
2306  |  	﻿�  Methods Ecol Evol. 2022;13:2306–2317.wileyonlinelibrary.com/journal/mee3

Received: 24 January 2022  | Accepted: 29 August 2022

DOI: 10.1111/2041-210X.13985  

R E V I E W

Fluctuating ecological networks: A synthesis of maximum-
entropy approaches for pattern detection and process 
inference

Tancredi Caruso1  |   Giulio Virginio Clemente2 |   Matthias C. Rillig3,4  |    
Diego Garlaschelli2,5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2022 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

1School of Biology & Environmental 
Science, University College Dublin, Dublin 
4, Ireland
2IMT School for Advanced Studies, Lucca, 
Italy
3Freie Universität Berlin, Institut für 
Biologie, Berlin, Germany
4Berlin-Brandenburg Institute of 
Advanced Biodiversity Research (BBIB), 
Berlin, Germany
5Lorentz Institute for Theoretical 
Physics, University of Leiden, Leiden, The 
Netherlands

Correspondence
Tancredi Caruso
Email: tancredi.caruso@ucd.ie

Funding information
Horizon 2020 Framework Programme, 
Grant/Award Number: 871042; University 
College Dublin; Science Foundation 
of Ireland, Grant/Award Number: 20/
FFP-P/8584

Handling Editor: Claudia Coleine

Abstract

1.	 Ecological networks such as plant–pollinator systems and food webs vary in 
space and time. This variability includes fluctuations in global properties such 
as the total number and intensity of interactions in the network but also in the 
number and intensity of local (i.e. node level) species interactions.

2.	 Fluctuations of species' properties can significantly affect higher-order network 
features, for example, robustness and nestedness, and should therefore be 
taken into account in null models for pattern detection and hypothesis testing.

3.	 In ecological research, classical null models treat node-level properties as 
‘hard’ constraints that cannot fluctuate. Here, we review and synthesize a set 
of maximum-entropy methods that allow for fluctuating (‘soft’) constraints, of-
fering a new addition to the classical toolkit of the ecologist. We illustrate the 
methods with some practical examples, pointing to currently available open-
source computer codes. We clarify how this approach can be used by experi-
mental ecologists to detect non-random patterns with null models that not only 
rewire, but also redistribute interaction strengths by allowing fluctuations in the 
enforced constraints.

4.	 Explicit modelling of interspecific heterogeneity through local (i.e. species level) 
fluctuations of topological and quantitative constraints offers a statistically ro-
bust and expanded (e.g. including weighted links) set of tools to understand the 
assembly and resilience of ecological networks.

K E Y W O R D S
ecological networks, maximum entropy, network fluctuations, network pattern detection, 
network reconstruction, null models, soft constraints
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1  |  INTRODUC TION

In recent years, there has been increasing recognition of the spatial 
and temporal variability of ecological networks, for example in terms 
of network rewiring (i.e. changes in who is connected to whom) 
caused by seasonality and perturbations (CaraDonna et al.,  2017; 
Evans et al., 2013). At the same time, there are some network fea-
tures that remain rather stable. For example, plant–animal mutu-
alistic networks can be highly variable in terms of which species 
is connected to which other species (i.e. their topology) and yet 
maintain a clear core–periphery structure where a small number of 
generalist species (i.e. the core) interact with a large number of spe-
cialized species (i.e. the periphery; Miele et al., 2020).

The question of how ecological networks assemble and 
what controls their stability has been intensely investigated 
(Aizen et al.,  2016; Allesina & Pascual,  2008; Evans et al.,  2013; 
Fortuna et al.,  2010; James et al.,  2012; Säterberg et al.,  2013; 
Valdovinos, 2019; Valverde et al., 2020), typically by comparing net-
work models to observed networks. Network models are generally 
constructed from data that describe who is interacting with whom 
(adjacency matrix) and possibly the intensity of interactions, that is, 
link weights (interaction or weight matrix). The modelling usually 
starts from the observed interaction matrix and aims to syntheti-
cally summarize general, structural patterns such as nestedness or 
the abundance of specific subgraphs/motifs. Also, models are often 
used to simulate general structural changes such as those due to 
species extinctions. In all these cases, changes in network structure 
are very often assessed with null models (Evans et al., 2013; Pascual 
& Dunne, 2006; Valdovinos, 2019).

Tailored null models based on constrained permutations of the 
values observed in the data matrix have become central to hy-
pothesis testing and pattern detection in ecological networks. One 
central goal is testing whether basic properties measurable at the 
node level (see Glossary) can explain higher-order properties such 
as nestedness (Bruno et al., 2020; Dormann et al., 2009; Dormann 
& Strauss,  2014; Payrató-Borras et al.,  2019; Strona et al.,  2014). 
Ecological null models generally permute, randomize or sample the 
entries of network matrices by keeping the values of certain quan-
tities, also known as constraints, fixed. Constraints can, for instance, 
be total sums over the entire matrix (e.g. total interaction strengths, 
or total number of links), or local sums along each row and/or col-
umn (e.g. the number of links of each node, known as the degree). 
The constraints can be measured on the empirical matrix and are 
generally enforced strictly, that is, treated as ‘hard’ constraints, in 
the construction of the null model. Hard constraints are appropriate 
if the properties they embody are expected not to fluctuate (or have 
negligibly small fluctuations). In addition, the randomization algo-
rithms used to construct null models with hard constraints should 
not bias the estimate of the statistics used to describe the structure 
of the network (Bruno et al., 2020; Dormann et al., 2009; Dormann 
& Strauss, 2014; Payrató-Borras et al., 2019; Strona et al., 2014).

