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Summary 

 An important branch of the plant immune system is based on the sensing of potential 

pathogens by the recognition of highly conserved microbe-associated molecular patterns 

(MAMPs), such as the peptide epitope flg22 from bacterial flagellin, and the activation of 

complex defense signaling events yielding a generic anti-microbial response, which is called 

MAMP-triggered immunity (MTI). The successful establishment of infection relies on the 

pathogen’s capability to deliver effectors that subvert plant immunity. Although some 

effectors from eukaryotic filamentous pathogens have been identified as MTI-compromising 

factors, our general understanding of the effector-target biology and the molecular 

mechanisms underlying the mode of action of these effectors is still in its infancy. A large 

repertoire of candidate effector genes, including hundreds of putative host-targeting RXLR 

effectors, is present in the genome of Phytophthora infestans, the causal agent of potato and 

tomato late blight. In this thesis, we used protoplast-based high-throughput assays to identify 

and characterize RXLR effectors interfering with the early stages of MAMP-induced immune 

signaling responses e.g. calcium and oxidative burst, post-translational MAP kinase activation 

and transcriptional up-regulation of MAMP-inducible genes. Among 33 RXLR effectors 

tested, eight were identified as Suppressor of early Flg22-induced Immune responses (SFI 

effectors) in tomato protoplasts. Epistatic analysis showed that three RXLR effectors (SFI5-

SFI7) disturb flg22-mediated signaling at- or upstream of the MAP kinase cascade, 

concomitant with their localization at the host plasma membrane. The remaining five RXLR 

effectors (SFI1-4 and SFI8) act downstream of the MAP kinase cascade, four of them are 

localized in the host nucleus. Furthermore, we provide evidence that all but one SFI effectors 

enhance host susceptibility to P. infestans infection.      

We have identified the calcium sensor calmodulin (CaM) as an interacting plant protein of 

SFI5 using bioinformatics, proteomics and biochemical approaches. Structure-function 

analyses with SFI deletion and point mutants showed that the CaM-binding motif in the C-

terminal part of SFI5 is crucial for the plasma membrane (PM) localization, MTI-suppressing 

activity and virulence function of SFI5. In addition, a predicted ATP/GTP-binding site motif 

(P-loop) at the N-terminus of SFI5 was demonstrated to be necessary for the effector activity 

but has no influence on CaM binding and PM localization. Our current model predicts a two-

step activation mechanism of SFI5 with CaM serving as a co-factor and regulating SFI5 to 

target potential MTI components at the PM.  
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Altogether, we have shown that P. infestans contains functionally redundant effectors to 

inhibit MAMP-dependent early signal transduction during host infection. Our results present a 

conceptual advance in the understanding of the biology of effectors originated from 

eukaryotic plant pathogens and show parallels with the strategies developed by prokaryotic 

pathogens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 III 

Zusammenfassung 

Ein wichtiger Zweig des Immunsystems der Pflanzen beruht auf der Erkennung von  

potenziellen Krankheitserregern über konservierte, Mikroben-assoziierte molekulare Muster 

(MAMPs), wie beispielsweise das  flg22-Peptid aus der Bakteriengeißel  (Flagellen). MAMP- 

Erkennung aktiviert eine komplexe, intrazelluläre Signalkaskade, die zu einer generischen, 

antimikrobiellen Antwort führt, die allgemein MAMP-induzierte Immunität (MTI) genannt 

wird. Viele erfolgreiche Pathogene haben aber die Fähigkeit,  Effektoren zu produzieren, 

welche die Immunität der Pflanzen unterdrücken. Obwohl bereits einige dieser Effektoren als 

MTI-suprimierende Faktoren identifiziert wurden, ist unseres Verständnis über die 

molekularen Wirkungsweisen der meisten Effektoren noch sehr beschränkt. Phytophthora 

infestans, der Erreger der Kraut- und Knollenfäule in Tomaten und Kartoffeln, verfügt über 

ein großes Repertoire von  Effektorkandidaten, darunter hunderte von so-gennanten RXLR 

Effektoren. In der hier vorgelegten Arbeit wurde ein Zell-basiertes System verwendet, um 

diejenigen RXLR Effektoren zu identifizieren und charakterisieren, welche bereits fühe 

Schritte der MAMP-induzierten Immunantworten, wie etwa den Einstrom von  Calcium, die 

Induktion eines ´oxidativen Burst´, die posttranslationale MAP-Kinase-Aktivierung oder die 

transkriptionale Hochregulierung von MAMP-induzierbaren Genen, inhibieren. Insgesamt 

konnte für 8 von 33 geprüften RXLR Effektoren eine supprimierende Funktion frühen flg22-

induzierten Immunantworten (SFI Effektoren)  in Tomatenprotoplasten nachgewisen werden. 

Für drei dieser RXLR Effektoren (SFI5-SFI7) konnte gezeigt werden, dass sie die flg22-

abhängige Signaltransduktion auf- oder oberhalb der MAP-Kinase Aktivierungsebene  stören, 

was mit ihrer Lokalisierung in der Wirtszell-Plasmamembran (PM) verbunden ist. Die 

restliche fünf RXLR Effektoren (SFI1-4 und SFI8) wirken unterhalb der MAP Kinase 

Kaskade, vier davon sind im Wirtszellkern lokalisiert. Durch transiente Expression in 

Wirtszellen konnte für sieben der SFI Effektoren eine Virulenzfunktion gezeigt werden, die 

sich durch eine erhöhte Susceptibilität gegenüber P. infestans äussert. 

Durch Bioinformatik, Proteomik und biochemische Ansätze konnten wir für SFI 5 den 

Kalziumsensor Calmodulin (CaM) als pflanzliches Zielprotein (target) identifizieren. Die 

Struktur-Funktions Analysen mit Deletions- und Punktmutanten zeigen, dass das CaM-

bindende Motiv im C-terminalen Teil von SFI5 entscheidend für die subzelluläre 

Lokalisierung, die MTI-supprimierende Aktivität und die Virulenzfunktion von SFI5 ist. 

Darüber hinaus wurde ein mutmaßliches ATP / GTP-Bindungsstelle Motiv (P-Schleife) am 

N-Terminus von SFI5 identifiziert, das für die Effektoraktivität notwendig ist aber keinen 
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Einfluss auf die CaM Bindung und PM Lokalisierung hat. Unser aktuelles Modell sagt 

voraus, dass SFI 5 über einen zweischrittigen Aktivierungsmechanismus das CaM Protein zur 

MTI-supprimierenden Aktivität an der Plasmamembran nutzt. 

Zusammenfassend haben wir gezeigt, dass P. infestans funktionell redundante Effektoren 

produziert, um während der Infektion frühe Antworten der MAMP-induzierten 

Abwehrantwort zu verhindern. Unsere Ergebnisse stellen einen konzeptionellen Fortschritt für 

das Verständnis der Biologie von Effektoren aus eukaryotischen Phytopathogenen. 
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1.  Introduction 

 

Unlike animal and humans, plants are sessile organisms, which under natural growing 

conditions are continuously exposed to various threats in their environment. Besides 

numerous harmless microbes present in the rhizosphere and phylosphere and sharing a 

commensal or symbiotic relationship with plants, phytopathogenic microorganisms have 

evolved to become specialized in attacking and feeding on host plants for replication and 

propagation. Depending on their life style, ranging from feeding on living host cell to dead 

plant tissue or both, they are classified into biotrophic, necrotropic and hemibiotrophic 

pathogens, respectively (Glazebrook, 2005; Kemen and Jones, 2012). To protect against the 

majority of pathogens, plants first deploy physical barriers such as the cuticle and the cell 

wall, which constitute obstacles to tissue penetration by microorganisms (Hamann, 2012; 

Yeats and Rose, 2013). Some microbes can overcome these obstacles either by entering into 

plants through natural openings (e.g. stomata, hydathode) or wounds (Melotto et al., 2008) or 

with help of specialized structures (e.g. fungal appressorium) (O'Connell and Panstruga, 

2006). When pathogens have successfully penetrated into the apoplast, they have to face the 

plant immune system, which detects both adapted and non‐ adapted microbes. Only in the 

case of non-adapted pathogens there is a robust and strong induction of defense responses 

while adapted pathogens are capable to turn down the plant immune system by producing 

effectors (Boller and He, 2009; Thomma et al., 2011).  

1.1. The plant innate immune system: MTI and ETI 

Plants rely on a double-layered innate immune system to combat most potential pathogens 

(Figure 1-1). The first layer of active plant immune responses is established by cell surface-

resident pattern recognition receptors (PRRs). These PRRs can recognize a range of pathogen-

associated molecular patterns (PAMPs), which are generally highly conserved molecules or 

structural components derived from microbes and indispensable for microbial fitness or life 

style (Medzhitov and Janeway, 1997; Nurnberger and Brunner, 2002). Since non-pathogenic 

microbes can also produce effective PAMPs detected by plants, the term microbe-associated 

molecular patterns (MAMPs) is used preferentially (Ausubel, 2005; Boller and Felix, 2009). 

The defense responses induced by PRR-mediated perception of MAMPs is called pattern-

triggered immunity (PTI) or MAMP-triggered immunity (MTI), and is accompanied by rapid 

changes in cytosolic ion levels, the production of reactive oxygen species (ROS), the 

activation of mitogen-activated protein kinases (MAPKs) and calcium-dependent protein 



Introduction 

 2 

kinases (CDPKs), the activation of the expression of immunity-associated genes as well as the 

induction of callose deposition at the cell wall and stomatal closure (Boudsocq and Sheen, 

2013; Bigeard et al., 2015; Lee et al., 2015). 

However, successful pathogens have learned to suppress MTI by delivering virulence proteins 

(effectors) into host cells that interfere with MAMP-induced signal transduction, leading to 

effector-triggered susceptibility (ETS) (Figure 1-1 A). For example, many bacterial pathogens 

directly inject diverse effectors into the host cytoplasm through the type III secretion 

apparatus to modulate plant innate immunity (Xin and He, 2013; Liu et al., 2014). As a 

consequence of co-evolution, plants have developed additional intracellular immune receptors 

(R proteins) to specifically recognize some of these effectors either directly or indirectly, 

resulting in a second layer of plant immunity, which is called effector-triggered immunity 

(ETI) (Figure 1-1 A) (Chisholm et al., 2006; Ingle et al., 2006; Jones and Dangl, 2006). Most 

R proteins contain conserved nucleotide-binding and leucine-rich repeat (NB-LRR) domains 

that allow for pathogen sensing and defense signaling (Meyers et al., 2003; Collier and 

Moffett, 2009). Detection of the effectors (so-called AVR proteins) by the corresponding NB-

LRR proteins determines the occurrence of ETI in a race-specific manner. One typical 

reaction associated with ETI is the hypersensitive response (HR), a form of programmed cell 

death (PCD) that may restrict disease spread (Jones and Dangl, 2006). Due to selection 

pressure, pathogen isolates have developed strategies to avoid ETI, either by losing or 

modifying the effectors recognized by R proteins, or gaining new effectors suppressing ETI. 

In parallel, plants have evolved novel receptor proteins to perceive newly acquired effectors, 

reflecting the continuous coevolutionary arms race of plant-pathogen interactions and 

illustrated by the Zigzag model (Jones and Dangl, 2006) (Figure 1-1 A). 

Although the signaling network shared by ETI and MTI is highly overlapping, the immune 

responses activated in ETI are thought to be more prolonged and robust compared to MTI 

(Tao et al., 2003; Jones and Dangl, 2006; Tsuda and Katagiri, 2010). The dynamic interplay 

and evolutionary arms race between plants and pathogens put forward the notion that MTI 

evolved before ETI and might be the basic driving force for evolution of ETI (Jones and 

Dangl, 2006). However, several lines of evidence indicate that the dichotomy between MTI 

and ETI is ambiguous and eventually obsolete (Thomma et al., 2011).  

It has been reported that flagellin, a bona fide bacterial MAMP, purified from incompatible 

Pseudomonas syringae pathovars can cause a HR-like response in the non-host plants tobacco 

and tomato (Taguchi et al., 2003; Hann and Rathjen, 2007) and the flg22 peptide, derived 
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from flagellin of P. syringae pv. tabaci and P. aeruginosa, can induce cell death in 

Arabidopsis (Naito et al., 2008). This suggests that the induction of cell death is not only 

associated with ETI, but can also occur in MTI. Moreover, some MAMPs are sparely 

distributed among microorganisms or they are only recognized by a narrow range of plant 

species, which are typical criteria of ETI. For example, the MAMP Pep-13 is only conserved 

among Phytophthora species (Brunner et al., 2002) and the perception of bacterial MAMP 

EF-Tu is limited to the Brassicaceae (Zipfel et al., 2006). On the other side, several effectors 

display characteristics of MAMPs, based on their wide taxonomic distribution. For instance, 

Ecp6, an effector from the fungal pathogen Cladosporium fulvum interferes with chitin-

triggered immune signaling in tomato (de Jonge et al., 2010). Ecp6 orthologs are widely 

conserved in the fungal kingdom, a feature that is reminiscent of a MAMP (Bolton et al., 2008; 

de Jonge and Thomma, 2009). In this respect, Ecp6-mediated suppression of MTI is 

designated as MAMP-triggered susceptibility (MTS) in a modified Zigzag model (Thomma et 

al., 2011) (Figure 1-1 B). Another example is provided by the Necrosis- and ethylene-

inducing-Like Proteins (NLPs), which are broadly distributed across bacteria, fungi and 

oomycetes and act, on one hand, as toxin-like virulence factors and, on the other hand, as 

activators of the plant immune system through the recognition of an immunogenic peptide 

motif (nlp20) derived from the protein (Qutob et al., 2006; Oome et al., 2014). The occurence 

of a MAMP motif within a microbial virulence factor further blurs the boundary line between 

MAMP and effector terminology and implies in fact a continuum between MTI and ETI. 

In addition to MAMPs and effectors, plants can detect a variety of damage-associated 

molecular patterns (DAMPs), which are endogenous danger signals released during cell or 

tissue damage. For example, solanaceous plants produce in response to wounding and insect 

attacks the peptide systemin that acts as an activator of the immune signaling pathway (Ryan 

and Pearce, 2003). Recently, it was discovered that extracellular ATP also serves as a DAMP 

signal to evoke plant defense responses during attack by herbivores or pathogens (Choi et al., 

2014; Tanaka et al., 2014). Oligogalacturonides (OGs), which are fragments of pectin in the 

plant cell wall, are processed to a certain size through the combined action of pathogenic 

polygalacturonases (PGs) and plant polygalacturonases-inhibiting proteins (PGIPs) and 

function as plant immunity-activating DAMPs (Benedetti et al., 2015). 
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Figure 1- 1.  Zigzag models representing the plant immune system.   

(A) Upon pathogen infection, plants perceive at first microbe-associated molecular patterns (MAMPs, red 

diamonds) and activate MAMP-triggered immunity (MTI), while successful pathogens produce virulent effetors 

(round) to interfere with MTI, leading to effector-triggered susceptibility (ETS). In turn, plants have evolved 

NB-LRR protein (R) to recognize some effectors (Avr) (indicated in red, round), resulting in effector-triggered 

immunity (ETI), which often passes the threshold for induction of the hypersensitive response (HR). In an 

ongoing arms race, pathogen isolates have evolved to lose or modify the Avr effector and perhaps acquire novel 

effectors (indicated in blue, round) suppressing ETI. In parallel, plants are selected to gain new NB-LRR protein 

to recognize modifies or newly acquired effectors, leading to ETI again. (Adapted from Jones and Dangl, 2006) 

(B) Chitin, a fungal MAMP from Cladosporium fulvum, is presumably perceived by Sl-CEBiP, the tomato 

homolog of the rice chitin receptor CEBiP, and triggers MTI. To disturb MTI signaling, C. fulvum secrets the 

LysM effector Ecp6 that binds chitin, leading to prevention of Sl-CEBiP-mediated immune signaling. Since 

LysM effectors are widely conserved in the fungal kindom, they qualify as MAMPs, and therefore the MTI 

suppression by Ecp6 should be referred to as MAMP-triggered susceptibility (MTS). Some tomato genotypes 

may have evolved specifiec cell surface receptor for recognizing Ecp6 by inducing an HR. This cell surface 

receptor is temporarily named C. fulvum resistance to Ecp6 (Cf-Ecp6) and again mediates MTI (MTI2). The 

question mark indicates that subsequent susceptibility can again be provoked by C. fulvum, either through 

mutation of the Ecp6 protein, such that it still sequesters chitin fragments but is no longer recognized by Cf-

A 

B 
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Ecp6, or by producing an effector that suppresses Sl-CEBiP signaling in an alternative manner. (Adapted from 

Thomma et al., 2011). 

 

1.2. MAMPs perception through transmembrane receptor-like kinases and receptor-like 

proteins 

In Arabidopsis, several hundreds of putative PRRs have been identified (Shiu and Bleecker, 

2003; Fritz-Laylin et al., 2005) and many genes encoding PRR candidates are induced upon 

MAMP treatment (Zipfel et al., 2004; Zipfel et al., 2006), implying that they are involved in 

immune signaling. A few PRRs have been characterized to date (Table 1-1) and most of them 

are single transmembrane proteins containing an extracellular leucine-rich repeat (LRR) or 

lysine motif-containing (LysM) domain, which is responsible for ligand-binding and/or signal 

transduction. They are classified into receptor-like kinases (RLKs) and receptor-like proteins 

(RLPs), depending on whether or not they harbor a cytoplasmic kinase domain for 

intracellular signal transduction (Bi et al., 2010; Wang et al., 2010a). Thus, RLK proteins 

combine a “receptor” and a “signaling” domain in one molecule, whereas RLP proteins 

lacking the intracellular “signaling” domain are supposed to require the association with 

adapter molecules for proper function (Shiu and Bleecker, 2003; Altenbach and Robatzek, 

2007; Sun et al., 2012; Gust and Felix, 2014).  

