studies have investigated themodel starting fromdifferent classes of initial
conditions, beyond the uniformly randomone. In particular, emphasis has been put on using initial conditions
constructed from empirical data [15–17] and their randomized, trait-shuffled counterparts—obtained by
randomly shuffling, for each component of the cultural vectors, the empirical values (traits) of all individuals in
the sample. These studies have emphasized a strong dependence of the final outcome on the initial conditions.
For instance, certainmodel outcomes that have an interesting interpretation in terms of enabling the coexistence
of short-term social collective behavior and long-term cultural diversity [15] (more details are provided later in
this paper) are found to vary significantly across the classes of empirical, trait-shuffled, and uniformly random
initial conditions, while remaining largely stable when considering different instances belonging to the same
class. This stability implies that empirical cultural data share certain remarkably universal properties,
independent of the specific sample considered and at the same time significantly different from those exhibited
by random and randomized data [17]. This has stimulated the introduction of stochastic, structuralmodels
aimed at capturing the essential properties of the empirical cultural data [16, 18].

Strong dependence of cultural dynamics on the initial conditionsmight be a useful property to exploit in the
light of the increasing interest towards forecasting social and cultural behavior in the real world. Examples
include the predictability of certain aspects of political elections, public campaigns, spreading of (fake)news,
financial bubbles and crashes, and commercial success of new items. If interest is shifted towards the
predictability of future long-term outcomes given certain initial conditions, then a corresponding change of
perspective is implied at the level ofmodeling. In particular, the aforementioned ‘annealed’ framework, where
the outcome ofmodels of cultural dynamics is averaged overmultiple realizations of the initial randomness,
becomes less relevant. On the contrary, if a specific (e.g. empirical) initial condition is known, it becomes natural
to use it as the single initial specification of the heterogeneity of the system.Obviously, averagingwith respect to
different random trajectories of the social influence dynamics, all starting from the same initial cultural state,
remains important and necessary.Wemay therefore call this the ‘quenched’ version of themodel.

In this workwe focus for the first time on the predictability of the social content of the cultural domains in the
final state of the Axelrodmodel, given a certain initial state. By social content wemean the composition of the
different domains in terms of individuals, i.e. we are interested in forecasting ‘who ends up inwhich cultural
domain’. It should be noted that the social content is one of those properties that, just like the values of thefinal
cultural vectors, ismaximally unpredictable when considering the usual annealedmodel under uniformly
random initial conditions. By contrast, we consider the quenched scenario starting from specific initial
conditions sampled from empirical, shuffled, random, and an additional ‘ultrametric’ class of initial conditions.

Wefind that, remarkably, empirical and random initial conditions are associatedwith the highest and,
respectively, lowest degree of predictability, whichwe rigorously define in an information-theoretic sense. This
means that, as comparedwith the usual uniform specification of the initial conditions of themodel, empirical
data allow for amuchmore reliable forecast of the identity of the individuals forming thefinal cultural domains.
Wefind that this result follows from the fact that the hierarchical, ultrametric-like organization of empirical
cultural vectors, when coupledwith bounded confidence, largely confines cultural convergence within the lower
levels of the hierarchy. This result is confirmed using surrogate data that, while retaining only the ultrametric
representation of real data, are also found to be associatedwith a higher predictability with respect to the shuffled
and randomconditions. The predictability associated to randomand randomized cultural vectors is lower
because it is difficult to identify ameaningful and robust hierarchical structure within the lower levels of which
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social influence remains confined. The analysis gives similar results for all the empirical datasets considered here,
pointing out the generic nature of these findings.

Even if we do not perform an explicit analysis of the cultural content of thefinal domains (the cultural traits
that are perfectly shared by the individuals within every final group), thefinding that their social content is
predictable (the set of individuals within every final group), coupledwith the fact that the initial cultural vectors
of all individuals are known, implies that eachfinal cultural vector will be amixture of the traits of the initial
vectors of the individuals ending up in the same cultural domain. Thismeans that, the higher the predictability
of the social content, the higher that of the cultural content as well. The take-homemessage is that the empirical
hierarchical organization of culture and its ultrametric representation are very informative and useful for
forecasting the outcome ofmodels of cultural dynamics.