Here, however, we illustrate a different approach that suits 
the much less explored and yet arguably very frequent case of 

fluctuating constraints, that is the case when the constraints have 
values that vary around the measured ones. If constraints fluctuate, 
for example due to spatial and temporal variance in species ecol-
ogy, the measured values used in the null models should be inter-
preted as a ‘characteristic’ but definitely not unique value for each 
node (species) in the network. Indeed, in many systems, the intrinsic 
variability of species-level activity, diet or behaviour implies that 
observed links are a particular snapshot of a larger set of possible 
realizations, which is very evident in time series of the same system 
(e.g. Miele et al., 2020). For example, two species can be linked in 
one snapshot of the network and not linked in another. Or, a species 
might have a certain number of connections in one snapshot and a 
different number in another snapshot. Also, experimental observa-
tions are necessarily collected with some measurement errors such 
as spurious associations and missing data. In all these cases, it is rea-
sonable to assume that the constraints themselves fluctuate around 
a characteristic value. The models we propose allow implementing 
that assumption. This perspective, while poorly explored in ecology 
(but see references we review in the next sections), is actually well 
established in statistical mechanics and its applications to network 
modelling (Squartini & Garlaschelli, 2017). Indeed, over the last two 
decades, the so-called maximum-entropy ensembles of networks 
with fluctuating constraints have been developed theoretically in 
the general context of the statistical physics of complex networks 
(Cimini et al., 2019; Newman, 2018; Park & Newman, 2004), with 
applications mainly to large social, economic and financial networks. 
Some seminal applications to ecological networks have been re-
cently proposed in the specific context of the property of nested-
ness (Bruno et al., 2020; Payrató-Borras et al., 2019; Payrató-Borràs 
et al., 2020).

Here, we review and illustrate the existing theory to propose ap-
plications of the available models to ecological datasets for which 
the assumption of fluctuations in node-level properties is appro-
priate. We emphasize that the approach we review here has im-
portant practical consequences for empirical analyses. This review 
specifically focuses on the assumptions of the classical approach 
as well as of the approach we present here, for the benefit of the 
practicing ecologists. We make the point that models with different 
assumptions may produce very different results. The importance of 
the assumptions we discuss here for null models (specifically ‘hard’ 
vs. ‘soft’ constraints; see glossary) is generically analogous to the 
difference that exists between assuming uncorrelated errors and 
homogeneity of variance in standard linear models or, rather, ex-
plicitly model error correlation and heterogeneity of variance in 
mixed effect linear models (Zuur et al., 2009). For certain systems, 
treating null constraints as fixed (‘hard’) or fluctuating (‘soft’) makes 
little difference when constraints represent global quantities (e.g. 
total number of links) and the matrix is very large. This property is 
known as ensemble equivalence (Touchette, 2015). A number of re-
cent works have, however, shown that ensemble equivalence does 
not hold when constraints are local (i.e. node specific or species 
specific), which is often the case of interest in modern applications 
dealing with networks with high levels of heterogeneity in local 
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properties (Garlaschelli et al., 2016; Squartini et al., 2015; Zhang & 
Garlaschelli, 2020). This heterogeneity typically coexists with, and 
is often responsible for, other forms of hierarchy and structure such 
as core–periphery structure, the presence of network communities 
or other types of modular organization. Why is network hetero-
geneity and the violation of ensemble equivalence important to the 
experimentalist? Recent analyses have shown that, when networks 
are heterogeneous, statistical analyses based on models with hard 
local constraints (e.g. row and/or column sums that are kept exactly 
fixed) produce results that can be even opposite to those obtained 
from models based on fluctuating constraints (Bruno et al., 2020). 
We stress that the fact that null models based on hard and soft con-
straints may lead to very different results does not mean that soft 
constraints are ‘correct’ and hard constraints are ‘wrong’. The dif-
ference in results simply reflects different assumptions. Therefore, 
the data analyst must make a principled choice on the nature of the 
constraints, taking into consideration the tested ecological hypoth-
eses. In this review, we illustrate the relatively less known frame-
work based on soft constraints and discuss how it can be applied and 
further expanded to offer additional tools that become necessary 
whenever the constraints are expected to fluctuate. The approach 
suits virtually all types of ecological datasets, from binary bipartite 
networks to weighted soil food webs. Moreover, it is also computa-
tionally efficient, a feature that is becoming increasingly important 
for molecular datasets such as those linking plants to their symbi-
ont microbes. Also, the approach we propose can be fully applied 
not only to presence/absence network data, but also to networks 
with weighted links, which is a very important generalization filling 
a major gap in the current ecologist's toolkit. The possibility of gen-
erating null models for networks with weighted links is of major sig-
nificance to systems such as food webs, where links typically have 
(very) heterogeneous intensities. Finally, we also propose various 
future research lines that we argue will help ecologists shed light on 
the processes that structure ecological networks with high variabil-
ity over space and time.

2  |  ENSEMBLES OF NET WORKS

2.1  |  Formulation of null models

The approach we illustrate here interprets the observed network 
matrix as a typical, but not unique, state of the system, which is 
assumed to be intrinsically fluctuating. Accordingly, the network is 
best described by a large ensemble of possible states ‘fluctuating 
around’ the observed typical state (Figure  1). Each state is a par-
ticular matrix realization and is assigned a probability of occurrence. 
How to derive this probability? The first step is the choice of the 
constraints (Figure 1), which are structural network properties that 
are expected to be robust across possible alternative realizations 
of the state of the system. The constraints we consider here apply 
to local properties of nodes (e.g. number of links of each node) and 
not just to global network-wide properties (e.g. total number of links 

in the network). Locality of constraints is vital because real-world 
networks are neither homogeneous (Caldarelli, 2007) nor symmetric 
upon arbitrary permutations of species (Miele et al.,  2020). Some 
of the empirical signatures of heterogeneity include the intrinsi-
cally hierarchical structure of ecological networks, for example, the 
trophic hierarchy and allometric scaling of food webs (Garlaschelli 
et al., 2003), and the fact that most networks have broad distribu-
tions of the number of links per node (Bascompte, 2010).

