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Abstract

A quantitative understanding of societies requires useful combinations of empirical data and
mathematical models. Models of cultural dynamics aim at explaining the emergence of culturally
homogeneous groups through social influence. Traditionally, the initial cultural traits of individuals
are chosen uniformly at random, the emphasis being on characterizing the model outcomes that are
independent of these (‘annealed’) initial conditions. Here, motivated by an increasing interest in
forecasting social behavior in the real world, we reverse the point of view and focus on the effect of
specific (‘quenched’) initial conditions, including those obtained from real data, on the final cultural
state. We study the predictability, rigorously defined in an information-theoretic sense, of the social
content of the final cultural groups (i.e. who ends up in which group) from the knowledge of the initial
cultural traits. We find that, as compared to random and shuffled initial conditions, the hierarchical
ultrametric-like organization of empirical cultural states significantly increases the predictability of
the final social content by largely confining cultural convergence within the lower levels of the
hierarchy. Moreover, predictability correlates with the compatibility of short-term social coordination
and long-term cultural diversity, a property that has been recently found to be strong and robust in
empirical data. We also introduce a null model generating initial conditions that retain the ultrametric
representation of real data. Using this ultrametric model, predictability is highly enhanced with
respect to the random and shuffled cases, confirming the usefulness of the empirical hierarchical
organization of culture for forecasting the outcome of social influence models. These results appear to
be highly independent of the empirical data source.

1. Introduction

Understanding the self-organization and emergence of large-scale patterns in real societies is one of the most
fascinating, yet extremely challenging problems of modern social science [1]. A prominent field of research
studies the spontaneous emergence of groups of culturally homogeneous individuals. One of the mechanisms
thatare believed to play a key role in this process is social influence, i.e. the gradual convergence of the cultural
traits, attitudes and opinions of individuals subject to mutual social interactions—this is a restricted definition
thatis implicit in this study and in previous work that this study builds on; see [2] for a more generic definition.
Stylized models of cultural dynamics under social influence have attracted the interest of an interdisciplinary
community of sociologists, computational social scientists and statistical physicists [3].

One of the prototypical models in this context is the popular Axelrod model [4], which has been studied in
many variants over the last two decades [5-13]. The model is multi-agent, with a cultural vector associated to
each agent. One cultural vector is a sequence of subjective cultural traits (opinions, preferences, beliefs) that each
agent possesses, with respect to a predefined set of features (variables, topics, issues). The dynamics is driven by
social influence, which iteratively increases the similarity of the cultural vectors of pairs of interacting
individuals. However, interactions are only allowed among pairs of individuals whose vectors are already closer
than a certain (implicit or explicit) threshold distance, a mechanism known as bounded confidence and having its
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origins in the so-called ‘assimilation-contrast theory’ [14] in social science. The intuition behind the model,
successfully confirmed via numerical simulations and analytic calculations, is that social influence increases
cultural similarity, yet full convergence is precluded by bounded confidence. The net result is the emergence of a
certain number of cultural domains, each containing several individuals with identical cultural vectors and
mutually separated by a distance larger than the bounded confidence threshold, thus no longer interacting with
each other. The value of the model is the identification of a viable, decentralized mechanism according to which
cultural diversity can persist at a global (inter-domain) scale, even if it vanishes at alocal (intra-domain) scale.

Given the focus on the qualitative aspect of such an emergent pattern, the Axelrod model has been
traditionally studied by specifying uniformly random initial conditions for the cultural vectors of all individuals,
i.e. by drawing each cultural trait independently from a probability distribution that is flat over the set of possible
realizations. Consistently with this uninformative (and deliberately unrealistic) choice, the focus of many studies
has been the characterization of the outcomes of the model that are robust upon averaging over multiple
realizations of the initial randomness. Since the cultural dynamics evolving the initial state is also stochastic, a
second average over the dynamics is also required. We may therefore say that this is the ‘annealed’ version of the
model. Examples of quantities that are stable across multiple realizations of uniformly random initial conditions
are the expected number and expected size of final cultural domains. An obvious counter-example is the values of
the vectors ending up in such domains: as follows from the complete symmetry in cultural space implied by the
uniformity of the initial randomness, such values are by construction maximally unpredictable.

On the other hand, recent studies have investigated the model starting from different classes of initial
conditions, beyond the uniformly random one. In particular, emphasis has been put on using initial conditions
constructed from empirical data [15—-17] and their randomized, trait-shuffled counterparts—obtained by
randomly shuffling, for each component of the cultural vectors, the empirical values (traits) of all individuals in
the sample. These studies have emphasized a strong dependence of the final outcome on the initial conditions.
For instance, certain model outcomes that have an interesting interpretation in terms of enabling the coexistence
of short-term social collective behavior and long-term cultural diversity [15] (more details are provided later in
this paper) are found to vary significantly across the classes of empirical, trait-shuffled, and uniformly random
initial conditions, while remaining largely stable when considering different instances belonging to the same
class. This stability implies that empirical cultural data share certain remarkably universal properties,
independent of the specific sample considered and at the same time significantly different from those exhibited
by random and randomized data [17]. This has stimulated the introduction of stochastic, structural models
aimed at capturing the essential properties of the empirical cultural data [16, 18].

Strong dependence of cultural dynamics on the initial conditions might be a useful property to exploit in the
light of the increasing interest towards forecasting social and cultural behavior in the real world. Examples
include the predictability of certain aspects of political elections, public campaigns, spreading of (fake) news,
financial bubbles and crashes, and commercial success of new items. If interest is shifted towards the
predictability of future long-term outcomes given certain initial conditions, then a corresponding change of
perspective is implied at the level of modeling. In particular, the aforementioned ‘annealed’ framework, where
the outcome of models of cultural dynamics is averaged over multiple realizations of the initial randomness,
becomes less relevant. On the contrary, if a specific (e.g. empirical) initial condition is known, it becomes natural
to use it as the single initial specification of the heterogeneity of the system. Obviously, averaging with respect to
different random trajectories of the social influence dynamics, all starting from the same initial cultural state,
remains important and necessary. We may therefore call this the ‘quenched’ version of the model.

In this work we focus for the first time on the predictability of the social content of the cultural domains in the
final state of the Axelrod model, given a certain initial state. By social content we mean the composition of the
different domains in terms of individuals, i.e. we are interested in forecasting ‘who ends up in which cultural
domain’. It should be noted that the social content is one of those properties that, just like the values of the final
cultural vectors, is maximally unpredictable when considering the usual annealed model under uniformly
random initial conditions. By contrast, we consider the quenched scenario starting from specific initial
conditions sampled from empirical, shuffled, random, and an additional ‘ultrametric’ class of initial conditions.