The best-studied plant LRR-RLKs are the flagellin receptor, Flagellin Sensing 2 (FLS2), and 

bacterial elongation factor thermo unstable (EF-Tu) receptor, EFR, in Arabidopsis (Gomez-

Gomez and Boller, 2000; Zipfel et al., 2006). FLS2 and EFR with 28 and 21 LRR motifs, 

respectively, are highly structurally similar and belong to the same subfamily XII of LRR-

RLK (Shiu et al., 2004). Both receptors can physically interact with their corresponding 

epitope, flg22, a 22-amino acid peptide in the N-terminus of flagellin in the case of FLS2, and 

elf-18, the first 18 amino acids of EF-Tu, in the case of EFR (Chinchilla et al., 2006; Zipfel et 

al., 2006). The homologs of Arabidopsis FLS2 have been detected in tomato, tobacco, barley 

and rice, suggesting an evolutionary conservation of flagellin perception in both 

dicotyledonous and monocotyledonous plants (Dunning et al., 2007; Hann and Rathjen, 2007; 

Robatzek et al., 2007; Takai et al., 2008; Shinya et al., 2010). By contrast, EFR/elf-18 

responsiveness was found only in Brassicaceae species (Kunze et al., 2004). Strikingly, 

ectopic expression of Arabidopsis EFR in N. benthamiana, which is unable to perceive EF-Tu, 

rescued the ability to recognize elf-18, implying that the downstream signaling components 

are conserved between Brassicaceae and Solanaceae (Zipfel et al., 2006; Nicaise et al., 2009).  
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Furthermore, a LysM-RLK receptor, designated Chitin Elicitor Receptor Kinase 1 

(CERK1)/RLK1/LYK1, was identified in Arabidopsis as a PRR for oligosaccharidic 

fragments of chitin (Miya et al., 2007; Wan et al., 2008). Unlike FLS2 and EFR, CERK1 

possesses 3 lysM motifs instead of LRR motifs in the extracellular domain, which can bind 

chitin oligomers (seven to eight GlcNAc residues) and results in homodimerization of CERK1 

and initiation of chitin-dependent immune signaling (Miya et al., 2007; Petutschnig et al., 

2010; Liu et al., 2012). It was recently discovered that another LysM-RLK, LYK5, shows 

much higher chitin binding affinity than CERK1 and interacts with CERK1 upon chitin 

treatment, suggesting that LYK5 is the primary chitin binding site in Arabidopsis and 

essential for subsequent CERK1 phosphorylation and proper activation of the immune 

signaling cascade (Cao et al., 2014). In rice, the major receptor for chitin binding is a LysM-

RLP, named CEBiP, which also contains three extracellular LysM domains but not the 

intracellular kinase domain (Kaku et al., 2006; Kouzai et al., 2014). Given that it lacks the 

“signaling” domain in the C-terminal region, Shimizu et al., have demonstrated that CEBiP 

cooperates with the rice ortholog of the Arabidopsis CERK1 to bind biologically active chitin 

fragments by forming a heteromeric receptor complex, while the rice CERK1 alone can not 

bind chitin (Shimizu et al., 2010). These observations reveal a difference in the chitin 

perception system between rice and Arabidopsis (Shinya et al., 2012). 

By means of genetic mapping, two tomato LRR-RLP proteins, LeEix1 and LeEix2, were 

found to recognize fungal ethylene-inducing xylanase (EIX), which activates immune 

responses in specific cultivars of tobacco and tomato (Furman-Matarasso et al., 1999; Ron 

and Avni, 2004). Although both receptors are able to bind EIX, only LeEix2 plays a function 

in triggering defense responses, which requires the action of the co-receptor BAK1 (BRI1-

ASSOCIATED RECEPTOR KINASE 1) (Bar et al., 2011). In the past years, more and more 

RLP-type proteins have been documented to play key roles in MAMP perception and plant 

immunity, like the Arabidopsis LYM1/LYM3 sensing the bacterial peptidoglycan (PGN) 

(Willmann et al., 2011), ReMAX/RLP1 for eMAX of Xanthomonas (Jehle et al., 2013), 

RLP30 for SCFE1 of the necrotrophic fungus Sclerotinia sclerotiorum (Zhang et al., 2013), 

RBPG1 for the polygalacturonase of Botrytis cinerea (Zhang et al., 2014) and  RLP23 for the 

NLP-derived peptide nlp20 (Albert et al., 2015). As all these RLPs lack a cytoplasmic kinase 

domain, accumulating evidence indicate that the LRR-RLK SOBIR1 (SUPPRESSOR OF 

BIR1-1) acts as a scaffold or co-receptor in a constitutive, ligand-independent manner and 

engages next BAK1 upon ligand binding to form a functional tripartite receptor complex 

(Gust and Felix, 2014; Liebrand et al., 2014; Albert et al., 2015). 
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Table 1-1.  Several identified MAMPs and plant DAMPs eliciting plant immunity  

 

MAMPs (minimal elicitor motif) PRR Receptor type Reference 

Flagellin (flg22) FLS2 LRR-RLK (Chinchilla et al., 2006) 

Elongation factor (elf18) EFR LRR-RLK (Zipfel et al., 2006) 

Cold shock protein (CSP22) undefined undefined (Felix and Boller, 2003) 

Peptidoglycan (undefined) LYM1/LYM3/CERK1 LysM-RLK (Willmann et al., 2011) 

Lipopolysaccharides (lipid A and O-

antigen oligosaccharides) 

LORE Lectin-like RLK  (Newman et al., 1995; 

Ranf et al., 2015) 

Xanthomonas eMax (undefined) ReMAX LRR-RLP (Jehle et al., 2013) 

Chitin (oligosaccharides DP>3) AtLYK5/AtCERK1 

OsCEBiP1/OsCERK1 

LysM-RLK 

LysM-RLP 

(Kaku et al., 2006; 

Shimizu et al., 2010; 

Cao et al., 2014) 

Xylanase (TKLGE peptide) Eix2 LRR-RLP (Ron and Avni, 2004) 

Sclerotinia sclerotiorum effector-

SCFE1 (undefined) 

RLP30 LRR-RLP (Zhang et al., 2013) 

OPEL (undefined) undefined undefined (Chang et al., 2015) 

Transglutaminase (Pep-13) undefined undefined (Brunner et al., 2002)11 

Cellulose-binding elicitor lectin 

(CBEL) (undefined) 

undefined undefined (Gaulin et al., 2006) 

INF1 (undefined) StELR LRR-RLP (Du et al., 2015)  

XEG1 (undefined) undefined undefined (Ma et al., 2015) 

Beta-glucans (linear or branched 

oligosaccharides) 

undefined undefined (Cheong et al., 1991; 

Klarzynski et al., 2000) 

Necrosis-and ethylene-inducing like 

protein (nlp20) 

RLP23 LRR-RLP (Bohm et al., 2014; 

Oome et al., 2014; 

Albert et al., 2015) 

DAMPs (minimal elicitor motif)    

PROPEP1-7 (Pep1-7) AtPEPR1/2 LRR-RLK (Yamaguchi et al., 2006; 

Krol et al., 2010) 

Prosystemin (Systemin) undefined undefined (Narvaez-Vasquez and 

Ryan, 2004) 

Oligogalacturonides (DP>6) WAK1 LRR-RLK (Brutus et al., 2010) 

Extracellular ATP DORN1 Lectin-like RLK (Choi et al., 2014) 

 

1.3. Early MTI responses  

Upon perception of MAMPs by their cognate PRRs at the cell surface, there is an activation 

of an intracellular signaling pathway implying several second messengers, such as Ca2+ or 
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ROS, and post-translational modifications that deliver the information to the nucleus, where 

the initiation of defense gene expression takes place (Boller and Felix, 2009; Bigeard et al., 

2015) (Figure 1-2). Despite the high complexity of the signaling network and fragmentary 

knowledge about the molecular mechanisms underlying the integration and transmission of 

the input signal, diverse PRRs activate a conserved signaling pathway, recruiting key immune 

components and leading to the induction of generic defense responses (Zipfel et al., 2006; 

Gust et al., 2007; Denoux et al., 2008; Wan et al., 2008; Boller and Felix, 2009). In the 

following section, I will focus on the description of typical responses elicited during early i.e 

within minutes of MAMP-induced signaling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- 2.  MAMP (flg22)- induced immune responses in Arabidopsis. 

Flg22 perception by the PRR FLS2 induces the association of BAK1 with FLS2 and the release of BIR2, a 

negative regulator of BAK1 interaction with FLS2, from BAK1 as well as the release of BIK1 from FLS2, which 

are accompanied by different auto- and trans-phosphorylation events of these actors. Tansmembrane ion fluxes 

e.g. Ca2+, H+ influx occur at the very early stage through yet unidentified membrane channels. BIK1 released 

from the receptor complex acts as as positive regulator of the flg22-induced oxidative burst. In parallel, there is 

an activation of a MAP kinase signaling cascade regulating the activity of immunity-related transcription factors 

(TFs) and subsequent activation of defense-associated gene expression. MAMP, microbe-associated molecular 

pattern; PRR, pattern recognition receptor; MAPK, mitogen-activated protein kinases; MAPKK, mitogen-

activated protein kinase kinase; MAPKKK, mitogen-activated protein kinase kinase kinase; FLS2, Flagellin-

Sensing 2; flg22, the 22 amino acid fragment of flagellin; BAK1, BRI1-associated receptor kinase 1; BIR2, 

BAK1-interacting RLK 2; BIK1, Botrytis-induced kinase 1; TFs, transcription factors.  Adapted from (Macho 

and Zipfel, 2014). 
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1.3.1. Ca2+ influx 

One of the earliest physiological response induced by MAMP perception is the opening of ion 

channels at the plasma membrane (PM), which enables influx of H+, Ca2+ and concomitant 

efflux of K+, Cl- and NO3
-, causing transient membrane depolarization and extracellular 

alkalinisation (Felix et al., 1999; Sakano, 2001; Felle et al., 2004; Jeworutzki et al., 2010). 

Most experiments to reflect this phenomenon were conducted by using a pharmacological 

approach with both activators and inhibitors of ion channels or pumps (Ma et al., 2008; 

Nomura et al., 2012)   

MAMP treatment triggers an increase in cytosolic Ca2+ level within 5-30 min but it has been 

noted that the Ca2+ signatures between MAMPs differ in amplitude or duration (Aslam et al., 

2009; Ranf et al., 2011). This finding supports the notion that the specificity of signal 

transduction in response to different MAMPs occurs very early at the level of the receptor 

complex (Seybold et al., 2014).  

So far, genetic screens aiming at identifying components that control Ca2+ influx upon flg22 

treatment did not reveal Ca2+ channels or pumps but novel fls2 and bak1 alleles with altered 

Ca2+ elevation (Ranf et al., 2012). This approach was also successful in identifing the DAMP 

ATP receptor DORN1 and the bacterial MAMP lipopolysaccharide (LPS) receptor LORE but 

not the Ca2+ channels/pumps involved in the process (Choi et al., 2014; Ranf et al., 2015). A 

possible explanation for the failure to identify Ca2+ channel/pump associated with MAMP 

signaling would be their functional redundancy or the lethality of knock out mutant(s).  

Nevertheless, a few studies have identified putative candidate PM-localized proteins that 

could be Ca2+ channels or pumps although, their identity and function has not been 

unambiguously demonstrated. Recently, in a proteomics approach, the PM-associated 

autoinhibited Ca2+-ATPases, ACA8 and ACA10, were found to complex with FLS2 and to be 

involved in the Ca2+ burst (Frei dit Frey et al., 2012). It is assumable that Ca2+ 

channels/pumps and receptor complexes are in close proximity to mediate the rapid Ca2+ 

response. Thus, glutamate receptor-like channels (GLRs) and cyclic nucleotide-gated 

channels (CNGCs), which are implicated in DAMP-induced Ca2+ influx (Qi et al., 2010; 

Manzoor et al., 2013) might also participate in MAMP-induced Ca2+ burst. 

The transient elevation of [Ca2+]cyt serves as second messenger sensed by intracellular Ca2+-

binding proteins, which transmit the signal to downstream components leading to appropriate 
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cellular responses (DeFalco et al., 2010; Kudla et al., 2010). The mechanism how differential 

Ca2+ signatures are decoded remains to be uncovered (Spalding and Harper, 2011). Free Ca2+ 

can be sensed by a large group of Ca2+-binding domain (CBD)-containing proteins, such as 

calmodulins (CaMs), CaM-like proteins (CMLs), calcineurin B-like (CBL) proteins and Ca2+-

dependent protein kinases (CDPKs) (DeFalco et al., 2010). CaMs, CMLs and CBLs have no 

intrinsic catalytic activity but they act as mediator of Ca2+ signaling since, upon Ca2+ binding, 

they interact and regulate the activity of a large subset of target proteins or kinases (Reddy et 

al., 2011; Yu et al., 2014).  

CDPKs have been more intensively studied in the context of plant immunity and they are 

proposed to be eligible for rapid response to elicitors, as these proteins possess both Ca2+-

binding EF hand motifs and a catalytic kinase domain that regulates the activity of target 

proteins. A couple of reports indicated that several closely related CDPKs (CPK4, 5, 6 and 11) 

fulfill crucial functions in MTI-mediated transcriptional reprogramming by regulating the 

activity of specific WRKY transcription factors (WRKY8, 28, 48) (Boudsocq et al., 2010; 

Gao et al., 2013). Furthermore, it has been confirmed that NADPH oxidases, responsible for 

ROS production upon MAMP treatment, can be phosphorylated by Ca2+-activated CPK1, 2, 4, 

5 and 11 (Dubiella et al., 2013; Gao et al., 2013).  

1.3.2. ROS burst 

Another very early-induced response, occurring within few minutes upon MAMP treatment, 

is the production of reactive oxygen species (ROS), also known as oxidative burst, which can 

be easily detected using luminescence-based techniques (Chinchilla et al., 2007; Nuhse et al., 

2007; Ranf et al., 2011). ROS include many forms like superoxide (O2−), singlet oxygen (1O2), 

hydrogen peroxide (H2O2), and hydroxyl radical (OH ̊). The membrane-impermeable O2− is 

produced at the outer membrane surface by PM-localized NADPH oxidase homologs of the 

catalytic subunit of mammalian phagocyte gp91phox and rapidly dismutated via superoxide 

dismutase (SOD) to relatively stable and membrane-permeable H2O2 (Grant and Loake, 2000; 

Sagi and Fluhr, 2006). A NADPH oxidase homolog, termed respiratory burst oxidase 

homolog D (RBOHD), is responsible for the MAMP-triggered ROS production in 

Arabidopsis (Simon-Plas et al., 2002; Wong et al., 2007; Asai et al., 2008; Pogany et al., 2009; 

Noirot et al., 2014). RBOHD activity can be regulated both in a Ca2+-dependent and –

independent manner (Kadota et al., 2015). There is biochemical evidence for the association 

of RBOHD with the PRR complex and its phosphorylation upon MAMP perception on 
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specific serine residues within the N-terminal part through the receptor-like cytoplasmic 

kinase BIK1 (Dubiella et al., 2013; Kadota et al., 2014; Li et al., 2014b; Kadota et al., 2015). 

BIK1 –mediated phosphorylation of RBOHD occurs in the absence of Ca2+ or in Ca2+ 

signaling mutants (Kadota et al., 2014; Li et al., 2014b). In addition, the presence of Ca2+-

binding EF hands motif in the N-terminal part of RBOHD indicates that Ca2+ also plays a role 

in the regulation of ROS activity in response to MAMP (Ranf et al., 2011; Segonzac et al., 

2011; Kadota et al., 2014). Moreover, it was shown that Ca2+-dependent protein kinase 5 

(CPK5) also regulates the activity of RBOHD through serine residues phosphorylation 

(Dubiella et al., 2013). In addition to the NADPH oxidases, cell wall peroxidases have been 

shown to take part in ROS production in MAMP-elicited defense (Daudi et al., 2012; 

Lehtonen et al., 2012; O'Brien et al., 2012). ROS may directly contribute to plant defense by 

acting as antimicrobial agents and by strengthening the cell wall (Grant and Loake, 2000; 

Apel and Hirt, 2004) and/or act as second messengers to trigger defense signaling (Gupta and 

Luan, 2003; Vandenabeele et al., 2003; Desikan et al., 2005; Torres et al., 2006; Sang et al., 

2012). 