In ecological null models, the most typical constraint is the num-
ber of neighbours (degree) of a species, to be enforced for each spe-
cies separately. The resulting vector of the degrees of all species is 
also known as degree sequence. In the most popular implementation 
of this null model, the randomized matrices respect the degree se-
quence constraint exactly: if a species has, say, 10 partners in the 
observed matrix, it will retain exactly 10 partners in all randomized 
matrices. These constraints are therefore ‘hard’. After defining the 
hard constraints, traditional ecological null models generate an ar-
bitrarily large set of random matrices computationally through a 
permutation rule or randomization algorithm (Camacho et al., 2007; 
Dormann et al., 2009; Gotelli, 2000). These techniques are also qual-
ified as ‘rewiring algorithms’ as they are fundamentally based on re-
positioning quantities within the original matrix so that links and/or 
their weights are effectively rewired. Besides the fact that the ran-
domization procedure must ensure that locally exact constraints (e.g. 
numbers of pollinator species associated with each plant species) 
are preserved in the randomly rewired matrices, there is another im-
portant criterion that the null model should respect: the generated 
set of random matrices must be an unbiased sample from the prob-
ability distribution implied by the model, which typically has a non-
closed form. ‘Unbiased sample’ means that the sample should purely 
reflect the model hypotheses so that no other hidden or unjustified 
assumption is (either explicitly or implicitly) made in the generation 
of the sample, given the data. For instance, if the null hypothesis 
does not discriminate between two network realizations having dif-
ferent topology but the same values of the constraints (i.e. having 
the same sufficient statistics), then the two realizations are naturally 
assigned the same probability by the null model, and the algorithm 
implementing the model should rigorously ensure this equiproba-
bility. Under hard local constraints, requiring an unbiased sampling 
of the set of matrices while ensuring computational efficiency be-
comes a challenging algorithmic and combinatorics problem for in-
creasingly large networks (Squartini et al., 2015). Basically, one has 
to check whether the algorithms sample the ensemble in an unbi-
ased way. Rewiring algorithms have in the past been used to gener-
ate such ensembles computationally, with applications that include 
analyses of food webs (Camacho et al., 2007; Stouffer et al., 2007). 
Approaches allowing for the randomization of other types of binary 
matrices (e.g. co-occurrence matrices) relevant to ecology have also 
been developed (Carstens,  2015; Strona et al.,  2014, 2018; Ulrich 
& Gotelli, 2012). In relative terms, computational efficiency is ulti-
mately not a major issue for many ecological networks, especially 
if binary, because networks encountered in ecology are typically 
much smaller in size with respect to other (e.g. social or financial) 
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networks for which algorithms have been developed. Issues related 
to biased estimates of statistics sampled from randomly rewired 
matrices may, nevertheless, arise for large and highly heterogenous 
networks (Artzy-Randrup & Stone, 2005; Roberts & Coolen, 2012), 
with the exception of particular types of data structures and ran-
domization algorithms (Carstens,  2015; Strona et al.,  2014, 2018; 
Ulrich & Gotelli, 2012). In general, if untested for unbiasedness, local 
randomization algorithms carry a risk of not sampling the ensemble 
uniformly—the bias becoming unavoidable if the values of the local 
constraints are too heterogeneously distributed across the network 
(Roberts & Coolen,  2012). Solutions that correct the bias of local 
rewiring algorithms are computationally intensive and apply only to 
specific conditions (Roberts & Coolen,  2012). Moreover, the ran-
domization models typically available to the ecologist apply only to 
network topology (binary data) and the underlying heuristics cannot 
be easily generalized to networks with weighted links or with a com-
bination of purely topological and weighted constraints (Squartini & 
Garlaschelli, 2017).

On the other hand, as we discuss below and in the Supporting 
Information, soft constraints are mathematically and computation-
ally easier to work with, and the corresponding ensembles can be 
constructed in a rigorously unbiased fashion. Before we enter these 

details, the main point we address here is that a ‘hard constraints’ 
approach is appropriate as long as it is reasonable to assume that the 
constraints themselves do not fluctuate, or that their fluctuations 
are so small that they can be ignored. When this is not the case, 
ensembles with soft constraints have to be used. This distinction has 
major implications because soft and hard constraints are guaranteed 
to asymptotically (i.e. in the limit of a large number of nodes) return 
the same results only when the chosen constraints are global (e.g. 
the total number of links). For local constraints, such as the degree 
sequence (see Glossary), ensembles with soft constraints are not 
equivalent to ensembles with hard constraints (Squartini et al., 2015; 
Zhang & Garlaschelli, 2020): null model outcomes will be different 
because the model assumptions are different. This means that there 
are certain structural properties that display necessarily different 
expected values in the two types of ensembles (Touchette, 2015), a 
difference that may even lead to opposite statistical conclusions—as 
recently shown explicitly for the nestedness of plant–pollinator net-
works (Bruno et al.,  2020). Choosing between soft and hard con-
straints is a fundamental modelling decision that will affect the final 
results of the analysis (Squartini & Garlaschelli, 2017). We thus em-
phasize that the most important question is not which constraints 
are ‘computationally easier’ or ‘more mathematically appealing’ but, 

F I G U R E  1  Overview of the construction of a statistical mechanics ensemble of a network, from the observed network (step 1) to the 
final ensemble (step 4) and null model analysis (step 5). Starting from the observed network, node-level properties such as the node degree 
(number of connections to the node) are enforced to construct the ensemble. The illustration is based on animal pollinators (light blue) and 
their plants (light green). The constraint is used to find the probability distribution P(E) that maximizes the entropy S as per step 3. See also 
Table 1 for a summary of currently available models (and their acronym) that can be fit to ecological datasets, including weighted bipartite 
network and food webs. In the canonical ensemble, the constraint is ‘soft’ (step 2 and 3), meaning it is enforced only on average. In this 
case, the maximization of the log-likelihood function defined through P(E) is used to find the P(E) parameterization that also maximizes 
entropy given the constraint (step 3). In step 4, many matrices can be sampled from the ensemble to create a null distribution (step 5) for any 
network property. For example, metrics such as NODF (a measure of nestedness) can be computed for each of the n matrices sampled from 
the ensemble as well as for the single matrix of the observed network (blue vertical line). A z-score can then be calculated to quantify how 
metrics measured on the observed matrix deviates from the central tendency of the null distribution of that metrics.
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rather, what constraints should be used given the system and hy-
potheses under investigation.