2.Ultrametricity and culture

The notion of ultrametricity refers to sets of objects that are hierarchically organized in certain abstract spaces,
with applications in various fields, includingmathematics (p-adic numbers), evolutionary biology (phylogenetic
trees) and statistical physics (spin glasses) [19]. In practice, an ultrametric representation can be produced as the
output of a hierarchical clustering algorithm applied to amatrix of pairwise distances between objects [19]. For
the purpose of this work, these objects are the cultural vectors, whose pairwise cultural distances are computed
in the samemanner as in [15–18], based on a combination between theHamming distance and theManhattan
distance, which are used in associationwith nominal and ordinal cultural featues, respectively—also see
equation (A2) and the associated description formore details. The following explanations concerning
ultrametricity aremostly restricted to cultural vectors, althoughmany of the concepts have awide range of
applicability. The ultrametric representation ofN cultural vectors can be visualized as a dendrogram (a binary
hierarchical tree; see the top offigure 1)withN leaves (one for each vector) andN−1 branching points (often
referred to as ‘branchings’, for simplicity), sorted byN−1 real numbers that are attached to them. These
numbers can be defined in two equivalent ways: on a distance scale (top-left axis) or on a similarity scale (top-
right axis)—both quantities take values between 0.0 and 1.0, while adding up to 1.0. Each number is an
approximation for distances between leaves that arefirstmerged at the respective branching point. TheseN−1
numbers and the topology of the dendrogram retain part of the information inherent in the cultural distance
matrix (which is specified byN(N−1)/2 numbers), so the dendrogram is an approximation of thismatrix. The
approximation is exact and algorithm-independent only when the original distances are perfectly ultrametric: a
stronger version of the triangle inequality is satisfied for all triplets of distinct objects [19]. A cut can be
performed at a certain heightω in the dendrogram, providing anω-dependent partition of theN cultural vectors
(see figure 1)—most of the results shown in this study involve a systematic exploration of themeaningfulω
interval. For a dendrogramobtained via the single-linkage hierarchical clustering algorithm (see [20] and
references therein), theω-dependent partition is the same as that encoding the connected components obtained
by applying anω-threshold to the initialmatrix of distances.

Reference [15] pointed out that a dendrogram approximating an empirical cultural state shows a clearer
hierarchical organization than dendrograms approximating the shuffled or random counterparts, suggesting
that the ultrametric representation is better suited for empirical data than for shuffled or randomdata. In
addition, cultural dynamics (with a built-in threshold) applied to the empirical cultural state appeared tomostly
induce convergence within the groups of theω-dependent partition, ifω is equal to the bounded confidence
threshold used in the cultural dynamicsmodel (see below), where an identification ismade between this
threshold and the cut on the dendrogram. These observationsweremade in a qualitative way, by visually
inspecting dendrograms obtainedwith the average-linkage hierarchical clustering algorithm [21, 22]. Instead,
we performhere a systematic, quantitative comparison betweenω-dependent partitions of initial cultural states
and associated partitions offinal states resulting from cultural dynamics, for different classes of initial cultural
states—the ‘variation of information’ quantity is used for this purpose, as explained below. The initial-stateω-
dependent partitions are always extracted from the dendrogramprovided by the single-linkage algorithm [20],
rather than the average-linkage one, since it provides the subdominant ultrametric, which is the ‘closest below’
the original distances and unique [23], while also being equivalent to the hierarchical connected-component
representation, asmentioned above. This choice is also common for the purpose of evaluatingmeasures of
ultrametricity, like the cophenetic correlation coefficient, which is done in [16].

In this studywe also propose a new class of ‘ultrametric’ initial states, based on a stochastic generation
procedure that enforces the ultrametric representation of a given empirical state. Specifically, this procedure
provides, for every run, a set ofN cultural vectors whose pairwise distances reproduce, on average, the pairwise
distances encoded by the subdominant ultrametric representation of an empirical set of cultural vectors of the
sameN. This is achieved using an extension of amethod originally proposed in [24], in the context ofDNA
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sequences. The generalization introduced here allows themethod toworkwith combinations of features of
different ranges and types, where the range stands for the number of traits and the type indicates whether the
feature is treated as ordinal or nominal. Themethod is described in detail in appendix A.

Figure 1 illustrates the concepts that aremost relevant for this study and the relationships between them.At
the center, thefigure shows an initial cultural state with 3 vectors, defined in terms of 4 binary features, with
possible traits (values) denoted by the two shades of gray. Each of the three vectors ismatched to a branch of the
dendrogramdrawn at the top, which encodes the subdominant ultrametric representation of the initial cultural
state. For this specific case, the distance between the first two vectors is 0.5, while the distances between any of
these two and the third are 0.75, which togethermake up a perfectly ultrametric discrete space, thus exactly
matching the distances encoded by the dendrogram. The horizontal line denotes a possibleω-cut that can be
applied to the dendrogram, which induces a splitting into two (in the example shown) branches and two
associated subsets of vectors, which together form anω-dependent partition (or clustering) of the initial set. This
partition is the same as that induced by the set of connected cultural components of theω-threshold cultural
graph. At the bottom, thefigure shows one possiblefinal state resulting from the cultural dynamics process, for a
bounded confidence threshold set to the sameω value as the dendrogram cut. The groups of identical vectors
constitute another,ω-dependent partition characterizing the cultural state, which exactlymatches, in this case,
the initial state partition.Other final configurations are possible, due to the stochastic nature of cultural
dynamics. It is even possible, although unlikely, that by a succession of convenient interactions the second vector
‘migrates’ from the group on the left to the one on the right during the dynamics. The abundance of such
deviations is quantitatively studied below, for several classes of initial conditions.

