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Abstract: Multilayer networks represent multiple types of connections between the same set of nodes.
Clearly, a multilayer description of a system adds value only if the multiplex does not merely consist
of independent layers. In real-world multiplexes, it is expected that the observed inter-layer overlap
may result partly from spurious correlations arising from the heterogeneity of nodes, and partly from
true inter-layer dependencies. It is therefore important to consider rigorous ways to disentangle these
two effects. In this paper, we introduce an unbiased maximum entropy model of multiplexes with
controllable intra-layer node degrees and controllable inter-layer overlap. The model can be mapped
to a generalized Ising model, where the combination of node heterogeneity and inter-layer coupling
leads to the possibility of local phase transitions. In particular, we find that node heterogeneity
favors the splitting of critical points characterizing different pairs of nodes, leading to link-specific
phase transitions that may, in turn, increase the overlap. By quantifying how the overlap can be
increased by increasing either the intra-layer node heterogeneity (spurious correlation) or the strength
of the inter-layer coupling (true correlation), the model allows us to disentangle the two effects.
As an application, we show that the empirical overlap observed in the International Trade Multiplex
genuinely requires a nonzero inter-layer coupling in its modeling, as it is not merely a spurious result
of the correlation between node degrees across different layers.

Keywords: multiplex networks; maximum entropy models; World Trade Multiplex; mean-field
Ising model

1. Introduction

The wide variety of different phenomena that occur around us are often the result of
systems that emerge and (self-)organize dynamically. These systems consist of a multitude
of basic constituents interacting with each other in complicated ways and forming com-
plex patterns. Many of these systems can be represented as networks sustaining various
processes. Examples of such systems include social networks, transportation networks,
biological networks, financial networks, and technological networks. In particular, social,
financial, and economic networks are an important class of systems that, in the wake of
recent global crises (such as the 2007–2008 financial crisis, the COVID-19 pandemic, and
the ongoing Ukraine crisis), have been attracting attention given the possibility of studying
the propagation of shocks among their constituents. Generally, individuals, banks, firms,
or countries can be represented as nodes, and the relationships among them can be rep-
resented as links [1–3]. Other types of economic and financial networks are obtained as
some form of projection from time series data [3–7]. The study of these networks may
increase our understanding of a variety of processes that take place through them, such
as the spreading of diseases, the diffusion of (mis)information, the stability of financial
markets, and the resilience of the economy.

The simplest approach is to map each constituent within a system onto a single node
and to map each interaction between pairs of constituents onto a link of a single type,
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regardless of the nature of the interaction. In this approach, all the links in a network are
treated on an equal footing, making it a single-layer network representation, which might,
however, lead to an oversimplification that fails to capture the details of a multirelational
system. For instance, production and trade networks are the result of the functioning
of global supply chains, involving the exchange of multiple products between firms and
countries, which determines nontrivial dependencies between product-specific layers of
the network. In order to realistically follow the propagation of shocks in the economy,
knowledge of the nature of the links is essential. The inability to properly represent
multirelational systems using single-layer networks has lead to the introduction of so-
called multilayer networks [8–12]. Multilayer networks allow us to describe multirelational
systems by representing each type of relationship in a separate layer of the network, where
each node is present in all layers, and the different types of connections are reported
in the corresponding layers. Returning to the example of social networks, the different
types of relationships between people, such as kinship, friendship, coworkership, etc.,
would each be represented by links in a different layer [13], and could be analyzed in their
mutual dependencies.

However, in order to assess true dependencies across layers, one should use proper
null models. In recent years, there has been an increase in attention towards null models of
networks constructed as random graph ensembles [14–20]. A class of such models is the so-
called Exponential Random Graph Models (ERGMs) [17–27]. ERGMs are used commonly
within the social network analysis community, and have been more recently re-derived
within a statistical physics maximum entropy framework [19,20,27]. This has allowed
researchers to utilize techniques that are common in statistical physics. In the ERGM
framework, one chooses the probability distribution on graphs such that it maximizes the
entropy. This maximization is performed while the expected values of certain chosen graph
properties are constrained to be equal to desired values.

Real-world multilayer networks have been compared against null ERGMs with in-
dependent layers [28,29]. This comparison has highlighted various properties of real
multilayer networks that result from the interdependence of layers. Two such properties
are the overlap and the multiplexity [9,28]. The overlap and the multiplexity essentially
contain similar information and capture the correlation of a node’s connectivity across
two or more layers. For example, in a social network, people may communicate with
their friends through multiple means of communication, such as talking on the phone,
sending emails, or sending instant text messages. In this example, the layer that represents
communication through email has a significant overlap with the layer of communication
through text messages. A more specific example is a study of the so-called World Trade
Multiplex (representing international trade in different commodities among countries [30]),
which showed that, despite the fact that each layer of the multiplex is separately well
described by a maximum entropy model with given node degrees [31–33], the observed
trade overlap across different commodity-specific layers is significantly different from the
overlap predicted by a null model with independent layers [28]. This result is not unex-
pected, since one can imagine that the trade of a certain product between two countries
may increase/decrease the possibility of the trade of a different product between the same
two countries. Other examples of networks displaying a significant overlap are airport
networks, on-line social games, collaboration networks, and citation networks [34–36].

An important conclusion that has been reached after comparing real-world multiplexes
against null models with independent layers is that a significant part of the observed
overlap in many real networks could actually be spuriously created by the correlations
among node degrees across different layers, even if the latter are conditionally independent
of each other, instead of resulting from genuine inter-layer dependencies [28,29]. Indeed,
if node degrees are correlated among layers, then there will be an increased probability
of a link between two nodes being present in multiple layers, while the probability of a
link occurring in one layer will not necessarily influence the presence of a link occurring in
another layer. The measured overlap of the network therefore consists of a part resulting
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from ‘spurious’ coupling between the layers and of a part resulting from genuine coupling
between the layers. This spurious coupling increases as the density and/or heterogeneity
of the degrees of the network increases. Real-world networks are often dense and have
strongly heterogeneous degrees; therefore, the assessment of inter-layer coupling in these
real-world networks will be severely affected.

The focus of this paper is the introduction of interdependencies between the layers
of a multilayer network in the ERGM through the explicit inclusion of the overlap as an
extra constraint. This inclusion of the overlap in the ERGM will aid us in understanding
which (higher-order) properties of the network structure may be (highly) dependent on
the overlap. Additionally, it will help us distinguish between the overlap in the network
due to the correlation of single-node properties across layers and the overlap due to a
genuine coupling between the layers. Finally, it will allow us to generate null models
with the desired amount of spurious overlap and genuine overlap. It turns out that
this problem is mathematically identical to solving the Ising model on a complete graph
(which is also known as the mean-field Curie–Weiss model) and leads to a phase transition
between a ‘multiplexed’ (magnetized) and a ‘non-multiplexed’ (non-magnetized) phase.
However, the problem is more general because the locality of the constraints on the degrees
of nodes will imply different parameter values, and hence different properties for the
phase transitions relative to different pairs of nodes. For instance, it will, in general, not be
possible to enforce a ‘zero-field’ spontaneous symmetry breaking condition for all pairs of
nodes simultaneously. Therefore, for a given specification of the constraints, different pairs
of nodes may realize different symmetry-broken values of their contribution to the overall
inter-layer overlap. Crucially, this property arises only from the simultaneous presence
of the two constraints (on the global overlap and on the heterogeneous local degrees),
and would not be realized in the absence of one of them.

The rest of the paper is organized as follows: In Section 2, we mathematically define
quantities and models that are relevant to this paper. This includes the derivation of a
benchmark model, where the layers of the multiplex network are independent. In Section 3,
we introduce, and solve analytically, our new model, where the layers of the multiplex
are interdependent due to the inclusion of the overlap. Section 4 contains a discussion
regarding the possible local phase transitions of the model. In Section 5, we explore our
model by using various numerical methods. In Section 6, we briefly analyze the World
Trade Multiplex, and show that the empirical overlap in this real-world network is not
merely the result of the heterogeneity of the network, but requires a nonzero coupling
between the layers in its modeling. Finally, we provide some concluding remarks in
Section 7, and some technical details in Appendices A and B.

2. Background Theory

This section contains some background notions, definitions, and models.

2.1. Single-Layer Network Definitions

We will limit our discussion to the case of binary and undirected networks. A binary
undirected network can be defined as a graph that is an ordered pair G = (V, E), where
V = {v1, v2, ..., vN} is a set of N vertices or nodes, and E is a set of unordered pairs of different
vertices called edges or links. Note that the definition of E depends on the relevant class
of relations between the constituents of the system. The vertex vi ∈ V will be referred to
simply as i throughout the rest of the paper. If (i, j) ∈ E, the vertices i and j are said to be
connected, and may be referred to as neighbors of each other. The number of links L of the
graph is given by the cardinality of E: L = |E|.
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Matrix Representation

A graph G is represented by its adjacency matrix G = {gij}. This is an N × N matrix
where

gij =

{
1 if (i, j) ∈ E,
0 otherwise.

(1)

We define E as containing pairs of distinct vertices, which means that a vertex cannot
have a connection to itself (self-loop). It is then natural to define the diagonal elements as
gii ≡ 0. Since we limit our discussion to undirected graphs, the adjacency matrix is always
symmetric, gij = gji, and it therefore contains N(N − 1)/2 independent elements that fully
specify the matrix and ultimately the graph.

Degrees and Degree Distribution

One of the main topics in the analysis of complex networks is the identification of
the different roles that nodes play [37]. For instance, there are a variety of measures that
characterize the structural importance of a node in a network. The degree ki(G) of the
graph G is defined as the number of connections node i has to other nodes in the network.

ki(G) =
N

∑
j=1

gij (2)

The list {ki(G)}N
i=1 of degrees is called the degree sequence of the graph G. The degree

distribution P(k) is defined as the fraction of nodes in the network with degree k. Real-
world networks systematically show a degree distribution with heavy tails, where the
degrees vary over a broad range, often spanning several orders of magnitude [38,39].
The majority of the vertices of these real-world networks have a small number of links to
other vertices, while a few vertices have a relatively high number of links to other vertices,
which are also referred to as ‘hubs’. An example is the World Wide Web, where some pages
are incredibly popular and are pointed to by thousands of other pages, while generally, most
pages are almost unknown. The heavy tails of real-world degree distributions can often
be, but not necessarily, approximated by power laws of the form P(k) ∼ k−γ. In any case,
vertices with a degree much larger than the average degree 〈k〉 occur with a non-negligible
probability. This is a signature of a high level of statistical heterogeneity in real-world
networks. Encoding this heterogeneity will be a crucial ingredient of our models.

2.2. Multiplex Network Definitions

A binary undirected multiplex network can be defined in terms of the previously
defined single-layer networks. A multiplex network is a set ~G = {Gα}M

α=1 of M undirected
binary graphs Gα = (V, Eα) that share the same set of N nodes. In the context of multilayer
networks, Gα is called a layer ofM, and will be referred to simply as α throughout the rest
of the paper. Note that a multiplex network is a type of multilayer network that does not
allow inter-layer connections between two layers α and β where α 6= β.

Matrix Representation

The layer Gα and its intra-layer links can then be represented by the adjacency matrix
Gα = {gα

ij}. This is an N × N matrix where

gα
ij =

{
1 if (i, j) ∈ Eα,
0 otherwise.

(3)
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Multilinks in Multiplex Networks

In order to capture the information regarding the presence of the links between the
pair of nodes (i, j) in any of the M layers, we define the object

mij ≡ (g1
ij, g2

ij, . . . , gM
ij ) (4)

which is also known as the multilink of (i, j). Additionally, we define the setMij as the set
that contains all the 2M possible configurations of mij.