2.2  |  The statistical mechanics formulation of 
null models

The approach to the construction of the network null models we 
review here is based on statistical mechanics, which offers a general 
and unified treatment of ensembles built from both hard and soft 
constraints (Cimini et al.,  2019; Park & Newman,  2004; Squartini 
& Garlaschelli,  2017). The basic quantity to construct a statistical 
mechanics ensemble is entropy, and the key procedure is entropy 
maximization. Entropy quantifies the uncertainty encoded in a prob-
ability distribution (see Glossary). The best known expressions of 
entropy are Shannon entropy and Renyi's generalization through 
the so-called Hill numbers. In ecology, these expressions have been 
applied to various statistical distributions, for example to meas-
ure community diversity in terms of the balance between species 
richness and evenness (Hill, 1973; Magurran, 2013). Relatedly, the 
maximum-entropy theory of ecology has been introduced to parsi-
moniously synthesize patterns such as relative species' abundances 
in ecological communities (Harte,  2011; Harte & Newman,  2014). 
In the context of networks and statistical mechanics, Shannon (or 
equivalently Gibbs) entropy is applied to the probability of observ-
ing a particular graph in an ensemble of possible ones. The graph 
probability distribution that maximizes the entropy under certain 
constraints reflects maximal ignorance of all network properties, 
except for those used to set the constraints themselves. In other 
words, the maximization of entropy corresponds to the construc-
tion of networks that are maximally random, apart from the imposed 
constraints.

In line with our discussion above, there are two fundamentally 
different ways in which constraints can be applied to derive a statis-
tical mechanics ensemble. One way is the so-called microcanonical 
ensemble (see Glossary), which enforces the constraint exactly on 

each randomly generated matrix. The microcanonical ensemble cor-
responds to the enforcement of hard constraints as used in classical 
ecological null models. For hard constraints, the maximum-entropy 
probability is uniform over the compatible configurations and the 
maximized entropy reduces to Boltzmann's definition of entropy, 
that is, it equals the logarithm of the number of allowed configu-
rations. For example, if the constraint is the degree sequence as 
observed in a real-world network, then all the networks in the en-
semble will have exactly the same degree sequence as the observed 
one. For binary networks, this model is known as the microcanonical 
(or ‘hard’) configuration model, and its entropy is the logarithm of the 
number of graphs with that particular degree sequence. Calculating 
this number remains a challenging combinatorial enumeration prob-
lem, not solved in closed form yet. The alternative way of enforcing 
the constraints in statistical physics is in the ‘soft’ way (Squartini & 
Garlaschelli, 2017), which leads to the so-called canonical ensemble 
(see Glossary). In the canonical ensemble, the constraint is respected 
by the ensemble only on average and the investigator is looking at a 
system that fluctuates around a set of ‘typical’ configurations, which 
are collectively the most likely. Again, when the constraint is the de-
gree sequence, the corresponding model is known as the canonical 
(or ‘soft’) configuration model. Its entropy can be interpreted as the 
logarithm of the effective number of typical configurations. When 
ensemble equivalence does not hold, this entropy is significantly 
different from the entropy of the corresponding microcanonical 
ensemble (Squartini et al., 2015). For example, in the real network, 
plant A might have five known pollinators, that is, a degree equal 
to 5. Across the individual networks generated in the correspond-
ing canonical ensemble, the same species A will have a fluctuating 
number of pollinators, for example, sometimes 3, sometimes 6 or 
any other integer number; however, the ensemble average of the 
degree of species A will be exactly 5. This will hold simultaneously 
for all nodes in the network so that the degree of each node will 
be on average exactly equal to the empirical degree for the same 
node. Unlike its corresponding microcanonical ensemble, this ca-
nonical ensemble can be exactly characterized mathematically, but 

Network type
Soft constraints: 
Canonical ensemble

Hard constraints: Rewiring algorithms in 
ecological null models

Undirected

Binary UBCM [1] e.g.: swap sequential algorithms, fixed 
margins

Weighted UWCM, CReM [1] [2] e.g.: swap sequential algorithms, fixed

Binary + weighted UECM, CReM [1] [2] only partially developed (e.g. swap and 
shuffle algorithms)

Directed

Binary DBCM, BiCM [1] [2] [3] Implicit within algorithms for undirected 
matrices

Weighted DWCM, CReM [1] [2] Implicit within algorithms for undirected 
matrices

Binary + Weighted DECM, CReM [1] [2] Not developed

Note: [1] Squartini et al. (2015); [2] Parisi et al. (2020). [3] Saracco et al. (2015).

TA B L E  1  Summary of existing 
canonical models that can be fitted to an 
ecological network matrix, using just the 
degree sequence (binary), the strength 
sequence (weighted) or both sequences 
as ‘soft’ constraints. The models are 
compared to counterparts with ‘hard’ 
constraints, in particular some illustrative 
(but not exhaustive) examples of the 
most popular rewiring algorithms used by 
ecologists
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also easily sampled in an unbiased way (Squartini et al., 2015). In our 
example above, if the ensemble is sampled numerically and the ex-
pected degree of plant A is estimated as an arithmetic average over 
independently sampled matrices (i.e. using the realized frequencies), 
then that sample average will converge to 5 as the number of sam-
pled matrices increases.

The most used constraints in the ecological literature, being 
local in nature, have been found to break the asymptotic ensemble 
equivalence (Squartini et al., 2015; Squartini & Garlaschelli, 2017). 
Specifically for plant–pollinator networks, this breakdown has been 
shown to imply opposite conclusions on the statistical significance 
of nestedness (Bruno et al., 2020). As we anticipated, this situation 
calls for a principled choice of the ensemble to be used in practical 
applications. In what follows, we will therefore offer an extended 
illustration of canonical ensembles as constructed in statistical phys-
ics from soft local constraints, thereby complementing the more 
established discussion of models with hard constraints that have 
become popular in ecology. Armed with this addition, the ecologist 
will be able to opt for the most appropriate (either hard or soft) set 
of models to use in statistical analyses, depending on the data and 
question at hand.