3. Cultural dynamics and partition-specific quantities

Every cultural dynamics process simulated in this study starts with an initial cultural state, consisting of a set ofN
cultural vectors, each associated to one of theN agents in themodel—see center offigure 1. Four classes of initial

Figure 1.Cultural dynamics with an ultrametric initial state. At the top, a dendrogramwith three leaves is shown, with a distance (or
dissimilarity) scale on the left, an associated similarity scale on the right and a threshold of w = 0.625 appliedwith respect to the
former. The dendrogram is a subdominant ultrametric representation of distances between three cultural vectors, which are
illustrated below its branches. These vectors are defined in terms of four binary variables (features), corresponding to the four
horizontal rows of disks, whose possible values (traits) are denoted by the light-gray and dark-gray colors. The boxes show the initial
state partition, formed by two clusters (and connected components) obtained by applying theω=0.625 cut in the dendrogram.
Together, the three vectorsmake up an initial cultural state onwhich the cultural dynamicsmodel can be applied. For a bounded
confidence value set toω=0.625, one of the possiblefinal states is shown at the bottom. The boxes show thefinal state partition,
formed by two cultural domains, withinwhich cultural vectors are identical. The discrepancy between the initial state and final state
partitions ismeasuredwith the normalized variation of information quantity nVI, which in this situationwould give a value of 0.0,
since the two partitions are identical.
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cultural states are used in this study, which have already beenmentioned above: empirical, ultrametric, shuffled
and randomcultural states. However, any ultrametric, shuffled or random state is generated in a stochastic way,
conditionally on a given empirical state, so one could say that these three classes are composite, each one being a
collection of statistical ensembles, one for each empirical state.Most of this study focuses on an empirical
cultural state constructed fromEurobarometer 38.1 [25, 26] data (collected via face-to-face interviewswith
people in the EU), formatted according to the procedure in [17], whose cultural features are associated to survey
questions dealingwith opinions on various topics concerning science, technology, the environment and the
European community. The associated ultrametric cultural state is generated using the newprocedure
mentioned in section 2 and explained in detail in appendix A, which retains, in a certain sense, the empirical
ultrametric structure. The associated shuffled cultural state is obtained by randomly and independently
permuting the empirical cultural traits among vectors, with respect to every feature, thus exactly enforcing all the
empirical trait frequencies. Finally, the associated random state is obtained by drawing each trait at random,
froma uniformprobability distributionwith respect to every feature, while only retaining the empirical data
format—the number of features, together with the range and type of each feature—and thus the associated
cultural space, which is also retained by the ultrametric and the shuffled states. Part of this studymakes use of
three other empirical states (constructed fromother datasets) and of the associated ultrametric, shuffled and
random states—see section 4 and appendix B.

Cultural dynamics is simulated here using a simple, Axelrod-typemodel, without any underlying geometry
for a social network or a geographical-physical space: essentially, allN agents are connected to each other.
Instead, an explicit bounded-confidence thresholdω is present, which defines themaximum cultural distance
forwhich social influence interactions can successfully occur—further convergence occurs only if there is
already some level of overlap. At each simulation step, two agents are randomly picked. If the distance dij
between their cultural vectors is smaller thanω and if these vectors are different with respect to at least one
feature, then an interaction successfully occurs with probability 1−dij: one of the agents switches its trait to
match the trait of the other agent, with respect to one of the features that differentiates between them. This is
exactly themodel used in [15, 17, 18] and partly in [16]. As anticipated in sections 1 and 2, thismodel converges
to a randomfinal, absorbing state, one that consists of groups (cultural domains) of internally identical and
externally non-interacting cultural vectors—distances within such groups are zero, while distances across are
larger or equal toω, as illustrated at the bottomoffigure 1.

All calculations performed in this study are heavily based on the partitions characterizing the initial and final
cultural states, consisting of initial dendrogram-based clusters (the connected components) andfinal groups of
identical vectors, respectively, as explained in section 2. As illustrated infigure 1, each type of partition is
characterized by two types of quantities, denoted by (DI,CI) for initial partitions and by (DF,CF) forfinal
partitions. These quantities are referred to as the coordination (CI andCF) and the diversitymeasures (DI and
DF). They are computed according to the following formulas:
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where aä {I, F} distinguishes between ‘initial’ and ‘final’, NC
a is the number of groups (connected components if

a=I, domains of identical vectors if a=F), and SA
a is the size of groupA for the givenω value.Note thatDa is a

measure of diversification, whileCa is ameasure of non-homogeneity inherent in the respective partition.
Moreover, since cultural dynamics is a stochastic process, it ismeaningful to talk about averages over final state
partitions (overmultiple dynamical runs), which is particularly useful for the final diversitymeasure wá ñ( )DF .

The wá ñ( )DF quantity has been interpreted as ameasure of propensity to long-term cultural diversity, while
theCI(ω) has been interpreted as ameasure of propensity to short-term collective behavior [15, 17]. Through
their commondependence onω, the correspondence between the two quantities is graphically illustrated in
figure 2(a). Along each curve, different points correspond to differentω-values, while different curves
correspond to different classes of initial conditions. It is clear that the empirical cultural state allows formuch
more compatibility between the aspectsmeasured by the two quantities than the shuffled and the random
cultural state, as pointed out in [15]. In fact, this is the analysis used in [15] to highlight the structure of empirical
cultural data and in [17] to emphasize the universality of this structure, except for the ‘ultrametric’ scenario,
explained in section 2, which is first introduced here. Note that the ultrametric cultural state comes closer to the
empirical behavior than the shuffled cultural state, suggesting that empirical ultrametric is better than empirical
trait frequencies at explaining the generic empirical structure.