Multidegrees

The multidegree of a node i ∈ V of a multiplex network ~G is the object

~ki(~G) ≡
(

k1
i (~G), k2

i (~G), . . . , kM
i (~G)

)
(5)

where

kα
i (~G) =

N

∑
j 6=i

gα
ij (6)

is the degree of the node i in the layer α [9,40]. From the vector definition of the multidegree,
one can obtain a scalar quantity defined as the layer-averaged degree:

ki(~G) =
1
M

M

∑
α=1

kα
i (~G), (7)

which is the degree of node i averaged over all the M layers. Note that, in each layer α, the
total layer-specific degree of all nodes equals twice the number of links in that layer, which
we denote as Lα:

N

∑
i=1

kα
i (~G) = ∑

i<j
gα

ij = 2Lα(~G). (8)

Summing the above relationship for the M layers, we get

M
N

∑
i=1

ki(~G) =
M

∑
α=1

∑
i<j

gα
ij = 2

M

∑
α=1

Lα(~G) = 2L(~G), (9)

where L(~G) denotes the total number of links over the entire multiplex:

L(~G) =
M

∑
α=1

∑
i<j

gα
ij. (10)

Overlap

There are many properties that encode the interdependence between the layers of a
multilayer network, but we will limit our discussion to one such property: the overlap. The
overlap Oαβ(~G) between two layers α and β of the multiplex ~G is defined as the number of
links that appear in both layers α and β [34,41]:

Oαβ(~G) = ∑
i<j

gα
ijg

β
ij (11)

where, throughout the paper, using ∑a<b and ∏a<b, we denote a double sum and a double
product for all possible (unrepeated) pairs of values of the two indices, a and b (with a 6= b),
respectively. The global overlap O(~G) is defined as the sum of Oαβ(~G) for all pairs of layers:

O(~G) = ∑
α<β

∑
i<j

gα
ijg

β
ij. (12)
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As the names of these properties suggest, they are a measure of how overlapping the layers
of the multiplex network are.

2.3. Exponential Random Graph Models for Multiplexes

ERGMs are ensemble models, which means that they are defined as probability distri-
butions over many possible (multiplex) networks. Given the observed (or desired) value
C∗i ≡ Ci(~G∗) for K graph properties {Ci(~G)}K

i=1 defined on each possible multiplex ~G
(where ~G∗ represents a particular, e.g., real-world, multiplex of interest), an ERGM gener-
ates a probability distribution P(~G) over multiplex networks that maximizes the entropy,
under the constraint that the expected value of Ci(~G) equals C∗i , for all i = 1, K. This
method provides us with a general framework for modeling maximally random (maximum
entropy) multiplex networks, to be used as null models that can be compared against the
empirical multiplex ~G∗ to detect higher-order patterns that are irreducible to the K enforced
constraints. Maximizing the entropy subject to a set of constraints is also widely used in
problems with incomplete information [42,43].

Let GM
N be the set of (binary undirected) multiplex networks consisting of N ver-

tices and M layers (note that this set includes single-layer networks for M = 1), let
~G = {G1, G2, ..., GM} ∈ GM

N be a multiplex network in that set, and let P(~G) be the sought-
for probability of ~G within the ensemble. We want P(~G) to be such that the expectation
value of each graph observable Ci(~G) (in the chosen set of K observables) is equal to the
corresponding observed or desired value C∗i . This type of probability distribution is also re-
ferred to as a canonical ensemble. The ideal probability distribution is the one that maximizes
the Gibbs–Shannon entropy

S = − ∑
~G∈GM

N

P(~G) ln P(~G) (13)

under the normalization condition

∑
~G∈GM

N

P(~G) = 1 (14)

and the other K constraints

C∗i = 〈Ci〉, i = 1, . . . , K, (15)

where
〈Ci〉 ≡ ∑

~G∈GM
N

P(~G)Ci(~G). (16)

The maximization of the entropy is achieved by introducing a global Lagrange multiplier η
for the normalization condition and a specific multiplier θi for each constraint 〈Ci〉 = C∗i ,
i = 1, . . . , K. This leads to the parametric solution

P(~G,~θ) =
e−H(~G,~θ)

Z(~θ)
(17)

where H(~G,~θ) is the graph Hamiltonian

H(~G,~θ) ≡
K

∑
i=1

θiCi(~G) = ~θ · ~C(~G) (18)
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and Z(~θ) is the partition function determined by the normalization condition

Z(~θ) ≡ eη+1 = ∑
~G∈GM

N

e−H(~G,~θ). (19)

The parametric form of P(~G,~θ), if inserted back into Equation (13), leads to the explicit
expression for the entropy:

S(~θ) = − ∑
~G∈GM

N

P(~G,~θ) ln P(~G,~θ) = ~θ · 〈~C〉+ ln Z(~θ). (20)

2.4. Maximum Likelihood Parameter Estimation

Equations (17)–(19) fully define the ERGM, apart from the specification of the parame-
ters~θ. In principle, by treating these Lagrange multipliers as free parameters, one can study
the effects that the specification of certain graph observables {Ci} has on other aspects
of network structure [27,44–47]. This approach, however, does not allow one to consider
ERGMs as null models of a particular real network [17,19]. In the latter case, maximum
likelihood parameter estimation leads to the unique (given the choice of constraints) ERGM
representing a null model for a particular real (multiplex) network ~G∗, and hence, enforc-
ing Equation (15) exactly, as we briefly recall below. This null model can then be used
to detect statistically significant deviations of empirical structural properties of ~G∗ from
the ensemble.

The log-likelihood of the particular multiplex ~G∗ is

L(~G∗,~θ) = ln P(~G∗,~θ) = −
K

∑
i=1

θiC∗i − ln Z(~θ). (21)

This function has the following properties [19]:

∂L(~G∗,~θ)
∂θi

= 〈Ci〉 − C∗i (22)

∂2L(~G∗,~θ)
∂θi ∂θj

= −〈CiCj〉+ 〈Ci〉〈Cj〉. (23)

Equation (22) means that the stationary points ~θ = ~θ∗ of L are precisely those that
satisfy the constraints (15), i.e.,

〈Ci〉~θ∗ = ∑
~G∈GM

N

Ci(~G)P(~G,~θ∗) = ∑
~G∈GM

N

Ci(~G)
e−∑K

j=1 θ∗j Cj(~G)

Z(~θ)
= Ci(~G∗), i = 1, . . . , K (24)

where 〈Ci〉~θ∗ indicates that the ensemble average is evaluated at the values~θ∗. Equation (23)
indicates that L is concave, since the matrix with entries ∂2L/∂θi ∂θj has the form of a nega-
tive covariance matrix, and must therefore be non-positive definite [48]. The solutions~θ∗ of
the coupled equations 〈Ci〉~θ∗ = C∗i in Equation (15) can therefore be found by maximizing
the log-likelihood L. If ∂2L/∂θi ∂θj is negative definite, which will be true if the functions
Ci(~G) are linearly independent [48] (i.e., the chosen constraints are non-redundant), then
there will be, at most, one solution, and it will be the unique maximum of L. Maximizing a
concave function is generally easier than solving the system of coupled nonlinear equations
in Equation (24). Once the solution~θ = ~θ∗ is found, it can be used to generate a null model
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of ~G∗. Moreover, inserting the value θ∗ back into Equation (21) and using Equation (20),
we obtain the important relation

L(~G∗,~θ∗) = ln P(~G∗,~θ∗)

= −
K

∑
i=1

θ∗i C∗i − ln Z(~θ∗)

= −
K

∑
i=1

θ∗i 〈Ci〉~θ∗ − ln Z(~θ∗)

= −S(~θ∗), (25)

i.e., the maximized log-likelihood equals minus the entropy for the particular value ~θ∗,
which in turn represents the ‘entropy of the data’ given the chosen constraints. This result
allows one to easily calculate the entropy of the data S(~θ∗) = −L(~G∗,~θ∗) automatically as
part of the likelihood maximization procedure, rather than as a much more complicated
formal sum of all configurations, as in the general definition (13).

2.5. Benchmark: Independent Layers Model

As anticipated in the Introduction, our goal is that of considering how the empirical
overlap between links in different layers of a multiplex is jointly determined by both a
‘genuine’ coupling between the M layers and a ‘spurious’ correlation resulting from the
heterogeneous (and correlated across layers) degrees of the N nodes. As a null benchmark
before inserting both components in an ERGM of a multiplex, we first consider only the
layer-averaged degrees of all vertices as constraints, as defined in Equation (7). We can
therefore create a null model of a real multiplex ~G∗ using the ERGM in combination with
the maximum likelihood method. This model will be referred to as the Average Configuration
Model (ACM), and will allow us to study the sole effects of correlated heterogeneous degrees
on the inter-layer overlap. The Hamiltonian of this model, denoted as H0, since it represents
a benchmark for a more complicated model to be defined later, is

H0(~G,~θ) = M
N

∑
i=1

θiki(~G) =
M

∑
α=1

∑
i<j

(θi + θj)gα
ij (26)

where we have reparametrized by exposing M for convenience. The partition function is

Z0(~θ) = ∑
~G∈GM

N

e−∑M
α=1 ∑i<j(θi+θj)gα

ij

= ∑
~G∈GM

N

M

∏
α=1

∏
i<j

e−(θi+θj)gα
ij

=
M

∏
α=1

∏
i<j

1

∑
gα

ij=0
e−(θi+θj)gα

ij

=
M

∏
α=1

∏
i<j

[
1 + e−(θi+θj)

]
= ∏

i<j

[
1 + e−(θi+θj)

]M
.

(27)

The probability distribution over the ensemble is then given by

P0(~G,~θ) =
M

∏
α=1

∏
i<j

e−(θi+θj)gα
ij

1 + e−(θi+θj)
, (28)
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from which we see that pairs of nodes and pairs of layers are all independent of each other,
each entry gα

ij being an independent Bernoulli random variable with success probability

pα
ij(
~θ) and expected value 〈gα

ij〉~θ given by

pα
ij(
~θ) = 〈gα

ij〉~θ =
e−(θi+θj)

1 + e−(θi+θj)
≡ pij(~θ). (29)

Clearly, pα
ij(
~θ) = pij(~θ) is the probability that a link occurs between node i and j in layer

α, which turns out to be independent of α given our choice of the layer-averaged (not
layer-specific) degree as a constraint.

The log-likelihood of the multiplex ~G∗ is

L0(~G∗,~θ) = −M
N

∑
i=1

θik
∗
i −M ∑

i<j
ln
[
1 + e−(θi+θj)

]
, (30)

where k
∗
i = ki(~G∗). The parameter value θ∗m maximizing the log-likelihood must satisfy

∂L0(~G∗,~θ)
∂θm

∣∣∣∣∣
~θ=~θ∗

= −Mk
∗
m + M ∑

j 6=m

e−(θ
∗
m+θ∗j )

1 + e−(θ
∗
m+θ∗j )

= 0 ∀m (31)

or equivalently,

k
∗
i = ∑

j 6=i

e−(θ
∗
i +θ∗j )

1 + e−(θ
∗
i +θ∗j )

∀i. (32)

The above results show that, as expected from the general result reported in Equation (24),
according to the maximum likelihood principle, the empirical layer-averaged degree
k
∗
i = ki(~G∗) of the real multiplex ~G∗ is equal to the ensemble average 〈ki〉~θ∗ :

k
∗
i = ∑

j 6=i
pij(~θ

∗)

=
1
M

M

∑
α=1

∑
j 6=i

pα
ij(
~θ∗)

=
1
M

M

∑
α=1

∑
j 6=i
〈gα

ij〉~θ∗

= 〈ki〉~θ∗ .