3  |  C ANONIC AL ENSEMBLES FROM SOF T 
CONSTR AINTS TO MODEL ECOLOGIC AL 
NET WORKS

3.1  |  Matrix formalization

Let us call O (‘observed’) the matrix that describes the observed 
network with S species or nodes. The ensemble we are looking 
for consists of a large number of matrices, each of them denoted 
by Em (‘ensemble’ matrices) and labelled by an integer number m. 
Each Em has the same size, that is, the same number S of nodes, as 
O. Moreover, across the entire ensemble, we preserve the identity 
of all nodes by attaching a unique label i to each of them, that is, 
the corresponding networks or matrices are labelled. In general, the 
difference between each Em and O is in terms of who is connected 
to whom and/or the strength of these connections. The set of all 
ensemble matrices contains all the possible states of the network. 
Among them, only one is exactly O. What characterizes the ensem-
ble is the probability P(E) over the entire set of matrices, and we 
want this probability to depend on some set of structural properties 
of O. In particular, we choose a set of constraining properties and 
enforce their values as empirically observed in O. As we want each 
constraining property to apply locally to each species, our constraint 
has the form of a vector, that is, a vector having at least as many ele-
ments as the number of species in O. We say ‘at least’ because we 
may want to have multiple constraints for each species, for example, 
the number of incoming links (in-degree) and separately the number 
of outgoing links (out-degree) for each node in a directed network 
such as a food web. We denote the vector of constraints by C. We 
denote the value of property C attained on a generic network Em 

as C(Em), and so the empirical value of the constraint is denoted as 
C* = C(O), where the star means the special value of the constrain-
ing property as measured in the observed network O. For example, 
if O represents an undirected network and C is the degree sequence, 
then C* will be the degree sequence of matrix O, that is, the list of 
empirical degrees of all species, which would look something like C* 
= 
[

k1, k2, … kS

]

, where ki is the degree (number of interacting species) 
of each species i (for all i = 1,S).

3.2  |  Entropy maximization

The main objective of statistical mechanics is finding the probability 
distribution P(E) that fulfils the constraint by guarantying maximum 
randomness of all other properties. With this probability distribu-
tion, we can formulate a statistical expectation of all observable 
quantities. Mathematically, finding the distribution P(E) that maxi-
mizes the randomness, given the constraints C* plus the unavoidable 
additional constraint that P(E) has to be normalized, requires a quan-
titative definition of the randomness (i.e. uncertainty) encoded in 
P(E) in the first place. The statistical mechanics definition is Shannon 
(or Gibbs) entropy, defined as

which is familiar to ecologists as a diversity index. It is obvious from this 
equation that entropy would just count the number of allowed states if 
P(E) were uniform. Maximizing S(P) given the constraints conceptually 
corresponds to the requirement of unbiasedness: given the measured 
constraint, the ensemble must be maximally random. Technically, this 
maximization requires a choice on how specifically the matrices Em 
‘realize’ the constraint C* measured on the observed matrix O. The 
two main options are the aforementioned microcanonical (hard con-
straints) and canonical (soft constraints) ensembles. In the Supporting 
Information, we provide the analytical details of how to formalize 
and derive the microcanonical and canonical probabilities (part A) 
and how to estimate the model parameters (part B). More informa-
tion can be found in the original references (Cimini et al., 2019; Park & 
Newman, 2004; Squartini & Garlaschelli, 2017).

Here, we want to highlight that under soft constraints the 
probability distribution that maximizes the entropy can be derived 
analytically and the corresponding parameters can be estimated 
from the dataset using the maximum likelihood approach. To visu-
alize the difference between the ‘soft constraints’ approach and 
most existing rewiring methods, one could imagine the case in 
which a small tolerance (say, delta) is introduced around the hard 
constraints, that is, the hard constraints are preliminary perturbed 
by (at most) an amount delta, and for each such perturbation a 
microcanonical ensemble is generated. That approach would not 
be equivalent to the soft constraint approach of the canonical en-
semble, for at least three reasons. First, the choice of any delta 
would be arbitrary. Second, the resulting perturbed constraints 

S(P) ≡ −
∑

E

P(E)lnP(E) ,
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will need to be realizable in some graphs, for example, they will 
have to respect the conditions set by the Erdős–Gallai theorem 
(Bollobás, 1998) for a sequence of natural numbers to be the de-
gree sequence of a graph. Meeting these conditions is a non-trivial 
combinatorics problem (and, in our example, incompatible with an 
arbitrarily small, hence necessarily non-integer delta). And third 
(and most importantly), even if one could meet the Erdős–Gallai 
conditions, one should also specify the probability with which 
each perturbed constraint is selected within the delta interval, 
thus introducing another level of arbitrariness. By contrast, the 
canonical ensemble automatically specifies, without any arbitrary 
assumption, the appropriate probability of any configuration, for 
each amount of departure of the constraints from the correspond-
ing observed value.

4  |  E XPANDING THE ECOLOGIST' S 
TOOLKIT

4.1  |  Applications

The form of the equations formalizing the construction of a ca-
nonical ensemble (Supporting Information A) is very general. For 
applications, specific forms of the equations must enforce the de-
sired constraints. Those equations (Supporting Information) clarify 
that the randomized matrices of the ensemble will have to respect 
the constraints only on average (‘soft’). Two specific examples of a 
model derivation are given in the Supporting Information (parts C 
and D), but there are many ‘off the shelf’ models that ecologists can 
already fit to their data. The currently developed models are based 
on the so-called exponential family of random graphs. This impor-
tant family of graphs has been used to derive not only the ensemble 
corresponding to the usual constraints currently implemented by 
ecological null models, but also many others (Table 1). A novel point 
is that the available models apply not only to binary matrices (repre-
senting the mere topology of the network), but also to weighted ma-
trices (which include information about link intensities). In weighted 
networks, each node is characterized not only by its degree, but 
also by its strength (total weight of all links attached to that node, 
see Glossary). Canonical models can thus be fit by imposing con-
straints on the degree sequence, the strength sequence, and also 
combined degree and strength sequences (Squartini et al.,  2015; 
Squartini & Garlaschelli,  2017), thereby filling a major gap in the 
current ecologist's toolkit, which is mostly based on binary models 
or on debated quantitative models. Canonical models can be fit by 
maximum likelihood using either the entire observed matrix or just 
partial information available on the constraints (e.g. just the degree 
and/or strength sequence) as input. The existing models can easily 
be fit using publicly available and computationally efficient routines 
written in Python, MatLab and C (see https://meh.imtlu​cca.it/ and 
the Python codes we made available at https://doi.org/10.6084/
m9.figsh​are.20531​655.v1, which were used to generate the network 
ensembles of Figures 2–4).