 1.3.3. MAPK activation 

Mitogen-activated protein kinase (MAPK) cascades play a central role in immunity signaling 

and appear to be convergent nodes for different MAMP-induced pathways (Meng and Zhang, 

2013). The Arabidopsis genome encodes 60 MAPKKKs, 10 MAPKKs and 20 MAPKs 

(Ichimura at al., 2002). Stimulated with flg22 or other MAMPs, an increased activity of 4 

MAPKs (AtMPK3, AtMPK4, AtMPK6 and AtMPK11) was observed, starting within 1-2 min 

and peaking around 10-15 min (Nuhse et al., 2000; Asai et al., 2002; Zipfel et al., 2006; 

Bethke et al., 2012). In Arabidopsis, two distinct MAPK signaling modules were shown to 

regulate flg22-dependent immune responses. The module MEKK1/MEKKs-MKK4/MKK5-

MPK3/MPK6 positively regulates immune responses (Ren et al., 2002; Pitzschke et al., 2009a; 

Rasmussen et al., 2012; Zhao et al., 2014), while the cascade of MEKK1-MKK1/MKK2-

MPK4 negatively control defense responses (Suarez-Rodriguez et al., 2007; Gao et al., 2008; 

Qiu et al., 2008a; Pitzschke et al., 2009b). The substrates of the MAMP-induced MAPKs 

remain largely elusive but transcription factors that are involved in the regulation of 

immunity-associated genes seem to be preferentially targeted. For example, the bZIP 

transcription factor, VIP1, binds to and is phosphorylated by MPK3 (Djamei et al., 2007). The 

ethylene response factors, EFR104 and ERF6, are targeted by MPK3/MPK6 to initiate 

defense gene expression (Bethke et al., 2009; Meng and Zhang, 2013). In addition, WRKY 



Introduction 

 12 

transcription factors are extensively studied for their function to promote, in response to 

MAMP treatment, the expression of many Pathogenesis-Related (PR) genes and genes of the 

biosynthetic pathway of anti-microbial metabolites (Ulker and Somssich, 2004).  

For instance, WRKY33 was reported to form a complex with MPK4 and MKS1, a substrate 

of MPK4, in the nucleus in Arabidopsis. Upon pathogen or flagellin treatment, activated 

MPK4 phosphorylates MKS1 and the MKS1-WRKY33 complex activates the expression of 

PAD3, which encodes a key biosynthetic enzyme of camalexin, an anti-microbial phytoalexin 

(Qiu et al., 2008b). Another report showed that WRKY33 is directly phosphorylated by 

MPK3/MPK6 in response to Botrytis cinerea infection (Mao et al., 2011). Similarly, 

WRKY22/29 have been confirmed to function downstream of MPK3/MPK6 in FLS2-

mediated immune response (Asai et al., 2002). The fact that a subgroup of WRKYs including 

WRKY8/28/48 is phosphorylated and activated by CPK4/5/6/11 (Gao et al., 2013), suggests 

the existence of a synergistic effect between MAPKs and CDPKs to regulate the function of 

WRKY transcription factors involved in MAMP-induced immunity.  

1.3.4. Transcriptional reprogramming 

To efficiently activate plant immunity, genome-wide transcriptional reprogramming is 

believed to be the main link between MAMP signal transduction and induction of defense 

phenomenons (e.g. production of antimicrobial proteins and metabolites, programmed cell 

death). This is a highly sensitive and dynamic process which includes numerous transcription 

factors (e.g WRKYs) (Buscaill and Rivas, 2014).   

Upon treatment with flg22 or elf26 (peptide containing the elf18 sequence) for 60 min, a 

similar set of nearly 1000 genes was up-regulated in Arabidopsis (Zipfel et al., 2004; Zipfel et 

al., 2006). Another studies have shown that the changes in gene expression caused by 1 h 

treatment of peptidoglycan (PGN) or oligogalacturonides (OGs) are highly overlapping with 

flg22-dependent transcriptional reprogramming, suggesting that a common transcription 

program is deployed by plants in response to multiple MAMPs at the earliest stages of MTI 

signaling (Gust et al., 2007; Denoux et al., 2008). However, transcriptome changes appeared 

to be more transient and weaker in response to OGs by comparison to flg22 with much less 

genes that were down- or up-regulated after 3 h treatment (Denoux et al., 2008).  DNA 

microarray analysis with chitin has shown that only 4 among 118 chitin-regulated TF genes in 

Arabidopsis are also differentially regulated by flg22 (Libault et al., 2007). Altogether, these 

results suggest the existence of qualitative and quantitative differences in the gene expression 
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patterns in response to different MAMPs, a phenomenon that reflects perhaps qualitative and 

quantitative differences in the expression and execution of the immune program between 

different types of cell surface receptors.  

According to gene ontology (GO) annotations, a tremendous number of upregulated genes are 

involved in signal perception (genes encoding RLKs), signal transduction (genes encoding 

protein kinases) and transcriptional regulation (genes encoding TFs) (Navarro et al., 2004; 

Zipfel et al., 2006; Gust et al., 2007). Exposure to OGs or flg22, many genes encoding 

components associated with plant resistance and salicylic acid (SA), jasmonic acid (JA), 

ethylene (ET)-signaling networks are strongly activated at 1 h, while genes encoding enzymes 

for the biosynthesis of antimicrobial secondary metabolites are most highly upregulated at 3 h. 

Interestingly, the transcription of genes implicated in Nonexpressor of PR genes (NPR1)-

dependent secretory pathways and activation of the senescence program is substantially 

induced only by flg22 but not by OGs (Denoux et al., 2008). Recently, a high-temporal 

resolution microarray analysis revealed the transcriptional dynamics in Arabidopsis leaves 

challenged by the nonpathogenic bacterial mutant strain DC3000 hrpA-, which fails to deliver 

effectors into host cells and triggers essentially an MTI (Lewis et al., 2015). The early 

MAMP-triggered biological responses, illustrated by selected GO terms, were refined into 

respiratory burst, phosphorylation, posttranslational modification, and salicylic acid synthesis 

followed by jasmonic acid biosynthesis and responses to oxidative stress. 7 h post-

inoculation, the dominant ontology was ubiquitin-dependent protein metabolism. Biological 

processes that are suppressed during MTI are related to photosynthesis and plastid 

organization at the early stage and to fatty acid metabolism and cuticle development at the 

later stage (Lewis et al., 2015). 

1.4. Late MTI responses 

MAMP-induced transcriptional reprogramming leads to a series of molecular, biochemical 

and physiological changes to defend against pathogen infection. Typical late-induced immune 

responses i.e. several hours up to days after MAMP recognition, include the accumulation of 

pathogenesis-related (PR) proteins, production of antimicrobial compounds as well as 

physical strengthing of the plant cell wall through lignification and callose deposition 

(Newman et al., 2013). PR proteins comprise a number of hydrolytic enzymes, such as 

chitinases, lysozymes and β-1, 3-glucanases, which can degrade the bacterial, fungal or 

oomycete cell wall (Ebrahim et al., 2011). Phytoalexins are a heterogeneous group of 

secondary metabolites with antimicrobial activity towards a broad range of pathogens (Ahuja 
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et al., 2012). The synthesis of camalexin, the major phytoalexin in Arabidopsis, is induced by 

several MAMPs, such as oomycete NLPs and bacterial PGN (Qutob et al., 2006; Gust et al., 

2007). Many phytohormones, especially SA, JA and ET, have been demonstrated to 

contribute to plant immunity (Robert-Seilaniantz et al., 2011; Kazan and Lyons, 2014). It has 

been proposed that induction of the SA pathway is correlated with resistance against 

biotrophic or hemibiotrophic pathogens, while the JA and ET pathways are induced in 

response to herbivores or necrothophic pathogens (Pieterse et al., 2009; Thaler et al., 2012). 

However, increasing evidence revealed that plants engage complex signaling crosstalk 

between SA, JA and ET to antagonistically or synergistically fine tune innate immune system 

(Pieterse et al., 2009; Thaler et al., 2012). When exposed to pathogens or MAMPs, the plant 

cell wall is actively reinforced by the formation of callose (β-1, 3-glucan)-rich papillae (Voigt, 

2014). Another well-studied physiological response to MAMP treatment is the closure of 

stomata that restricts bacterial entry into plant tissues (Melotto et al., 2006).  

1.5. Suppression of MTI by pathogen effectors  

Although plants can detect diverse pathogens by activating corresponding PRRs and mount a 

general defense response, adapted pathogens have evolved multiple effectors, which interfere 

with MTI signaling pathways in order to invade plant tissues (Boller and He, 2009). 

Pathogenic bacteria possess several secretory systems and among them, the type III secretion 

system (TTSS) is used for direct translocation of effectors into cytoplasm of plant cells 

(Alfano and Collmer, 2004; Abramovitch et al., 2006; Cunnac et al., 2009). Eukaryotic plant 

pathogens, such as fungi and oomycetes, secrete during infection a large amount of effectors, 

which act outside or inside the host cells (Giraldo and Valent, 2013; Lo Presti et al., 2015). 

Bioinformatic analysis of the genome of several fungi and oomycetes identified hundreds of 

predicted effectors, many of which contain, next to the N-terminal secretion peptide (SP), a 

putative host targeting signal (HTS), such as the RXLR or LXLFLAX motif in the case of 

oomycete effectors (Tyler et al., 2006; Whisson et al., 2007; Jiang et al., 2008; Haas et al., 

2009) or an RXLR-like motif in some fungal effectors (Kamper et al., 2006; Schirawski et al., 

2010). 

1.5.1. Bacterial effectors 

So far, the best characterized effectors from bacterial pathogens e.g. Pseudomonas syringae 

and Xanthomonas spp, are the type III effectors (T3Es) which are injected into the plant cells 

via the TTSS needle-like structure (White et al., 2009; Block and Alfano, 2011). By 
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interacting with diverse host targets including proteins or DNA inside the plant cell, these 

effectors manipulate different steps of MTI signaling pathways in order to promote pathogen 

propagation and disease development (Gohre and Robatzek, 2008; Boller and He, 2009; 

Deslandes and Rivas, 2012; Feng and Zhou, 2012). 

It has been shown that several effectors directly target the PRR complex and disturb very 

early steps of MAMP signal transduction. For example, two P. syringae T3Es, AvrPto and 

AvrPtoB, bind to the cytoplasmic kinase domains of multiple RLK proteins, such as FLS2, 

EFR, BAK1 and CERK1 in Arabidopsis and tomato (Gohre et al., 2008; Shan et al., 2008; 

Xiang et al., 2008; Gimenez-Ibanez et al., 2009; Cheng et al., 2011; Zeng et al., 2012). The 

mechanism of AvrPto-triggered suppression of PRR complex function is still not fully 

elucidated and the inhibition of the kinase activity of the aforementioned RLKs and/or 

interference with the association between the partners of the complex (for instance 

interference with the flg22-mediated FLS2/BAK1 interaction) are possible mode of actions 

(Shan et al., 2008; Xiang et al., 2008; Xiang et al., 2011). AvrPtoB carries an ubiquitin E3-

ligase activity, which mediates degradation of FLS2, EFR and CERK1 (Gohre and Robatzek, 

2008; Gimenez-Ibanez et al., 2009). These results provide a logical explanation to previous 

observations showing that AvrPto and AvrPtoB suppress a series of early MTI responses 

including MAP kinases activation, the induction of MAMP responsive genes and callose 

deposition (Hauck et al., 2003; He et al., 2006). More recently, AvrPphB from P. syringae 

was demonstrated to impair MTI signaling by cleaving several PBS1-like (PBL) kinases, like 

the FLS2/BAK1 interacting BIK1 (Zhang et al., 2010a).  A Xanthomonas campestris effector, 

AvrAC, also targets and prevents kinase activity of BIK1 and the closely related RIPK (Feng 

et al., 2012). 

 MAPK pathways act downstream of MAMP recognition by PRRs and play a central role in 

initiating immune signaling. Therefore, MAPK cascades are one of the main battlefields in 

plant-bacteria interactions. The P. syringae T3E, HopF2, in addition of targeting BAK1 (Zhou 

et al., 2014), interrupts flg22-dependent MAPK activation by ADP-ribosylation of MKK5, a 

key component  in the MEKK1/MEKKs-MKK4/MKK5-MPK3/MPK6 cascade (Wang et al., 

2010b). Another T3E from P. syringae, named HopAI1, possesses phosphothreonine lyase 

activity and inactivates MPK3, MPK6 and MPK4 by irreversible threonine residues 

dephosphorylation (Zhang et al., 2007; Zhang et al., 2012). By contrast, upon the association 

with RAR1 (Required for Mla12 Resistance), which is a cochaperone of HSP90 (heat shock 

protein 90), the P. syringae effector AvrB is able to interact with MPK4 and specifically 
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promotes the phosphorylation of MPK4 in a HSP90-dependent manner, leading to 

enhancement of JA responses and plant susceptibility (Cui et al., 2010). 

Besides targeting PRR complex or MAPK cascades, other type III effectors appear to function 

downstream of the MAPK cascades by modifying the transcription of defense-related genes 

or chromatin configuration in plant cell nucleus. The effector XopD from X. campestris acts 

as a transcriptional regulator to target and inactivate AtMYB30, a transcription factor 

positively regulating plant defense and cell death-associated response to bacteria (Kim et al., 

2008; Canonne et al., 2011). The presence of XopD results in non-specific relocalization of 

nuclear proteins from nucleoplasm into nuclear foci, suggesting that XopD may be able to 

modulate chromatin structure (Canonne et al., 2011). Recently, it was documented that 

several defense-related WRKY TFs are attached to PopP2 from R. solanacearum and 

AvrRps4 from P. syringae (Sarris et al., 2015). Acetylation of the WRKY domain by PopP2 

likely interferes with the capability of W-box DNA binding, leading to dysfunction of these 

TFs and attenuation of basal immune responses (Le Roux et al., 2015; Sarris et al., 2015). The 

AvrBs3 family effectors found in many Xanthomonas and Ralstonia species forms an 

interesting group of nuclear localized T3Es, which can mimic eukaryotic TFs to activate host 

promoters by DNA binding and are thus designated transcription activator-like effectors 

(TALEs) (Bogdanove et al., 2010; Boch et al., 2014). Several TALEs are reported to aid 

bacterial infection in planta by promoting the expression of disease susceptibility genes, such 

as the SWEET sucrose transporter family members, helping the pathogen to acquire nutrients 

from the host (Yang et al., 2006; Chen et al., 2010).  

1.5.2. Fungal effectors 

Like bacteria, pathogenic fungi are thought to secrete numerous virulence effectors during the 

time course of the infection. Many fungi have evolved specialized structures named haustoria, 

which are the major sites for the acquisition of nutrients and the secretion of effectors (Koeck 

et al., 2011; Giraldo and Valent, 2013). Repression or downregulation of MTI signaling has 

been shown to be performed by effectors acting in the apoplast or inside the host cells, 

although the translocation mechanisms underlying the delivery of effectors are still 

superficially understood (Ellis et al., 2009; Panstruga and Dodds, 2009; Petre and Kamoun, 

2014).      

Chitin is a major structural component in fungal cell walls and can be hydrolysed by plant 

chitinases into oligomers of different length, which are recognized by lysM-containing plant 
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receptors to activate defense responses (Kaku et al., 2006). Fungal pathogens have evolved 

different mechanisms to evade or dampen plant immunity induced by chitin. The apoplastic 

effector Avr4 from the leaf mold fungus Cladosporium fulvum is capable to bind chitin in 

order to prevent hydrolysis by plant chitinases (van den Burg et al., 2004; van den Burg et al., 

2006; van Esse et al., 2007). Another effector of C. fulvum, Ecp6 (already mentioned in 1.1), 

and Slp1 of Magnaporthe oryzae are extracellular lysM-containing proteins that subvert 

chitin-elicited immunity by scavenging chitin oligosaccharides released from cell walls of 

fungal hyphae, thus preventing their perception by cognate PRRs (de Jonge et al., 2010; 

Mentlak et al., 2012; Sanchez-Vallet et al., 2013). 

Upon infection, plants produce a large number of pathogenesis-related proteases in the 

apoplast to hinder disease development and therefore, represent prime choice targets of 

various effectors from filamentous pathogens (Ferreira et al., 2007; van der Hoorn, 2008). For 

instance, secretion of Avr2 by C. fulvum and Pti2 by Ustilago maydis selectively inhibit the 

activity of a set of apoplastic host cysteine proteases, including tomato’s PIP1, Rcr3 and 

maize’s CP1, CP2 (Shabab et al., 2008; van Esse et al., 2008; Mueller et al., 2013). The 

secreted effector, Pep1, conserved in the smut fungi U. maydis and U. hordei is essential for 

penetration and accumulates in the apoplastic space, where it blocks early immune responses 

by inhibiting POX12, a plant peroxidase important for the generation of extracellular ROS 

generation at the infection site (Doehlemann et al., 2009; Hemetsberger et al., 2012). 

In addition to extracellular targets of plant resistance, fungal effectors also interfere with 

intracellular components involved in MTI signaling pathways. However, only a few of them 

have been identified and characterized so far. An example is the avirulence protein of M. 

oryzae, AvrPiz-t, which is translocated into rice cells during infection and performs virulence 

activity in rice lacking the resistance protein Piz-t by suppressing MAMP-triggered immune 

responses through the interaction and degradation of the rice RING E3 ubiquitin ligase APIP6 

(Park et al., 2012).   

1.5.3. Oomycete effectors 

Oomycete pathogens, including downy mildews and Phytophthora species, cause many 

economically disastrous diseases on different crop species, such as tomato and potato late 

blight caused by Phytophthora infestans. Although phylogenetically very distant from fungi, 

oomycetes possess a range of fungus-like morphological features for tissue colonization 

(Judelson and Blanco, 2005; Fawke et al., 2015). For many biotrophic and hemibiotrophic 
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species, haustoria are formed following penetration and enter into host cells for nutrient 

uptake and effector secretion (Bozkurt et al., 2012; Kemen and Jones, 2012).  