For the same four sets of cultural vectors used infigure 2(a), the average final diversity wá ñ( )DF is plotted
against the initial diversityDI(ω) infigure 2(b). This visualization, previously used [15, 16]without the
ultrametric scenario, illustrates the extent towhich cultural dynamics preserves the number of groupswhen
going from the initial to the final partition. As observed before, the number of groups is well preserved by
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cultural dynamics acting on empirical data, which happensmuch less for shuffled data and even less for random
data. This goes alongwith the idea that the final partition can be predicted from the initial partition if empirical
data is used for specifying the latter. Note that, like infigure 2(a), ultrametric-generated data lies in between the
empirical and shuffled scenarios, confirming that the subdominant ultrametric information, which is directly
related to the sequence ofω-dependent initial partitions, is rather robust with respect to cultural dynamics.

Although informative, the comparison between the wá ñ( )DF andDI(ω) is incomplete as away of assessing
the predictability of the final partition from the initial partition: two partitionsmight have the same number of
groups, but the sizes and/or contents of these groupsmight be very different. In order to take all this into
account in a consistent way, the discrepancy between the initial and final state partitions is evaluated using the
variation of informationmeasure VI, as a function ofω. This is an information-theoreticmeasure that acts as a
metric distancewithin the space of possible partitions of a set ofN elements, which has been shown to have a
multitude of advantages compared to other possiblemeasures [27]. It is convenient toworkwith the normalized
version of this quantity w w=( ) ( ) ( )NnVI VI log (alsomentioned infigure 1), which retains themeaning
andmetricity of the original quantity, as long asN remains the same (N=500 for all cultural states studied
here). This quantity is very important for section 4.

4. Predictability of thefinal state

This section focuses on evaluating the predictability of the final state partition from the initial state partition.
This is done using the (normalized) variation of information quantity á ñnVI mentioned above, whichmeasures
the discrepancy between the two partitions: predictability is higher when á ñnVI is lower. The dependence of
á ñnVI onω is shown in the second panel offigure 3, for the same 4 cultural states used infigure 2, where the
averaging is performed overmultiple dynamical runs, like for the á ñDF quantity. The empirical state shows the
lowestmaximal á ñnVI value, followed by the ultrametric, the shuffled and the random states. This shows that the
outcome of cultural dynamics can be predicted relatively well based on the initial state, if this is constructed from
empirical data and comparably well if this is constructed based on the empirical ultrametric information. On the
other hand, shuffled and randomdata exhibit lower predictability. Note that, for either scenario, á ñnVI vanishes
for the low-ω and the high-ω regions, which is where both the initial and final partitions consist ofN single-
object groups and of oneN-objects group, respectively. This can be understood by looking at the dependence of
theDI and á ñDF quantities onω shown in the third and fourth panels: theω region forwhich á ñnVI is significantly
larger than 0.0, thus signaling some discrepancy between the initial and final partitions, is roughly the region
where eitherDI or á ñDF is substantially different from1.0 or 0.0.

In parallel, thefirst panel offigure 3 shows theω-dependence of the fraction of initially active cultural links
Φ: the fraction of pairs (i, j) of cultural vectors whose distance dij<ω in the initial state. This shows that theω
interval that is non-trivial with respect toDI, á ñDF and á ñnVI seems to be largely determined by the shape ofΦ,
which is nothing else than the cumulative distribution of intervector distances. The properties of this
distribution—average lower for empirical data than for randomdata, standard deviation higher for empirical
data than for either shuffled or randomdata—have been studied before [15, 16] and are recognizable in thefirst

Figure 2.Relationships between the important diversity and coordinationmeasures. One sees the dependence of thefinal, average
diversity á ñDF , first (a) on the initial coordinationCI, second (b) on the initial diversitymeasureDI. This is shown for one empirical
(red), one ultrametric-generated (green), one shuffled (blue) and one random (black) set of cultural vectors. All sets of cultural vectors
haveN=500 elements and are definedwith respect to the same cultural space, from the variables of the empirical Eurobarometer
(EB) data. The errors of á ñDF are standardmean errors obtained from10 cultural dynamic runs.
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panel offigure 3.Note that, for the ultrametric scenario, the interestingω region and theΦ profile are
compressed in a lower-ω region compared to empirical data. Thismeans that the branchings in the dendrogram
obtained fromultrametric-generated data occur at lowerω-values than those in the dendrogramobtained from
the original, empirical data. In turn, this is due to the distances between the ultrametric-generated cultural
vectors reproducing, on average, the subdominant ultrametric empirical distances, rather than the original
empirical distances, while the former are known to systematically underestimate the latter, particularly for
higher distance values, as long as the empirical vectors are not perfectly ultrametric—in practice they are never
perfectly ultrametric.

There is another aspect that can be notedwhen comparing, for either scenario, the shape ofΦ(ω) in thefirst
panel with the shape ofDI(ω) in the third panel offigure 3: asω is decreased,most of the cultural links need to be
eliminated in order to reach the abrupt region of theDI(ω) transition, for which the number of groups in the
initial partition becomes comparable toN. This is not surprising on general grounds. For instance, the Erdős–
Rényimodel of randomgraphs [28] exhibits a critical link density of 1/N, at which a giant connected component
is present, ifN is the number of nodes in the graph, instead of the number of cultural vectors. Still, this analogy

Figure 3.Visualization of the ultrametric predictability of cultural dynamics. The dependence on the bounded-confidence threshold
ω is shown for several quantities:most importantly, the normalized variation of information between the initial and final partitions
á ñnVI at the center-top; the fraction of initially active cultural linksΦ at the top; the initial diversityDI at the center-bottom; thefinal,
average diversity á ñDF at the bottom. This is shown for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and
one random (black) set of cultural vectors. All sets of cultural vectors haveN=500 elements and are definedwith respect to the same
cultural space, from the variables of the Eurobarometer (EB) data. The errors of á ñDF and á ñnVI are standardmean errors obtained
from 10 cultural dynamic runs.