4.2  |  Types of existing canonical or ‘soft’ models

The most important types of models of interest to ecologists can be 
categorized in directed and undirect binary models (degree sequence 
as constraint, other topological properties are randomized), directed 

F I G U R E  2  Node degrees and node strengths of the observed 
network are jointly used as constraints to derive the canonical 
ensemble of the network (panel a). If the ensemble is estimated 
correctly, by construction the theoretical expected value of both 
degree and strength sequences should be exactly equal to the 
observed value (computationally, this should happen for an average 
over a large number of sampled matrices). Here, the cross symbols 
correspond to an average over 999 matrices from the canonical 
ensemble of the 8th matrix of the general plant–pollinator dataset 
of (Miele et al., 2020), used here as an example. Those averages 
fall on the identity line, confirming that the ensemble respects 
the key assumptions. The coloured dots correspond to various 
randomly chosen sampled matrices, showing that the ensemble 
built from soft constraint is a set of networks whose properties 
(coloured dots) fluctuate around a mean, ‘equilibrium’ state (cross 
symbols) which inherits the observed node level-properties. In (b, 
c), the same representation of a) but, respectively, for an ensemble 
obtained either with the ‘swap_count’ algorithm (1) or with the 
‘abuswap_r’ algorithm (2) available in the nullmodel function of 
‘vegan’ in R . These quantitative swap algorithms preserve either 
the strength or the degree sequence exactly but not both strength 
and degree sequence at the same time.

(a)

(b)

(c)
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and undirected weighted models (strength sequence as constraint, 
other weighted and structural properties, including the degree se-
quence, are free to vary), and directed or undirected models where 
both degree sequence(s) and strength sequence(s) are constrained. 
Finally, the bipartite version of all these models, important for mutu-
alist and host–parasite networks, can also be implemented by simple 
reparameterizations of the monopartite models. The possibility of im-
plementing weighted null models is particularly important for weighted 
mutualistic network and food webs, where there typically is informa-
tion on link weights. Also, the theory is flexible and general enough to 
generate new models and so test more specific ecological hypotheses.

5  |  E X AMPLES

As an example, we applied bipartite models to a publicly available da-
tabase of a plant–pollinator network (https://orcid.org/0000-0002-
3449-5748), which has been recently proposed and analysed in the 
context of core–periphery models (Miele et al.,  2020). This dataset 
consists of 6 years of data with three sampling time points each year, 
and the network links are weighted. This is useful to illustrate how both 
binary and weighted models can be fit. We provide the following ap-
plication files at https://doi.org/10.6084/m9.figsh​are.20531​655.v1 
(Caruso et al., 2022): two Python codes to fit a binary configuration 
model to a bipartite network and a weighted, bipartite configuration 
model to a quantitative bipartite network; two R codes used for down-
stream analysis. These codes, if applied to the data also provided in 
the repository, can altogether fully reproduce the results we present 
here from Figures 2–4. In the repository, we also provide guidelines 
documents that explain all the key steps of the Python codes. The 
guidelines also offer references for installing dependencies and test-
ing them, which are also available at https://pypi.org/proje​ct/bicm/ 
and https://pypi.org/proje​ct/NEMtr​opy/. Finally, in the repository, 
alongside the analysed data matrices, which are given in a format that 
can easily be imported in Python and R, we also provide the matrices 

sampled from the ensemble models that we have used here to gener-
ate the examples of Figures 2–4. The user will just need to apply the R 
scripts provided at https://doi.org/10.6084/m9.figsh​are.20531​655.v1 
to the data also provided there to generate Figures 2–4 of this article. 
See supporting information C and D for theoretical and analytical de-
tails on the binary and weighted bipartite models used in the examples 
here and underlying the codes available at https://doi.org/10.6084/
m9.figsh​are.20531​655.v1.

For the binary case, we used well-known R routines and packages 
to also compute a classic null model based on hard constraints using 
a very well-known swap algorithm, which keeps the row and column 
margins fixed and randomizes the matrix otherwise (Gotelli, 2000). 
This comparison allows us to look for possible differences in the sta-
tistical output of models with hard and soft constraints.

We also computed two null models using two swap algorithms for 
weighted matrices. These algorithms can be implemented with the 
well-known R function ‘nullmodel’ in the package vegan. Specifically, 
through ‘commsim’, we used the method ‘swap_count’, which can 
preserve node strength sequence but not degree sequence, and 
the method abuswap_r, which preserves the node degree sequence 
but not the strength sequence. See implementation of these func-
tions in the R codes accessible at https://doi.org/10.6084/m9.figsh​
are.20531​655.v1.

Both for the canonical ensemble and the classic null models, 
we sampled 999 matrices, checked that the main assumptions on 
the constraints were fully met by the ensembles and calculated 
some network metrics to compare the values measured on the ob-
served matrix with the corresponding distributions produced by 
the ensemble (Supporting information E). In the case of the ca-
nonical ensemble, as the constraint is soft, the ensemble respects 
the constraint only on average. Instead, the ensemble created with 
the swap algorithm consists of matrices that all respect the im-
posed constraint exactly. This confirms that in both hard and soft 
constraint cases, the model output is respecting the assumptions 
perfectly. What assumption is most correct for the data at hand is 

F I G U R E  3  Four binary network metrics 
calculated for the (a) canonical ensemble 
of the binary version of the network of 
Figure 2, from Miele et al. (2020) and (b) 
the classical null model ensemble obtained 
with the ‘swap algorithm’ of ‘nullmodel’ in 
vegan, which preserves row and column 
margins and is traditionally considered a 
robust model to test for the pure effect 
of species composition. The most evident 
result is that the two ensembles return 
opposite output and we advocate for 
soft constraints if there is uncertainty 
on the experimental measurement of 
the constraints and/or if the constraint is 
known to fluctuate.