(33)

The probability distribution P0(~G,~θ∗) can then be written as a product of the layers:

P0(~G,~θ∗) =
M

∏
α=1

Pα
0 (G

α,~θ∗) (34)

where Pα
0 is the probability distribution over a single layer, i.e.,

Pα
0 (G

α,~θ∗) = ∏
i<j

[pij(~θ
∗)]

gα
ij [1− pij(~θ

∗)]
1−gα

ij . (35)

This means that each layer α can be generated by using the link probability pij(~θ
∗) that

is equal throughout the layers. This is again a consequence of exclusively constraining
properties defined as the overall averages of the layers. This null model can be used as
a benchmark to determine the expected value of the inter-layer overlap O(~G) defined in
Equation (12), which is due solely to the correlation between the degree of the same node i
across the M layers, and not to any genuine inter-layer dependency. This expected value is
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〈O〉~θ∗ = ∑
α<β

∑
i<j
〈gα

ijg
β
ij〉~θ∗ = ∑

α<β
∑
i<j
〈gα

ij〉~θ∗〈g
β
ij〉~θ∗ = ∑

α<β
∑
i<j

p2
ij(
~θ∗), (36)

where we have used the independence 〈gα
ijg

β
ij〉~θ∗ = 〈gα

ij〉~θ∗〈g
β
ij〉 between layers α 6= β.

Deliberately, we have chosen the layer-averaged degree as the only constraint so that the
expected degree of a node is the same across all layers, thereby creating a strong correlation
between degrees in different layers, while keeping the layers themselves independent.
Using Equations (25) and (30), we can calculate the entropy of the data, given the model, as

S0(~θ
∗) = −L0(~θ

∗) = − ln P0(~G∗,~θ∗) = M
N

∑
i=1

θ∗i k
∗
i + M ∑

i<j
ln
[
1 + e−(θ

∗
i +θ∗j )

]
, (37)

which only requires the knowledge of~θ∗ and of the layer-averaged degrees ki(~G∗), i = 1, N.

3. The Overlapping Average Configuration Model

Having illustrated all the ingredients that are necessary to define and model basic
properties of multiplex networks within a maximum entropy framework, in this section,
we introduce a model of multiplex networks with genuinely interdependent layers. To this
end, we incorporate the overlap as an extra constraint in the ERGM, and study the model
in combination with the maximum likelihood method. This model is a generalization of
the previous ACM benchmark, and will therefore be referred to as the Overlapping Average
Configuration Model (OACM), as it includes not only the intra-layer degrees, but also the
inter-layer coupling, as building blocks.

3.1. Constructing the Hamiltonian

We want to define a model of a multiplex with M layers, N vertices, and given
expected layer-averaged degrees (as defined in Equation (7)) and global inter-layer overlap
(as defined in Equation (12)). The Hamiltonian of our ERGM is, in this case,

H(~G,~θ, J) = M
N

∑
i=1

θiki(~G)− 4J
M

O(~G) = ∑
i<j

M

∑
α=1

(θi + θj)gα
ij −

4J
M ∑

i<j
∑

α<β

gα
ijg

β
ij (38)

where (~θ, J) are the Lagrange multipliers coupled to the N + 1 constraints. We have
defined the Lagrange multiplier for the overlap as −4J/M for later convenience. Clearly,
H(~G,~θ, J) = H0(~G,~θ) where H0 is the benchmark Hamiltonian of the ACM without overlap
defined in Equation (26). Using the multilink mij defined in Equation (4) and defining

θij ≡ θi + θj, (39)

the Hamiltonian in Equation (38), this can be written as a sum of the pairs of vertices:

H(~G,~θ, J) = ∑
i<j

hij(mij, θij, J) (40)

where

hij(mij, θij, J) ≡ (θi + θj)
M

∑
α=1

gα
ij −

4J
M ∑

α<β

gα
ijg

β
ij (41)

will be referred to as the pair Hamiltonian. As we shall see in a moment, the pair Hamiltonian
can be mapped exactly to a mean-field Ising model coupling the M layers homogeneously.
To arrive at this mapping, we transform the Boolean variables gα

ij ∈ {0, 1} to new ‘spin’
variables σα

ij ∈ {−1, 1}, as follows:

gα
ij =

1
2
(σα

ij + 1). (42)



Entropy 2023, 25, 828 11 of 35

From now on, we assume that M is large (multiplex with several layers) and expand
expressions accordingly. By defining

sij ≡ {σ1
ij, σ2

ij, . . . , σM
ij } (43)

as the multilink for the node pair (i, j) in terms of the σα
ij = ±1 variables, we see that

Equation (42) can be used to transform Equation (41) into

hij(sij, θij, J) =
(

θij

2
− J
) M

∑
α=1

σα
ij −

J
M ∑

α<β

σα
ijσ

β
ij −

JM
2

+
Mθij

2
. (44)

If we define

Bij ≡ J −
θij

2
, (45)

vij ≡ −MBij +
JM
2

, (46)

then the pair Hamiltonian finally reduces to

hij(sij, Bij, J) = −Bij

M

∑
α=1

σα
ij −

J
M ∑

α<β

σα
ijσ

β
ij + vij. (47)

From the above expression, we see that, for every specific pair of nodes (i, j), the variables
σα

ij can be thought of as Ising spins residing in the M nodes of a fully connected graph,
where every Ising spin interacts with every other M− 1 spins and is coupled to a ‘field’
Bij. In terms of the multiplex networks being modeled, this means that for every specific
pair of nodes (i, j), the edges connecting i and j throughout the M layers are all coupled
to a common ‘external’ field Bij, and are also coupled to each other with a homogeneous
interaction strength J/M. A positive coupling J > 0 favors more overlap (i.e., more
alignment between links in different layers), while J < 0 disfavors the overlap. The term vij
is an inessential overall shift in energy independent of the spin configuration. This model
is identical to the mean-field Ising or Curie–Weiss model. This exact mapping is what we
use in Appendix in order to solve the model analytically, and in particular, to show the
existence, for each pair of nodes, of a phase transition separating a ‘magnetized’ phase
and a ‘non-magnetized’ phase, which here represent a ‘multiplexed’ phase (where links in
different layers tend to ‘align’ to each other) and a ‘non-multiplexed’ phase, respectively.

The full Hamiltonian (40) is a summation of the Hamiltonians of non-interacting Ising
systems, each for a distinct pairs of nodes. Note, however, that despite the independence
of different pairs of nodes, the pair Hamiltonians hij(sij, Bij, J) share some parameters: J is
common to all such Hamiltonians, and hij(sij, Bij, J) and (say) hik(sik, Bik, J) also share the
parameter θi, because the latter appears in both Bij and Bik. This is the result of the original
constraint on the degree of each node, which results in the same Lagrange multiplier θi
appearing in all pair Hamiltonians involving the same node i. These common parameters
imply that, even if all pairs of nodes are independent, the control parameters of all pair
Hamiltonians cannot be chosen independently, resulting in a correlated phenomenology
for the various pairs of nodes. In particular, as we shall see, each pair of nodes can undergo
locally the typical phase transition of the mean-field Ising model, but the features of these
pair-specific phase transitions are all nontrivially related to each other.

We also note, from Equations (44) and (47), that if J = θij/2 (or equivalently, Bij = 0),
then the pair Hamiltonian (hence the graph probability) becomes invariant upon a global
‘spin flip’ (σα

ij → −σα
ij ∀α), which here corresponds to the replacement of each existing

link with a missing link (gα
ij = 1 → gα

ij = 0 ∀α) and, vice versa, of each missing link
with an existing link (gα

ij = 0 → gα
ij = 1 ∀α). This is due to the vanishing of the ‘external

field’ Bij that, when present, selects a preferred ‘spin direction’ (up versus down), which
here means a preferred density (high versus low). We expect that with the parameter
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choice J = θij/2, the pair of nodes (i, j) gains an expected 1/2 density of links across
the M layers, i.e., an expected number of links equal to M/2, corresponding to half the
maximum number of links for that node pair. Additionally, if J is smaller than the critical
value, this expected number of links is also the typical value, and basically, the model is
not fundamentally different from a model without constraints, where the intermediate
density is produced as a result of a completely uniform probability distribution for the
multilink. However, if J exceeds the critical value, the intermediate average density is
no longer the typical one realized by individual graphs sampled from the model: rather,
it is the ensemble average of two typical (high and low) values of the realized density,
just like in the equivalent spin system, below the Curie temperature, and without an
external field one would typically observe, with the same probability, overall positive
and negative magnetization with a zero ensemble average. The numerical simulations
access the typical realized values, while the equations still govern the expected value. This
situation corresponds to a ‘symmetry-broken’ phase, where the typical realizations are less
symmetric than the Hamiltonian that generates them. However, here, the heterogeneity of
the degrees implies different values of the external field Bij = J − θij/2, which means that
the zero-field spontaneous symmetry breaking condition cannot, in general, be realized for
all pairs of nodes simultaneously, leading to a phenomenology governed by the interplay
between the values of J and {θi}N

i=1, and ultimately between the values of the inter-layer
overlap and the node degrees.

3.2. Calculating the Partition Function

The partition function defined in (19) can be written as the product

Z(~θ, J) = ∑
~G∈GM

N

e−H(~G,~θ,J) = ∑
~G∈GM

N

∏
i<j

e−hij(sij ,θij ,J) = ∏
i<j

zij(θij, J), (48)

where zij(θij, J) is the pair partition function, which is a sum of the set Sij of all 2M possible
multilinks for (i, j):

zij(θij, J) ≡ ∑
sij∈Sij

e−hij(sij ,θij ,J). (49)

The multiplex probability can be written in terms of the multilink probabilities Pij(sij, θij, J):

P(~G,~θ, J) = ∏
i<j

Pij(sij, θij, J) (50)

where

Pij(sij, θij, J) ≡ e−hij(sij ,θij ,J)

zij(θij, J)
. (51)

The complete partition function and multiplex probability can therefore be obtained as
products of pair-specific quantities, where each multilink can be regarded as a configuration
of a Curie–Weiss system. To obtain an explicit expression for zij(θij, J), we use a Hubbard–
Stratonovich transformation and the Laplace theorem [49] in the limit M→ ∞. The details
are provided in Appendix A and are a generalization of the approach used in [50]. The
final result is

zij(θij, J) = 2Me−
M
2 θij−2JMuij(uij−1) coshM

(
2Juij −

θij

2

)
, (52)

where uij is the solution to the equation

uij =
1
2
+

1
2

tanh
(

2Juij −
θij

2

)
. (53)

The solutions to the above equation will be discussed in the next section.
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Now, given a particular real multiplex network ~G∗, the log-likelihood, as defined, in
general, in Equation (21), is

L(~θ, J) = ln P(~G∗,~θ, J) = ∑
i<j

[
−hij(s∗ij, θij, J)− ln zij(θij, J)

]
. (54)

At a stationary point of L, the derivatives of L with respect to every Lagrange multiplier
must equal zero. As we show in Appendix B, this leads to the maximum likelihood equations

N

∑
j 6=i

M

∑
α=1

g∗ij
α = M

N

∑
j 6=i

u∗ij ∀i (55)

4
M ∑

i<j
∑

α<β

g∗ij
αg∗ij

β = 2M ∑
i<j

(
u∗ij
)2

(56)

where u∗ij, being the solution to Equation (53) with (~θ, J) replaced by (~θ∗, J∗), is implicitly

related to the maximum likelihood parameters (~θ∗, J∗). Note that the quantities on the LHS
of Equations (55) and (56) are precisely the quantities that we constrained from the start,
namely, Mk

∗
i and 4O∗/M, respectively. According to the maximum likelihood principle,

these empirical quantities must equal their respective ensemble averages, M〈ki〉θ∗ ,J∗ and
4〈O〉θ∗ ,J∗/M, which appear on the RHS. The quantity u∗ij can therefore be considered as an
average probability of a link occurring between the nodes i and j, which is equal throughout
the M layers and is, therefore, a measure of the density of links in the multilink mij. This is
similar to how we identified pij to be the connection probability in the ACM, which was
based solely on the constraints ki. In support of this idea, we see that, in the case J∗ = 0,
the Lagrange multipliers~θ∗ reduce it to the value~θ0 ≡ ~θ∗|J∗=0, such that

u∗ij
∣∣∣

J∗=0
=

1
2

[
1 + tanh

(
−

θ0
i + θ0

j

2

)]
=

e−(θ
0
i +θ0

j )

1 + e−(θ
0
i +θ0

j )
= pij(~θ

0) (57)

which is identical to the expression in Equation (29), providing the link probability pij
obtained in Section 2.5 in the absence of the constraint for the overlap. The quantity u∗ij can
therefore possibly be interpreted as a mean-field quantity that globally incorporates the layer
interdependence that was introduced through the overlap O∗, but locally treats the layers
as if they were independent. A characteristic of mean-field theories is that the effects of all
elements of a system on a given element are approximated by a single, average effect.