The knowledge about the biochemical properties and virulence functions of oomycete 

effectors has increased in the past decade. A few apoplastic effectors have been shown to 

affect the activity of defense-related proteases secreted by plants upon infection. Two Kazal-

like protease inhibitors, EPI1 and EPI10, from P. infestans, interact with and disturb the 

activity of P69B, a subtilisin-like serine protease of tomato (Tian et al., 2004; Tian et al., 

2005). Another two effectors, EPIC1 and EPIC2B, bind and inhibit the tomato cysteine 

proteases Rcr3pim and C14, respectively (Song et al., 2009; Kaschani et al., 2010). GIP1, a 

glucanase inhibitor delivered by P. sojae, selectively associates with and inhibits soybean 

endoglucanase EgaseA activity in apoplast, thereby reducing the release of glucan elicitors 

from P. sojae cell wall and probably protecting the mycelium against EgaseA-mediated 

cellular lysis (Rose et al., 2002). 

Besides apoplastic effectors, cytoplasmic effectors suppressing plant immunity have been 

identified and characterized (Anderson et al., 2015). A large group of these cytoplasmic 

effectors is called RXLR effectors, since they carry an N-terminal secretion peptide followed 

by a conserved RXLR (arginine-any amino acid-leucine-arginine) motif, which has been 

shown to enable translocation of effector proteins inside plant cells (Whisson et al., 2007; 

Dou et al., 2008; Grouffaud et al., 2008). It is supposed that RXLR effectors may be adapted 

to facilitate biotrophy, because their expression is usually upregulated during the biotrophic 

stage of the infection (Whisson et al., 2007; Oh et al., 2009). The elucidation of the function 

and mode of action of many RXLR effectors has become an important objective and is 

documented by an abundant literature in the past 5-6 years. These studies have shown that 

RXLR effectors interfere with MAMP-induced immunity at different levels, through different 

mechanisms and with different sub-cellular localizations, from the cell periphery to the 

nucleus (Figure 1-3). The intensively studied RXLR effector AVR3a from P. infestans 

represses INF1-induced cell death by targeting and stabilizing the plant E3 ligase CMPG1 

(Bos et al., 2006; Bos et al., 2010; Gilroy et al., 2011). Recently, it was found that Avr3a 

compromises flg22-induced responses in N. benthamiana by associating with NtDRP2, a 

GTPase involved in receptor-mediated endocytosis (Chaparro-Garcia et al., 2014). Avr3b 

from P. sojae contains a Nudix hydrolase motif in the C-terminal part of the effector domain 

and displays ADP-ribose/NADH pyrophosphorylase enzymatic activity, which impairs host 

immunity by reducing ROS accumulation (Dong et al., 2011). The hydrolase activity of 
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Avr3b is dependent on the interaction with the plant cyclophilin CYP1 through a putative 

Glycine-Proline (GP) motif (Kong et al., 2015). Suppression of MAMP-activated callose 

deposition and ROS production has also been reported for the ATR1 and ATR13 RXLR 

effectors from Hyaloperonospora arabidopsidis, an oomycete pathogen of Arabidopsis (Sohn 

et al., 2007). The overexpression of the P. infestans RXLR effector IPI-O in transgenic 

Arabidopsis lines disrupted MAMP-triggered callose deposition and increased susceptibility 

towards Phytophthora brassicae, which was proposed to be due to the binding of its RGD 

motif to the membrane-associated receptor LecRK-1.9 and following alteration of the cell 

wall – plasma membrane continuum (Bouwmeester et al., 2011). Interestingly, LecRK-1.9 is 

DORN1, recently reported as the receptor for extracellular ATP (Choi et al., 2014), raising the 

possibility that IPI-O effector might be involved in disruption of DAMP signal transduction. 

Members of the AVRblb2 RXLR effector family are highly variable and under diversifying 

selection in different P. infestans isolates (Oh et al., 2009). When expressed in plant cells, 

AVRblb2 localizes to the cell periphery and blocks the secretion of the defense-associated 

protease C14 into the apoplast resulting in a decreased resistance against P. infestans (Bozkurt 

et al., 2011). MAPK signaling, as an important node in the plant immune network, is a prime 

target of the attack by different pathogens. One RXLR effector of P. infestans, PexRD2, has 

been found to interact with the kinase domain of MAPKKKε and perturb MAPKKKε-

dependent signaling pathway that is apparently regulating ETI but not MTI (Oh et al., 2009; 

King et al., 2014). One example of an RXLR effector manipulating host transcription is given 

by PITG_03192, which targets two predicted potato NAC transcription factors, NTP1 and 

NTP2, at the membrane of the endoplasmic reticulum (ER) and prevents their re-localization 

to the nucleus upon MAMP application (McLellan et al., 2013). The role of autophagy in 

plant protection toward pathogen infection is unclear and controversial but one effector of P. 

infestans, PexRD54, binds ATG8CL, a key component in autophagosome formation, and 

prevents its interaction with the cargo receptor Joka2, which resulted in increased P. infestans 

growth on N. benthamiana leaves (Dagdas et al., 2016).     

Several RXLR effectors have been show to localize in the nucleus where they are thought to 

interfere with the transcriptional, post-transcriptional or translational machinery of the host 

cell. The H. arabidopsidis nuclear-localized effector, HaRxL44, was shown to associate with 

Mediator subunit 19a (MED19a), leading to proteasome-dependent degradation of MED19a 

and the activation of JA/ET-signaling which antagonizes SA-signaling and the activation of 

SA-responsive genes that are thought to be more important in immunity to biotrophic 

pathogens like H. arabidopsidis (Caillaud et al., 2013). In another study, the P. infestans 
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effector Pi04314 associated with different isoforms of host protein phosphatase type 1c (PP1c) 

and caused their re-localization within the nucleus without affecting their biochemical activity. 

The PP1c isoforms were proposed to be susceptibility factors, manipulated by Pi04314 to 

promote disease development by attenuating SA and JA signaling (Boevink et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- 3.  Plant immunity-suppressing function of effectors from phytopathogenic oomycetes. 

Apoplastic and cytoplasmic effectors secreted by pathogenic oomycetes disturb plant immunity at different 

levels. Components involved in plant immune system and defense-interfering effectors (in red) are delineated. 

Plain line: demonstrated function, dashed line: hypothetical function. See main text for additional details. 

Abbreviations appeared in the figure: MAMP, microbe-associated molecular patterns; PRR, pattern recognition 

receptor; MAPK, mitogen-activated protein kinases; MAPKK, mitogen-activated protein kinase kinases; 

MAPKKK, mitogen-activated protein kinase kinase kinases; MAPKKKε, mitogen-activated protein kinase 

kinase kinase ε; CMPG1, ubiquitin-protein ligase CMPG1; ATG8, autophagy-related proteins ATG8; Joka2, the 

autophagy cargo receptor Joka2; C14, papain-like cysteine protease C14; ER, endoplasmic reticulum; NTP1 and 

NTP2, NAC transcription factor Targeted by Phytophthora 1 and 2; StKRBP1, putative potato K-homology (KH) 

RNA-binding protein 1, MED19a, Mediator subunit 19a; PINP1, PSR1-Interacting Protein 1; PP1c, protein 

phosphatase type 1c; SA, salicylic acid. The Figure is modified from (Doehlemann et al., 2014). 
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The P. infestans effector Pi04089 could represent a possible case of interference of host post-

transcriptional processes through its interaction and stabilization of a putative potato KH 

RNA-binding protein (StKRBP1) in the nucleus (Wang et al., 2015). The function of 

StKRBP1 and the consequence of its interaction with Pi04089 on cellular homeostasis are 

unknown but, StKRBP1 is also a susceptibility factor and its absence confers enhanced 

resistance to infection by P. infestans (Wang et al., 2015). In addition, oomycete RXLR 

effectors interfering with siRNA-mediated host defenses have also been identified, illustrating 

further the huge functional diversity acquired by this class of effectors. Two P. sojae RXLR 

effectors were identified as Phytophthora Suppressors of RNA silencing (PSRs) because of 

their negative impact on small RNA biogenesis (Qiao et al., 2013). One of them, PSR1, 

appears to target the plant nuclear protein PINP1 with a DEAH-box RNA helicase domain, 

which regulates small RNA accumulation, probably by affecting correct assembly of the 

Dicer complex (Qiao et al., 2015). Importantly, both PINP1 and StKRBP1 have not been 

reported to be components involved in plant immunity prior to their identification as effector 

target proteins, which is a strong argument to use effectors as probes to dissect the plant 

immune network. 

1.6.  Objective of this thesis 

With the beginning of my thesis work, complete genome sequencing of several oomycete 

species has been performed or was in progress. Bioinformatics analysis identified RXLR 

motif-containing proteins as the major group of effectors with a proven virulence function. 

RXLR effector genes are under strong diversification pressure and exhibit high rates of 

presence/absence polymorphism, high copy number variation and strong positive selection, 

suggesting that they play a major role in host adaptation. However, the function and mode of 

action of RXLR effectors was largely unknown and notably, the importance of MTI 

suppression in the process of host colonization by oomycetes has ben poorly studied.  

The objective of this thesis was to demonstrate whether and how RXLR effectors from P. 

infestans subvert early-induced MTI signaling. In the first chapter, I used a medium/high 

throughput cell-based system to identify and characterize putative MTI-suppressing RXLR 

effector candidates. In the second chapter, I have performed a deeper analysis of the 

association of host calmodulin with SFI5, one of the effector identified in the primary 

functional screen, to improve the understanding of the mechanistic basis of MTI-suppression 

and host adaptation driven by this individual effector. 
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2. Materials and Methods 

2.1. Materials 

2.1.1 Microbial organisms 

All microbial strains that are used in this study are listed in Table 2-1. 

Table 2-1. Microbial strains used in this study 

 

Species Strain/Isolate Genotype  

Escherichia coli DH5α F– endA1 glnV44 thi-1 recA1 relA1 

gyrA96 deoR nupG purB20 

φ80dlacZΔM15 Δ(lacZYA-argF)U169, 

hsdR17(rK–mK+), λ– 

 

    

 DB3.1 F- gyrA462 endA1 glnV44 Δ(sr1-recA) 

mcrB mrr hsdS20(rB-, mB-) ara14 

galK2 lacY1 proA2 rpsL20(Smr) xyl5 

Δleu mtl1 

 

    

 Rosetta™(DE3) F- ompT hsdSB(RB- mB-) gal dcm 

λ(DE3 [lacI lacUV5-T7 gene 1 ind1 

sam7 nin5]) pLysSRARE (CamR) 

 

Agrobacterium 

tumefaciens 

C58C1 T-DNA- vir+ rifr, carbr  

Phytophthora infestans 88069 virulent on R3a  

    

2.1.2. Plant organisms 

Arabidopsis thaliana ecotype Col-0 and Solanum lycopersicum cultivar Moneymaker were 

used for protoplast preparation.  Nicotiana benthamiana was used to transiently express 

proteins of interest in planta by Agro-infiltration. 
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2.1.3. Vectors 

Table 2-2.  Vectors applied in this work 

 

Vector Description Reference 

pDONR201 Entry vector for the Gateway system Invitrogen 

p2GW7 Gateway destination vector to express 

proteins in protoplasts, driven by CaMV 

35S promoter  

Invitrogen 

p2FGW7 Gateway destination vector to express N-

terminal GFP fusion proteins in protoplasts, 

driven by CaMV 35S promoter  

VIB, University of 

Gent 

p2GWF7 Gateway destination vector to express C-

terminal GFP fusion proteins in protoplasts, 

driven by CaMV 35S promoter  

VIB, University of 

Gent 

p2HAGW7 Gateway destination vector to express N-

terminal HA-tagged proteins in protoplasts, 

driven by CaMV 35S promoter  

VIB, University of 

Gent 

pB7WG2 Binary Gateway destination vectors to 

express proteins in planta, driven by CaMV 

35S promoter  

Invitrogen 

pB7WGF2 Binary Gateway destination vectors to 

express N-terminal GFP fusion proteins in 

planta, driven by CaMV 35S promoter  

(Karimi et al., 2002) 

pDEST15 E. Coli expression vector with a N-terminal 

GST tag (Gateway destination vector) 

Invitrogen 

pMAL-p5x E. Coli expression vector with a N-terminal 

MBP tag 

NEB 

pFRK1-Luc Luciferase reporter gene assay in protoplasts (He et al., 2006) 

pUBQ-GUS GUS activity assay in protoplasts (He et al., 2006) 

 

2.1.4. Primers 

The primers used in this study were ordered from Eurofins MWG Operon (Ebersberg). 

Lyophilized oligonucleotides were resuspended in nuclease-free water to a stock 
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concentration of 100 μM and diluted to 10 μM for the working concentration. The sequences 

of these primers are listed in the Appendix Table 6-1. 

2.1.5.  Elicitor and Peptides 

The elicitor flg22 was used as a MAMP-active surrogate in our study. Flg22 peptide 

(QRLSTGSTINSAKDDAAGLQIA) was kindly provided by Prof. Georg Felix and dissolved 

in milli-Q water with 1mg/ml BSA and 0.1 M NaCl to a stock concentration of 10 mM and 

stored at -20 °C.   

 The peptides derived from identified effector SFI5 were synthetized by Genscript Inc. (USA) 

and prepared as 20 mg/ml stock solutions in Milli-Q water containing 0.1 % DMSO (stored at 

-20 °C), and diluted in water to obtain the desired concentration prior to use. 

2.1.6. Chemicals, enzymes and antibodies 

All used chemicals and reagents were of standard purity and ordered from Carl Roth 

(Karlsruhe), Merck (Darmstadt), Sigma-Aldrich (Taufkirchen), Qiagen (Hilden), Invitrogen 

(Karlsruhe), Duchefa (Haarlem, Niederlande), Fluka (Buchs, Schweiz), Promega (Mannheim), 

Serva (Heidelberg), Roche (Mannhein), Molecular Probes (Leiden, Niederlande) and BD 

(Sparks, USA), unless stated otherwise in the text. Membranes for blotting were ordered from 

GE Healthcare (Freiburg).  

For nucleic acids studies and gene cloning, Pfu DNA polymerase, restriction enzymes, T4 

DNA ligase were used and ordered from Fermentas (St. Leon- Rot). SYBR Green Master Mix 

for quantitative RT-PCR was purchased from Fermentas (St. Leon- Rot). Gateway® BP 

clonase and LR clonase enzyme mix were ordered form Invitrogen (Karlsruhe). 

Antibodies were received from the companies New England Biolabs (Beverly, USA), Sigma-

Aldrich (Taufkirchen) or Acris Antibody GmbH (Herford) and are listed in Table 2-3. 

2.1.7. Media and Antibiotics  

All media were prepared using deionized water and sterilized by autoclaving for 20 minutes at 

121 °C. For solid media, 15 g/L Bacto-agar (BD) was added to the medium prior to 

autoclaving. Table 2-4 summarizes the media used in this work. Media, if necessary, were 

supplemented with antibiotics at appropriate final concentrations, as listed in Table 2-5.  
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Table 2-3. Antibodies used in this work 

 

 Antibody Host Dilution Reference  

Primary 

antibodies 

 @phospho-p44/p42 MAPK rabbit  1:1000 New England Biolabs  

 @GFP goat  1:5000 Acris  

 @HA mouse  1:3000 Sigma-Aldrich  

 @GST mouse  1:7000 Sigma-Aldrich  

 @MBP mouse  1:10000 New England Biolabs  

Secondary 

antibodies 

 @goat IgG HRP conjugated rabbit  1:10000 Sigma-Aldrich  

 @mouse IgG HRP conjugated rabbit  1:10000 Sigma-Aldrich  

 @rabbit IgG-Alkaline    

Phosphatase 

goat  1:3000 Sigma-Aldrich  

 @mouse IgG-Alkaline 

Phosphatase 

rabbit  1:3000 Sigma-Aldrich  

 @goat IgG-Alkaline 

Phosphatase 

rabbit  1:3000 Sigma-Aldrich  

Table 2-4. Media used in this study 

Medium Ingredients per 1 liter Species 

LB 10 g Bacto-Tryptone, 5 g NaCl, 5 g Yeast 

extract (YE) 

E. coli 

Rye-sucrose 

(Caten and Jinks, 

1968) 

60 g rye, 20 g Sucrose, pH 7.0 (NaOH) P. infestans 

Table 2.5. Antibiotics used in this study 

 

 

 

 

 

 

Antibiotics Final concentration (μg/ml) Solvent 

Ampicillin 50-100 H2O 

Kanamycin 50 H2O 

Rifampicin 50 DMSO 

Gentamycin 25 H2O 

Carbenicillin 50-100 H2O 
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2.1.8. Buffers and solutions 

All buffers and solutions used in this study were prepared, if not noted otherwise, in Milli-Q 

water. Aqueous solutions were sterilized by autoclaving at 121 °C for 20 minutes or filtered. 

2.2. Methods 

2.2.1. Cultivation of microorganisms 

2.2.1.1. Cultivation of Escherichia coli 

E. coli strains were grown either on LB-agar plates or in liquid LB medium while shaking at 

200 rpm overnight in a 37 °C incubator. The plates and the medium were supplemented with 

appropriate antibiotics based on the resistance gene carried by the plasmid used for 

transformation. 