We find that, remarkably, empirical and random initial conditions are associated with the highest and,
respectively, lowest degree of predictability, which we rigorously define in an information-theoretic sense. This
means that, as compared with the usual uniform specification of the initial conditions of the model, empirical
data allow for a much more reliable forecast of the identity of the individuals forming the final cultural domains.
We find that this result follows from the fact that the hierarchical, ultrametric-like organization of empirical
cultural vectors, when coupled with bounded confidence, largely confines cultural convergence within the lower
levels of the hierarchy. This result is confirmed using surrogate data that, while retaining only the ultrametric
representation of real data, are also found to be associated with a higher predictability with respect to the shuftled
and random conditions. The predictability associated to random and randomized cultural vectors is lower
because it is difficult to identify a meaningful and robust hierarchical structure within the lower levels of which
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social influence remains confined. The analysis gives similar results for all the empirical datasets considered here,
pointing out the generic nature of these findings.

Even if we do not perform an explicit analysis of the cultural content of the final domains (the cultural traits
that are perfectly shared by the individuals within every final group), the finding that their social content is
predictable (the set of individuals within every final group), coupled with the fact that the initial cultural vectors
of all individuals are known, implies that each final cultural vector will be a mixture of the traits of the initial
vectors of the individuals ending up in the same cultural domain. This means that, the higher the predictability
of the social content, the higher that of the cultural content as well. The take-home message is that the empirical
hierarchical organization of culture and its ultrametric representation are very informative and useful for
forecasting the outcome of models of cultural dynamics.

2. Ultrametricity and culture

The notion of ultrametricity refers to sets of objects that are hierarchically organized in certain abstract spaces,
with applications in various fields, including mathematics (p-adic numbers), evolutionary biology (phylogenetic
trees) and statistical physics (spin glasses) [19]. In practice, an ultrametric representation can be produced as the
output of a hierarchical clustering algorithm applied to a matrix of pairwise distances between objects [19]. For
the purpose of this work, these objects are the cultural vectors, whose pairwise cultural distances are computed
in the same manner as in [15-18], based on a combination between the Hamming distance and the Manhattan
distance, which are used in association with nominal and ordinal cultural featues, respectively—also see
equation (A2) and the associated description for more details. The following explanations concerning
ultrametricity are mostly restricted to cultural vectors, although many of the concepts have a wide range of
applicability. The ultrametric representation of N cultural vectors can be visualized as a dendrogram (a binary
hierarchical tree; see the top of figure 1) with N'leaves (one for each vector) and N — 1 branching points (often
referred to as ‘branchings’, for simplicity), sorted by N — 1 real numbers that are attached to them. These
numbers can be defined in two equivalent ways: on a distance scale (top-left axis) or on a similarity scale (top-
right axis)—both quantities take values between 0.0 and 1.0, while adding up to 1.0. Each number is an
approximation for distances between leaves that are first merged at the respective branching point. These N — 1
numbers and the topology of the dendrogram retain part of the information inherent in the cultural distance
matrix (which is specified by N(N — 1)/2 numbers), so the dendrogram is an approximation of this matrix. The
approximation is exact and algorithm-independent only when the original distances are perfectly ultrametric: a
stronger version of the triangle inequality is satisfied for all triplets of distinct objects [19]. A cut can be
performed at a certain height win the dendrogram, providing an w-dependent partition of the N cultural vectors
(see figure 1)—most of the results shown in this study involve a systematic exploration of the meaningful w
interval. For a dendrogram obtained via the single-linkage hierarchical clustering algorithm (see [20] and
references therein), the w-dependent partition is the same as that encoding the connected components obtained
by applying an w-threshold to the initial matrix of distances.

Reference [15] pointed out that a dendrogram approximating an empirical cultural state shows a clearer
hierarchical organization than dendrograms approximating the shuffled or random counterparts, suggesting
that the ultrametric representation is better suited for empirical data than for shuffled or random data. In
addition, cultural dynamics (with a built-in threshold) applied to the empirical cultural state appeared to mostly
induce convergence within the groups of the w-dependent partition, if wis equal to the bounded confidence
threshold used in the cultural dynamics model (see below), where an identification is made between this
threshold and the cut on the dendrogram. These observations were made in a qualitative way, by visually
inspecting dendrograms obtained with the average-linkage hierarchical clustering algorithm [21, 22]. Instead,
we perform here a systematic, quantitative comparison between w-dependent partitions of initial cultural states
and associated partitions of final states resulting from cultural dynamics, for different classes of initial cultural
states—the ‘variation of information’ quantity is used for this purpose, as explained below. The initial-state w-
dependent partitions are always extracted from the dendrogram provided by the single-linkage algorithm [20],
rather than the average-linkage one, since it provides the subdominant ultrametric, which is the ‘closest below’
the original distances and unique [23], while also being equivalent to the hierarchical connected-component
representation, as mentioned above. This choice is also common for the purpose of evaluating measures of
ultrametricity, like the cophenetic correlation coefficient, which is done in [16].

In this study we also propose a new class of ‘ultrametric’ initial states, based on a stochastic generation
procedure that enforces the ultrametric representation of a given empirical state. Specifically, this procedure
provides, for every run, a set of N cultural vectors whose pairwise distances reproduce, on average, the pairwise
distances encoded by the subdominant ultrametric representation of an empirical set of cultural vectors of the
same N. This is achieved using an extension of a method originally proposed in [24], in the context of DNA
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Figure 1. Cultural dynamics with an ultrametric initial state. At the top, a dendrogram with three leaves is shown, with a distance (or
dissimilarity) scale on the left, an associated similarity scale on the right and a threshold of w = 0.625 applied with respect to the
former. The dendrogram is a subdominant ultrametric representation of distances between three cultural vectors, which are
illustrated below its branches. These vectors are defined in terms of four binary variables (features), corresponding to the four
horizontal rows of disks, whose possible values (traits) are denoted by the light-gray and dark-gray colors. The boxes show the initial
state partition, formed by two clusters (and connected components) obtained by applying the w = 0.625 cut in the dendrogram.
Together, the three vectors make up an initial cultural state on which the cultural dynamics model can be applied. For abounded
confidence value set to w = 0.625, one of the possible final states is shown at the bottom. The boxes show the final state partition,
formed by two cultural domains, within which cultural vectors are identical. The discrepancy between the initial state and final state
partitions is measured with the normalized variation of information quantity nVI, which in this situation would give a value of 0.0,
since the two partitions are identical.

sequences. The generalization introduced here allows the method to work with combinations of features of
different ranges and types, where the range stands for the number of traits and the type indicates whether the
feature is treated as ordinal or nominal. The method is described in detail in appendix A.