7

New J. Phys. 20 (2018) 103026 A-I Băbeanu et al



should not be taken too far. The randomgraph interpretation is closest to the random cultural state scenario
used here, since the expected pairwise distance entailed by the latter is the same for any pair of cultural vectors,
just like the connection probability entailed by the former is the same for any pair of nodes. However, even the
random scenario has an underlyingmetric structure, due to how cultural spaces are defined [17], which should
introducemore triangles than expected otherwise, while the shuffled and empirical scenarios are additionally
affected by inhomogeneities in their cultural space distributions.

The analysis presented infigures 2 and 3was repeated for three other empirical datasets—based on each
dataset, one empirical, one ultrametric, one shuffled and one random cultural state are constructed—with very
similar results. These additional datasets are: theGeneral Social Survey (GSS) [29] 1993, recording opinions on a
variety of topics frompeople in theUS, via face-to-face interviews; Jester [30], recording online ratings of jokes;
the Religious Landscape (RL) [31], recording opinions on several religious but also political topics frompeople
in theUS, via telephone interviews. The details concerning the formatting of these three datasets are also present
in [17]. For all four datasets, the results are presented in a joint, compactmanner bymeans offigure 4, while
more detailed results are shown in appendix B. Each of the points in thefigure corresponds to a combination of
one dataset and one scenario. The vertical axis corresponds to ameasure of compatibility between long-term
cultural diversity á ñDF and short-term collective behaviorCI, namely ameasure of the overall departure of the
á ñD CversusF I curve from the lower-left corner in figure 2(a). The horizontal axis corresponds to ameasure of
predictability of the final state from the initial state, namely an inversemeasure of the overall departure of the

wá ñnVI versus from the horizontal axis in the second panel offigure 3.
For bothmeasures, simple definitions are employed: rather than integrating information from everyω value

forwhich some departure is present, both definitions conceptually rely only on one, representative *w point, for
which both departures are relatively high. Specifically, *w is defined by intersecting the á ñD CversusF I curve
with themain diagonal á ñ =D CF I . In practice, since just afinite number ofω-values are available for any
combination of dataset and scenario, one uses instead the twoω-values that are closest to themain diagonal of
the á ñD CversusF I plot from either of the two sides. These two values, labeled asωL andωR, ‘bracket’ *w from
the left and right, respectively: *w w w< <L R. The *w itself is never explicitly calculated, but is conceptually
useful for the explanations below.

The compatibility approximates the distance between the * *w wá ñ( ( ) ( ))D CversusF I point and the
á ñ = =( )D C0, 0F I point, normalized by the length of themain diagonal of the á ñD CversusF I plot. In practice,
this is evaluated in terms ofωL andωR according to:

w w w wá ñ + + á ñ +( ) ( ) ( ) ( )D C D C

2 2
,

F L I L F R I R
2 2 2 2

Figure 4.Relationship between compatibility offinal diversity and initial coordination (vertical axis) and predictability of thefinal
partition from the initial partition. Each point corresponds to one cultural state, belonging to one class and to one empirical source:
each color corresponds to one class of cultural states, whilemarker type corresponds to one dataset, as indicated in the legends. All
cultural states consist ofN=500 cultural vectors.
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while the associated error is evaluated as:

w w w wá ñ + - á ñ +( ) ( ) ( ) ( )D C D C

2 2
.

F L I L F R I R
2 2 2 2

The predictability approximates the distance between the * *w wá ñ( ( ) ), nVI point and the á ñ =nVI 1 line. In
practice, this is evaluated as:

w w
-

á ñ + á ñ( ) ( )
1

nVI nVI

2
,L R

while the associated error is evaluated as:

w wá ñ - á ñ∣ ( ) ( ) ∣nVI nVI

2
.L R

Note that compatibility increases with predictability in a roughly linear way, at least for the cultural states
considered here.Moreover, cultural states belonging to the same class tend to cluster together in the
compatibility-predictability space. A notable exception is ultrametric-Jester, which is significantly outside the
ultrametric class in terms of predictability, showing higher predictability than any of the empirical states. Still, it
is clear that cultural states that are closer to the universal á ñD CversusF I empirical behavior also allow for better
estimates of the final partition from the initial one.