2.2.1.2 Cultivation of Agrobacterium tumefaciens 

A. tumefaciens was grown on LB-agar plates or in liquid LB medium while shaking at 230 

rpm for 36 hours in a 28 °C incubator. The plates and the medium were supplemented with 

appropriate antibiotics based on the resistance gene carried by the plasmid used for 

transformation. 

2.2.1.3. Cultivation of Phytophthora infestans  

P. infestans was maintained at 18 °C on rye-sucrose agar plates in the dark as described 

previously (Whisson et al., 2007). 

2.2.2. Plant growth conditions 

2.2.2.1. Growth of Arabidopsis thaliana 

A. thaliana plants were cultivated in a phytochamber with a photoperiod of 8 h light at 22– 24 

°C /16 h dark at 20 °C, 40 %–60 % humidity, ~120 μE m-2 s-1 light intensity. They were 

grown on steam-sterilized soil composed of a 3.5:1 mixture of GS/90 (Patzer, Germany) and 

vermiculite. Leaves from 4 to 5 week-old plants were used for protoplast preparation.  

2.2.2.2. Growth of Solanum lycopersicum 

S. lycopersicum plants were cultivated in a greenhouse under stable climate conditions: 16 

hours light at 24 °C /8 hours dark at 22 °C, 40 %–45 % humidity, ~200 μE m-2 s-1 light 

intensity. They were grown on steam-sterilized soil containing a 4.6:4.6:1 mixture of type P 
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soil, type T soil (Patzer, Germany) and sand. Leaves from 3 to 4 week-old plants were used 

for protoplast preparation.  

2.2.2.3. Growth of Nicotiana benthamiana  

N. benthamiana plants were grown on a mixture of steam-sterilized T soil and fertilizer (50:1) 

containing 0.1 % (v/v) Confidor and kept under the same growing conditions as S. 

lycopersicum. Leaves from 4 to 5 week-old plants were used for patho-assays.  

2.2.3. Plant methods 

2.2.3.1. Isolation and transfection of mesophyll protoplasts from Arabidopsis thaliana 

and Solanum lycopersicum 

The preparation of Arabidopsis mesophyll protoplasts was conducted based on a previously 

described protocol (Yoo et al., 2007) with slight modifications.  In brief, well-extended leaves 

from 4 to 5 week-old plants were cut into 0.5 mm thin strips and dipped into the enzyme 

solution (Enzy-A solution) with 1.5 % cellulase ‘Onozuka’ R10 and 0.4 % macerozyme R10 

(Yakult Pharmaceutical Industry). After vacuum-infiltration and enzymatic digestion, the 

released protoplasts were collected by filtration through 75 μm nylon meshes and recovered 

by two subsequent washing with W5-A buffer. The final concentration of protoplasts was 

adjusted to 2 × 105 cells/ml in MMG buffer prior polyethylene glycol (PEG)-mediated 

transfection. For each sample, every 100 µl protoplasts were mixed with 10 μg plasmid DNA 

and 110 μl freshly prepared PEG buffer during transfection. Protoplasts samples were then 

incubated in W1 buffer at 20 C in the dark for 9 to 12 hours allowing plasmid gene 

expression.  

S. lycopersicum mesophyll protoplast preparation was performed as described by (Nguyen et 

al., 2010) with minor changes. The lower epidermis of fully expended leaflets was gently 

rubbed with grated quartz, rinsed with sterile water and leaf strips were floated on the enzyme 

solution (Enzy-T solution) containing 2 % cellulase ‘Onozuka’ R10 (Yakult Pharmaceutical 

Industry), 0.4 % pectinase (Sigma) and 0.4 M sucrose in K3 solution. After a 3 h incubation at 

30°C in the dark, the enzyme-protoplast mixture was filtered through a 100 µm nylon mesh. 

Viable protoplasts were collected by sucrose gradient centrifugation and washed once in W5-

T buffer. After recovery on ice for 1.5-2 hours, protoplasts were harvested by centrifugation 

and resuspended at a density of 6 × 105 cells/ml in MMG buffer prior PEG-mediated 

transfection, which was carried out as for Arabidopsis. The transfected protoplasts were 
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incubated in W1 buffer at 20 C in the dark for 6-8 hours before further measurements. 

Table 2-6. Solutions for protoplast preparation and transformation 

 

solution/buffer Ingredients 

Enzy-A solution 20 mM KCl, 0.4 M mannitol, 20 mM MES pH 5.7, 1.5 % 

(w/v) cellulase “Onozuka” R10, 0.4 % (w/v) macerozyme 

R10, 10 mM CaCl2, 0.1 % (w/v) bovine serum albumin 

(BSA). 

W5-A buffer 125 mM CaCl2, 5 mM KCl, 2 mM MES pH 5.7, 154 mM 

NaCl 

MMG buffer 0.4 M mannitol, 4 mM MES pH 5.7, 15 mM MgCl2 

W1 buffer 20 mM KCl, 0.5 M mannitol, 4 mM MES pH 5.7 

K3 solution 10 ml Macro-stock, 0.1 ml Micro-stock, 0.1 ml Vitamin-

stock, 0.5 ml FeNa-EDTA stock, 10 mg myo-inositol, 25 

mg D-xylose, 13.7 g sucrose for 100 ml; adjust pH to 5.7 

(KOH), filter sterilize and store at −20 °C 

Enzy-T solution 2 % (w/v) cellulase “Onozuka” R10, 0.4 % (v/v) pectinase 

and 0.4 M sucrose in K3 solution 

W5-T buffer 18.4 g CaCl22 H2O, 1 g glucose, 0.4 g KCl, 9 g NaCl for 1 

liter; adjust pH to 5.7 (HCl) 

PEG solution 0.1 M CaCl2 (for Arabidopsis) or 0.1 M Ca(NO3)2 (for 

tomato), 0.2 M mannitol, 40 % (w/v) PEG4000 (Sigma) 

 

Stock solution Ingredients 

Macro-stock          

(10 x) 

1.5 g NaH2PO4H2O, 9.0 g CaCl22H2O, 25 g KNO3, 2.5 g 

NH4NO3, 1.34 g (NH4)2SO4, 2.5 g MgSO47H2O for 1 liter; 

autoclave for storage. 

Micro-stock      

(1000 x) 

75 mg KI, 300 mg H3BO3, 1 g MnSO47H2O, 200 mg 

ZnSO47H2O, 25 mg Na2MoO42H2O, 2.5 mg CuSO45H2O, 

2.5 mg CoCl26H2O for 100 ml; filter sterilize and freeze at 

−20 °C. 

Vitamin-stock 

(1000 x) 

100 mg nicotinic acid, 100 mg pyridoxine-HCl, 1 g thiamine-

HCl for 100 ml; filter sterilize and freeze at −20 °C. 

FeNa-EDTA stock  

(200 x) 

1 % (w/v) ethylenediaminetetraacetic acid (EDTA) ferric 

sodium salt (stored at 4 °C). 
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2.2.3.2. Agrobacterium-mediated transient transformation of Nicotiana benthamiana 

A. tumefaciens C58C1 carrying the appropriate vector constructs were grown as described in 

2.2.1.2. Cultures were harvested at 4 °C for 10 minutes at 2000 g and subsequently washed 

twice with 10 mM MgCl2. Pellets were then re-suspended in infiltration buffer (10 mM MES 

pH 5.6, 10 mM MgCl2 and 200 mM acetosyringone) and adjusted to the desired 

concentration. After incubation at room temperature for 2-3 hours, the mixture was infiltrated 

into 4 to 6-week-old N. benthamiana leaves using 1 ml needleless syringe. The leaf tissue was 

analyzed 24-36 hours post-infiltration. For co-expression, A. tumefaciens strains were mixed 

in a 1:1 ratio. 

2.2.4. Molecular biological analysis 

2.2.4.1. Bacterial plasmid DNA extraction 

For mini-preparation of plasmid DNA, a bacterial pellet from 2-4ml overnight LB culture of 

E. coli was resuspended in 200 μl Solution I (25 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0, 

50 mM Glucose and 0.1 mg/ml RNase A) by vortexing and then subsequently mixed with 400 

μl of Solution II (0.2 M NaOH, 1 % (w/v) SDS) and 300 μl of Solution III (3 M KAc, 11.5 % 

HAc). The mixture was centrifuged and the aqueous phase containing plasmid DNA was 

precipitated with 0.7 volume isopropanol. The DNA pellet was washed with 70 % (v/v) 

ethanol and dissolved in TE-buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0) or 

deionized water. 

For midi scale preparation, plasmid DNA was extracted from 150 ml (high copy plasmid) 

overnight liquid cultures by column purification using the PureYield Plasmid Midi-prep 

system (Promega) following the manufacturer’s instructions. 

For maxi scale isolation of plasmids, a manual protocol form 

(http://oxfordgenetics.com/cloning-resources/cloning-guides/maxiprep-protocol) was 

followed with slight modifications. Briefly, a 2.5 ml pre-culture from a single colony was 

inoculated into 500 ml pre-warmed LB medium for 20-24 hours growing at 37 °C. The cell 

pellets were harvested by centrifugation for 30 minutes at 5500 g and completely re-

suspended in 8 ml ice cold TE50/1 (50 mM Tris-HCL pH 8.0, 1 mM EDTA pH 8.0) by 

shaking at 200 rpm. After subsequently mixing with 2.5 ml of freshly prepared lysozyme 

solution (10 mg/ml lysozyme in deionized water), 2 ml of 0.5 M EDTA pH 8.0 as well as 1 

ml of mixture solution (50 μl Ribonuclease A (20 mg/ml in distilled water), 150 μl 10 % 

Triton x-100, 800 μl TE50/1), the suspension was incubated on ice for 60 minutes. The 

http://oxfordgenetics.com/cloning-resources/cloning-guides/maxiprep-protocol
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supernatant was separated by centrifugation at 20000 g for 60 minutes and transferred to a 

clean Falcon tube. Followed by equilibrated phenol (pH 8.0 with 0.1 % 8-hydroxyquinoline) 

and chloroform purification, the upper aqueous phase containing plasmid DNA was collected 

and precipitated by adding 0.1 volume of 5 M NaClO4 and 0.8 volume of isopropanol. The 

DNA pellets were harvested by centrifugation at 4500 g for 20 minutes and washed with 70 % 

(v/v) ethanol and then air-dried and re-suspended in sterile ddH2O to a concentration of 1 

μg/μl. 

2.2.4.2. Standard PCR 

For gene cloning, standard PCR reactions were performed with the high-fidelity Pfu DNA 

polymerase (Fermentas) following the supplier’s recommendations. All PCRs were carried 

out in a PTC 200 Peltier thermal cycler (MJ Research). 

2.2.4.3. Gateway reactions 

All of the constructs used in this study for transient gene expression in protoplasts or in N. 

benthamiana leaves were generated using the Gateway recombination cloning technology 

(Invitrogen). In order to obtain Gateway-compatible inserts, genes of interest were amplified 

in a two-step nested PCR reaction with one pair of the gene-specific adapter primers and one 

pair of attB-adapter primers (see Appendix Table 6.2.). The PCR products were purified 

through gel extraction using the GeneJet Gel Extraction Kit (Fermentas) and recombined into 

pDONR201 or pDONR221 (Invitrogen) by the BP clonase reaction. The generated entry 

clones were then sub-cloned into the expression vectors p2GW7, p2FGW7, p2HAGW7, 

p2GWF7 or pB2GW7 by using the LR clonase reaction according to the manufacturer’s 

specifications (Invitrogen).  

2.2.4.4. DNA Sequencing  

The constructs and PCR products were sequenced by GATC Biotech AG (Konstanz). 5μl 

DNA template with either 80-100 ng/μl plasmid or 20-80 ng/μl PCR product was added to 5μl 

5 μM sequencing primer. The sequence analysis was performed using DNAstar or CLC main 

workbench software.  

2.2.4.5. RNA isolation from protoplasts  

Total RNA was extracted from A. thaliana protoplasts by using TRI reagent (Ambion) and 

treated with DNAase I (Machery-Nagel) to remove DNA contamination. 400 μl TRI reagent 

was added to the frozen cell pellet from 800 μl of protoplast sample, followed by immediate 
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vortex and incubation at room temperature for 10 minutes. After addition of 80 μl of 

chloroform and vortex-mixing, sample was incubated for another 10 minutes at room 

temperature and then centrifuged for 10 minutes at 21000 g, room temperature. The upper 

phase was carefully transferred into a new 1.5 ml tube and mixed with equal volume of 

isopropanol. RNA was precipitated by incubating the mixture at room temperature for 1 hour 

and harvested by centrifugation for 10 minutes at 4 °C, 21000 g. The RNA pellet was washed 

twice with 75 % (v/v) ethanol and air-dried and dissolved in 15 μl nuclease-free water 

(Fermentas). Following the DNase I treatment (according to manufacturer’s protocols), RNA 

concentration was quantified using a Nanodrop 2000 (Peqlab Biotechnologie GmbH).  

2.2.4.6. cDNA synthesis 

Poly A-tailed RNA was converted to cDNA by using the RevertAid reverse transcriptase 

(Fermentas) and oligo-dT primers. For reverse transcription, 1-2 μg of total RNA in 10 μl 

nuclease-free water was denatured at 70 °C for 10 minutes and cooled down on ice. Next, 10 

μl of freshly prepared RT-mix solution (4 μl 5×RT buffer, 2 μl oligo-dT (30 μM)), 2 μl dNTP-

Mix (2.5 mM), 1 μl M-MuLV RT RevertAid (200 U/μl), 0.5 μl RNase inhibitor (RiboLock, 

40 U/μl), 0.5 μl ddH2O) was added and the mixture was incubated at 42 °C for 90 minutes, 

followed by enzyme deactivation at 70 °C for 10 minutes. 

2.2.4.7. Quantitative real time-PCR (qRT-PCR) 

For qRT-PCR, cDNA from the reverse transcription reaction was diluted 3 to 5 fold with 

nuclease-free water, and 1 μl of diluted cDNA was applied in a 20 μl reaction mix (10 μl 2 × 

SYBR Green Supermix, 0.5 μl Forward primer (10 μM), 0.5μl Reverse primer (10 μM), 8 μl 

ddH2O). The SYBR Green Supermix is from Maxima™ SYBR Green qPCR Master Mix 

(Fermentas). In order to minimize the operating errors, each sample was performed in 

triplicates. The amplification was run on iQ5 Multicolour Real Time PCR detection system 

(Bio-Rad) according to the manufacturer’s instructions. Relative gene expression was 

determined with a serial cDNA dilution standard curve. The Actin transcript was used as an 

internal control in all experiments. Data was processed with the iQ software (Biorad). Primers 

used in qRT-PCR reactions are listed in Appendix Table 6-1.  

2.2.4.8. Preparation and transformation of chemically competent E. coli DH5α cells 

Stocks of competent cells of E. coli DH5α were produced by the classical CaCl2 method. One 

colony was grown in 3 ml LB medium by shaking at 37 °C overnight. 150 μl of the overnight 

culture was inoculated into 100 ml LB medium and shaken at 37 °C until OD600 = 0.2 ~ 0.25. 
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The culture was chilled on ice for 30 minutes and the cells were harvested by centrifugation at 

4 °C, 1600 g for 10 minutes. The pellets were re-suspended in 30 ml ice cold 0.1 M CaCl2 and 

then kept on ice for 30 minutes. After centrifugation, the cell pellet was re-suspended in 2.5 

ml ice-cold CaCl2 solution (0.1 M CaCl2, 15 % glycerol), followed by freezing in liquid 

nitrogen and stored at -80 °C. 

80 μl aliquot competent cells were thawed on ice and then added with plasmid or 

recombination products. After incubation on ice for 30 minutes, the mixture was heat-shocked 

at 42 °C for 45 seconds and immediately cooled down on ice for 2-3 minutes. Next, 500 μl 

LB medium was added and the cells were incubated at 37 °C with shaking (200 rpm) for 1 

hour. Finally, 200 μl of transformed cell culture was spread onto solid LB plate containing 

appropriate antibiotics and incubated at 37 °C overnight. 

2.2.4.9. Transformation of competent A. tumefaciens cells  

50 μl electrically competent cells (stored previously at -80 °C) were thawed on ice and mixed 

with 100 ng plasmid DNA. The mixture was transferred to a pre-chilled electroporation 

cuvette. After incubation on ice for 10 minutes, the cuvette containing competent cells was 

pulsed once with 1500 V for 5 milliseconds (Eppendorf, Hamburg) and then put back on ice, 

followed by immediate addition of 500 μl LB medium. The cells were then transferred to a 

clean 1.5 ml Eppendorf tube and incubated at 28°C while shaking (200 rpm) for 2-3 hours. 

Afterwards, 200 μl of aliquot from the transformed cells was plated on selective LB agar plate 

and incubated at 28°C for 48 hours. 

2.2.4.10. Construction of deletion mutants of SFI5 and site-directed mutagenesis  

 cDNA fragments encoding SFI5 variants with N- or C-terminal deletions were amplified by 

PCR using specific primers (described in Appendix Table 6-1.) and inserted into the entry 

vector pDONR201 through the BP reaction (Invitrogen), and subsequently recombined into 

the expression vectors p2HAGW7, p2FGW7 or pB7WG2 by the LR reaction (Invitrogen). 