(a)

(b)
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a very important but different question, which we discuss at the 
end of the paper.

For the weighted case, while the canonical ensemble can be 
chosen to preserve both the degree and strength sequences (soft 
constraints met on average, see data points labelled with cross in 
Figure 2a), the ensemble created with the swap algorithm can pre-
serve either only the strength or only the degree sequence as hard 
constraints; see Figure 2b,c. We are not aware of rewiring algorithms 
that are computationally efficient and that can, at the same time, pre-
serve both degree and strength sequences while also been proved not 
to be biased when attempting a uniform sampling of the ensemble.

Once the ensembles are constructed, the ecologist can esti-
mate metrics on the observed and randomized ensemble matri-
ces, and then compare the observed metrics to the distribution of 
the randomized ones. Just as an example, for the binary model we 
chose NODF (a metric of nestedness), functional complementary, 
niche overlap and the so-called motif 5 as defined in Dormann and 
Strauss (2014) and Simmons et al. (2019), but we could have chosen 
many other properties. The choice of the metrics to analyse depends 
on the research question, and is therefore context specific. For our 
four metrics, we observed that the canonical ensemble provided an 
excellent estimate of functional complementary and the so-called 
motif 5 (Figure  3a). Instead niche overlap and NODF (a metric of 
nestedness) deviated significantly from the ensemble average. What 
is really important, however, is that opposite results were observed 
for the classic null model based on the swap algorithm (Figure 3b), 
which had functional complementary and motif-5 deviating from the 
null model to a very large extent, while NODF and niche overlap well 
replicated by the central tendency of the randomized matrices.

For the weighted case, we calculated the weighted version of 
the clustering coefficient (Figure  4). Again, we observed opposite 
results for the canonical ensemble (Figure  4a) and the two swap 
algorithms we implemented (Figure  4b,c): the observed clustering 
coefficients greatly diverged from the central tendency of the ca-
nonical ensemble distribution, which was not observed with both 
rewiring algorithms. Note that in this case there is an important ad-
ditional difference between soft and hard constraint models. In the 
soft case, the model can respect both constraints (strengths and de-
grees) at the same time. Instead, at least for the algorithms we used 
here, the hard approach can satisfy only one of the two constraints 
at a time. This means that the two classes of models (soft and hard) 
are even less comparable than in the binary-only case.

6  |  MODEL CHOICES,  ECOLOGIC AL 
IMPLIC ATIONS AND FUTURE 
DE VELOPMENTS

6.1  |  Model assumptions

What model is to be chosen then? In fact, the actual question is 
what model assumptions to choose. Uncertainty in the measure-
ment of node-level properties, which can be due to a combination 
of measurement error and natural spatial and temporal fluctuations, 
is a typical feature of ecological data. The soft constraint approach 
suits this uncertainty very well: the graph probabilities in the canoni-
cal ensemble are necessarily constructed from the ‘noisy’ observed 
values of the constraints, and maximal for the set of configurations 
displaying such values. But the configurations displaying the ‘true’ 
(unobserved) values of the constraints will also be assigned a compa-
rably large probability. By contrast, in the microcanonical ensemble 
even a minimal error on the values of the constraints will bias the 
sampling enormously, and propagate the initial measurement error 
to the entire inference procedure. Moreover, even when constraints 

F I G U R E  4  As Figure 3, for the same network but with 
weighted links. In this case, we calculated the weighted version of 
the clustering coefficient for the two network layers (plants and 
pollinators). With soft constraints (canonical ensemble, panel a), the 
null model is rejected, meaning that combined strength and degree 
sequence alone cannot replicate the weighted clustering coefficient. 
The two tested quantitative swap algorithms are the same as in 
Figure 2 and would lead to the opposite conclusion (null model 
retained), but we also know from Figure 2 that these two ensembles 
are not reconstructing either the degree or weight sequence, which 
could bias the reconstruction of the clustering coefficient.

(a)

(b)

(c)

 2041210x, 2022, 11, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13985 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [04/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  2315Methods in Ecology and Evolu
onCARUSO et al.

are known to be error-free, an unbiased sampling of microcanonical 
ensembles via rewiring algorithms is achievable only after complex 
corrections, which are needed for heterogeneous networks (Artzy-
Randrup & Stone, 2005; Roberts & Coolen, 2012).

6.2  |  Going beyond the search for ‘statistical 
significance’

The assumptions behind the choice of hard or soft constraints are 
crucial to hypothesis testing and connect to the concept of ‘network 
reconstruction’ from partial information. This concept moves the for-
mulation of null models beyond the typical quest for the ‘statistical 
significance’ of a structural pattern (e.g. ‘the observed network is sig-
nificantly more or less nested than the set of random networks built 
under the constraints of some of the properties observed on the actual 
network’). When observed properties (e.g. metrics of nestedness) fully 
fall within the distribution expected under the null model ensemble, 
then the null model can replicate higher-order properties of the ob-
served network (e.g. clustering coefficient, nestedness) just from the 
lower-level properties (e.g. degree sequence) used as constraints. In 
other words, the constraints used to build the null model are sufficient 
to reconstruct some high-level properties of the network (e.g. nested-
ness, clustering). There is thus a link between null-model formulation 
and network reconstruction, which primarily aims at reconstructing 
unobserved or even unobservable network properties using some of 
its observable features. As shown by our examples and by other exam-
ples in ecology (Bruno et al., 2020; Payrató-Borras et al., 2019; Payrató-
Borràs et al., 2020) and other disciplines (Cimini et al., 2019; Squartini 
& Garlaschelli,  2017), careful choices of the constraints can lead to 
canonical ensembles replicating many other network properties. If we 
interpret the canonical ensemble as a possible reconstruction of the 
network, the processes that control the shape of the constraints could 
also control the probability distribution of the network configuration. 
When that is the case, there are major implications for applications. 
For example, a perturbation affecting how the network is structured 
may eventually push the network away from the typical configuration 
observed before the perturbation. That type of structural shift can be 
detected with tailored null models and even used as an early-warning 
signal of disruption (Squartini et al., 2013). How? if the reconstruction 
is initially successful at predicting non-constrained properties and it 
then becomes unsuccessful from a certain point in time onwards, the 
comparison between the empirical, evolving network and the canoni-
cal null model can reveal and quantify the magnitude of the ongoing 
departure of the system from its typical state. This has been shown em-
pirically on datasets that described the global financial crises of 2008 
(Squartini et al., 2013). But how good should a reconstruction be for 
this type of applications? We note that the properties chosen as con-
straints can be enforced one at a time or all at the same time, making 
the ensemble more or less tightly dependent on the original network. 
The more meaningful constraints are added, the more the ensemble 
should be able to replicate higher-level properties. Meaningful con-
straints are those chosen among the general structural properties that 