Formally, we can calculate the entropy of the data, given the model, as the maximized
likelihood using Equations (25) and (54):

S(~θ∗, J∗) = −L(~θ∗, J∗)

= − ln P(~G∗,~θ∗, J∗)

= H(~G∗,~θ∗, J∗) + ∑
i<j

ln zij(θ
∗
ij, J∗)

= M
N

∑
i=1

θ∗i k
∗
i −

4J∗

M
O∗ + ∑

i<j
ln zij(θ

∗
ij, J∗), (58)

which requires the knowledge of the parameters~θ∗ and J∗ (which are, however, defined
only implicitly through u∗ij). Comparing the above expression with Equation (37), we see

that S(~θ0, 0) = S0(~θ
0), as expected, i.e., the model with J∗ = 0 has the same entropy as the

equivalent ACM with no overlap, for the same value of ~θ0. Similarly, L(~θ0, 0) = L0(~θ
0)

for the maximized likelihood in the two models. In order to understand the relationship
between the entropies of the two models when J∗ 6= 0, let us first note that a positive (resp.
negative) coupling strength J∗ means that the empirical overlap O∗ is larger (resp. smaller)
than the expected overlap under the null model with J∗ = 0, i.e.,
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O∗ ≶ 〈O〉~θ0 ⇔ J∗ ≶ 0 (59)

where we have used the notation in Equation (36). However, one should not naively
conclude from the combination of Equations (58) and (59) that the entropy of the model
with J∗ < 0 is larger than the entropy of the model with J∗ = 0, because the two partition
functions are different, and also because the two entropies are calculated for different
Lagrange multipliers, i.e., ~θ∗ 6= ~θ0 when J∗ 6= 0. In fact, we can actually show that the
entropy of the model with J∗ 6= 0 is always smaller than the one for the model with J∗ = 0.
To see this, we introduce the relative entropy (or Kullback–Leibler divergence) between the
two models, as follows:

R(~θ0,~θ∗, J∗) ≡ ∑
~G∈GM

N

P(~G,~θ∗, J∗) ln
P(~G,~θ∗, J∗)

P0(~G,~θ0)
≥ 0, (60)

where the last inequality is a well-known property of the relative entropy, and the equality
is realized if, and only if, P0(~G,~θ0) and P(~G,~θ∗, J∗) are identical, which, in turn, requires
J∗ = 0, yielding~θ0 = ~θ∗ and R(~θ0,~θ0, 0) = 0. For J∗ 6= 0, we can write

R(~θ0,~θ∗, J∗) = ∑
~G∈GM

N

P(~G,~θ∗, J∗) ln P(~G,~θ∗, J∗)− ∑
~G∈GM

N

P(~G,~θ∗, J∗) ln P0(~G,~θ0)

= −S(~θ∗, J∗) + ∑
~G∈GM

N

P(~G,~θ∗, J∗)
[

H0(~G,~θ0) + ln Z0(~θ
0)
]

= −S(~θ∗, J∗) + ∑
~G∈GM

N

P0(~G,~θ0)
[

H0(~G,~θ0) + ln Z0(~θ
0)
]

(61)

= −S(~θ∗, J∗) + ∑
~G∈GM

N

P0(~G,~θ0) ln P0(~G,~θ0)

= −S(~θ∗, J∗) + S0(~θ
0),

where we have used the fact that H0(~G,~θ0) = M ∑N
i=1 θ0

i ki(~G) has the same expectation
value, equal to M ∑N

i=1 θ0
i ki(~G∗), under both P(~G,~θ∗, J∗) and P0(~G,~θ0):

∑
~G∈GM

N

P(~G,~θ∗, J∗)H0(~G,~θ0) = M
N

∑
i=1

θ0
i

 ∑
~G∈GM

N

P(~G,~θ∗, J∗)ki(~G)


= M

N

∑
i=1

θ0
i ki(~G∗) (62)

= M
N

∑
i=1

θ0
i

 ∑
~G∈GM

N

P0(~G,~θ0)ki(~G)


= ∑

~G∈GM
N

P0(~G,~θ0)H0(~G,~θ0).

Now, applying the inequality R(~θ0,~θ∗, J∗) ≥ 0 in Equation (60) to Equation (62), we get

0 ≤ S(~θ∗, J∗) ≤ S0(~θ
0), (63)

confirming that the entropy of the model with J∗ 6= 0 is always smaller than the one for
the model with J∗ = 0, consistent with the fact that the former is more constrained than
the latter.

4. Local Phase Transitions in the Model

The number of solutions of Equation (53) depends on the values of the parameters
θij = θi + θj and J. We illustrate this fact in Figure 1, where both the LHS and the RHS of
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Equation (53) are plotted as a function of uij for various values of θij and J. The appearance
of multiple solutions signals the existence of phase transitions in the limit when the number
M of layers diverges, which determine abrupt changes in the value of uij and, therefore,
also in the properties of the multilink mij and the structure of the multiplex as a whole. The
configurations for mij that are separated by a phase transition are the phases of the multilink.
The point where multiple solutions appear or vanish is the bifurcation point.

Figure 1. A graphical illustration of the solution(s) of Equation (53). The solid lines show the RHS
of Equation (53) as a function of uij for the different parameters θij ∈ {−12,−8,−4,−2, 0, 2, 4, 8, 12},
while the dashed line shows the LHS, which equals uij itself. For a given parameter value, the
solutions of Equation (53) are the intersection between the dashed and the corresponding solid line.
Each panel corresponds to a different value of J (in the rest of the paper, we will consider only J ≥ 0).

Figure 1 shows that, at the interval 0 ≤ uij ≤ 1, there can be either one, two, or three
solutions, and that for θij → +∞ or θij → −∞ there is always one solution, namely, uij = 0
or uij = 1, respectively. The number of solutions depends on whether the slope (derivative)
of the RHS (which depends on the parameters) exceeds the slope of the LHS (which is
always equal to 1) of Equation (53) at their intersection. From now on, we will consider
only the case J ≥ 0, which corresponds to a tendency to create an increased inter-layer
overlap compared with the model with J = 0. The case J < 0 corresponds to the opposite
case where the overlap is suppressed, which we do not discuss here. New solutions appear
or vanish at the point where Equation (53) is satisfied and the derivatives of the LHS and
RHS of Equation (53) are equal:

1 = J
[

1− tanh2
(

2Juij −
θij

2

)]
. (64)

Equation (64) cannot be satisfied if 0 ≤ J ≤ 1, since 0 ≤ tanh2(x) < 1 for x ∈ R, and,
therefore, if J ≤ 1, a phase transition is impossible, and there is a unique solution for uij.
When J > 1, Equation (64) gives us two potential solution branches, u±ij = 1

2 ±
1
2
√

1− 1/J,
where we have used 2uij − 1 = tanh

(
2Juij − θij/2

)
. Equation (53) can be written as

θij = 4Juij − ln
[
uij/(1− uij)

]
using the identity tanh−1 x = 1

2 ln [(1 + x)/(1− x)]. By then
substituting u±ij into this expression for θij, we obtain the equations for the two curves in
the (J, θij) plane that mark the points where additional solutions appear or vanish:

θ+ij (J) =
2
√

J√
J −
√

J − 1
− ln

(√
J +
√

J − 1√
J −
√

J − 1

)
, (65)

θ−ij (J) =
2
√

J√
J +
√

J − 1
− ln

(√
J −
√

J − 1√
J +
√

J − 1

)
, (66)

as shown in Figure 2. In the region between the two curves, there are three solutions to
Equation (53). Note that the ‘zero-field’ condition θij = 2J is always in that region when
J > 1. This means that the condition J > 1 is sufficient to ensure that the system is in the
magnetized (symmetry-broken) phase when in the absence of the external field. However,
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when θij 6= 2J, the condition J > 1 is necessary but not sufficient. In particular, generally, it
may happen that, for a given value of J > 1, different pairs of nodes will be in different
(magnetized or non-magnetized) phases depending on the value of θij. This shows that
the system can undergo a multitude of separate phase transitions if the parameters {θij}
remain fixed and J is varied.

Figure 2. The upper (blue) and lower (red) curves correspond to Equations (65) and (66), respectively,
which delimit the region of phase space (yellow area), for which Equation (53) has three solutions.
Note that the ‘zero-field’ condition θij = 2J is always in the yellow area when J > 1, so the condition
J > 1 is sufficient to ensure that the system in zero field is in the magnetized (symmetry-broken) phase.

In the magnetized phase, the phenomenon of symmetry breaking will occur: the typical
realized values of the ‘magnetization’ will not coincide with the corresponding ensemble
average. In the zero-field case (θij = 2J), the symmetry breaking is ‘spontaneous’, i.e.,
not induced by any field pointing in a preferred direction, while in the nonzero-field case,
the symmetry is broken by the field itself. This well-known property of the Ising model
has specific implications for our problem here. Indeed, while certain values of θij, J may
solve the maximum likelihood Equations (55) and (56), the corresponding solutions to
Equation (53) may not necessarily maximize the likelihood, and are therefore not ‘valid’ (or
stable). Once the values θ∗ij and J∗ that solve the maximum likelihood equations are found,
the graph probability corresponding to this set of values can be written as a function of
the configuration of the graph (or the collection of configurations of the multilinks mij),
and one can check which typical configurations (those minimizing the Hamiltonian) arise.
As Figure 1 suggests, in the regime where there are three solutions, uij, one value will be
relatively high (which corresponds to a relatively high density of links in mij), another value
will be relatively low (which corresponds to a relatively low density of links in mij), and the
third value will be between the other two, corresponding to an intermediate density of links
in mij. By inspecting the (pair) Hamiltonian in Equation (47) in terms of the σα

ij = 2gα
ij − 1

variable, it becomes clear which of the three solutions u∗ij are viable (stable). In the case
where Bij = 0, or equivalently, when θij = 2J, the (pair) Hamiltonian is symmetric with
respect to a change in sign, σα

ij → −σα
ij, which means that the high- and low-density solu-

tions are equal. This is the symmetry-broken situation we have discussed in Section 3.1. In
this case, the intermediate-density solution will result in a lower value for the Hamiltonian
than the high- and low-density solutions. The viable (stable) solutions are therefore the
high- and low-density ones. In the case where Bij 6= 0, it is clear that the high-density
solution minimizes the Hamiltonian when Bij > 0 and maximizes it when Bij < 0. The
low-density solution minimizes the Hamiltonian when Bij < 0 and maximizes it when
Bij > 0. The intermediate solution will, however, never minimize the Hamiltonian when
B 6= 0, and is therefore never viable (stable). From these considerations, it becomes clear
that a phase transition, corresponding to a sudden change in uij, may only happen when
we cross from a negative (positive) Bij to a positive (negative) Bij (when J > 1). Figure 3
shows the symmetric stable solutions uij in the case where Bij = 0, with the bifurcation
occurring at J = 1. In case of the positive field Bij = +1, it shows a single stable solution
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curve, which is the high-density solution (in the case where Bij = −1, this image would be
flipped with respect to the u∗ij = 1/2 axis). The right panel in Figure 3 shows that the value
of the stable solution uij jumps when Bij crosses from positive to negative, as expected.