Figure 1 illustrates the concepts that are most relevant for this study and the relationships between them. At
the center, the figure shows an initial cultural state with 3 vectors, defined in terms of 4 binary features, with
possible traits (values) denoted by the two shades of gray. Each of the three vectors is matched to abranch of the
dendrogram drawn at the top, which encodes the subdominant ultrametric representation of the initial cultural
state. For this specific case, the distance between the first two vectors is 0.5, while the distances between any of
these two and the third are 0.75, which together make up a perfectly ultrametric discrete space, thus exactly
matching the distances encoded by the dendrogram. The horizontal line denotes a possible w-cut that can be
applied to the dendrogram, which induces a splitting into two (in the example shown) branches and two
associated subsets of vectors, which together form an w-dependent partition (or clustering) of the initial set. This
partition is the same as that induced by the set of connected cultural components of the w-threshold cultural
graph. At the bottom, the figure shows one possible final state resulting from the cultural dynamics process, for a
bounded confidence threshold set to the same w value as the dendrogram cut. The groups of identical vectors
constitute another, w-dependent partition characterizing the cultural state, which exactly matches, in this case,
the initial state partition. Other final configurations are possible, due to the stochastic nature of cultural
dynamics. It is even possible, although unlikely, that by a succession of convenient interactions the second vector
‘migrates’ from the group on the left to the one on the right during the dynamics. The abundance of such
deviations is quantitatively studied below, for several classes of initial conditions.

3. Cultural dynamics and partition-specific quantities

Every cultural dynamics process simulated in this study starts with an initial cultural state, consisting of a set of N
cultural vectors, each associated to one of the N agents in the model—see center of figure 1. Four classes of initial
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cultural states are used in this study, which have already been mentioned above: empirical, ultrametric, shuffled
and random cultural states. However, any ultrametric, shuffled or random state is generated in a stochastic way,
conditionally on a given empirical state, so one could say that these three classes are composite, each one being a
collection of statistical ensembles, one for each empirical state. Most of this study focuses on an empirical
cultural state constructed from Eurobarometer 38.1 [25, 26] data (collected via face-to-face interviews with
people in the EU), formatted according to the procedure in [17], whose cultural features are associated to survey
questions dealing with opinions on various topics concerning science, technology, the environment and the
European community. The associated ultrametric cultural state is generated using the new procedure
mentioned in section 2 and explained in detail in appendix A, which retains, in a certain sense, the empirical
ultrametric structure. The associated shuffled cultural state is obtained by randomly and independently
permuting the empirical cultural traits among vectors, with respect to every feature, thus exactly enforcing all the
empirical trait frequencies. Finally, the associated random state is obtained by drawing each trait at random,
from a uniform probability distribution with respect to every feature, while only retaining the empirical data
format—the number of features, together with the range and type of each feature—and thus the associated
cultural space, which is also retained by the ultrametric and the shuffled states. Part of this study makes use of
three other empirical states (constructed from other datasets) and of the associated ultrametric, shuffled and
random states—see section 4 and appendix B.

Cultural dynamics is simulated here using a simple, Axelrod-type model, without any underlying geometry
for a social network or a geographical-physical space: essentially, all N agents are connected to each other.
Instead, an explicit bounded-confidence threshold wis present, which defines the maximum cultural distance
for which social influence interactions can successfully occur—further convergence occurs only if there is
already some level of overlap. At each simulation step, two agents are randomly picked. If the distance d;;
between their cultural vectors is smaller than w and if these vectors are different with respect to at least one
feature, then an interaction successfully occurs with probability 1 — d;;: one of the agents switches its trait to
match the trait of the other agent, with respect to one of the features that differentiates between them. This is
exactly the model used in [15, 17, 18] and partly in [16]. As anticipated in sections 1 and 2, this model converges
to arandom final, absorbing state, one that consists of groups (cultural domains) of internally identical and
externally non-interacting cultural vectors—distances within such groups are zero, while distances across are
larger or equal to w;, as illustrated at the bottom of figure 1.

All calculations performed in this study are heavily based on the partitions characterizing the initial and final
cultural states, consisting of initial dendrogram-based clusters (the connected components) and final groups of
identical vectors, respectively, as explained in section 2. As illustrated in figure 1, each type of partition is
characterized by two types of quantities, denoted by (Dj, Cy) for initial partitions and by (Dg, C) for final
partitions. These quantities are referred to as the coordination (Crand Cr) and the diversity measures (Dyand
Dr). They are computed according to the following formulas:

NE(W)

Dy(w) = N > Co(w) = 1

where a € {I, F} distinguishes between ‘initial’ and ‘final’, N& is the number of groups (connected components if
a = I, domains of identical vectors ifa = F), and Sy is the size of group A for the given w value. Note that D, isa
measure of diversification, while C, is a measure of non-homogeneity inherent in the respective partition.
Moreover, since cultural dynamics is a stochastic process, it is meaningful to talk about averages over final state
partitions (over multiple dynamical runs), which is particularly useful for the final diversity measure (Dg (w)).

The (Dr(w)) quantity has been interpreted as a measure of propensity to long-term cultural diversity, while
the C(w) has been interpreted as a measure of propensity to short-term collective behavior [15, 17]. Through
their common dependence on w, the correspondence between the two quantities is graphically illustrated in
figure 2(a). Along each curve, different points correspond to different w-values, while different curves
correspond to different classes of initial conditions. It is clear that the empirical cultural state allows for much
more compatibility between the aspects measured by the two quantities than the shuffled and the random
cultural state, as pointed out in [15]. In fact, this is the analysis used in [15] to highlight the structure of empirical
cultural data and in [17] to emphasize the universality of this structure, except for the ‘ultrametric’ scenario,
explained in section 2, which is first introduced here. Note that the ultrametric cultural state comes closer to the
empirical behavior than the shuffled cultural state, suggesting that empirical ultrametric is better than empirical
trait frequencies at explaining the generic empirical structure.