Site-directed mutagenesis were performed following the instruction manual of the 

QuikChange® II XL Site-Directed Mutagenesis Kit (Stratagene). Primers used for 

mutagenesis are listed in Appendix Table 6-1. All the constructs were verified by sequencing. 

2.2.5. Protein analysis 
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2.2.5.1. Protein extraction from plant tissue 

Total protein from plant tissue was extracted using an extraction buffer containing detergents 

enabling solubilization of membrane-bound proteins (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 1 % (v/v) Nonidet P40 and 1 tablet of protease inhibitor cocktail / 10 mL from Roche). 

50-100 mg N. benthamiana leaves was collected in a 1.5 ml Eppendorf tube and grounded to 

fine powder by pre-cooling in liquid nitrogen. After the addition of 100 μl of ice-cold 

extraction buffer and incubation on ice for 30 minutes, the plant tissue was further 

homogenized by vortex mixing. The soluble proteins were purified from the mixture by 

centrifugation at 4 °C, 15000 g for 20 minutes. The protein concentration was measured by 

the Bradford method. 10 μl protein sample was mixed with 990 μl Roti-Quant solution (Carl 

Roth) and the OD595 of the mixture was monitored. Based on a BSA-standard curve, the 

protein concentration was estimated using the following formula:  

Protein concentration [mg/ml] = OD595/(0.0283 × used volume).  

To extract protein from the protoplast samples, the cell pellet from 100 to 200μl protoplasts 

was harvested by short centrifugation at 6100 g for 10 seconds. Total protein was extracted by 

adding 40 μl 1× SDS loading buffer (50 mM Tris-HCl pH 6.8, 2 % SDS, 0.1 M DTT, 10 % 

Glycerol, 0.05 % Bromophenol Blue) and then incubating at 95 °C for 5 minutes. 

2.2.5.2. Expression and purification of recombinant proteins in E. coli  

The pDEST15 construct for expression of GST-AtCaM4 and the pMAL-p5x construct for 

expression of MBP-SFI5 were introduced into E. coli Rosetta™ (DE3). Positive colonies 

were grown in 3 ml LB medium containing ampicillin at 37°C overnight and served as pre-

culture to inoculate the main culture at 1000 x dilution. When the bacteria reached an OD600 

of 0.6 at 37 °C, the culture was transferred to 28 °C to induce expression of recombinant 

proteins. The expression of GST-AtCaM4 was induced by adding 0.2 % (w/v) L- Arabinose 

and the expression of MBP-SFI5 was induced by treatment with 0.5 mM isopropyl β-D-

thiogalactopyranoside (IPTG). After 2-3 hours, the bacteria were harvested by centrifugation 

and the pellet was stored at -20 °C until use.  

For purification of the fusion protein, 2.5 g frozen bacteria expressing GST-AtCaM4 or 5 g 

frozen bacteria expressing MBP-SFI5 were re-suspended in 20 ml lysis buffer containing 50 

mM Tris-HCl pH 7.0, 150 mM NaCl, 5 mM CaCl2 and 1 x protease inhibitor cocktail 

(Complete EDTA-free, Roche). The bacterial mixture was lysed on ice by sonication 3 times 

10 seconds at least. After centrifugation at 34000 g for 20 minutes at 4 °C, the supernatants 
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were filtered and loaded to a 5 mL GST-Trap© or MBP-TrapTM (GE Healthcare Life Sciences) 

according to the manufacturer’s protocol. The column was washed several times with washing 

buffer (20 mM Tris-HCl pH 7.0, 100 mM NaCl) and bound proteins were eluted with elution 

buffer (20 mM Tris-HCl pH 7.0, 100 mM NaCl, with 25 mM glutathione (GSH) or 10 mM 

maltose). Protein-containing fractions were loaded onto a Superdex 200© gel filtration (GE 

Healthcare Life Sciences) following the manufacturer’s instructions and eluted protein 

fractions were analyzed by native-PAGE (2.2.5.8) followed by Coomassie blue staining 

(2.2.5.9) or immunoblotting (2.2.5.7). 

2.2.5.3. Immunoprecipitation from protoplasts 

1.5 to 2 ml transfected protoplasts were harvested by centrifugation at 100 g for 1 minute and 

the pellet was then re-suspended in 1 ml of immunoprecipitation (IP) buffer containing 50 

mM HEPES pH 7.4, 150 mM NaCl, 0.1 % Trition X-100, 1 mM EDTA, 1 mM DTT, 1 x 

phosphatase inhibitor cocktail (PhosphoSTOP, Roche) and 1 x protease inhibitor cocktail 

(Complete EDTA-free, Roche).  Total protein was released by sonication and the cell debris 

was removed through centrifugation. The HA-tagged proteins were immunoprecipitated from 

lysates by incubation with 20 μl of anti-HA antibody-coupled beads (anti-HA affinity matrix, 

Roche) for 3 to 6 hours while gently shaking at 4 °C. Afterwards, the beads were washed 

three times with 1 ml of washing buffer (50 mM HEPES pH 7.4, 150 mM NaCl, 0.2 % Triton 

X-100, 1 × phosphatase inhibitor cocktail (PhosphoSTOP, Roche) and 1 × protease inhibitor 

cocktail (Complete EDTA-free, Roche)). For elution, 50 μl 1 × SDS loading buffer without 

DTT was added to the beads, followed by boiling at 95 °C for 10 minutes. The 

immunoprecipitated proteins were then further analyzed for immunoblotting or Mass 

Spectrometry analysis. 

2.2.5.4.  In vitro kinase activity assay 

The in vitro kinase assay was performed as described previously (He et al., 2006). Protoplasts 

expressing HA-SlMPK1 or HA-SlMPK3 fusion protein were lysed with IP buffer and 

immunoprecipitated with anti-HA antibody-coupled beads (anti-HA affinity matrix, Roche) 

(chapter 2.2.5.3). After centrifugation at 500 g for 1 minute, the harvested beads were washed 

once with IP buffer followed by a wash with kinase buffer (20 mM Tris-HCl pH 7.5, 20 mM 

MgCl2, 5 mM EDTA and 1 mM DTT). The kinase reaction was carried out in 25 μl of kinase 

buffer complemented with 0.25 mg/ml myelin basic protein (MBP), 100 μM ATP and 5 μCi 

[γ-32P] ATP for 30 minutes at room temperature. The reaction was terminated by adding SDS 

loading buffer and then incubating at 95 °C for 5 minutes. The samples were separated on a 

http://www.gehealthcare.com/
http://www.gehealthcare.com/
http://www.gehealthcare.com/
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SDS-PAGE (15 %) gel, which was then stained with Coomassie Brilliant Blue (chapter 

2.2.5.10). After drying on thick filter paper for 3 hours at 80 °C, the gel was exposed to an 

imaging plate (2025, 18 × 24 cm) in BAS cassettes (FUJI FILM) for 24-48 hours at room 

temperature. The 32P-labeled MBP on the gel was visualized and analyzed using a 

phosphorimager (FMBIO III, HITACHI).  

2.2.5.5. Mass Spectrometry Analysis  

5 ml S. lycopersicum protoplasts expressing HA-SFI1 or HA-SFI5 were harvested by 

centrifugation at 100 g for 1 minute and total proteins were extracted in 1ml IP buffer, 

followed by immunoprecipitation using 30 μl anti-HA antibody-coupled beads (anti-HA 

affinity matrix, Roche) (chapter 2.2.5.3). The pull-down material was incubated in 30 μl of 1 

× SDS loading buffer without DTT at 95 °C for 10 minutes. After short centrifugation, the 

supernatant was collected and subjected to LC/MS-MS analysis, which was performed at the 

Quantitative Proteomics & Proteome Center, Tübingen.  

2.2.5.6. SDS-PAGE 

Denaturing SDS polyacrylamide gel electrophoresis (SDS-PAGE) was performed by using 

the gel chamber system of Mini-PROTEAN Tetra Cell (BioRad) and discontinuous 

polyacrylamide gels (Laemmli, 1970). In this study, a 13.5 % resolving gel overlaid with a 4.5 

% stacking gel was used for separating proteins, if not mentioned otherwise. After incubating 

at 95 °C for 5 minutes, 20 μl protein samples mixed 1 × SDS loading buffer were loaded on 

SDS-PAGE gel and electrophoresis was conducted in 1 × SDS running buffer (25mM Tris 

base, 192 mM Glycine, 0.1 % (w/v) SDS) at 33 mA for 50 to 70 minutes depending on the 

protein size. The Pre-stained Protein Ladder Mix (Fermentas) was used as a protein marker.  

 Resolving gel (13.5 %) 5ml/gel Stacking gel (4.5 %) 3ml/gel 

Milli-Q water 1.5 ml 1.8 ml  

Acrylamide/bisacrylamide (37.5:1) 2.25 ml 0.45 ml 

1.5M Tris-HCl pH 8.8 1.25 ml -- 

1.0M Tris-Hcl pH 6.8  -- 0.75 ml 

* 10% APS 50 μl 30 μl 

10% SDS 50 μl 5 μl 

* TEMED 5 μl 3 μl 

Note. 10 % APS: Ammonium persulfate solution, 1 g ammonium persulfate dissolved in 10 ml of ddH2O, stored 

at -20 °C. *. Added right before each use 
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2.2.5.7. Western blot 

For the Western blot analysis, the separated proteins were transferred from SDS-PAGE gel 

onto a Hybond nitrocellulose membrane (GE Healthcare) in 1 × transfer buffer (25 mM Tris 

base, 192 mM Glycine, 20 % (v/v) methanol) using a Mini Trans-Blot Electrophoretic 

Transfer Cell system (Biorad) for approximately one hour at 350 mA. After transfer, the 

protein on the membrane was investigated by Ponceau S red stain (0.1 % (w/v) Ponceau S red 

and 5 % (v/v) acetic acid) and scanned for a loading control. For blocking of nonspecific 

binding sites, the membrane was then incubated in 1 × milk-TBST (20mM Tris-HCl pH 7.5, 

150 mM NaCl, 0.1 % (v/v) Tween 20, 5% (w/v) milk) for 1 hour at room temperature with 

gentle shaking. After washing three times with 1 × TBST buffer (20 mM Tris-HCl pH 7.5, 

150 mM NaCl, 0.1 % (v/v) Tween 20), the membrane was incubated in 1 × TBST buffer 

containing 5 % (w/v) BSA and desired primary antibody with gentle shaking overnight at 4 

°C. Following additional washings with 1 × TBST buffer for three times, the membrane was 

incubated with the respective secondary antibody diluted in 1× TBST for 1 to 2 hours at room 

temperature. Afterwards, the membrane was washed with 1 × TBST three times.  

The alkaline phosphatase-coupled secondary antibody was visualized by staining in 

BCIP/NBT buffer (150 mM Tris-HCl pH 9.5, 50 mM MgCl2, 100 mM NaCl) containing 

diluted BCIP and NBT. The 200 × stock solution of BCIP is 50 mg/ml 5-bromo-4-

chloro-3-indolylphosphat dissolved in 70 % (v/v) dimethylformamide (DMF) and the 200 × 

stock solution of NBT is 50 mg/ml nitro-blue tetrazolium chloride dissolved in 100 % (v/v) 

dimethylformamide (DMF). For detection of a horseradish peroxidase-coupled secondary 

antibody, the enhanced Chemiluminescence Kit (ECL, GE Healthcare) was applied following 

the manufacturer’s instructions. 

2.2.5.8. Native-PAGE analysis 

Native polyacrylamide gel electrophoresis (Native-PAGE) was carried out as previously 

described with minor modifications (Niepmann and Zheng, 2006; Arndt et al., 2012). 5 μl of 

the purified protein (1 mg/ml) in chapter 2.2.5.2 was mixed with 5 μl complex buffer (50 mM 

Tris pH7.0, 150 mM NaCl, 0.5 mM CaCl2) and 10 μl 2 × sample loading buffer (100 mM 

Tris-HCl pH 6.8, 20 % Glycerol, 0.1 % Bromophenol Blue). The sample mixture was 

incubated at 4 °C for 10 minutes before loading to the native gels. By using Mini-PROTEAN 

Tetra Cell (BioRad), the vertical electrophoresis was performed in 1 × native running buffer 

(25 mM Tris base, 192 mM Glycine). Protein separation was processed in discontinuous 

native acrylamide gels (7.0 % native resolving gel overlaid with a 4.5 % native stacking gel). 
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The gels were run at a low current (10 mA) in the cold room (4 °C). The proteins on the gel 

were visualized by Coomassie Brillant Blue staining (chapter 2.2.5.10).  NativeMark 

Unstained Protein Standard (Invitrogen) was used as a protein marker for the analysis. 

To examine the Ca2+-dependent in vitro interaction between SFI5 and CaM, 25 μg of each 

purified recombinant proteins were mixed in equal volumes of the complex buffer with 5 mM 

CaCl2 or 20 mM EDTA and incubated at 4°C for 1 hour, followed by the addition of sample 

loading buffer. 

For the CaM mobility shift assay with a synthetic peptide, 50 μM purified GST-AtCaM4 and 

133 μM peptide were mixed in the complex buffer to a final volume of 10 μl and incubated at 

4 °C for at least 1 hour. After adding 10 μl 2 × sample loading buffer, the CaM binding ability 

of these synthetic peptides were detected by Native-PAGE as the above described. 

  Native Resolving gel (7.0 %) 

5ml/gel 

Native Stacking gel (4.5 %) 

3ml/gel 

Milli-Q water 2.60 ml 3.80 ml 

Acrylamide/bisacrylamide (37.5:1) 1.15 ml 0.45 ml 

1.5M Tris-HCl pH 8.8 1.25 ml 0.75 ml 

* 10% APS 50 μl 30 μl 

* TEMED 5 μl 3 μl 

*. Added right before each use 

2.2.5.9. Immunoblot of native gels 

Native gels were blotted following a modified protocol for Western blot of SDS-PAGE gels 

(chapter 2.2.5.7). After electrophoresis at 4 °C, native gels were incubated in 1 × transfer 

buffer containing 0.1 % SDS for 10 minutes. Protein transfer on nitrocellulose membrane was 

performed at 350 mA for 1 hour in 1 × transfer buffer containing 0.1 % SDS. 

Immunodetection was performed with the adequate primary and secondary antibodies (Table 

2.3) and incubation in NBT/BCIP detection solution. 

2.2.5.10. Coomassie Brillant Blue staining 

After SDS-PAGE or Native-PAGE, gels were incubated in Coomassie blue stain solution 

(0.125 % (w/v) Coomassie Brilliant Blue R-250, 50 % (v/v) MeOH, 10 % (v/v) acetic acid) 

and gently shacked at room temperature for 45 minutes. Afterwards, the Coomassie solution 

was removed and protein bands were detected by incubation in destaining solution (50 % 

(v/v) methanol, 10 % (v/v) acetic acid) until visualization.  
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2.2.5.11.  1-Anilinonaphthalene-8-sulfonate (ANS) fluorescence measurement 

ANS (Sigma) was dissolved in ethanol at a stock concentration of. 10 mM. The measurements 

were performed using ANS at a final concentration of 100 μM incubated with 1 μM purified 

GST-AtCaM4 in reaction buffer (20 mM Tris-HCl pH 7.5, 100 mM NaCl and 1 mM CaCl2) 

for 15 minutes prior addition of 0-100 µM of the synthetic peptide using for competition. 

Fluorescence was measured using λex = 360 nm and λem = 460 nm.  

2.2.6. Bioassay methods 

2.2.6.1. Luciferase activity measurement  

In order to identify MTI-suppressing effectors, transfected A. thaliana or S. lycopersicum 

protoplasts co-expressing the reporter constructs pFRK1-Luc, pUBQ10-GUS and an effector 

gene construct were prepared as described in 2.2.3.1. For the luciferase assay, D-luciferin 

(P.J.K.) was added to 600 μl protoplasts to a final concentration of 200 μM. Protoplasts were 

then aliquoted into a 96-well plate (BrandTech) at 100 μl per well and kept for at least 30 

minutes at 20-22 °C in the dark. Protoplasts were treated with flg22 to a final concentration of 

500 nM or left untreated. The luminescence reflecting the luciferase activity was measured at 

different time-points using a Berthold Mithras LB 940 luminometer. Between the 

measurements, the plate was covered with a lid and incubated in the dark at room 

temperature.  

2.2.6.2. GUS activity measurement  

For the GUS activity assay, 50 μl of transformed protoplasts (+/- flg22) as described in 2.2.6.1 

were collected by centrifugation at 100 g for 1 minute, 3 or 6 hours after adding flg22. The 

cells were lysed in 100 μl 1 × CCLR solution (cell culture lysis reagent, Promega) and 10 µl 

of the lysate were then transferred to a 96-well plate followed by the addition of 90 μl MUG 

substrate solution (1 mM 4-methyl-umbelliferyl-β-D-glucuronide, 100 mM Tris-HCl pH 8.0, 

2 mM MgCl2). The plate was incubated at 37 °C for 30 minutes and the reaction was stopped 

by adding 100 μl 0.2 M Na2CO3 and mixing well. The fluorescence resulting from the GUS 

activity (production of 4-methylumbelliferone, 4-MU) was monitored using a MWG 96-well 

plate reader with λex = 360 nm and λem = 460 nm. The values obtained in the GUS activity 

assay were used to normalize the data from the 3 hours or 6 hours time-point of the Luciferase 

activity as following: (value Luc +flg22/value GUS +flg22)/(value Luc −flg22/value GUS 

−flg22), in which value Luc and value GUS are from the same time-point. 
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2.2.6.3. Cell death rate measurement 

To determine the cell death rate after transformation, 100μl of transformed protoplasts as 

described in 2.2.6.1 were incubated with 1 μl propidium iodide (100 μg/ml). Stained 

protoplasts reflecting dead cells were counted using a Nikon Eclipse 80i epifluorescence 

microscope with the following filter: TRITC EX 540/40, DM 565, BA 605/55. The cell death 

rate represents the percentage of dead protoplasts per total number of protoplasts. 