Figure 3. Solutions for uij as a function of θij for different parameter values. The blue and red
segments of the curve(s) correspond to the stable and unstable solutions of Equation (53), respectively.
Left panel: Bij = 0 (with J varying accordingly). Middle panel: Bij = 1 (with J varying accordingly).
Right panel: constant value of J = 1.5, which translates to a non-constant Bij.

Combining the above considerations for all multilinks simultaneously, and adding the
other constraint on the layer-averaged degrees, the multiplex will undergo a sequence of
phase transitions, determining a hierarchy of increasingly ordered (magnetized, or rather
‘multiplexed’ in this case) phases where, for an increasing number of pairs of nodes,
the links in different layers will tend to ‘align’ to each other (for J > 1). The separations
between these phase transitions will depend on the values of the enforced layer-averaged
degrees, which determine ~θ∗. The fully ordered phase, where all pairs of nodes are mul-
tiplexed, is the one where all the M layers of the multiplex are perfectly aligned, and are,
therefore, basically an identical copy of each other. We might say that, in this case, the
effective number of independent layers is Meff ≈ 1, and the expected overlap is max-
imal and proportional to the expected number 〈L〉~θ∗ ,J∗ = ∑M

α=1 ∑i<j u∗ij of links in the
entire multiplex:

〈O〉~θ∗ ,J∗ ≈ ∑
α<β

∑
i<j

u∗ij = (M/2)〈L〉~θ∗ ,J∗ , (67)

since 〈gα
ijg

β
ij〉~θ∗ ,J∗ ≈ 〈g

α
ij〉~θ∗ ,J∗ = u∗ij for most pairs, i.e., α, β, of layers. In the opposite extreme,

we have a fully disordered phase where no pair of nodes is multiplexed (for instance, if
J < 1), so the effective number of independent layers is maximal (Meff ≈ M), and the
expected overlap is basically of the order of that given by Equation (36) for the model with
J∗ = 0, i.e.,

〈O〉~θ∗ ,J∗ ≈ ∑
α<β

∑
i<j

(u∗ij)
2, (68)

since 〈gα
ijg

β
ij〉~θ∗ ,J∗ ≈ 〈g

α
ij〉~θ∗ ,J∗〈g

β
ij〉~θ∗ ,J∗ = (u∗ij)

2 for most pairs of layers. The relationship
between 〈O〉~θ∗ ,J∗ and 〈L〉~θ∗ ,J∗ will depend on the specific values of {u∗ij}i<j, so ultimately, on
the enforced degree sequence. Between these two extremes, if the phases are well separated
(which here means that the enforced degrees of different nodes have very different values),
there will be intermediate regimes where 〈O〉~θ∗ ,J∗ and 〈L〉~θ∗ ,J∗ scale in a way that is between
the two limiting scalings. All these general considerations will be confirmed in the next
sections with numerical, analytical, and empirical analyses.

5. Numerical Analysis

Equations (53), (55), and (56) are the key equations of our OACM model. These
equations are generally, however, very difficult to solve. Therefore, before creating a null
model for a real-world network by solving the maximum likelihood equations to find the
Lagrange multipliers, we shall first treat the Lagrange multipliers as free parameters in
order to explore and analyze the properties of the model as a function of these parameters.
This analysis shall be performed by utilizing the Metropolis–Hastings algorithm [51].
This algorithm can be used to sample the exponential probability distribution defined by
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the Hamiltonian of the model. By sampling the distribution, we numerically obtain various
properties of the graph ensemble, which may then be compared to our analytical results in
order to test the validity of the latter. Note that the sampling of the exponential distribution
defined by a specific Hamiltonian may also be regarded as the simulation of a multiplex
that corresponds to that Hamiltonian.

5.1. Exploring the Parameter Space

In order to explore the space of parameters, we are primarily interested in the difference
between statistically homogeneous networks and statistically heterogeneous ones. To this end,
we will explore the parameter space (θ1, . . . , θN , J) of the model by specifying a value for J
and sampling certain transformed parameters x1, . . . , xN from a distribution for each class,
where xi ≡ e−θi . The quantity xi will be referred to as the ‘fitness’, or ‘hidden variable’,
of node i. The broader the distribution of the fitness, the more heterogeneous the resulting
network structure.

5.1.1. Homogeneous Fitness: Erdős–Rényi Graphs with Overlap

The simplest distribution from which we can sample x1, . . . , xN is the delta distribution
centered at x, such that x1 = x2 = . . . = xN ≡ x and, therefore, θ1 = θ2 = . . . = θN ≡ θ =
− ln x, resulting in statistically homogeneous networks. With this choice of parameters, our
model is an extension of the Erdős–Rényi model, which is a random graph model that can
be derived within the ERGM by solely constraining the total number of links in the network,
and where all links occur with the same probability. As we shall see, the extension derives
from the fact that the extra constraint on the overlap can lead to a symmetry-breaking
phase transition, although the broken symmetry might not manifest at first sight. Indeed,
since the parameters are the same for all pairs of nodes, the condition for the existence
of multiple solutions is also the same, and, therefore, there is a unique phase transition
where, depending on the values of θ and J, pairs of nodes are either all ‘magnetized’
or all ‘non-magnetized’. Similarly, since here θij = θi + θj = 2θ ∀i, j, the spontaneous
symmetry-breaking condition discussed in Section 3.1 for the vanishing of the external
field is the same for all pairs of nodes, and given by J = θ. In the symmetry-broken
(magnetized) phase, for all pairs of nodes, the expected value of ∑M

α=1 gα
ij (or equivalently,

of the ‘magnetization’ ∑M
α=1 σα

ij) is the same, and is always between the two typical (high-
density and low-density) realized values. However, since all pairs are independent, the
actual realized values of ∑M

α=1 gα
ij are also independent across pairs, so on average, over

the entire network, the magnetization will realize both the low-density and high-density
values, with equal probability. In other words, different pairs of nodes are i.i.d. realizations
of the same system. This is a peculiar situation where the realized values of L and O (which
represent sums of all pairs of nodes) will still coincide with their expected values as if no
symmetry breaking was present, even if different pairs of nodes actually realize different
symmetry-broken values that are individually different from the expected value. The net
result is an expected number of links 〈L〉 = MN(N − 1)/4) equal to half the maximum
one, or equivalently, an average zero magnetization in the associated spin system. Similar
considerations apply to the case J 6= θ, with the difference that, in that case, the symmetry
is not broken spontaneously, but by the direction of the external field (value of θ), which
implies that the two typical realized values of the magnetization for a given pair of nodes
are no longer symmetric around the expected value. Still, both typical values will be
realized, independently and with their probabilities, across the entire network, because
different pairs of nodes are still independent. So, irrespective of the value of J and θ, we
expect to observe realized values of L and O that correspond again to what one would
observe without symmetry breaking, using the ensemble averages for each pair, irrespective
of the phase of the system. All these considerations are confirmed below.

By looking at Equation (38), we can see that a uniform θ essentially means that instead
of constraining the average layer degrees ki, we constrain the total number of links L in the
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multiplex network. In this case, the combined maximum entropy and maximum likelihood
equations become

u =
1
2
+

1
2

tanh (2J∗u− θ∗) (69)

N

∑
i<j

M

∑
α=1

g∗ij
α =

MN(N − 1)
2

u∗ = 〈L〉θ∗ ,J∗ (70)

4
M ∑

i<j
∑

α<β

g∗ij
αg∗ij

β = MN(N − 1)(u∗)2 =
4
M
〈O〉θ∗ ,J∗ (71)

where u∗ = u(θ∗, J∗) is the solution to Equation (69). Note that we now have a single
equation for u, confirming the existence of a single global phase transition across the
multiplex network, rather than separate local phase transitions for every multilink mij.
Additionally, we note that if u∗ can be considered as the density (and the link probability)
of the network, then the value of u∗ is exactly the same as the value of the density p in the
Erdős–Rényi model [14,27], which solely constrains the number of links in the network. The
difference between our model and the Erdős–Rényi model is that our model contains the
possibility of a phase transition. However, since the number of links 〈L〉 also determines
the overlap 〈O〉, the two quantities cannot be tuned independently of each other.

By using the Metropolis–Hastings algorithm, we have sampled our ERGM for mul-
tiplexes with M = 100 layers and N = 100 nodes for various values of θ and/or J. If we
repeat the simulations for J = 1.5 and θ = 1.4, θ = 1.5, and θ = 1.6, the system must
undergo a phase transition as per Figure 3. We expect an abrupt change in the value of u∗,
and according to Equations (70) and (71), we therefore expect an abrupt change in the equi-
librium value of both L and O. Figure 4 shows simulations for θ ∈ {1.4, 1.5, 1.6} confirming
the transition from a relatively high to a low density as the value of the field B = J − θ
changes sign. These simulations have been repeated for different combinations of values
for J and θ around the point where B changes sign, confirming the results shown here.
Note that the middle plot in Figure 4 shows that the algorithm converges to multiplexes
with a density of 1/2, confirming that, when B = 0, L is approximately half of the total
amount of possible links in the multiplex, as we expected above.

In Figure 5 we test the prediction, given by Equations (70) and (71), of the quadratic
relationship 〈O〉 = 〈L〉2/N2. Note that this quadratic trend is predicted irrespective
of the value of J > 0, and even coincides with what Equation (68) predicts in the case
J = 0 for a homogeneous multiplex with constant θ, as considered here. So, in this case,
the expected relationship between 〈O〉 and 〈L〉 is not informative regarding the phase
transition, although the specific values picked up by the system along the curve are. Indeed,
we again simulate multiplexes with M = 100 layers, N = 100 nodes, and a variety of
values for θ and J. Each simulation results in a value for 〈L〉 and a value for 〈O〉, which we
plot against each other. These points are then compared to the theoretical points predicted
by Equations (69)–(71) for the chosen parameter values, and added to Figure 5. We see
that the relationship between simulated quantities is in agreement with the one predicted
by the model. As we had anticipated, this is the result of the fact that different pairs of
nodes are i.i.d. realizations of the same system, so that the ensemble average is realized as
a sample average of the pairs of nodes across the network, even if in the symmetry-broken
phase, the ensemble average of ∑M

α=1 gα
ij is not representative of any of the values realized

locally for individual pairs of nodes. Therefore, the only scaling we observe coincides
with the one given in Equation (68) for the ‘non-magnetized’ regime in the case where
θ is the same for all nodes. The only, although very important, signature of the phase
transition we see in Figure 5 is the fact that, for J > 1 and θ 6= J, both the simulated data
and the corresponding theoretical predictions ‘drift away’ from the intermediate values of
〈L〉 (which are still obtained for θ = J) towards either low (θ > J) or high (θ < J) values of
〈L〉. This is because the realized multiplex networks are either low-density or high-density,
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which is an indication of a phase transition occurring when increasing the value of J, exactly
as predicted by Figure 3.

x 105 x 105 x 105

x 107 x 106 x 106

Figure 4. Total number of links L (top panels) and inter-layer overlap O (bottom panels) as a function
of simulation time using the Metropolis–Hastings algorithm for J = 1.5, N = 100, M = 100. Left
panels: θ = 1.4. Middle panels: θ = 1.5 = J (symmetry-broken case). Right panels: θ = 1.6. For
fixed J, varying θ determines a phase transition from a high-density phase to a low-density phase.