For the same four sets of cultural vectors used in figure 2(a), the average final diversity (Dr (w)) is plotted
against the initial diversity Dy(w) in figure 2(b). This visualization, previously used [ 15, 16] without the
ultrametric scenario, illustrates the extent to which cultural dynamics preserves the number of groups when
going from the initial to the final partition. As observed before, the number of groups is well preserved by
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Figure 2. Relationships between the important diversity and coordination measures. One sees the dependence of the final, average
diversity (Dg), first (a) on the initial coordination Cj, second (b) on the initial diversity measure D;. This is shown for one empirical
(red), one ultrametric-generated (green), one shuffled (blue) and one random (black) set of cultural vectors. All sets of cultural vectors
have N = 500 elements and are defined with respect to the same cultural space, from the variables of the empirical Eurobarometer
(EB) data. The errors of (Df) are standard mean errors obtained from 10 cultural dynamic runs.

cultural dynamics acting on empirical data, which happens much less for shuffled data and even less for random
data. This goes along with the idea that the final partition can be predicted from the initial partition if empirical
data is used for specifying the latter. Note that, like in figure 2(a), ultrametric-generated data lies in between the
empirical and shuffled scenarios, confirming that the subdominant ultrametric information, which is directly
related to the sequence of w-dependent initial partitions, is rather robust with respect to cultural dynamics.

Although informative, the comparison between the (D (w)) and D{(w) is incomplete as a way of assessing
the predictability of the final partition from the initial partition: two partitions might have the same number of
groups, but the sizes and/or contents of these groups might be very different. In order to take all this into
account in a consistent way, the discrepancy between the initial and final state partitions is evaluated using the
variation of information measure VI, as a function of w. This is an information-theoretic measure that acts as a
metric distance within the space of possible partitions of a set of N elements, which has been shown to have a
multitude of advantages compared to other possible measures [27]. It is convenient to work with the normalized
version of this quantity nVI(w) = VI(w)/log(N) (also mentioned in figure 1), which retains the meaning
and metricity of the original quantity, as long as N remains the same (N = 500 for all cultural states studied
here). This quantity is very important for section 4.

4. Predictability of the final state

This section focuses on evaluating the predictability of the final state partition from the initial state partition.
This is done using the (normalized) variation of information quantity (nVI) mentioned above, which measures
the discrepancy between the two partitions: predictability is higher when (nVT) is lower. The dependence of
(nVI) on wis shown in the second panel of figure 3, for the same 4 cultural states used in figure 2, where the
averaging is performed over multiple dynamical runs, like for the (Dr) quantity. The empirical state shows the
lowest maximal (nVI) value, followed by the ultrametric, the shuffled and the random states. This shows that the
outcome of cultural dynamics can be predicted relatively well based on the initial state, if this is constructed from
empirical data and comparably well if this is constructed based on the empirical ultrametric information. On the
other hand, shuffled and random data exhibit lower predictability. Note that, for either scenario, (nVI) vanishes
for the low-w and the high-w regions, which is where both the initial and final partitions consist of N single-
object groups and of one N-objects group, respectively. This can be understood by looking at the dependence of
the Drand (D) quantities on wshown in the third and fourth panels: the w region for which (nVT) is significantly
larger than 0.0, thus signaling some discrepancy between the initial and final partitions, is roughly the region
where either Dror (Dr) is substantially different from 1.0 or 0.0.

In parallel, the first panel of figure 3 shows the w-dependence of the fraction of initially active cultural links
®: the fraction of pairs (3, ) of cultural vectors whose distance d;; < win the initial state. This shows that the w
interval that is non-trivial with respect to Dy, (Dr) and (nVI) seems to be largely determined by the shape of @,
which is nothing else than the cumulative distribution of intervector distances. The properties of this
distribution—average lower for empirical data than for random data, standard deviation higher for empirical
data than for either shuffled or random data—have been studied before [15, 16] and are recognizable in the first

6



I0OP Publishing NewJ. Phys. 20 (2018) 103026 A-1Bibeanu et al

0.06

0.05 A
0.04 A
© 0.03
0.02 4

0.014

0.00 . . = pnazee_
010 015 020 025 030 035 040 045  0.50

1.0

—}— empirical
0.81 -f- ultrametric
—[— shuffled

—= 0.61 -] random
> th&
C

< 0.4 ,"‘* { 5‘
e}

0.2 4

'y
T T T T T T *
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

0.8 1

—~ 0.6
L

~ 0.4

0.2 4

T T T T T T T
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

w

Figure 3. Visualization of the ultrametric predictability of cultural dynamics. The dependence on the bounded-confidence threshold
wis shown for several quantities: most importantly, the normalized variation of information between the initial and final partitions
(nVI) at the center-top; the fraction of initially active cultural links ® at the top; the initial diversity D;at the center-bottom; the final,
average diversity (Dy) at the bottom. This is shown for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and
one random (black) set of cultural vectors. All sets of cultural vectors have N = 500 elements and are defined with respect to the same

cultural space, from the variables of the Eurobarometer (EB) data. The errors of (Dg) and (nVI) are standard mean errors obtained
from 10 cultural dynamic runs.

panel of figure 3. Note that, for the ultrametric scenario, the interesting w region and the ® profile are
compressed in a lower-w region compared to empirical data. This means that the branchings in the dendrogram
obtained from ultrametric-generated data occur at lower w-values than those in the dendrogram obtained from
the original, empirical data. In turn, this is due to the distances between the ultrametric-generated cultural
vectors reproducing, on average, the subdominant ultrametric empirical distances, rather than the original
empirical distances, while the former are known to systematically underestimate the latter, particularly for
higher distance values, as long as the empirical vectors are not perfectly ultrametric—in practice they are never
perfectly ultrametric.

There is another aspect that can be noted when comparing, for either scenario, the shape of ®(w) in the first
panel with the shape of D{(w) in the third panel of figure 3: as wis decreased, most of the cultural links need to be
eliminated in order to reach the abrupt region of the D)(w) transition, for which the number of groups in the
initial partition becomes comparable to N. This is not surprising on general grounds. For instance, the Erd6s—
Rényi model of random graphs [28] exhibits a critical link density of 1/N, at which a giant connected component
is present, if N is the number of nodes in the graph, instead of the number of cultural vectors. Still, this analogy
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Figure 4. Relationship between compatibility of final diversity and initial coordination (vertical axis) and predictability of the final
partition from the initial partition. Each point corresponds to one cultural state, belonging to one class and to one empirical source:
each color corresponds to one class of cultural states, while marker type corresponds to one dataset, as indicated in the legends. All
cultural states consist of N = 500 cultural vectors.

should not be taken too far. The random graph interpretation is closest to the random cultural state scenario
used here, since the expected pairwise distance entailed by the latter is the same for any pair of cultural vectors,
justlike the connection probability entailed by the former is the same for any pair of nodes. However, even the
random scenario has an underlying metric structure, due to how cultural spaces are defined [17], which should
introduce more triangles than expected otherwise, while the shuffled and empirical scenarios are additionally
affected by inhomogeneities in their cultural space distributions.