2.2.6.4.  Post-translational MAP Kinase activation assay 

To determine post-translational activation of MAPK in protoplasts, 100 μl or 200 μl of 

transformed protoplasts as described in 2.2.6.1 were treated without or with 500 nM flg22 for 

0, 15 and 30 minutes, harvested by centrifugation at 100 g for 1 minute and flash-frozen in 

liquid nitrogen. Total proteins were extracted in 40 μl 1 × SDS loading buffer at 95 °C for 5 

minutes. 20 μl of the protein extract were loaded onto a 13.5 % SDS-PAGE gel and separated 

by electrophoresis as described in 2.2.5.6. Afterwards, proteins were blotted onto a Hybond 

nitrocellulose membrane (GE Healthcare) and stained with Ponceau S red to visualize equal 

sample loading (chapter 2.2.5.7). The membrane was probed with a primary antibody raised 

against phospho-p44/p42 MAPK and the appropriate secondary antibody (@rabbit IgG-

Alkaline Phosphatase) (Table 2.3) followed by incubation in NBT/BCIP detection solution for 

immunodetection.  

2.2.6.5. Oxidative burst assay  

S. lycopersicum protoplasts transformed as described in 2.2.6.1 were used to measure ROS 

production using a luminol-based assay (Halter et al., 2014). Protoplasts were incubated in 

W2 buffer (0.5 M mannitol, 20 mM KCl) at 20-22 °C in the dark for 6-8 hours. Before 

measurement, the W2 buffer was replaced with W5 buffer (18.4 g/L CaCl2  2H2O, 1.0 g/L 

glucose, 9.0 g/L NaCl, 0.4 g/L KCl ) containing 200 μM luminol L-012 (Wako Chemicals) 

and 20 μg/ml horseradish peroxidase and incubated for additional 30 minutes in the dark. 

Upon treatment without or with 500 nM flg22, luminescence was recorded for 30 minutes by 

using the muliplate reader Mithras LB 940 (Berthold Technologies). 

2.2.6.6. Calcium influx assay 

Aequorin luminescence measurement was performed to monitor the increase of cytosolic Ca2+ 

level upon flg22 treatment. S. lycopersicum protoplasts were co-transformed with the p35S-

Aequorin, pUBQ10-GUS and SFI5 constructs and incubated in W2 buffer (0.5 M mannitol, 20 

mM KCl) at 20-22 °C in the dark for 6-8 hours (chapter 2.2.3.1). After adding 10 μM of 
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coelenterazine (P.J.K., dissolved in ethanol at a stock concentration of 1mM), 100 µl 

transformed protoplasts were aliquoted into a 96-well plate and incubated for at least 30 

minutes in the dark. Upon treatment without or with 500 nM flg22, luminescence was 

recorded in 45-sec intervals for 30 minutes using a Berthold Mithras LB 940 luminometer.  A 

GUS activity assay  (chapter 2.2.6.2) was performed in parallel and used to normalize the sum 

of photon counts between 5-15 minutes in flg22 treated or untreated protoplasts.  The flg22-

induced elevation of cytosolic Ca2+ level was presented as: (total light counts +flg22/ value 

GUS +flg22)/(total light counts –flg22/value GUS –flg22). 

2.2.6.7. Programmed Cell death suppression assay 

For the INF1-induced cell death assay, A. tumefaciens expressing GFP-SFI effectors, GFP-

AVR3a or GFP control were first infiltrated into N. benthamiana leaves at an OD600 = 0.3 (as 

described in 2.2.3.2). After one day, the primary infiltration sites were re-infiltrated with A. 

tumefaciens carrying p35S-INF1 construct at a final OD600 = 0.3. Cell death was scored at 7 

days post-infiltration (dpi). For the AVR/R-induced cell death assay, A. tumefaciens 

expressing Avr4 or Cf-4 were adjusted to a final OD600 of 0.3 and 0.6, respectively, and then 

mixed in a 1:1 ratio prior inoculation of the primary infiltration sites expressing GFP-SFI 

effectors, GFP-AVR3a or GFP control. Cell death was scored at 7 days post-infiltration (dpi) 

and considered to be positive when more than 50 % of the inoculated area developed a clear 

cell death phenotype. The mean percentage of total inoculations per plant developing cell 

death of combined data from at least two biological replicates (3 leaves / 6 plants / replicate) 

was calculated. One-way ANOVA was performed to identify statistically significant 

differences (p-value < 0.01).  

2.2.6.8. Phytophthora infestans infection assay 

To determine the contribution of SFI effectors to P. infestans pathogenicity, infection assays 

were performed on N. benthamiana leaves transiently expressing SFI effectors as described 

previously (Bos et al., 2010). First, A. tumefaciens carrying GFP-SFI effectors were diluted in 

infiltration buffer to achieve a final OD600 value of 0.1. 4 to 5-week old leaves of N. 

benthamiana were infiltrated with the bacteria expressing the GFP control in one half of the 

leaf and the bacteria expressing a GFP-SFI effector on the other half. After one day, 10 μl of 

P. infestans sporangia-containing droplets (3 × 104 sporangia/ml) were inoculated onto the 

abaxial side of detached leaves and incubated for several days at high humidity at 19 °C. 

Lesion sizes were determined and photographed at 7 days post-infection. Three leaves per 

plant for 4–6 intact plants were used for each biological replicate. Statistically significant 
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differences in lesion size were identified by one-way ANOVA with pairwise comparisons 

performed using the Holm-Sidak method.  

Sporangia from P. infestans were prepared as following: P. infestans isolate 88069 was grown 

on Rye Sucrose Agar at 19 °C for two weeks. Plates were flooded with 5 ml cold sterile water 

and scraped with a glass rod to release sporangia. The sporangia-containing solution was 

collected, counted using a haemocytometer and the sporangia concentration adjusted to 3 × 

104 sporangia/ml. 

2.2.7. Confocal fluorescence microscopy 

Standard confocal microscopy was used for sub-cellular localization studies. Protoplast 

samples were observed 12 hours post-transfection and N. benthamiana epidermal cells 2 days 

after agroinfiltration. Imaging was performed using a Leica TCS SP8 AOBS confocal laser 

scanning microscope with HC PL APO 63 × 1.20 W water immersion objectives. Samples 

were excited and emitted by an argon/krypton mixed gas laser. The excitation settings for 

GFP, RFP and chloroplast were 488 nm, 561 nm and 633 nm, respectively. The emission 

filters were 505-535 nm for GFP, 575-605 nm for RFP and 647-685 nm for chloroplasts. The 

pinhole was set to 1.5 airy units for protoplasts and 1 airy unit for leaf cells. Single optical 

section images were acquired from protoplasts and z-stacks were collected from leaf cells. 

Image analysis was processed with the Leica LCS software, ImageJ and Adobe Photoshop 

CS3.  
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3. Results 

3.1.  Identification of RXLR effectors from P. infestans suppressing early MTI signaling 

3.1.1. Establishment of plant protoplast systems for monitoring flg22-induced immune 

responses  

The Arabidopsis protoplast-based transient expression system has been demonstrated as a fast 

and potent method to identify and analyze the virulence function of bacterial type III effectors 

subverting MAMP triggered immunity (Li et al., 2005; He et al., 2006). We have decided to 

use this experimental system in order to identify RXLR effectors of P. infestans (PiRXLR 

effectors) subverting early responses of MAMP signaling pathway and perform a comparative 

study of their activity in both a host (tomato) and non-host (Arabidopsis) plant species. 

Together with M. Fraiture, a postdoc in the Brunner lab, we have adapted the existing 

protoplast assay in Arabidopsis and developed a tomato protoplast system to measure early 

immune responses induced by flg22 (Fraiture et al., 2014). One major advantage of this 

system is that effector translocation into host cells is based on chemical transformation and 

does not require the help of a bacterial delivery system and therefore, it reduces the risk of 

interference with the read-out due to the uncontrolled presence of bacterial effectors and 

MAMPs. Furthermore, the assay can be used to measure very early (within minutes) MAMP-

induced responses and to perform epistasis analysis without the burden of generating stable 

transgenic lines. We choose in our experiments the bacterial MAMP flg22 because it is 

ubiquitously recognized in plants and also because cell responses elicited by diverse MAMPs 

are largely congruent (Gomez-Gomez and Boller, 2000; Zipfel et al., 2006; Wan et al., 2008). 

It has been demonstrated that several elements involved in flg22-mediated signaling pathway 

were conserved in Arabidopsis and tomato. The functional ortholog of Arabidopsis FLS2 has 

been identified in tomato (Robatzek et al., 2007). The kinase activation of tomato SlMPK3 

and 1, orthologs of AtMPK3 and 6, respectively, can be induced by flg22 (Nguyen et al., 

2010).  

Protoplasts were always freshly prepared from 4-5 week-old Arabidopsis Col-0 or 3-4 week-

old tomato (S. lycopersicum cv moneymaker) plant leaves using a mix of cell wall-degrading 

enzymes containing cellulase, macerozyme and pectinase and transformed using a PEG 

(Polyethylene glycerol)-mediated transfection procedure (Fraiture et al., 2014). To assess cell 

viability and transformation efficiency, we transformed isolated protoplasts with a p35S-GFP 

(green fluorescent protein) construct (Figure 3-1 A). After 12 hours incubation, a strong GFP 



Results 

 43 

signal could be observed by fluorescence microscopy and the dead protoplasts were 

visualized by propidium iodide (PI) staining (Figure 3-1 A). The efficiency of the 

transformation was routinely > 50 %. However, approximately 45 % of the tomato and 20 % 

of the Arabidopsis protoplasts died after transfection.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1.  S. lycopersicum and A. thaliana protoplast-based transient expression system for monitoring 

reporter gene expression and MAPK activation. 

(A) Transformation efficiency of S. lycopersicum and A. thaliana protoplasts transiently expressing p35S-GFP. 

After 12 hours transfection, GFP-transformed protoplasts and dead cells stained with propidium iodide (PI) were 

B 

C 

A 
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observed with epifluorescence microscopy. (B) FRK1 promoter activity assay using the reporter luc gene in S. 

lycopersicum and A. thaliana protoplasts. Mesophyll protoplasts were cotransfected with pFRK1-Luc and 

pUBQ10-GUS alone with p35S-GFP (control) or p35S-AvrPto-GFP (P. syringae effector AvrPto) or p35S-

AvrPto G2A-GFP (non-myristoylated AvrPto). After 6 hours and 9 hours transfection for S. lycopersicum and A. 

thaliana respectively, protoplasts were challenged with flg22 (+flg22) or without challenge (-flg22) and the Luc 

reporter activity was measured. The promoter activity was presented by calculating the ratio of flg22-induced 

luciferase activity relative to the untreated sample, which was normalized to the internal GUS activities (pFRK1-

Luc activity +flg22/−flg22). Each data point represents the mean ± SEM from seven independent replicates, for 

each of which three technical replicates were carried out. *, p-value < 0.05 by one-way ANOVA followed by 

Dunnett's multiple comparison test. (C) Endogenous MAPK activation upon flg22 treatment in S. lycopersicum 

and A. thaliana protoplasts. Transfected protoplasts expressing GFP or AvrPto-GFP or AvrPto-GFP G2A were 

collected 0, 15 and 30 minutes after flg22 treatment and used for immunoblotting. Phosphorylated MAP kinases 

were detected by antibody raised against phosphorylated mammalian MAP kinase p44/p42. GFP and GFP fusion 

proteins from the same samples were detected by anti-GFP antibody. Equal sample loading was assessed by 

Ponceau S staining. This result is representative of at least two independent experiments. 

 

In order to test protoplast responsiveness to flg22 and effector-driven suppression efficiency 

of flg22-induced early MTI signaling, we compared the effect of GFP and P. syringae T3E 

AvrPto-GFP fusion protein on the induction of the expression of the reporter gene construct 

pFK1-Luc that was co-transfected into protoplasts. The reporter gene construct consists of the 

firefly luciferase gene (Luc) under control of the MAMP-inducible promoter of Arabidopsis 

FRK1 (Asai et al., 2002; He et al., 2006). This reporter construct is functional in both the 

Arabidopsis and the tomato protoplast system. A β-glucuronidase (GUS) activity assay, 

reflecting the constitutive expression of concomitantly transfected pUBQ10- GUS (He et al., 

2006) allows the normalization of +/- flg22 Luc activity and serves as an indicator for 

successful transfection. As shown in Figure 3-1 B, the presence of AvrPto-GFP significantly 

impaired flg22-induced luciferase expression in both Arabidopsis and tomato protoplasts, 

compared to the GFP expression control. However, the inactive AvrPto with substitution of 

the glycine residue in position 2 by an alanine (AvrPto G2A-GFP), whose myristoylation site 

and membrane localization is disrupted (Shan et al., 2000; He et al., 2006), failed to block 

pFRK1-Luc activation upon flg22 treatment. Further, AvrPto-GFP, but not AvrPto G2A-GFP, 

disturbed post-translational activation by flg22 of immunity-associated MAP kinases in both 

protoplast systems (Figure 3-1 C). These results indicated that both Arabidopsis and tomato 

protoplast systems are suitable to measure early immune responses triggered by flg22 and 

ready to be used as a screen for identification of MTI-suppressing RXLR effectors from P. 

infestans.  



Results 

 45 

3.1.2.  Comparative analysis of flg22-inducible gene activation in tomato and 

Arabidopsis protoplasts expressing RXLR effectors from P. infestans 

3.1.2.1.  Identification of RXLR effectors from P. infestans suppressing pFRK1-Luc 

activity upon flg22 treatment in tomato protoplasts 

We first examined whether PiRXLR effectors inhibit flg22-induced pFRK1-Luc expression in 

tomato protoplasts, because it is a natural host of P. infestans and therefore, the pathogen 

must have evolved effectors capable to interfere with MTI signaling. A total of 33 effector 

candidates were tested in this study (Appendix table 6-2). Most of these effectors were 

selected because their expression was up-regulated during the biotrophic stage of infection or 

they were identified as avirulence proteins, which is an indication that they might also fulfill 

an important role in the pathogenicity of P. infestans (Whisson et al., 2007; Haas et al., 2009; 

Oh et al., 2009). In collaboration with the group of P. Birch (James Hutton 

Institute/University of Dundee, UK), the cDNA sequence encoding the PiRXLR effectors was 

cloned without the predicted signal peptide into pDONR Gateway vectors followed by 

introduction into the series of p2GW7 destination vectors with/without an N-terminal GFP 

fusion.  

Among the 33 PiRXLR effector candidates, 8 (PITG_04097, PITG_04145, PITG_06087, 

PITG_09585, PITG_13628, PITG_13959, PITG_18215 and PITG_20303) consistently 

reduced the pFRK1-Luc activity triggered by flg22 in tomato protoplasts, in contrast to the 

control protoplasts expressing GFP (p-value < 0.05, Figure 3-2 A). These effectors were 

named Suppressor of early Flg22-induced Immune response (SFI) 1 to 8, respectively. 

Among them, 5 effectors (SFI1, SFI5, SFI6, SFI7 and SFI8) much strongly reduced activation 

of pFRK1-Luc by flg22, similar to the effect of the bacterial effector AvrPto (+flg22/-

flg22≅1). After overnight incubation, the percentage of dead protoplasts was determined by 

PI staining and not significantly different between the SFI effector-expressing protoplasts and 

the GFP control (Figure 3-2 B), suggesting that the suppression of FRK1 promoter activity is 

not caused by a toxic or a programmed cell death process in transfected protoplasts. 
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Figure 3-2.   Identification of PiRXLR effectors inhibiting flg22-induced reporter gene activation in S. 

lycopersicum protoplasts. 

 (A) Suppression of flg22-triggered FRK1 promoter activity by PiRXLR effectors in S. lycopersicum protoplasts. 

After 6 hours transformation, mesophyll protoplasts co-extpressing a p35S-effector (or a p35S-GFP control) 

alone with the two reporter genes pFRK1-Luc and pUBQ10-GUS were challenged with flg22 (+flg22) or without 

challenge (-flg22) and the Luc reporter activity was measured. AvrPto served as a positive control for repressing 

pFRK1-Luc activation by flg22. The promoter activity was presented by calculating the ratio of flg22-induced 

luciferase activity relative to the untreated sample, which was normalized to the internal GUS activities (pFRK1-

Luc activity +flg22/−flg22). Each data set represents the mean ± SEM from four independent experiments, for 

each of which three technical replicates were carried out. *, p-value < 0.05 by one-way ANOVA followed by 

Dunnett's multiple comparison test. (B) The rate of cell death for S. lycopersicum protoplasts transiently 

A 

B 
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expressing the identified effectors N-terminally tagged with GFP. By propidium iodide (PI) staining, the number 

of dead cells in the observed total protoplasts was assessed for determining the cell death percentage. Each data 

set was presented by the mean value ± SEM obtained from three independent experiments, where at least 150 

protoplasts were counted. ns, no-significance between the p35S-GFP-effector transfected protoplasts and p35S-

GFP control by one-way ANOVA followed by Dunnett's multiple comparison test. 