We conclude our discussion of the homogeneous case by noting that, given an em-
pirical multiplex ~G∗ of interest, the entropy of the data given, in general, by Equation (58)
reduces, in this case, to

S(θ∗, J∗) = Mθ∗
N

∑
i=1

k
∗
i −

4J∗

M
O∗ + ∑

i<j
ln zij(2θ∗, J∗)

= 2θ∗L∗ − 4J∗

M
O∗ +

N(N − 1)
2

ln z(2θ∗, J∗), (72)

where we have used Equation (9) (denoting, via L∗ = L(~G∗), the total number of links
in the multiplex, which also equals the expected value 〈L〉θ∗ ,J∗ ) and the fact that the pair
partition function zij, given by Equation (52), has the same value z(2θ∗, J∗) ≡ zij(2θ∗, J∗)
for all the N(N − 1)/2 pairs of nodes. From Equation (72), we see that the entropy is
determined, as expected, by both L∗ and O∗. At the same time, we know that O∗ depends
uniquely and quadratically on L∗ in this homogeneous model. The values achieved by
the entropy are, therefore, bound by the relationship between L∗ and O∗, which here is
the same irrespective of the value of J∗, including when J∗ = 0. In any case, the entropy
also depends on the specific values of (θ∗, J∗), and Equation (63) guarantees that an upper
bound for S(θ∗, J∗) is given by the entropy S0(θ

0) of the ACM model with J∗ = 0 and
θ∗ = θ0 (clearly, the homogeneity implies that θ0

i = θ0 for all i = 1, N in the ACM model
as well).
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Figure 5. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in homogeneous multiplexes with N = 100, M = 100, and θi = θ for all i = 1, N. The
blue points correspond to simulations obtained via the Metropolis–Hastings algorithm for J ∈
{0.0, 0.3, 0.6, 0.9, 1.2, 1.5} and θ ∈ [0.05, 2.00] in steps of ∆θ = 0.05. The open red circles are the
corresponding theoretically predicted points. The solid curve corresponds to the quadratic trend
〈O〉 = 〈L〉2/N2 predicted for all J ≥ 0. Multiple solutions for u∗ij first appear when J > 1, but the
system keeps following the quadratic trend, albeit drifting away from the central point obtained for
the zero-field case θ = J (corresponding to a spontaneously broken symmetry).

5.1.2. Power-Law-Distributed Fitness: Scale-Free Networks with Overlap

We now move away from the homogeneous case and consider a situation where
the fitness values {xi}N

i=1 are drawn from a heavy-tailed distribution, in particular, a
power law. This choice will produce a high degree of heterogeneity. In the ACM (see
Section 2.5), the expected degree distribution is determined by the Lagrange multipliers θi,
or equivalently, the transformed hidden variables xi = e−θi . If x is distributed according to
a power law, the expected degree distribution shall be distributed according to a power
law as well, with the modulo as an upper cut-off. Since our OACM is an extension of the
ACM, we will still sample xi from a power law distribution P(x) ∼ x−γ for various values
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of γ, even though the expected degree distribution is not solely determined by the hidden
variables {xi}, but depends on J as well. In any case, a higher level of heterogeneity in the
hidden variables xi will lead to a higher level of heterogeneity in the degrees. Since the
parameter space is rather large (N + 1-dimensional), we define

xi = zx0,i (73)

where z is a scaling factor. We sample x0,i only once from every chosen distribution.
The value of xi is varied by varying the scaling factor z. The parameter space to be explored
will then be (z, J), which is 2-dimensional. We deduce that

θi = − ln (zx0,i) (74)

which shows that an increasing z leads to a decreasing θi. In the ACM, we have shown that
the link probability is equal to pij = xixj/(1 + xixj), which means that larger values of xi
lead to a larger expected degree, so that increasing all the fitness values will increase the
density in the network. This qualitative relationship still holds with the addition of the
constraint on the expected overlap (for fixed J).

The complexity of Equations (53), (55), and (56) does not allow us to easily derive
the expected relationship between the overlap and the number of links in the network,
as was the case when θi was constant. It is, however, possible to visualize the relationship
between the overlap and the number of links by using the Metropolis–Hastings algorithm.
Figure 6 shows this relationship, where xi is sampled from power law distributions with
various values of γ, alongside the expected quadratic term previously observed to occur
for homogeneous values of the fitness xi (delta distribution). We see that the overlap
for a given number of links is higher in the cases where x is drawn from a power law
distribution than when x is drawn from a delta distribution, even though the coupling
parameter J is kept constant. The cause of this difference lies in the level of heterogeneity
of the fitness distribution: unlike the homogeneous case, now different pairs of nodes
have very different values of θij = θi + θj, and, therefore, the condition J = θij/2 for the
vanishing of the ‘external field’ Bij (spontaneous symmetry-breaking condition) cannot be
realized simultaneously by all pairs. The figure also shows the effect of different exponents
of the power law distributions of the fitness. A smaller value of γ leads to a higher overlap
for a given number of links. By increasing the value of γ, the power law distribution
becomes more sharply peaked, and will therefore lead to more homogeneous networks.
Note, however, that increasing the value of the coupling parameter J itself also leads to an
increase in the overlap for a given number of links for the same distribution.

Importantly, the phase transition now occurs for different pairs of nodes as J is varied.
Some pairs of nodes will be in the non-magnetized phase, while others will be in the
magnetized phase. The effective number Meff of independent layers will, in general,
depend on the choice of parameters. Among the magnetized pairs, the realized values
of the overlap are no longer those corresponding to the ensemble average (as in the
homogeneous case), but typically to the symmetry-broken solution with lower energy
(hence dictated by the value of θij), because no other pair of nodes will, in general, exist
with the same parameters and such that the two symmetry-broken values are averaged by
the resulting value of the realized overlap. In particular, while for 0 < J < 1 all node pairs
are in the non-magnetized phase, as J increases from 1 towards larger values, the pairs
of nodes that first undergo the phase transition are the ones with values θi + θj that fall
between the limits set by Equations (65) and (66). As those equations and Figure 2 show,
there are more and more combinations θi + θj entering the magnetized phase as J increases.
When J is sufficiently large, all pairs will be magnetized. Clearly, for any two pairs of
nodes, (i, j) and (i, k), that share the same node, i, the values of θi + θj and θi + θk will be
correlated, as they share the same term θi. This means that the pairs of nodes entering the
magnetized phase typically have nodes in common, even if it would be incorrect to say that
individual nodes enter the magnetized phase ‘one by one’, while this is certainly correct for
individual node pairs, if the sum θi + θj is different across all of them.
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Figure 6. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in heterogeneous multiplexes with N = 100, M = 100, and x0,i sampled from a power law
distribution with different values for γ. The colored points correspond to simulations obtained via
the Metropolis–Hastings algorithm for J ∈ {0.0, 0.3, 0.6, 0.9, 1.2, 1.5} and z ∈ [0.05, 2.00] in steps of
∆z = 0.05. The straight line corresponds to the upper limit 〈O〉 = M〈L〉/2 calculated in Equation (67).
The solid curve corresponds to the quadratic trend 〈O〉 = 〈L〉2/N2 (achieved by homogeneous
multiplexes with constant xi), which here turns out to mark a lower bound. For increasing values
of J, and especially as J > 1, the system moves closer to the upper bound. For J = 1.5, we see
that the points are concentrating towards high-density and low-density (symmetry-broken) regimes,
drifting away from the intermediate values, like in the homogeneous case. However, this is now
the combined result of the behavior of statistically different pairs of nodes, each having a different
zero-field condition θi + θj = 2J, so the spontaneous symmetry breaking cannot be realized for all
node pairs simultaneously.
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Figure 6 indeed shows the effect of the changing number of magnetized node pairs as
J increases above 1. We note that, for larger and larger J, the relationship between 〈O〉 and
〈L〉 tends towards the ‘maximally multiplexed’ linear extreme (shown as a straight line)
given in Equation (67). At the same time, we see that the ‘non-multiplexed’ case (J < 1)
described by Equation (68) now realizes values of the overlap that are very different from
the quadratic trend achieved by the homogeneous model (also shown as a solid curve in
Figure 6), which now turns out to represent a lower bound. We can ‘zoom in’ to better
see this difference by looking at Figure 7, where, by using Equations (53), (55), and (56),
we additionally calculate the theoretically predicted values of 〈O〉 and 〈L〉 and compare
them to the simulation data, where x0,i is sampled from a power law distribution with
γ = 1 (the results for γ ∈ {2, 3, 4} are qualitatively similar and are therefore not shown
here). The figure confirms a strong deviation from the curve for the homogeneous model,
even when J = 0 (signaling a much higher but spurious overlap, arising only from the
rising correlation among node degrees across different layers), and a close agreement with
the maximally overlapping value in Equation (67) already for J = 1.5 (corresponding to a
further increase in overlap, arising from an additional, genuine coupling between layers).

(x 105) (x 105)

(x 107) (x 107)

Figure 7. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in heterogeneous multiplexes with N = 100, M = 100, and x0,i sampled from a power law
distribution with γ = 1. The blue points correspond to simulations obtained via the Metropolis–
Hastings algorithm for z ∈ [0.05, 2.00] in steps of ∆z = 0.05 with J = 0 (left panel) and J = 1.5
(right panel). The red open circles are the theoretically predicted values corresponding to the same
parameters used in the simulations. The straight line corresponds to the upper limit 〈O〉 = M〈L〉/2
calculated in Equation (67). The solid curve corresponds to the quadratic trend 〈O〉 = 〈L〉2/N2

(achieved by homogeneous multiplexes with constant xi), which here turns out to mark a lower
bound. We see that, compared with the homogeneous lower bound, the heterogeneity of nodes
increases the overlap dramatically, even in the absence of true coupling (J = 0). When coupling is
present, the overlap is additionally increased and already approaches the upper bound for J = 1.5.

5.1.3. Log-Normally Distributed Fitness

The delta and power law distributions we have considered so far represent examples of
completely homogeneous and extremely heterogeneous (especially for γ = 1) distributions,
respectively. We now consider the log-normal distribution as a third example between these
two extremes. This analysis will indeed lead to results that are in some sense intermediate
between what we have observed so far, and useful for interpreting the real-world case that
we will present later on. A log-normal distribution is the distribution of a random variable
whose logarithm is normally distributed (i.e., if the random variable x is log-normally
distributed, then y = ln x follows a normal distribution). The probability density for a
log-normal distribution is

P(x) =
1

xσ
√

2π
e−(ln x−µ)2/(2σ), (75)
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where µ and σ correspond to the mean and the standard deviation of the normal distribution
of ln x. We will vary the value of xi by again introducing a scaling factor that can be changed
such that xi = zx0,i and θi = − ln (zx0,i), where we sample x0,i once from the log-normal
distribution for a variety of values for µ and σ.

The log-normal distribution allows us to inspect the transition in the relationship
between the overlap and the number of links from the quadratic lower limit to the linear
upper limit by varying the value of σ. Indeed, when 0 < σ � 1, the normal distribution
of ln x0,i is sharply peaked. By decreasing the value of σ towards 0, ln x0,i (and, therefore,
x0,i as well) shall approach a delta distribution. This is the distribution that led us to
the quadratic lower limit for the relationship between the overlap and the number of
links in the network. Conversely, when σ� 1, the log-normal distribution approaches a
distribution with a power law tail with γ = 1. This distribution led us to the linear upper
limit between the overlap and the number of links in the network (when J was sufficiently
large). By increasing the value of σ from 0 to a sufficiently large value (e.g., σ = 10), we
can therefore increase the heterogeneity of the network from a completely homogeneous
network achieving the quadratic lower limit to an extremely heterogeneous network close
to the linear upper limit relationship in the simulation data.