The analysis presented in figures 2 and 3 was repeated for three other empirical datasets—based on each
dataset, one empirical, one ultrametric, one shuffled and one random cultural state are constructed—with very
similar results. These additional datasets are: the General Social Survey (GSS) [29] 1993, recording opinions on a
variety of topics from people in the US, via face-to-face interviews; Jester [30], recording online ratings of jokes;
the Religious Landscape (RL) [31], recording opinions on several religious but also political topics from people
in the US, via telephone interviews. The details concerning the formatting of these three datasets are also present
in[17]. For all four datasets, the results are presented in a joint, compact manner by means of figure 4, while
more detailed results are shown in appendix B. Each of the points in the figure corresponds to a combination of
one dataset and one scenario. The vertical axis corresponds to a measure of compatibility between long-term
cultural diversity (Dr) and short-term collective behavior C;, namely a measure of the overall departure of the
(Dryversus Gy curve from the lower-left corner in figure 2(a). The horizontal axis corresponds to a measure of
predictability of the final state from the initial state, namely an inverse measure of the overall departure of the
(nVI) versus w from the horizontal axis in the second panel of figure 3.

For both measures, simple definitions are employed: rather than integrating information from every w value
for which some departure is present, both definitions conceptually rely only on one, representative w* point, for
which both departures are relatively high. Specifically, w* is defined by intersecting the (D) versus Gy curve
with the main diagonal (Dr) = C;. In practice, since just a finite number of w-values are available for any
combination of dataset and scenario, one uses instead the two w-values that are closest to the main diagonal of
the (Dr) versus C plot from either of the two sides. These two values, labeled as w; and wg, ‘bracket” w* from
the left and right, respectively: w; < w™® < wg. The w* itselfis never explicitly calculated, but is conceptually
useful for the explanations below.

The compatibility approximates the distance between the ({Dr(w*)) versus C;(w*)) point and the
(D) = 0, G = 0) point, normalized by the length of the main diagonal of the (D) versus C; plot. In practice,
this is evaluated in terms of w; and wg according to:

V(Dpwn)? + CHwr) + (De(wr)? + CHwe)
22 ’
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while the associated error is evaluated as:

J(Dr(wD)? + CHwr) — (Dr(wr))? + Ci(wr)
272 ’

The predictability approximates the distance between the (w*, (nVI(w™*))) point and the (nVI) = 1line.In
practice, this is evaluated as:

B (nVI(wp)) 4+ (nVI(wg))
2 bl

while the associated error is evaluated as:

[{(nVI(wy)) — <nVI(u)R)>|.
2

Note that compatibility increases with predictability in a roughly linear way, at least for the cultural states
considered here. Moreover, cultural states belonging to the same class tend to cluster together in the
compatibility-predictability space. A notable exception is ultrametric-Jester, which is significantly outside the
ultrametric class in terms of predictability, showing higher predictability than any of the empirical states. Still, it
is clear that cultural states that are closer to the universal (Dr) versus C; empirical behavior also allow for better
estimates of the final partition from the initial one.

The observed increase of compatibility with predictability provides some insights about the nature of
empirical data, or atleast about the shape of an empirical-like dendrogram characteristic for the upper-right
corner of figure 4. This can be understood by realizing that the ultrametric and empirical states approach an
ideal, limiting situation of perfect predictability, for which the initial and final partitions are identical
irrespective of w. This implies that (Dr(w)) = D;(w) and consequently that the (Dg) versus Gy curve is
essentially the Dy versus C;curve and thus controlled by the geometry of the subdominant ultrametric
dendrogram. One can then show—see appendix C—that this geometry needs to be highly ‘unbalanced’ in order
to explain the close-to-linear (D) &~ 1 — Cj empirical behavior in figure 2(a) and the compatibility values of
approximately 0.5 following from it. For a perfectly-unbalanced geometry, the kth highest dendrogram
branching separates only one leaf from the remaining N — k, forallk € {1,...,N — 1}. By contrast, a perfectly-
balanced geometry entails a splitting into two, equal clusters for each dendrogram branching, which would
induce an inverse square (Dy) oc C; > behavior—see appendix C—closer to that of shuffled and random
cultural states, with alower compatibility value. Thus, while going from the random to the empirical class, by
enforcing more and better empirical information, the increasing level of compatibility becomes more suggestive
of an unbalanced dendrogram geometry, while the increasing level of predictability increases the reliability of
this geometric interpretation.

5. Conclusion

This study focused on the ultrametric representation of sets of cultural vectors used for specifying the initial state
of cultural dynamics models. On one hand, it introduced another procedure for randomly generating initial
conditions based on the subdominant ultrametric information of empirical data. On the other hand, it
examined the extent to which the subdominant ultrametric representation can be used for predicting the final
state of cultural dynamics in a simple theoretical setting. The bounded-confidence threshold parameterizing the
dynamical model was used to extract an initial-state partition from the ultrametric representation. This was
systematically compared, in terms of variation of information, with the corresponding final state partition
consisting of groups of identical cultural vectors. The comparison showed that the predictive power of the
ultrametric is relatively high for empirical cultural states, which are closely followed by ultrametric-generated
states, which are followed by the shuffled and then by the random states. Moreover, higher predictability appears
to go hand in hand with higher compatibility between a propensity to long-term cultural diversity and a
propensity to short-term collective behavior, which was previously shown to be a hallmark of empirical
structure. This means that ultrametric information is better than trait-frequency information at explaining this
structure. These results further advance the understanding of the relationship between ultrametricity and
cultural dynamics. Moreover, it is tempting to speculate that, for the purpose of forecasting the dynamics of
culture in the real world, knowledge about the current distribution of individuals in cultural space might be
sufficient, with little or no need for running simulations, at least if one assumes that consensus-favoring social
influence is the essential driving force of this dynamics. The importance of these findings is further enhanced by
two aspects: first, the results are highly robust across different empirical sources; second, the empirical data used
here is entirely independent of assumptions about opinion-changing interactions between people, which only
come into play at the level of dynamical models using such data for their initial conditions.
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Appendix A. Ultrametric-generation method

This section explains the method for generating sets of cultural vectors belonging to the ‘ultrametric’ class. The
method is an extension of that developed in [24], so the description is also somewhat similar, although the
nomenclature specific to cultural vectors is used, instead of that specific to genetic sequences.