The observed increase of compatibility with predictability provides some insights about the nature of
empirical data, or at least about the shape of an empirical-like dendrogram characteristic for the upper-right
corner offigure 4. This can be understood by realizing that the ultrametric and empirical states approach an
ideal, limiting situation of perfect predictability, for which the initial and final partitions are identical
irrespective ofω. This implies that w wá ñ =( ) ( )D DF I and consequently that the á ñD CversusF I curve is
essentially theDI versusCI curve and thus controlled by the geometry of the subdominant ultrametric
dendrogram.One can then show—see appendix C—that this geometry needs to be highly ‘unbalanced’ in order
to explain the close-to-linear á ñ » -D C1F I empirical behavior infigure 2(a) and the compatibility values of
approximately 0.5 following from it. For a perfectly-unbalanced geometry, the kth highest dendrogram
branching separates only one leaf from the remainingN−k, for all kä {1,K,N−1}. By contrast, a perfectly-
balanced geometry entails a splitting into two, equal clusters for each dendrogrambranching, whichwould
induce an inverse square á ñ µ -D CF I

2 behavior—see appendix C—closer to that of shuffled and random
cultural states, with a lower compatibility value. Thus, while going from the random to the empirical class, by
enforcingmore and better empirical information, the increasing level of compatibility becomesmore suggestive
of an unbalanced dendrogram geometry, while the increasing level of predictability increases the reliability of
this geometric interpretation.

5. Conclusion

This study focused on the ultrametric representation of sets of cultural vectors used for specifying the initial state
of cultural dynamicsmodels. On one hand, it introduced another procedure for randomly generating initial
conditions based on the subdominant ultrametric information of empirical data. On the other hand, it
examined the extent towhich the subdominant ultrametric representation can be used for predicting thefinal
state of cultural dynamics in a simple theoretical setting. The bounded-confidence threshold parameterizing the
dynamicalmodel was used to extract an initial-state partition from the ultrametric representation. This was
systematically compared, in terms of variation of information, with the corresponding final state partition
consisting of groups of identical cultural vectors. The comparison showed that the predictive power of the
ultrametric is relatively high for empirical cultural states, which are closely followed by ultrametric-generated
states, which are followed by the shuffled and then by the random states.Moreover, higher predictability appears
to go hand in handwith higher compatibility between a propensity to long-term cultural diversity and a
propensity to short-term collective behavior, whichwas previously shown to be a hallmark of empirical
structure. Thismeans that ultrametric information is better than trait-frequency information at explaining this
structure. These results further advance the understanding of the relationship between ultrametricity and
cultural dynamics.Moreover, it is tempting to speculate that, for the purpose of forecasting the dynamics of
culture in the real world, knowledge about the current distribution of individuals in cultural spacemight be
sufficient, with little or no need for running simulations, at least if one assumes that consensus-favoring social
influence is the essential driving force of this dynamics. The importance of these findings is further enhanced by
two aspects:first, the results are highly robust across different empirical sources; second, the empirical data used
here is entirely independent of assumptions about opinion-changing interactions between people, which only
come into play at the level of dynamicalmodels using such data for their initial conditions.
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AppendixA.Ultrametric-generationmethod

This section explains themethod for generating sets of cultural vectors belonging to the ‘ultrametric’ class. The
method is an extension of that developed in [24], so the description is also somewhat similar, although the
nomenclature specific to cultural vectors is used, instead of that specific to genetic sequences.

Themethod takes as input a dendrogram, aswell as a target cultural space—the number of cultural features
F, togetherwith the range (number of traits) q and type (nominal or ordinal) of each feature. This information is
taken from empirical data and the single-linkage hierarchical clustering algorithm is employed for constructing
the dendrogramwhenever themethod is used in this study. Upon every use, themethod generates, in a
stochastic way, a set ofN cultural vectors associated to theN leaves of the dendrogram, such that, on average, the
pairwise similarities between cultural vectorsmatch the similarities encoded by the dendrogram.

More precisely, for each cultural feature in the target space, themethod enforces:

r= a[ ] ( )E s , A1ij
q

ij

where E[...] stands for ‘expectation value’,αij is the lowest branching in the dendrogram joining leaves i and j, raij

is the similarity encoded by this branching and sij
q is the partial contribution to the similarity between cultural

vectors i and j of a feature of range q, which is computed according to the following formula:

d

=
-

-

-

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

∣ ∣ ( )s

x x

x x

q

, if nominal,

1
1

if ordinal,
A2ij

q
i
k

j
k

i
k

j
k

k

which depends onwhether the feature is nominal or ordinal, where δ stands for theKroneker delta function, xi
k

and xj
k are the traits of vectors i and jwith respect to feature kwith range q k—for ordinal features k, the traits are

markedwith integers between 1 to q k. Equation (A2) is consistent with the cultural distance definition in [15–18]
(asmentioned above: similarity=1.0−distance).

In equation (A1), the expectation E[...] implies averaging overmultiple runs of themethod, for the same
dendrogram and the same cultural feature. Although in practice themethod is used only once (and
independently) for each feature, the fact that a large number F of features are presentmakes this approach
sensible: the expectation E[sij] of the complete similarity sijwill alsomatch raij

(since the complete similarity is

the arithmetic average of the feature-level similarities), while thefluctuations of sij around raij
will decreasewith

F. In otherwords, as pointed out in [24], the expectation in equation (A1) can be interpreted in two idealized
ways: averaging over infinitelymany runs or averaging over infinitelymany features.