Figure 8 shows the relationship between the average overlap and the number of links
in the network with simulation data that were obtained by using the Metropolis–Hastings
algorithm for a variety of values for J and σ. Again, the linear upper limit is illustrated as a
straight line and the quadratic lower limit as a solid curve. The figure confirms that in the
case where J = 0, the data points that correspond to x0,i being sampled from a log-normal
distribution with a relatively low value for σ are either on or close to the quadratic lower limit
curve. On the other hand, the case where σ = 10 results in data points where the overlap
in the network for a given number of links is almost maximal, and therefore approaches the
linear upper limit. This first set of results confirms the strong role of node heterogeneity in
determining increased correlations between the degrees of the same node across different
layers, which, in turn, increase the inter-layer overlap even without any explicit coupling
(J = 0), and hence, in a ‘spurious’ manner. On the other hand, when we increase the value of
J, the data points corresponding to relatively low values of σ (e.g., σ = 10−5 and σ = 10−3)
stay on or close to the quadratic lower limit, a finding similar to the results in Section 5.1.1,
showing that the symmetry-broken values realized by different pairs of nodes, when averaged
across the network, restore the ensemble average because the node pairs are all independent
and (almost) identically distributed. Remarkably this means that, in a certain sense, node
homogeneity ‘suppresses’ the effects of the true inter-layer coupling (J > 0) on the realized
overlap. For the intermediate value σ = 1.0, the data are distributed close to the quadratic
lower limit curve only for low values of J, while increasing the value of J leads to a more linear
trend, eventually approaching the linear upper limit. In this case, the coupling is effective
in producing a higher realized overlap. In the case where σ = 10, the linear trend is instead
achieved already for J = 0.0 (although the points are aligned below it); hence, increasing the
value of J barely influences the value of the overlap for a given number of links.

Therefore the effect of increasing J in networks with a moderate heterogeneity is a
transition from multiplex configurations with densities of all levels towards multiplex config-
urations with either low or high density, which is a result of the phase transition. It also shows
that a very high level of heterogeneity leads to an overlap in the network that is already close
to maximal for a given number of links, irrespective of the phase transition and the value of
J. However, in the case where we have an intermediate level of heterogeneity (σ = 1.0), we
observe that the effect of the coupling can be relatively strong, and we can therefore construct
networks with a combination of the overlap and number of links falling between the extreme
linear upper limit and the quadratic lower limit in a controlled, systematic manner. Note that
Figure 8 also shows that, as J increases above 1, the (symmetry-broken) realized data start to
‘drift away’ from the intermediate densities, in a way similar to what we observed in Figure 5,
but in a more pronounced manner. This is due to the fact that, as J increases, a larger number
of multilinks shall be either in the low-density or high-density phase.
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Figure 8. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in heterogeneous multiplexes with N = 100, M = 100, and x0,i sampled from a log-normal
distribution with different values for σ. The colored points correspond to simulations obtained
via the Metropolis–Hastings algorithm for J ∈ {0.0, 0.3, 0.6, 0.9, 1.2, 1.5} and z ∈ [0.05, 2.00] in
steps of ∆z = 0.05. The straight line corresponds to the upper limit 〈O〉 = M〈L〉/2 calculated
in Equation (67). The solid curve corresponds to the quadratic trend 〈O〉 = 〈L〉2/N2 (achieved
by homogeneous multiplexes with constant xi), which here marks a lower bound achieved when
σ→ 0+. For increasing values of J (genuine coupling) and σ (spurious coupling), the system moves
closer to the upper bound. For J > 1, we see that, starting from the multiplexes with smaller values
of σ, the points are concentrating towards high-density and low-density (symmetry-broken) regimes,
drifting away from the intermediate values, like in the homogeneous and power law cases. To realize
this separation for larger values of σ, a larger value of J is required.
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Again, in Figure 9 (which is the counterpart of Figure 7), we ‘zoom in’, and, using
Equations (53), (55), and (56), we show the theoretically predicted values of 〈O〉 and
〈L〉 and compare them to the simulation data, where x0,i is sampled from a log-normal
distribution with σ = 1, for J = 0 and J = 1.5. The results for σ ∈ {10−5, 10−3, 10−1, 101} are
not shown here since relatively low and high values for σ lead to results similar to those we
have shown in Sections 5.1.1 and 5.1.2, respectively. Figure 9 confirms that the theoretical
predictions are in good agreement with the simulation data, apart from the expected
‘drifting away’ of symmetry-broken values from the corresponding ensemble average.

(x 107)

(x 105) (x 105)

(x 106) (x 107)

Figure 9. Relationship between the expected inter-layer overlap 〈O〉 and the total number of links
〈L〉 in heterogeneous multiplexes with N = 100, M = 100, and x0,i sampled from a log-normal
distribution with σ = 1. The blue points correspond to simulations obtained via the Metropolis–
Hastings algorithm for z ∈ [0.05, 2.00] in steps of ∆z = 0.05 with J = 0 (left panel) and J = 1.5
(right panel). The red open circles are the theoretically predicted values corresponding to the same
parameters used in the simulations.

6. Analysis of the World Trade Multiplex

In this section, we finally consider an application of the model to a real-world eco-
nomic network. Since our models lead to multiplex networks with independent pairs
of nodes (i.e., independent multilinks) even when links are correlated across layers, it is
important that the real-world network is consistent with this assumption. For instance,
networks constructed from time series data [3–5] are not viable, because the known (and
strong) correlations between the time series corresponding to different vertices generate
dependencies between pairs of nodes (and higher-order patterns) through the triangular
inequality [6,7]. For this reason, we select the World Trade Multiplex as an ideal case study
for the present analysis, because each separate layer of that network has been successfully
modeled in the past via maximum entropy models of networks with given degrees [31–33].
At the same time, it has been shown that certain structural properties of commodity-specific
layers are very similar across the different layers of the multiplex [30], and that this similar-
ity (in particular, the correlation among the degrees of the same node in different layers)
generates a large spurious component of the inter-layer overlap [28,29], which is not nec-
essarily due to a genuine coupling. In this sense, our analysis here will add a natural
novel aspect to the modeling of the network, namely, the explicit comparison with a model
with nontrivial coupling among layers, which has not been considered so far. We use
the UN-COMTRADE dataset that represents the multiplex network of international trade
(https://comtradeplus.un.org, accessed on 2 September 2019). The different layers of this
multiplex network represent different commodities. The vertices in this network represent
different countries, and a link exists between two countries in a given layer if there is
trade between them in that commodity. The data include N = 206 countries and M = 96
commodities. Some examples of traded commodities are meat, fish, dairy products, coffee,
and tobacco [30,33].

https://comtradeplus.un.org
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Using the international trade data, we wish to identify a possibly nontrivial overlap
by creating (L, O) plots similar to the ones depicted in Figures 6 and 7 or 8. We therefore
repeatedly filter the network such that each layer α has the same number of links Lα ≡ L0

(where α = 1, . . . , M), and calculate the corresponding overlap O for the specified value of
L0 (note that this means that the total number of links in the entire multiplex is L = ML0).
The criterion we follow is choosing the L0 strongest (highest weight) links in every layer
to obtain data with comparable degrees across layers, as in our models. Note that, by
using this filtering method, the highest possible density we can achieve is limited by the
density of the sparsest layer in the unfiltered network. The results are shown in Figure 10,
which indicates that the overlap for a given number of links appears to be around halfway
between the quadratic lower limit curve and the linear upper limit curve. This suggests
that the degree of heterogeneity of the network is intermediate, similar to that realized by
log-normally distributed fitness values, as in our example considered above.

As anticipated, we are currently unable to solve the maximum likelihood equations in
order to obtain the joint values of all the Lagrange multipliers in the full OACM model with
J 6= 0. However, after filtering the original empirical network such that every layer has L0

links, we can use the values of the hidden variables x∗i for the null model corresponding
to the absence of inter-layer coupling, i.e., to J∗ = 0. As we have shown in Equations (57),
this assumption reduces our model to the ACM discussed in Section 2.5. The maximum
likelihood equations in this case are much easier to solve, and can be found using one of
the numerical algorithms available at https://meh.imtlucca.it (accessed on 1 May 2023).
This procedure is repeated for a range of values for L0. The cumulative distribution of the
hidden variables x∗i are plotted in Figure 10 for various values of L0. The figure qualitatively
shows that the shape of the cumulative distribution of x is fat-tailed and indeed similar to
the one for a log-normal distribution. Moreover, it does not vary with L0, apart from an
overall change of scale.

The null model with J∗ = 0, when compared to the data for the same choice of L0,
allows us to detect the presence of nontrivial coupling among the layers, when present.
Indeed, from Figure 10, we see that the filtered networks have a relatively high overlap,
the data points being distributed along a similar trend as the one corresponding to a
nonzero J in our previous heterogeneous examples. By using the values of the hidden
variables for the model with J∗ = 0, we can calculate the corresponding expected number
of links and the expected overlap under the null hypothesis of no coupling between the
layers, but the same average degree sequence in the real network. The results are shown
in Figure 10, alongside the curve corresponding to the empirical data. We see that the
assumption J = 0 leads to an insufficiently overlapping multiplex, demonstrating the
necessity of a model that introduces dependencies between the layers of a network. The
difference between the two curves can be quantified by fitting both to the curve

O = ALα (76)

where A is a proportionality factor and α is an exponent (not to be confused with the label of
a layer of the multiplex). For the empirical data, we find a steeper increase characterized by
an exponent αempirical = 1.19, while for the predictions from the ACM, we find αCM = 1.06
(see Figure 10). The difference between the two values implies that the difference between
the realized and expected overlap increases as L increases, confirming that the observed
overlap in the WTM is not only the spurious result of the correlated heterogeneity of the
degrees of countries, but reflects genuine (J∗ > 0) inter-layer dependencies.

https://meh.imtlucca.it
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Figure 10. Comparison of the empirical World Trade Multiplex (WTM) with the zero-coupling
(J∗ = 0) benchmark provided by the Average Configuration Model (ACM). The WTM consists of
N = 206 nodes, each representing a country, and M = 96 layers, each representing a commodity
group. The filtered data were obtained by retaining the same number L0 of strongest links in each
layer (hence L = ML0 links in the entire multiplex), and varying L0. Top left: relationship between
the expected inter-layer overlap 〈O〉 and the total number of links 〈L〉 in the WTM (blue), compared
with the upper limit 〈O〉 = M〈L〉/2 calculated in Equation (67) (purple straight line) and the
quadratic trend 〈O〉 = 〈L〉2/N2 achieved by homogeneous multiplexes (black solid curve). Top right:
zoomed-in version of the top left panel, showing that the empirical data follow an intermediate
scaling between the two extremes. Center left: cumulative distributions reporting the number F(x) of
nodes with hidden variable larger than x in the ACM, obtained for different values of L0 (see legend).
Center right: same as the top right panel with the addition of the relationship produced by the ACM
benchmark, showing that the empirical WTM (blue) has a higher overlap than the corresponding
null model having zero inter-layer coupling but the same degree heterogeneity (orange). Bottom left:
log–log plot of the relationship between the overlap and the number of links in the empirical WTM,
along with a power law fit of the form O = ALα, where the fitted exponent is α = 1.19. Bottom right:
log–log plot of the same relationship in the ACM benchmark with no coupling, along with a power
law fit of the form O = ALα, where the fitted exponent is α = 1.06.