The method takes as input a dendrogram, as well as a target cultural space—the number of cultural features
F, together with the range (number of traits) g and type (nominal or ordinal) of each feature. This information is
taken from empirical data and the single-linkage hierarchical clustering algorithm is employed for constructing
the dendrogram whenever the method is used in this study. Upon every use, the method generates, in a
stochastic way, a set of N cultural vectors associated to the Nleaves of the dendrogram, such that, on average, the
pairwise similarities between cultural vectors match the similarities encoded by the dendrogram.

More precisely, for each cultural feature in the target space, the method enforces:

E[s{] = p,, (A1)

where E[...] stands for ‘expectation value’, o;; is the lowest branching in the dendrogram joining leaves iand j, Po,
is the similarity encoded by this branching and 5! is the partial contribution to the similarity between cultural
vectors i and j of a feature of range g, which is computed according to the following formula:

1) (xik, x}‘) if nominal,
Y 1 — % if ordinal,
gt —1

which depends on whether the feature is nominal or ordinal, where ¢ stands for the Kroneker delta function, x,—k
and x}‘ are the traits of vectors i and j with respect to feature k with range g *—for ordinal features k, the traits are
marked with integers between 1 to ¢ *. Equation (A2) is consistent with the cultural distance definition in [15-18]
(as mentioned above: similarity = 1.0 — distance).

In equation (A1), the expectation E[...] implies averaging over multiple runs of the method, for the same
dendrogram and the same cultural feature. Although in practice the method is used only once (and
independently) for each feature, the fact that a large number F of features are present makes this approach
sensible: the expectation E[s;;] of the complete similarity s;; will also match Pa (since the complete similarity is
the arithmetic average of the feature-level similarities), while the fluctuations of s;;around Pa will decrease with
F.In other words, as pointed out in [24], the expectation in equation (A1) can be interpreted in two idealized
ways: averaging over infinitely many runs or averaging over infinitely many features.

In order to enforce equation (A1) for every pair (i, j), the method controls for the extent to which the traits of
different vectors are chosen independently of each other. For every feature, all the N chosen cultural traits
originate in independent random draws from a uniform probability distribution, but the number of draws is
smaller or equal to N. Thus, the traits of vectors i and j either originate in the same draw, with probability Py, or
originate in different draws, with probability 1 — Pj;. In the former case the two traits are identical, with a well-
determined feature-level similarity 51-;1 = 1. Inthelatter case, the two traits may be identical or different, so that

si]q- fluctuates around an expectation value f(g). Taking both cases into account, the expectation value of si? is:
E[sfl = P; + [1 — P;lf (@), (A3)

where the expectation for different draws f(q) reads:

— if nominal,
q

29 — 1
3q

fl@= (A4)

if ordinal,

which is the expression of the expected, feature-level similarity between two traits drawn at random from a
uniform probability distribution, obtained analytically from equation (A2) for either type of features. The
choices of traits and the associated random draws are managed by the stochastic-algorithmic part of the method
(briefly explained at the end of this section), which is designed to ensure that:
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P = p,, (A5)

is satisfied, where pi _Isa corrected version of the similarity p, implicit in the ov;; branching:
ij 1
Phy = Pay = M(payp @) (A6)
where his a correction function chosen such that equation (A1) holds, subject to (A3) and (A5). Specifically, by
combining equation (A5) with equation (A3) and then with equation (A1), one obtains:

p;ij + 11— pi,-j]f(fJ) = Pay (A7)

By inserting equation (A6) in equation (A7) and further manipulations, one obtains the following expression for
the correction function:
1= A
h(p,» ) 1—ﬂ@ﬂm' (A8)
Note that equation (A5) identifies pi ; with a probability, meaning that pcly > 0 should be satisfied for all
branchings «.. This implies, given equjations (A6)and (A8), that p, > f (q) for all branchings « of the given
dendrogram and for all features in the target space. This condition needs to be satisfied in order for this method
to be valid and is actually satisfied by all four empirical dendrograms used in this study. Also note that the
method in [24] is recovered as a special case of the above, by restricting to nominal features of constant g via
equation (A4).
Finally, it is worth describing the stochastic-algorithmic part of the method. For each of the F features in the
target space, the following steps are carried out:

+ the dendrogram is recursively explored starting with the root branching; for every branching « reached by this
exploration, one of the following two things happens:

one of the g traits is randomly chosen, according to a uniform distribution and assigned to all cultural
vectors corresponding to leaves under branching v, without further exploring any branching below o

the exploration is continued with each of the two branches emerging from «, if that branch leads to another
branching, instead of leading to aleaf;
with probability Q,, for the former and probability 1 — Q,, for the latter, where:
I I
pa - p (@)

QQ = 1 Ji bl
~ Pr@

(A9)

where p(«) is the parent branching of «, if v is not the root, while p; (@ = Oifaistheroot.

+ for each of the leaves whose traits are not assigned during the above step, one of the g traits is randomly
chosen, according to a uniform distribution and assigned to the respective cultural vector.

This algorithmic procedure ensures that equation (A5) holds, for reasons that are fully explained in [24].

Itis worth noting that the ultrametric-generation method described in this section makes use of all the
information inherent in the geometry of the dendrogram that it receives as input—both the topology and the
similarities p encoded by the branching points of the dendrograms are used. However, the generated sets of
cultural vectors will in general not be precisely ultrametric, in the strict mathematical sense [19] (unless it is
applied in the limit of Fbeing much larger than N). Still, they are generated based on the empirical ultrametric
information and are arguably as close as they can be to reproducing the ultrametric set of pairwise distances.

Appendix B. Detailed results

This section shows the complete results concerning the w-dependence of relevant quantities, for the other three
datasets that are used in this study in addition to the Eurobarometer (EB [25, 26]): the GSS [29] data in figure B1,
the RL [31] data in figure B2 and the Jester (JS [30]) data in figure B3. Each of these three figures follows the
format of figure 3 above, with four panels and four scenarios. Although, for each type of scenario, thereisa
certain variability in the width and location of the non-trivial w-interval, the results are qualitatively similar to
those obtained for EB data, with a notable exception visible for the analysis of Jester data in figure B3: the second
panel shows that the discrepancy between the initial and the final partition, as measured by (nVT), is clearly
smaller for the ultrametric cultural state than for the empirical cultural state, so the overall predictability is
higher. This is in agreement with the observation made in relation to figure 4 about the relatively high
predictability value of the Jester-ultrametric point.
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Figure B1. Visualization of the ultrametric predictability of cultural dynamics. The dependence on the bounded-confidence threshold
wis shown for several quantities: most importantly, the normalized variation of information between the initial and final partitions
(nVI) at the center-top; the fraction of initially active cultural links ® at the top; the initial diversity D;at the center-bottom; the final,
average diversity (Dy) at the bottom. This is shown for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and
one random (black) set of cultural vectors. All sets of cultural vectors have N = 500 elements and are defined with respect to the same
cultural space, from the variables of the General Social Survey (GSS) data. The errors of (D) and (nVI) are standand mean errors
obtained from 10 cultural dynamics runs.