In order to enforce equation (A1) for every pair (i, j), themethod controls for the extent towhich the traits of
different vectors are chosen independently of each other. For every feature, all theN chosen cultural traits
originate in independent randomdraws from a uniformprobability distribution, but the number of draws is
smaller or equal toN. Thus, the traits of vectors i and j either originate in the same draw, with probability Pij, or
originate in different draws, with probability 1−Pij. In the former case the two traits are identical, with awell-
determined feature-level similarity =s 1ij

q . In the latter case, the two traitsmay be identical or different, so that

sij
q
fluctuates around an expectation value f (q). Taking both cases into account, the expectation value of sij

q is:

= + -[ ] [ ] ( ) ( )E s P P f q1 , A3ij
q

ij ij

where the expectation for different draws f (q) reads:

=
-

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ( )f q
q

q

q

1
if nominal,

2 1

3
if ordinal,

A4

which is the expression of the expected, feature-level similarity between two traits drawn at random froma
uniformprobability distribution, obtained analytically from equation (A2) for either type of features. The
choices of traits and the associated randomdraws aremanaged by the stochastic-algorithmic part of themethod
(briefly explained at the end of this section), which is designed to ensure that:
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r= a ( )P A5ij
I

ij

is satisfied, where ra
I

ij
is a corrected version of the similarity raij

implicit in theαij branching:

r r r= -a a a( ) ( )h q, , A6I
ij ij ij

where h is a correction function chosen such that equation (A1) holds, subject to(A3) and(A5). Specifically, by
combining equation (A5)with equation (A3) and thenwith equation (A1), one obtains:

r r r+ - =a a a[ ] ( ) ( )f q1 . A7I I
ij ij ij

By inserting equation (A6) in equation (A7) and furthermanipulations, one obtains the following expression for
the correction function:

r
r

=
-
-a

a( )
( )

( ) ( )h q
f q

f q,
1

1
. A8

Note that equation (A5) identifies ra
I

ij
with a probability,meaning that r >a 0I should be satisfied for all

branchingsα. This implies, given equations (A6) and (A8), that r >a ( )f q for all branchingsα of the given
dendrogram and for all features in the target space. This condition needs to be satisfied in order for thismethod
to be valid and is actually satisfied by all four empirical dendrograms used in this study. Also note that the
method in [24] is recovered as a special case of the above, by restricting to nominal features of constant q via
equation (A4).

Finally, it is worth describing the stochastic-algorithmic part of themethod. For each of the F features in the
target space, the following steps are carried out:

• the dendrogram is recursively explored starting with the root branching; for every branchingα reached by this
exploration, one of the following two things happens:

one of the q traits is randomly chosen, according to a uniformdistribution and assigned to all cultural
vectors corresponding to leaves under branchingα, without further exploring any branching belowα;

the exploration is continuedwith each of the two branches emerging fromα, if that branch leads to another
branching, instead of leading to a leaf;

with probabilityQα for the former and probability 1−Qα for the latter, where:

r r

r
=

-

-
a

a a

a

( )( )

( )

Q
1

, A9

I
p
I

p
I

where p(α) is the parent branching ofα, ifα is not the root, while r =a( ) 0p
I ifα is the root.

• for each of the leaves whose traits are not assigned during the above step, one of the q traits is randomly
chosen, according to a uniformdistribution and assigned to the respective cultural vector.

This algorithmic procedure ensures that equation (A5) holds, for reasons that are fully explained in [24].
It is worth noting that the ultrametric-generationmethod described in this sectionmakes use of all the

information inherent in the geometry of the dendrogram that it receives as input—both the topology and the
similarities ρ encoded by the branching points of the dendrograms are used.However, the generated sets of
cultural vectors will in general not be precisely ultrametric, in the strictmathematical sense [19] (unless it is
applied in the limit of F beingmuch larger thanN). Still, they are generated based on the empirical ultrametric
information and are arguably as close as they can be to reproducing the ultrametric set of pairwise distances.

Appendix B.Detailed results

This section shows the complete results concerning theω-dependence of relevant quantities, for the other three
datasets that are used in this study in addition to the Eurobarometer (EB [25, 26]): theGSS [29] data infigure B1,
the RL [31] data infigure B2 and the Jester (JS [30]) data in figure B3. Each of these threefigures follows the
format offigure 3 above, with four panels and four scenarios. Although, for each type of scenario, there is a
certain variability in thewidth and location of the non-trivialω-interval, the results are qualitatively similar to
those obtained for EB data, with a notable exception visible for the analysis of Jester data infigure B3: the second
panel shows that the discrepancy between the initial and the final partition, asmeasured by á ñnVI , is clearly
smaller for the ultrametric cultural state than for the empirical cultural state, so the overall predictability is
higher. This is in agreement with the observationmade in relation tofigure 4 about the relatively high
predictability value of the Jester-ultrametric point.
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AppendixC.Dendrogram geometry

This section gives some analytical insight on how the dendrogram geometry is related to the behavior of the two
measures of initial diversityDI and initial coordinationCI. As functions ofω, the twomeasures only change (in
steps)whenω crosses the distance value associated to any of the branchings of the dendrogram. Thus, one can
replace the dependence ofDI andCI onωwith a dependence on k, which counts the number of dendrogram
branchings above a givenω, in terms of their associated distance values—k increases from0 toN−1 asω
decreases from1.0 to 0.0. Based on equation (1), one can thus write:

å= =
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )D k

N k

N
C k

S

N
, . C1I

C
I

I
A

A
I

k

2

There are two extreme types of dendrogram geometries that are worth considering, the ‘perfectly-
unbalanced geometry’ and the ‘perfectly-balanced geometry’. These are illustrated infigure C1.