We conclude with a discussion about the entropy in the heterogeneous case, analogous
to the one we made in Section 5.1.1 in the homogeneous case. Here we note that, given a
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multiplex ~G∗ of interest, the entropy S(~θ∗, J∗) of the data, given the OACM model, is the
one given by Equation (58), which in the heterogeneous case cannot be, in general, reduced
to a simpler formula. However, if we define the minimum and maximum values of the
hidden variables as

θ∗min ≡ min
i=1,N

{θ∗i }, θ∗max ≡ max
i=1,N

{θ∗i }, (77)

respectively, we can bound the entropy as follows:

Smin(~θ
∗, J∗) ≤ S(~θ∗, J∗) ≤ Smax(~θ

∗, J∗) (78)

where we have defined

Smin(~θ
∗, J∗) ≡ 2θ∗minL∗ − 4J∗

M
O∗ + ∑

i<j
ln zij(θ

∗
i + θ∗j , J∗), (79)

Smax(~θ
∗, J∗) ≡ 2θ∗maxL∗ − 4J∗

M
O∗ + ∑

i<j
ln zij(θ

∗
i + θ∗j , J∗). (80)

The bounds in Equation (78) are alternative to the general ones in Equation (63), and ar-
guably more useful to characterize how the entropy is effectively constrained by, once again,
the relationship between L∗ and O∗. The latter, unlike the homogeneous case, is not neces-
sarily quadratic, and can follow the diverse trends we have shown in Figures 6, 8 and 10.
In particular, the power law relationship captured by Equation (76) for the empirical WTM
provides a convenient way of bounding S(~θ∗, J∗) via Equations (78)–(80).

7. Conclusions

In this paper we have introduced a maximum entropy model, or ERGM, of multiplex
networks with given degrees and inter-layer overlap. The model allowed us to separately
control the effects of the correlations between node degrees across different layers (which
lead to a spurious overlap) and that of a genuine inter-layer coupling. The nature of the
enforced constraints is such that different pairs of nodes are statistically independent, even
if the parameters governing them are correlated via those of the nodes they share.

For each pair of nodes, the model can be mapped exactly to a mean-field Ising model
featuring a magnetization-like phase transition, which includes the possibility of (spon-
taneous) symmetry breaking. Given the difficulty of solving the maximum likelihood
equations to obtain the values of the Lagrange multipliers corresponding to a particular
real network, we first treated the Lagrange multipliers as free parameters in order to explore
and analyze the properties of multiplex systems as a function of these parameters using
numerical methods. Additionally, the numerical results were compared to our analytical
results in order to test the validity of the latter. We have shown that the analytical equations
are highly accurate. The combined result, at the level of the entire multiplex, of the proper-
ties of all node pairs is nontrivial and crucially depends on the values of the node-specific
parameters, which ultimately depend on the enforced degrees.

In the fully homogeneous case, the phase transition occurs at the same critical point for
all node pairs simultaneously, because the parameters are identical for all nodes. However,
the independence of different node pairs implies that, even in the magnetized phase,
the realized values of the inter-layer overlap and total number of links coincide with
the ensemble average. This happens because different node pairs realize all the possible
symmetry-broken values independently, so that an average of the realized values for a large
number of independent node pairs asymptotically equals the ensemble average. The value
of J has little effect on the relationship connecting the overlap to the number of links, which
remains similar to what we observed for the case J = 0, showing that node homogeneity
suppresses the effects of a genuine inter-layer coupling.

In the heterogeneous case, the phenomenology is very different since, despite the
fact that node pairs are still independent, they are now governed by different parameters,
and the ensemble average for a given pair can no longer be realized as an average of the
realized values of pairs with the same parameters. This implies that the observed overlap
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and number of links will depend on the realized symmetry-broken values, whose typical
value does not coincide in general with the ensemble average, and is determined by the
node-specific parameters (hence, ultimately by the degrees). Moreover different pairs of
nodes are, in general, found in different phases, so the multiplex displays, as a function of
the parameters, a hierarchy of phase transitions. We have found that increasing the value of
the coupling parameter J generally increases the (genuine) overlap for a given number of
links, if there is enough node heterogeneity. However, we have also shown that increasing
the heterogeneity of the network increases the (spurious) overlap for a given number of
links as well. This is a consequence of the presence of large hubs that appear in a correlated
manner across layers, due to the increased heterogeneity of the network. Additionally,
every multilink that is connected to these hubs has a relatively low critical threshold for
the coupling parameter J. Therefore, these multilinks have a higher probability to be in
the high density phase, which leads to a higher overlap as well, which corresponds to
increasing the amount of genuine correlation. In general, the overlap for a given number of
links can be increased by increasing either the heterogeneity of the network or the value of
the coupling parameter, with a subtle interplay between the two. In principle, this can be
used in order to create multiplexes with a specific degree of overlap for a given of number
of links, provided their combination is within the theoretical limits discussed in Section 5.

Finally, by using a dataset that represents the empirical multiplex network of interna-
tional trade in several commodity-specific layers, we have used the model to disentangle
the spurious overlap arising from the documented strong correlation of node degrees across
layers [28,29] from the genuine overlap arising from actual inter-layer coupling. We have
found that the assumption that there is no coupling between the layers (J = 0), which
reduces our model to the ACM, results in a multiplex with insufficient inter-layer overlap.
This means that the empirical overlap is not merely the spurious result of the correlated
heterogeneity of the network, but requires a true nonzero coupling between layers.

Our results demonstrate the subtleties of the interplay between node heterogeneity
and inter-layer dependencies in multiplex networks, highlighting the need for null models
that can control these factors separately. In this paper, we have introduced perhaps the
simplest, although already very rich, model of this type. Our model can be seen as a
minimal one, to be further generalized in the future.
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Appendix A. Hubbard–Stratonovich Transform

The pair Hamiltonian of our OACM in Equation (47) can be rewritten as

hij(sij, Bij, J) = −Bij

M

∑
α=1

σα
ij −

J
2M

(
M

∑
α=1

σα
ij

)2

+
J
2
+ vij. (A1)

We want to obtain an expression for the pair partition function:

zij(Bij, J) = ∑
sij∈Sij

e−hij(sij ,Bij ,J)

= ∑
sij∈Sij

exp

[
J

2M

(
M

∑
α=1

σα
ij

)2

+ Bij

M

∑
α=1

σα
ij −

J
2
− vij

]

= e−J/2e−vij ∑
sij∈Sij

exp

(√ J
2M

M

∑
α=1

σα
ij

)2

+ Bij

M

∑
α=1

σα
ij

.

(A2)

The argument of the exponent in the above expression can be linearized by using the
Gaussian integral

ea2
=

1√
2π

∫ ∞

−∞
dξije

−ξ2
ij/2+

√
2aξij . (A3)

In our case, by choosing a =
√

J/(2M)∑M
α=1 σα

ij the partition function factorizes with
respect to the individual summations of σα

ij:

zij(Bij, J) =
e−J/2−vij

√
2π

∑
sij∈Sij

∫ ∞

−∞
dξije

−ξ2
ij/2 exp

[
M

∑
α=1

σα
ij

(√
J

M
ξij + Bij

)]

=
e−J/2−vij

√
2π

∫ ∞

−∞
dξije

−ξ2
ij/2 ∑

σ1
ij∈{−1,1}

· · · ∑
σM

ij ∈{−1,1}

M

∏
α=1

exp

[
σα

ij

(√
J

M
ξij + Bij

)]

=
e−J/2−vij 2M
√

2π

∫ ∞

−∞
dξije

−ξ2
ij/2

[
cosh

(√
J

M
ξij + Bij

)]M

. (A4)

Performing the change of variable
√

J/Mξij = Jyij we obtain

zij(Bij, J) = 2M
√

JM
2π

e−J/2e−vij

∫ ∞

−∞
dξij

[
ΦJ,Bij(yij)

]M
(A5)

where
ΦJ,Bij ≡ e−Jy2

ij/2 cosh
(

Jyij + Bij
)
. (A6)

We are interested in the large M limit. To proceed in the calculation of zij(Bij, J), it is useful
to define the quantity

fij(Bij, J) ≡ − lim
M→∞

1
M

ln zij(Bij, J) = − lim
M→∞

ln z1/M
ij (Bij, J) (A7)

which is the free energy per layer. By inserting the result (A5) into (A7), we obtain

fij(Bij, J) = − ln 2− lim
M→∞

1
M

[
ln

(
e−J/2

√
JM
2π

)
− vij + ln

(∫ ∞

−∞
dyij

[
ΦJ,Bij (y)

]M
)]

= − ln 2 +
J
2
− Bij − ln

[
lim

M→∞

(∫ ∞

−∞
dyij

[
ΦJ,Bij (y)

]M
)1/M

]
. (A8)
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In order to obtain a more explicit form of the function fij(Bij ,J), we use the Laplace
theorem [49]. Let φ(y) and ψ(y) be continuous and positive functions within a range
c ≤ y ≤ d, then

lim
M→∞

[∫ d

c
ψ(y)(φ(y))M

]1/M

= max
c≤y≤d

φ(y). (A9)

For ψ(y) = 1 and φ(y) = ΦJ,Bij(y), this results in

fij(Bij, J) = − ln 2 +
J
2
− Bij − ln

[
max

−∞≤yij≤∞
ΦJ,Bij(yij)

]
. (A10)

The derivative of ΦJ,Bij(yij) with respect to yij is zero at its maximum:

dΦJ,Bij(yij)

dyij
= Je−Jy2

ij/2 sinh
(

Jyij + Bij
)
− Jyije

−Jy2
ij/2 cosh

(
Jyij + Bij

)
= 0. (A11)

The variable yij therefore obeys the equation

yij = tanh
(

Jyij + Bij
)
. (A12)

Note that this equation is identical to the one obtained for the magnetization in the Ising
Model, and, depending on the values of J and Bij, there are either one or three solutions
that satisfy Equation (A12). The free energy fij can now be written as a function of J and Bij:

fij(Bij, J) = − ln 2 +
J
2
− Bij +

J
2
(
yij
)2 − ln

[
cosh

(
Jyij + Bij

)]
. (A13)

We then finally arrive at the pair partition function

zij(Bij, J) = e−M fij

= 2Me−vij e−JM(yij)
2
/2 coshM (Jyij + Bij

)
(A14)

which, returning to the variables θij, coincides with Equation (52) in the main text, where
uij is the solution to Equation (53).

Appendix B. Maximum Likelihood

To determine the parameters (~θ∗, J∗) that maximize the log-likelihood of the OACM
given in Equation (54), we first calculate the derivatives

−∂L(~θ, J)
∂θk

= ∑
i<j

∂hij(m∗ij, θij, J)

∂θk
+ ∑

i<j

∂ ln zij(θij, J)
∂θk

, k = 1, . . . , N (A15)

−∂L(~θ, J)
∂J

= ∑
i<j

∂hij(m∗ij, θij, J)

∂J
+ ∑

i<j

∂ ln zij(θij, J)
∂J

. (A16)

We then set the derivatives with respect to θk to zero:

− ∂L(~θ, J)
∂θk

∣∣∣∣∣
~θ∗ ,J∗

=
M

∑
α=1

∑
j 6=k

g∗jk
α −M ∑

j 6=k
u∗jk = 0 (A17)

where we utilize the fact that gα
ij and uij are symmetric with respect to the indices i, j, i.e.,

∑
i<j

gα
ijδ

k
i =

N

∑
j=k+1

gα
jk, ∑

i<j
gα

ijδ
k
j =

k−1

∑
j=1

gα
jk. (A18)
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Similarly, we set the derivative with respect to J to zero:

− ∂L(~θ, J)
∂J

∣∣∣∣∣
~θ∗ ,J∗

= ∑
i<j

(
− 4

M ∑
α<β

g∗ij
αg∗ij

β + 2M
(

u∗ij
)2
)

= 0. (A19)

Taken together, the above calculations lead to the maximum likelihood Equations (55)
and (56) in the main text.
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