Appendix C. Dendrogram geometry

This section gives some analytical insight on how the dendrogram geometry is related to the behavior of the two
measures of initial diversity D;and initial coordination C;. As functions of w, the two measures only change (in
steps) when w crosses the distance value associated to any of the branchings of the dendrogram. Thus, one can
replace the dependence of Drand C;on w with a dependence on k, which counts the number of dendrogram
branchings above a given w, in terms of their associated distance values—k increases from0to N — lasw
decreases from 1.0 to 0.0. Based on equation (1), one can thus write:

(CDH

There are two extreme types of dendrogram geometries that are worth considering, the ‘perfectly-
unbalanced geometry’ and the ‘perfectly-balanced geometry’. These are illustrated in figure C1.
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Figure B2. Visualization of the ultrametric predictability of cultural dynamics. The dependence on the bounded-confidence threshold
wis shown for several quantities: most importantly, the normalized variation of information between the initial and final partitions
(nVI) at the center-top; the fraction of initially active cultural links ® at the top; the initial diversity D;at the center-bottom; the final,
average diversity (Dy) at the bottom. This is shown for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and
one random (black) set of cultural vectors. All sets of cultural vectors have N = 500 elements and are defined with respect to the same
cultural space, from the variables of the Religious Landscape (RL) data. The errors of (Dg) and (nVI) are standard mean errors

For the perfectly-unbalanced geometry, shown on the left side of figure C1, the number of connected

components is:

Ni(k) =k + 1,
while the sizes of the connected component are:
N-—k ifA=1
I >
k) = .
Sa(k) {1, ifA e (2,3 .., k+ 1)
From equations (C1) and (C2), one obtains the behavior of the initial diversity measure:

k+1
Dl(k) = %’

(C2)

(C3)

(C4H
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Figure B3. Visualization of the ultrametric predictability of cultural dynamics. The dependence on the bounded-confidence threshold
wis shown for several quantities: most importantly, the normalized variation of information between the initial and final partitions
(nVI) at the center-top; the fraction of initially active cultural links ® at the top; the initial diversity D;at the center-bottom; the final,
average diversity (Dy) at the bottom. This is shown for one empirical (red), one ultrametric-generated (green), one shuffled (blue) and
one random (black) set of cultural vectors. All sets of cultural vectors have N = 500 elements and are defined with respect to the same
cultural space, from the variables of the Jester (JS) data. The errors of (D) and (nVI) are standand mean errors obtained from 10
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Figure C1. Sketch of a ‘perfectly balanced’ (left) dendrogram geometry and a ‘perfectly unbalanced’ (right) one, for N = 4 leaves. The
values of k indicate the number of branchings above any cut that would be applied to the dendrogram within the respective horizontal
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while from equations (C1) and (C3) one obtains the behavior of the initial coordination measure:

N — kY 1Y
Gk =, ]| —| + k(—) ) C5
1(k) \/ ( N ) I (C5)
from which it follows that:
k k? k
Cl(k)\/IZNJrFJrF, (Co)
where one can neglect the % term in the limit of large N, thus obtaining:
k
Ck)=1— —. Cc7
1(k) N (C7)
From equations (C4) and (C7) it follows that:
1
Ci(k) ~1— Dr(k) — —, C8
1(k) 1 (k) N (C8)

which can be rephrased, after neglecting the % term in the limit of large N, to:
Dy(k) = 1 — C(k), ()

which describes the second-diagonal empirical behavior of figure 2(a), under the assumption
that Dr(k) = D;(k), Vk.

For a perfectly-balanced geometry, shown on the right side of figure C1, the only relevant values of k (those
corresponding to non-vanishing w-intervals) are k = °/_} 2/, with 1 € {0, 1, 2, ..., log, N'}. For these values of
k, the number of connected components, like in the unbalanced case, is described by equation (C2), while the
sizes of the connected components are:

Si(k)=N/(k +1),VA € (1,2, ...,k + 1}, (C10)

from which it follows that the initial coordination measure is:

1Y 1
Cik) = |k + 1)( ) = . (C1D)
! k+1 Jk+1
Since the k-dependence of the initial diversity measure Dy, like in the unbalanced case, is described by
equation (C4), it follows that:
1
Di(k) = ——, C12
1 (k) NC2 () (C12)

which, under the assumption that Dr(k) = D;(k), V k, entails a curve more similar to that of the shuffled or
random curves of figure 2(a), than to that of the empirical curve. Moreover, this curve comes arbitrarily close to
the lower-left corner as Nincreases.

To sum up, the above reasoning shows that, aslong as Dr(w) = Dj(w), V w, an unbalanced dendrogram
geometry fits the empirical Di(Cy) behavior very well, while a balanced dendrogram geometry does not.
Although the latter entailsa Dy o< C; % behavior quite similar to that observed for shuffled or random data, one
cannot say that a balanced geometry is a good description for either of these two cases, since the assumption that
Dy = Dyis false for both these cases, for the interesting w-intervals.

