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ABSTRACT 

Markerless motion capture system and X-ray fluoroscopy as two markerless measurement systems were introduced the 

application method in sports biomechanical areas. An overview of the technological process, data accuracy, suggested 

movements, and recommended body parts were explained. The markerless motion capture system consists of four parts: 

camera, body model, image feature, and algorithms. Even though the markerless motion capture system seems promising, 

it is not yet known whether these systems can be used to achieve the required accuracy and whether they can be 

appropriately used in sports biomechanics and clinical research. The biplane fluoroscopy technique analyzes motion data 

by collecting, image calibrating, and processing, which is effective for determining small joint kinematic changes and 

calculating joint angles. The method was used to measure walking and jumping movements primarily because of the 

experimental conditions and mainly detect the data of lower limb joints. 

Keywords: markerless measurement, motion analysis, biomechanics 

1. INTRODUCTION  

Sports biomechanics settings have made important advances in the study of human movement from manual 

digitizing to marker-based motion capture systems, markerless systems with various computer technology. 

The most common method of collecting biomechanical data is by using markers. Nevertheless, it is 

susceptible to an intrinsic shortage of data error as a result of skin movement artifacts caused by the 

markers[1]. An accurate 3D kinematic analysis of bones can only be achieved through invasive methods, 

such as intracortical pins[2]. Markerless motion capture systems offer promise as a result of a variety of 

recent technological advancements. Radiographic techniques such as X-ray fluoroscopy provide an accurate 

measure of skeletal kinematics[3]. The purpose of this review is to provide an overview of how these two 

technologies can be used and provide accuracy advice and application recommendations. 

2. MATERIALS AND METHODS 

2.1. Markerless motion capture system based on computer vison approach 

The markerless motion capture system consists of four parts ：camera, body model, image feature, and 

algorithms. The camera systems used in such applications are usually active cameras equipped with depth-

sensing capabilities, such as the most well-known Microsoft's Kinect[4]. The advantages of these types of 

cameras over traditional cameras are that they have a lower impact on lighting and can be used in outdoor 

experiment environments. The active cameras rely on two different technologies: structured light as used in 

Kinect and time-of-flight as used in Kinect 2. Time-of-flight devices measure the time for a pulse of light to 

return to the camera, as opposed to Structured Light devices which use deformations of known patterns. 

Several studies have been published previously using active cameras in sports biomechanics; however, the 

currently active camera technology has limitations regarding the precision of the biomechanics data 

collected[5]. 

Instead of a manual marker method, the markerless camera system uses body models to represent the human 

body. The body model can either be regarded as an accurate representation of the skeleton, based on lengths 

of bones and joints position, or as a shape that is derived from the external surface but has questions affecting 
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the skeleton[6]. But there still is the problem of optimal data by the algorithms which influence the data's 

actual accuracy. 

A body's position and pose can be accurately determined using a markerless motion capture system, which 

extracts “features” from the captured image based on pixels related to the object. Image silhouettes were 

used as the key method of analyzing images, but recent development has moved the method to body models, 

which improve robustness and reduce ambiguity[7]. There is, however, no precision information regarding 

biomechanics kinematics data because it only detects body pose. 

Generative algorithms base on the information extracted from the image and the pose and shape of the real 

body is determined by fitting a body model to the information[7, 8]. Then compare the model parameters to 

the extracted body data, which aim to determine the difference. However, the discriminative approaches do 

not use body models. Discriminative approaches train systems to identify body motions through deep 

learning or by using exemplar data whose poses are sufficiently known[9].  

2.2. X-ray fluoroscopes  

By using X-ray images, radiostereometric analysis (RSA) allows the reconstruction of 3D positions of 

objects in space. The use of biplane fluoroscopy without markers has been validated as an effective means 

to determine accurate skeletal kinematics. Two X-ray fluoroscopes with 9-inch image intensifiers 

(SIREMOBIL Compact-L mobile C-arms, Siemens Medical Solutions Canada Inc., Mississauga, Canada) 

were used in most studies. Data collection, calibration, and data processing are the three components of this 

X-ray motion capture analysis system.  