Figure B1.Visualization of the ultrametric predictability of cultural dynamics. The dependence on the bounded-confidence threshold
ω is shown for several quantities:most importantly, the normalized variation of information between the initial and final partitions
á ñnVI at the center-top; the fraction of initially active cultural linksΦ at the top; the initial diversityDI at the center-bottom; thefinal,
average diversity á ñDF at the bottom. This is shown for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and
one random (black) set of cultural vectors. All sets of cultural vectors haveN=500 elements and are definedwith respect to the same
cultural space, from the variables of theGeneral Social Survey (GSS) data. The errors of á ñDF and á ñnVI are standandmean errors
obtained from10 cultural dynamics runs.
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For the perfectly-unbalanced geometry, shown on the left side offigure C1, the number of connected
components is:

= +( ) ( )N k k 1, C2C
I

while the sizes of the connected component are:

=
- =

Î ¼ +

⎧⎨⎩( )
{ }

( )S k
N k A

A k
, if 1

1, if 2, 3, , 1
. C3A

I

From equations (C1) and(C2), one obtains the behavior of the initial diversitymeasure:

=
+( ) ( )D k

k

N

1
, C4I

Figure B2.Visualization of the ultrametric predictability of cultural dynamics. The dependence on the bounded-confidence threshold
ω is shown for several quantities:most importantly, the normalized variation of information between the initial and final partitions
á ñnVI at the center-top; the fraction of initially active cultural linksΦ at the top; the initial diversityDI at the center-bottom; thefinal,
average diversity á ñDF at the bottom. This is shown for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and
one random (black) set of cultural vectors. All sets of cultural vectors haveN=500 elements and are definedwith respect to the same
cultural space, from the variables of the Religious Landscape (RL) data. The errors of á ñDF and á ñnVI are standardmean errors
obtained from10 cultural dynamics runs.
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Figure B3.Visualization of the ultrametric predictability of cultural dynamics. The dependence on the bounded-confidence threshold
ω is shown for several quantities:most importantly, the normalized variation of information between the initial and final partitions
á ñnVI at the center-top; the fraction of initially active cultural linksΦ at the top; the initial diversityDI at the center-bottom; thefinal,
average diversity á ñDF at the bottom. This is shown for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and
one random (black) set of cultural vectors. All sets of cultural vectors haveN=500 elements and are definedwith respect to the same
cultural space, from the variables of the Jester (JS) data. The errors of á ñDF and á ñnVI are standandmean errors obtained from10
cultural dynamics runs.

FigureC1. Sketch of a ‘perfectly balanced’ (left) dendrogram geometry and a ‘perfectly unbalanced’ (right) one, forN=4 leaves. The
values of k indicate the number of branchings above any cut that would be applied to the dendrogramwithin the respective horizontal
band.
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while from equations (C1) and(C3) one obtains the behavior of the initial coordinationmeasure:

=
-

+⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( )C k

N k

N
k

N

1
, C5I

2 2

fromwhich it follows that:

= - + +( ) ( )C k
k

N

k

N

k

N
1 2 , C6I

2

2 2

where one can neglect the k

N2 term in the limit of largeN, thus obtaining:

» -( ) ( )C k
k

N
1 . C7I

From equations (C4) and (C7) it follows that:

» - -( ) ( ) ( )C k D k
N

1
1

, C8I I

which can be rephrased, after neglecting the
N

1 term in the limit of largeN, to:

» -( ) ( ) ( )D k C k1 , C9I I

which describes the second-diagonal empirical behavior offigure 2(a), under the assumption
that = "( ) ( )D k D k k,F I .

For a perfectly-balanced geometry, shown on the right side offigureC1, the only relevant values of k (those
corresponding to non-vanishingω-intervals) are = å =

-k 2i
l i

0
1 , with Î ¼{ }l N0, 1, 2, , log2 . For these values of

k, the number of connected components, like in the unbalanced case, is described by equation (C2), while the
sizes of the connected components are:

= + " Î ¼ +( ) ( ) { } ( )S k N k A k1 , 1, 2, , 1 , C10A
I

fromwhich it follows that the initial coordinationmeasure is:
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Since the k-dependence of the initial diversitymeasureDI, like in the unbalanced case, is described by
equation (C4), it follows that:

=( )
( )

( )D k
NC k

1
, C12I

I
2

which, under the assumption that = "( ) ( )D k D k k,F I , entails a curvemore similar to that of the shuffled or
random curves offigure 2(a), than to that of the empirical curve.Moreover, this curve comes arbitrarily close to
the lower-left corner asN increases.

To sumup, the above reasoning shows that, as long as w w w= "( ) ( )D D ,F I , an unbalanced dendrogram
geometryfits the empiricalDF(CI) behavior verywell, while a balanced dendrogram geometry does not.
Although the latter entails a µ -D CF I

2 behavior quite similar to that observed for shuffled or randomdata, one
cannot say that a balanced geometry is a good description for either of these two cases, since the assumption that
DF=DI is false for both these cases, for the interestingω-intervals.
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