ORCID iDs

Alexandru-Ionut Bibeanu @ https: /orcid.org/0000-0001-6274-4871
Diego Garlaschelli ® https://orcid.org/0000-0001-6035-1783

References

[1] Buchanan M 2007 The Social Atom (New York: Bloomsbury)

[2] Turner ] C 1991 Social Influence (Buckingham: Open University Press)

[3] Castellano C, Fortunato S and Loreto V 2009 Statistical physics of social dynamics Rev. Mod. Phys. 81 591-646

[4] Axelrod R 1997 The dissemination of culture J. Conflict Resolution 41 20326

[5] Klemm K, Eguiluz V M, Toral R and Miguel M S 2003 Global culture: a noise-induced transition in finite systems Phys. Rev. E 67
045101

[6] Klemm K, Eguiluz V M, Toral R and Miguel M S 2003 Nonequilibrium transitions in complex networks: a model of social interaction
Phys. Rev. E67 026120

[7] Kuperman M N 2006 Cultural propagation on social networks Phys. Rev. E73 046139

[8] Flache A and Macy M W 2007 Local convergence and global diversity: the robustness of cultural homophily arXiv:physics /0701333

15


https://orcid.org/0000-0001-6274-4871
https://orcid.org/0000-0001-6274-4871
https://orcid.org/0000-0001-6274-4871
https://orcid.org/0000-0001-6274-4871
https://orcid.org/0000-0001-6035-1783
https://orcid.org/0000-0001-6035-1783
https://orcid.org/0000-0001-6035-1783
https://orcid.org/0000-0001-6035-1783
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1177/0022002797041002001
https://doi.org/10.1177/0022002797041002001
https://doi.org/10.1177/0022002797041002001
https://doi.org/10.1103/PhysRevE.67.045101
https://doi.org/10.1103/PhysRevE.67.045101
https://doi.org/10.1103/PhysRevE.67.045101
https://doi.org/10.1103/PhysRevE.73.046139
http://arxiv.org/abs/physics/0701333

10P Publishing

NewJ. Phys. 20 (2018) 103026 A-1Bibeanu et al

[9] Gonzélez-Avella] C, Cosenza M G and Tucci K 2005 Nonequilibrium transition induced by mass media in a model for social influence

Phys. Rev. E72 065102

[10] Centola D, Gonzalez-Avella] C, Eguiluz V M and Miguel M S 2007 Homophily, cultural drift, and the co-evolution of cultural groups
J. Conflict Resolution 51 905-29

[11] Pfau], Kirley M and Kashima Y 2013 The co-evolution of cultures, social network communities, and agent locations in an extension of
Axelrod’s model of cultural dissemination Physica A 392 381-91

[12] Battiston F, Nicosia V, Latora V and Miguel M S 2017 Robust multiculturality emerges from layered social influence Sci. Rep. 7 1809

[13] Stivala A, Kashima Y and Kirley M 2016 Culture and cooperation in a spatial public goods game Phys. Rev. E 94 032303

[14] Sherif M and Hovland C 11961 Social Judgment: Assimilation and Contrast Effects in Communication and Attitude Change (New Haven,
CT: Yale University Press)

[15] ValoriL, Picciolo F, Allansdottir A and Garlaschelli D 2012 Reconciling long-term cultural diversity and short-term collective social
behavior Proc. Natl Acad. Sci. 109 1068-73

[16] Stivala A, Robins G, Kashima Y and Kirley M 2014 Ultrametric distribution of culture vectors in an extended Axelrod model of cultural
dissemination Sci. Rep. 4 4870

[17] Babeanu A-I, Talman L and Garlaschelli D 2017 Signs of universality in the structure of culture Eur. Phys. J. B90 237

[18] Babeanu A-Iand Garlaschelli D 2017 Evidence for mixed rationalities in preference formation Complexity 2018 3615476

[19] Rammal R, Toulouse G and Virasoro M A 1986 Ultrametricity for physicists Rev. Mod. Phys. 58 765-88

[20] Sibson R 1973 Slink: an optimally efficient algorithm for the single-link cluster method Comput. J. 16 30

[21] Anderberg M R 1973 Hierarchical clustering methods Cluster Analysis for Applications (Probability and Mathematical Statistics: A Series
of Monographs and Textbooks) ed M R Anderberg (New York: Academic) ch 6, pp 131-55

[22] Sokal R R and Michener C D 1958 A statistical method for evaluating systematic relationships Univ. Kansas Sci. Bull. 28 1409-38

[23] Rammal R, Angles d’Auriac ] Cand Doucot B 1985 On the degree of ultrametricity J. Phys. Lett. 46 945-52

[24] Tumminello M, Lillo F and Mantegna R N 2008 Generation of hierarchically correlated multivariate symbolic sequences Eur. Phys. ]. B
65 333-40

[25] ReifKand Melich A 1995 Euro-barometer 38.1:Consumer protection and perceptions of science and technology, November 1992
http://doi.org/10.3886/ICPSR06045.v2

[26] Commission of the European Communities 1992 Euro-barometer: public opinion in the European community, December 1992

[27] Meild M 2007 Comparing clusterings—an information based distance J. Multivariate Anal. 98 895

[28] Erd6s P and Rényi A 1959 On random graphs: I Publicationes Math. 6 290-7

[29] Smith T W, Marsden P and Hout M 1993 General social surveys 1972-2014

[30] GoldbergK, Roeder T, Gupta D and Perkins C 2001 Eigentaste: a constant time collaborative filtering algorithm Inf. Retr. 4 133-51

[31] Lugo Letal2008 US religious landscape survey. Religious beliefs and practices: diverse and politically relevant

16


https://doi.org/10.1103/PhysRevE.72.065102
https://doi.org/10.1177/0022002707307632
https://doi.org/10.1177/0022002707307632
https://doi.org/10.1177/0022002707307632
https://doi.org/10.1016/j.physa.2012.09.004
https://doi.org/10.1016/j.physa.2012.09.004
https://doi.org/10.1016/j.physa.2012.09.004
https://doi.org/10.1038/s41598-017-02040-4
https://doi.org/10.1103/PhysRevE.94.032303
https://doi.org/10.1073/pnas.1109514109
https://doi.org/10.1073/pnas.1109514109
https://doi.org/10.1073/pnas.1109514109
https://doi.org/10.1038/srep04870
https://doi.org/10.1140/epjb/e2017-80337-7
https://doi.org/10.1155/2018/3615476
https://doi.org/10.1103/RevModPhys.58.765
https://doi.org/10.1103/RevModPhys.58.765
https://doi.org/10.1103/RevModPhys.58.765
https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.1051/jphyslet:019850046020094500
https://doi.org/10.1051/jphyslet:019850046020094500
https://doi.org/10.1051/jphyslet:019850046020094500
https://doi.org/10.1140/epjb/e2008-00225-7
https://doi.org/10.1140/epjb/e2008-00225-7
https://doi.org/10.1140/epjb/e2008-00225-7
http://doi.org/10.3886/ICPSR06045.v2
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1023/A:1011419012209
https://doi.org/10.1023/A:1011419012209
https://doi.org/10.1023/A:1011419012209

	1. Introduction
	2. Ultrametricity and culture
	3. Cultural dynamics and partition-specific quantities
	4. Predictability of the final state
	5. Conclusion
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	References