Data collection: during the trials, participants have to wear radiation protection suits. Biplane fluoroscopes 

would have a relative angle between 90 and 135 degrees[10], thus maintaining the accuracy of the 

fluoroscopic video. Therefore, fluoroscopes could be placed at an angle to best suit the research requirements 

by changing their position. Nevertheless, the range of the relative angle is limited, and the fluoroscopy 

equipment is large so that the movement category can only be detected to a limited extent with matters that 

need attention. The left foot, for example, should avoid the fluoroscope if the right foot is what needs to be 

detected. In addition to the fluoroscopy video, computed tomography (CT) may also be required at the same 

body part to build a 3D model. 

Calibration: Fluoroscopic images, which are produced with microelectrons, have the primary aberrations as 

conventional light images. Fluoroscopic images suffer from mainly three modes of image distortion which 

are pincushion, S-shape, and spiral distortion. To calibrate the image distortion, a frame using orthogonal 

control planes and fiducial planes is used.  

An image intensifier is temporarily placed in front of a grid of beads to quantify how much distortion there 

is present before performing distortion correction. For example, the pincushion distortion can be calibrated 

by installing a distortion grid on the image intensifier during the data collection process. The MATLAB 

software and algorithm are utilized to determine fluoroscopy and image plane parameters, including 

manually locating the position of the beads and reconstructing the experiment set up, including discovering 

the coordinate system and establishing individual foci. 

Data processing: Using image processing software (such as DICOM) create the 3D model based on the CT 

images. Choose two frames from the X-ray video taken with fluoroscopic equipment at the moment the aim 

movement is occurring. The following is manually matched 3D models to the relative position in the two 

frame images. Then the angel of the matched model will be calculated in the experiment set up construction 

in software. 
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3. RESULTS AND DISCUSSION 

3.1. Accuracy and application recommendation 

By using markerless motion analysis, it is possible to reduce joint angle measurement error compared to 

marker-based systems. Nonetheless, the error caused by skin or soft tissue movement is difficult to compare, 

as the markerless motion analysis technique for biomechanics has relatively low precision[11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The pie chart, showing the Kinect research distribution at four different sports biomechanics areas in 2019-2020 which 

data based on the Table 1. The line chart, showing the overview of the fluctuation of Kinect research in sports biomechanics areas 

from 2011 to 2022 which data based on the Table 1. 

As well, it remains difficult for a markerless motion system to detect some joint’s rotation, such as ankle and 

knee joints, in the transverse plane accurately standards for markerless. The measurement error will change 

depending upon the type of movement, the participants, and the environment, so there is no common 

accuracy motion analysis. Nevertheless, the markerless motion capture analysis system may provide 

information that will help form training plans for applied fields by allowing step frequency and step length 

when analyzing gait, but as shown the researches in Table 1 and Figure 1, which are mainly focus on skeletal 

kinematics for comparative research with Vicon and motion tests areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The pie chart shows the research weight of dual fluoroscopes analysis in the lower limb joint, which data is based on 

Table 2. 
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Table 1. Characters of paper used markerless method 
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Table 2. Characters of paper used  Radiostereometric method 
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The dual fluoroscopes analysis could directly track bones by radiographic techniques to obtain foot and 

glenohumeral joint kinematics, which is challenging for markers motion camera capture as they have skin 

movement errors. This motion analysis method has advantages in determining the small joint kinematics 

changes and joint angle calculation, which showed relative researches in Table 2. and Figure 2.. A sagittal 

plane measurement of the foot is appropriate for a radiostereometric analysis such as medial arch angle[31], 

navicular drop, and calcaneal inclination and the transverse plane such as talus-navicular coverage angle[32]. 

As a result of the experiment conditions, the method was used to primarily measure walking and jumping 
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movements. Furthermore, it is a method that has high accuracy in identifying various foot types of joint 

changes[33] and orthosis intervention[34]. 

4. CONCLUSIONS 

Motion analysis systems used in sports biomechanics must have high accuracy to detect subtle motion 

changes. Even though the markerless motion capture system seems promising, it is not yet known whether 

these systems can be used to achieve the required accuracy and whether they can be appropriately used in 

field-based settings (with more external validity). Although the RSA has been validated on its ability to 

detect subtle biomechanical data changes, it is also subject to limitations in the category of movement. 
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