are directly controlled by the assembly processes that structure the 
network. What these properties and processes are in practice will de-
pend on the network under investigation and will often be a matter of 
experimental research. We, nevertheless, expect that the general ap-
proach provided here will help ecologists formulate and enforce new 
sets of constraints based on hypotheses on the processes that struc-
ture ecological systems (e.g. phylogenetic correlation between nodes 
caused by co-evolution). The properties will be enforced as constraints 
one at a time or at the same time in different combinations, which will 
help ecologists reveal the relative roles of the factors that contribute 
to the formation, fluctuations and maintenance of networks in nature.

Glossary

Entropy: a fundamental concept in thermodynamics, probability the-
ory, statistical physics and information theory, for which many defini-
tions exist. In statistical physics, the definition of entropy quantifies 
the amount of uncertainty encoded in a probability distribution repre-
senting the possible microscopic states of the system. Looking for the 
probability distribution that maximizes the entropy, subject to certain 
constraints (see definition in this Glossary), is a key step in the formu-
lation of null models of networks that are maximally random, apart 
from a set of properties that are enforced (i.e. the constraints).

Canonical network ensemble: a maximum-entropy ensemble in 
which the constraints (see definition in this Glossary) are respected 
only as average values. Such constraints are called ‘soft’. This means 
that individual realizations of the system (e.g. network matrices) sam-
pled from the ensemble will in general not meet the constraints ex-
actly. However, as a result of entropy maximization under the enforced 
constraints, some configurations are much more probable than others 
and the probability distribution is centred around the ‘typical’ ensem-
ble configurations that do meet the constraints. The ensemble average 
of the constraints exactly equals the enforced values. The resulting 
(maximized) entropy equals Gibbs's, or equivalently Shannon's, defini-
tion and can be interpreted as the logarithm of the effective number 
of typical configurations. The ensemble can be conceptualized as a set 
of networks ‘fluctuating around’ the typical configurations formalized 
through the constraints, that is, around the microcanonical configura-
tions (cfr microcanonical ensemble definition in this Glossary).

Constraints: a set of properties that a (null) model must obey. In 
the context of entropy maximization, the constraints are used to find 
the maximally random probability distribution while keeping certain 
properties fixed. The first and unavoidable constraint is the normal-
ization condition guaranteeing that the result of the maximization is 
indeed a probability distribution. The additional constraints repre-
sent properties that one wants to enforce, for example, structural 
network features that one would like to be identical to those empir-
ically observed in a real network, while leaving maximum random-
ness in all the other properties of the network. This is the basis for 
separating random and non-random patterns in network structure. 
Global constraints are network-wide properties, such as the total 
number of links in the matrix. Local constraints, instead, are defined 
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at the node level, such as the number of links to a specific node or 
the entire degree sequence (see definition in this Glossary).

Degree and degree sequence: in a network, the degree of a node 
is the number of links reaching that node. The degree sequence is a 
vector that, node by node, lists the degrees of all nodes, where the 
position in the list corresponds to the label of the node. As an exam-
ple, the degree sequence {1,10,7,…} (of length S) indicates that nodes 
1, 2 and 3 (out of the S nodes in the network) have degree 1, 10 and 
7, respectively. If the network is directed, two distinct (‘out-’ and ‘in-’) 
degrees per node can be defined, as the number of outgoing and in-
coming links, respectively. Correspondingly, the out-degree sequence 
and the in-degree sequence can be defined as two separate vectors.

Microcanonical network ensemble: a maximum-entropy ensemble 
in which the constraints are respected exactly by each individual real-
ization of the system (e.g. by each allowed state of the network). As a 
result, the constraints are called ‘hard’. The maximum-entropy prob-
ability distribution of the microcanonical ensemble is uniform over all 
configurations that realize the hard constraints. The resulting (max-
imized) entropy coincides with the classic definition by Boltzmann: 
it equals the logarithm of the number of allowed configurations. It is 
generally very hard to calculate this number. For example, if the con-
straint is the degree sequence (see definition in this Glossary) and if 
the value of such constraint is set equal to the value of the degree 
sequence observed in a real food web, then each of the networks 
sampled from the microcanonical ensemble will have exactly the same 
degree sequence of the observed one. As a comparison, the random-
ization schemes usually implemented by ecologists also use ‘hard’ 
constraints, in the sense that the randomized matrices respect these 
constraints exactly. However, not all algorithms with hard constraints 
(especially in the case of weighted and/or local constraints) are guar-
anteed to actually sample the correct maximum-entropy (uniform) 
distribution, and one should be aware of the risk of bias.

Strength and strength sequence: in a network with weighted links, 
such as a food web where the links can be expressed in units of energy 
or C fluxes, the strength of a node is the sum of all the weights of the 
links connected to that node. If the network is directed, two separate 
(‘out-’ and ‘in-’) node strengths can be defined for each node. Similar 
to the degree sequence (see definition in this Glossary), the strength 
sequence is a vector that lists, node by node, the strength of that node. 
For directed weighted networks, the out-strength sequence and the 
in-strength sequence can be defined as two separate vectors.
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