 

3.1.2.2.  Identification of RXLR effectors from P. infestans suppressing pFRK1-Luc 

activity upon flg22 treatment in Arabidopsis protoplasts 

One of our goals is to determine whether PiRXLR effectors that suppress early MTI signaling 

in the host tomato are able to also suppress such responses in the non-host plant Arabidopsis. 

We hypothesized that only few, or even none of the 8 PiRXLR effectors identified in the 

tomato screen would affect flg22-dependent pFRK1-Luc activation in Arabidopsis protoplasts.   

This experiment revealed that 4 SFI effectors (SFI1, SFI2, SFI5 and SFI8) could also disturb 

flg22-induced luciferase expression in Arabidopsis (p-value < 0.05, Figure 3-3 A). SFI3, SFI4, 

SFI5 and SFI7 did not significantly interfere with the induction of pFRK1-Luc activity and 

would rather be classified as host-specific effectors. To our surprise, another 4 effectors 

(PITG_00821, PITG_05750, PITG_16737 and AVRblb1/PITG_21388) were found to 

attenuate pFRK1-Luc expression only in Arabidopsis (p-value < 0.05, Figure 3-3 A). Similar 

to what we have observed in tomato, no significant difference in the cell death rate was 

observed in Arabidopsis protoplasts transiently expressing these effectors (Figure 3-3 B). In 

addition, we noticed that protoplasts expressing the effector PITG_18670 were hypersensitive 

to flg22, which was illustrated by a much stronger induction of pFRK1-Luc activity. 
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Figure 3- 3.  Identification of PiRXLR effectors inhibiting flg22-induced reporter gene activation in A. 

thaliana protoplasts. 

 (A) Suppression of flg22-triggered FRK1 promoter activity by PiRXLR effectors in A. thaliana protoplasts. 

After 9 hours transformation, mesophyll protoplasts co-extpressing a p35S-effector (or a p35S-GFP control) 

alone with the two reporter genes pFRK1-Luc and pUBQ10-GUS were challenged with flg22 (+flg22) or without 

challenge (-flg22) and the Luc reporter activity was measured. AvrPto served as a positive control for repressing 

pFRK1-Luc activation by flg22. The promoter activity was presented by calculating the ratio of flg22-induced 

luciferase activity relative to the untreated sample, which was normalized to the internal GUS activities (pFRK1-

Luc activity +flg22/−flg22). Each data set represents the mean ± SEM from four independent experiments, for 

each of which three technical replicates were carried out. *, p-value < 0.05 by one-way ANOVA followed by 

Dunnett's multiple comparison test. (B) The rate of cell death for A. thaliana protoplasts transiently expressing 

A 

B 



Results 

 49 

the identified effectors N-terminally tagged with GFP. Via propidium iodide (PI) staining, the number of dead 

cells in the observed total protoplasts was assessed for determining the cell death percentage. Each data set was 

presented by the mean value ± SEM obtained from three independent experiments, where at least 150 protoplasts 

were counted. ns, no-significance between the p35S-GFP-effector transfected protoplasts and p35S-GFP control 

by one-way ANOVA followed by Dunnett's multiple comparison test. 

 

3.1.2.3.  SFI1, SFI2 and SFI8 attenuate flg22-induced endogenous MAMP-marker gene 

expression in Arabidopsis protoplasts  

It was unexpected that 4 PiRXLR effectors failed to affect pFRK1-Luc activation by flg22 in 

the host plant tomato but did so in the non-host plant Arabidopsis. This result prompted us to 

test further whether the 8 PiRXLR effectors suppressing the reporter gene activation in 

Arabidopsis also block the flg22-induced expression of endogenous FRK1 and other MTI 

marker genes in Arabidopsis protoplasts. Consistent with the results obtained in the pFRK1-

Luc assay, 3 effectors (SFI1, SFI2 and SFI8/AVRblb2) inhibited the flg22-induced FRK1 

expression. In contrast, the remaining 5 effectors (SFI5, PITG_00821, PITG_05750, 

PITG_16737 and AVRblb1/PITG_21388) failed to attenuate the up-regulation of FRK1 

expression by flg22 (Figure 3-5 A). 

We extended our analysis to WRKY DNA-BINDING PROTEIN 17 (WRKY17) and 4-

coumarate coenzyme A ligase (4CL), two additional MAMP-responsive genes. As shown in 

Figure 3-4, SFI1, SFI2 and SFI8/AVRblb2 were also able to dramatically impair the up-

regulation of WRKY17 and 4CL upon addition of flg22, while the other 4 PiRXLR effectors 

(PITG_00821, PITG_05750, PITG_16737 and AVRblb1/PITG_21388) had no effect. 

Notably, SFI5 disturbed flg22-elicited 4CL expression, but had no effect on the induction of 

WRKY17 gene, implying that it might specifically affect 4CL-associated phenylpropanoid 

metabolic pathway (Fraser and Chapple, 2011). As a control, the housekeeping gene 

ELONGATION FACTOR 1A (EF1α) was tested before and after flg22 treatment and its 

expression was in general not altered (Figure 3-4). Only in the case of SFI2, the transcript 

level of EF1α was decreased 2-3 fold, maybe because the overexpression of the effector 

affected the fitness of protoplasts. 

Taken together, our initial screening with the pFRK1-Luc assay identified a subset of PiRXLR 

effectors (SFI1-SFI8) subverting early flg22-induced immune response in tomato. In addition, 

three of them (SFI1, SFI2 and SFI8/AVRblb2) appear to interfere with MAMP signaling in 

non-host Arabidopsis and suggest that they target ubiquitous components of plant immune 
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signaling. We have chosen to study the 8 SFI effectors in more details for a better 

understanding of their mode(s) of action on different processes contributing to MTI.   

 

Figure 3- 4.  Real time PCR-analysis of MAMP-responsive genes in A. thaliana protoplasts expressing the 

SFI effectors. 

Relative expression of the flg22-induced marker genes FRK1, WRKY17, 4CL and the housekeeping gene EF1α 

was determined in transfected protoplasts treated by flg22 for 0 hour, 1 hour and 3 hours. GFP and AvrPto were 

employed as a negative and a positive control, respectively, for suppression of the marker genes induction. Mean 

values ± SEM of technical triplicates were obtained and the data are representative of four independent 

experiments. 

 

3.1.3.  SFI 5-7 suppress post-translational MAP kinase activation by flg22 in tomato but 

not in Arabidopsis protoplasts  

In order to unravel whether the SFI1-8 effectors function at- or upstream of the transcriptional 

or translational changes in elicited tomato protoplasts, we conducted an epistasis analysis. 

MAPK cascades are thought to be key components that regulate MAMP-responsive genes in 

MTI signaling. To investigate if our effectors affect defense-associated MAPK activation by 

flg22, we performed immunodetection assays by using a phospho-p44/42 antibody, which 

was raised against phosphorylated (activated) MAP kinases. AvrPto served as a positive 

control for suppression of post-translational MAP kinase activation because it is known to 
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suppress MAMP signaling by targeting the FLS2/BAK1 receptor complex (He et al., 2006; 

Shan et al., 2008; Xiang et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5. flg22-mediated activation of MAPKs in protoplasts producing SFI effectors.  

(A, B) p35S-effector-transfected protoplasts of S. lycopersicum (A) and A. thaliana (B) were collected at 0, 15 

and 30 minutes after flg22 treatment, and the activated MAPKs were detected by immunobloting with the 

antibody raised against phosphorylated MAP kinase p44/p42. Ponceau S staining is shown as a loading control. 

These result are representative of at least two independent experiments. (C) SFI5, SFI6 and SFI7 inhibit flg22-
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induced activation of SlMPK1 and SlMPK3 in S. lycopersicum protoplasts. C-terminally HA-tagged tomato 

MAP kinase SlMPK1 or SlMPK3 were coexpressed with SFI5, SFI6 or SFI7 in protoplasts, which were 

collected before (-) and after (+) flg22 treatment. Following by immmunoprecipitation with anti-HA antibody, 

kinase activity of HA-SlMPK1 or SlMPK3 was detected by in vitro kinase assay and is shown in the upper panel. 

[γ-32P] ATP and myelin basic protein (MBP) were used as phosphorylation substrates. Protein expression of 

SlMPK1 or SlMPK3 is presented in the lower panel. GFP and AvrPto served as a negative control and a positive 

control, respectively, for suppression of MAPK activation by flg22. These results are representative of at least 

two independent experiments. 

 

3 effectors (SFI5, SFI6 and SFI7) were shown to consistently repress the flg22-dependent 

activation of MAP kinases in tomato protoplasts (Figure 3-5 A). This result was further 

confirmed by doing an in vitro MAP kinase assay following the expression and 

immunoprecipitation of hemagglutinin (HA)-tagged SlMPK1 and SlMPK3 in the presence of 

SFI5, SFI6 or SFI7, respectively (Figure 3-5 C). These data suggest that SFI5-SFI7 might 

play effector activity upstream of MAP kinase activation in tomato, while the other 5 effectors 

are likely doing so downstream of MAPK signaling. Like in tomato, SFI1, SFI2 and 

SFI8/AVRblb2 did not interfere with MAP kinase activation in Arabidopsis (Figure 3-5 B), 

reinforcing the hypothesis of a conservation of the effectors’ function in both non-host and 

host plant species. We also verified and confirmed that SFI5-SFI7 are most likely acting in a 

host-specific manner as shown by the absence of effect on MAP kinase activation upon flg22 

treatment in Arabidopsis (Figure 3-5 B).  

3.1.4.  SFI5-SFI7 interfere upstream of the flg22-mediated MAP kinase activation in 

tomato protoplasts  

To better understand the molecular mechanisms underlying SFI5-SFI7 action in the inhibition 

of flg22-induced early MAPK activation in tomato, we carried out gain-of-function 

experiments using components located upstream of the signaling cascade that constitutively 

activate the MAP kinases SlMPK1 and SlMPK3 without flg22 treatment. Components that 

have been identified to act upstream of AtMPK3/4/6 are AtMKK4/5 or AtMEKK1 (Asai et al., 

2002; He et al., 2006). Previous assays have demonstrated that the overexpression of 

dominant active forms of AtMKK4/5 or AtMEKK1 helped to elucidate which steps in MTI 

signaling are blocked by the bacterial effectors AvrPto and AvrPtoB (He et al., 2006). In 

tomato and other solanaceous plants, most studies about cascades of MAPK pathway are 

related to programmed cell death (PCD) induced by effector-triggered immunity (del Pozo et 

al., 2004; Pedley and Martin, 2004; Melech-Bonfil and Sessa, 2010).  
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Figure 3-6. SlMEK2 and SlMAP3Kα activate SlMPK1 and SlMPK3 in S. lycopersicum protoplasts.  

(A) Protoplasts were co-transformed with GFP or GFP-tagged constitutively active MAPK kinase mutant 

(SlMEK1-DD-GFP and SlMEK2-DD-GFP) and HA-tagged SlMPK1 or SlMPK3. (B) Protoplasts were co-

transformed with GFP or GFP-tagged constitutively active MAPKK kinase mutant (SlMAP3Kα-KD-GFP and 

SlMAP3Kε-KD-GFP) and HA-tagged SlMPK1 or SlMPK3. After 10 hours incubation, transfected protoplasts 

were collected before (-) and after (+) flg22 treatment. (A, B) Following immmunoprecipitation with anti-HA 

antibody, kinase activity of HA-SlMPK1 or SlMPK3 was detected by in vitro kinase assay and is shown in the 

upper panel. [γ-32P] ATP and myelin basic protein (MBP) were used as phosphorylation substrates (MBP32P). 

Equal sample loading is presented by coomassie blue staining in the second panel. Endogenous MAPK 

activation was determined by antibody raised against phosphorylated MAP kinase p44/p42 (the third panel). The 

lower panels show the expression of GFP-fused or HA-fused proteins detected by anti-GFP or anti-HA 

antibodies, respectively. These results are representative of at least two independent experiments. 
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In N. benthamiana, NbMKK1 is required for P. infestans INF1-triggered hypersensitive 

response (HR)-like cell death and interacts with the downstream NbSIPK (salicylic acid-

induced protein kinase; an ortholog of SlMPK1) (Takahashi et al., 2007). In tomato, two 

MAPKK kinases, SlMAP3Kα and SlMAP3Kε, and two MAPK kinases, SlMEK1 and 

SlMEK2, are demonstrated to be positive regulators involved in PCD associated with plant 

immunity (del Pozo et al., 2004; Melech-Bonfil and Sessa, 2010, 2011). Nevertheless, little is 

known about their roles in flg22-mediated signaling pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7. SFI5, SFI6 and SFI7 do not inhibit SlMEK2 or SlMAP3Kα activation of endogenous MAPKs 

in S. lycopersicum protoplasts.  

(A) SFI5, SFI6 or SFI7 were co-expressed with the constitutively active mutant of SlMEK2 (SlMEK2-DD-GFP) 

or (B) SlMAP3Kα (SlMAP3Kα-KD-GFP) in protoplasts, which were collected 0, 15 and 30 minutes after flg22 

treatment. (A, B) Endogenous MAPK activation of the samples was detected by antibody raised against 

phosphorylated MAP kinase p44/p42. AvrPto and SpvC (a Salmonella effector) served as a negative control and 

a positive control, respectively, to suppress MAPK activation by constitutively active SlMEK2 or SlMAP3Kα. 

Ponceau S staining is shown as a loading control. These results are representative of at least two independent 

repeats. 

 

As shown in Figure 3-6, ectopic expression in tomato protoplasts of a constitutively active 

SlMEK2 (SlMEK2-DD), or SlMAP3Kα kinase domain (SlMAP3Kα-KD) resulted in the 

activation of SlMPK1/3 in the absence of flg22. These results indicate that SlMEK2 and 

SlMAP3Kα act upstream of SlMPK1/3 and are possibly involved in flg22-dependent MAPK 
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activation whereas the constitutively active SlMEK1 (SlMEK1-DD) and the kinase domain of 

SlMAP3Kε (SlMAP3Kε-KD) failed to do so and even have a negative impact on the flg22-

triggered activation of SlMPK1/3. The expression of SlMEK2-DD and SlMAP3Kα-KD 

bypassed AvrPto and SFI5-SFI7 suppression of SlMPK1/3 activation by flg22 but did not 

override the suppressing effect of SpvC, an effector from Salmonella typhimurium, that was 

shown to act in a trans-kingdom manner and to inactivate AtMPK6/3, most likely by causing 

their irreversible dephosphorylation (Mazurkiewicz et al., 2008; Neumann et al., 2014) 

(Figure 3-7). The conclusion from these experiments is that SFI5-SFI7 block the flg22-

induced signaling pathway very early, probably at the level or upstream of MAPKKK 

activation. 

3.1.5.  SFI7 interferes with PCD triggered by INF1 but not by Cf-4/Avr4 

As stated in 3.1.4, it has been demonstrated in Solanaceae that MAPK cascades play an 

important role in the control of cell death activated by the MAMP INF1 or occurring during 

ETI, for example, upon recognition of the Cladosporium fulvum effectors Avr4/9 by the 

tomato Cf-4/9 resistance proteins (del Pozo et al., 2004; Takahashi et al., 2007; Melech-Bonfil 

and Sessa, 2010). Therefore, and in collaboration with H. Mc Lellan, JHI Dundee, UK, SFI5-

SFI7 were expressed transiently in N. benthamiana leaves and their effect on these two PCD 

responses was examined. 

 

 

 

 

 

 

 

 

 

Figure 3-8. Effect of GFP-fused SFI5, SFI6 and SFI7 on INF1-mediated PCD as well as Avr4/Cf4-

triggered HR responses in N.benthamiana.  

(A) Percentage of infiltrated sites with confluent cell death at 7 days post-agro-infiltration, following co-

expression of each GFP-fused effectors and INF1. (B) Percentage of infiltrated sites with confluent cell death at 

7 days post-agro-infiltration, following co-expression of each GFP-effectors with C. fulvum effector Avr4 and 

tomato resistance protein Cf-4. Results in (A) and (B), shown as mean values ± SEM, are representative of five 
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independent experiments, each using 18 inoculation sites. Statistical significance (*, p-value < 0.01) compared to 

the empty control (GFP) is determined by one-way ANOVA. 

 

Compared to the PiRXLR effector AVR3a, which was identified as a suppressor of PCD 

promoted by INF1 or by the interaction between Cf-4 and Avr4 (Bos et al., 2006; Bos et al., 

2009; Gilroy et al., 2011), GFP-SFI5 and GFP-SFI6 had no effect (Figure 3-8). Only GFP-

SFI7 was able to significantly inhibit INF1-mediated cell death, although not as strong as 

AVR3a, and it had also no effect on Cf-4/Avr4-triggered cell death (Figure 3-8). These 

observations indicate that SFI5 and SFI6 do not impair MAPK signaling leading to INF1 or 

Cf-4/Avr4-dependent PCD in N. benthamiana whereas SFI7 possesses a broader suppressive 

effect by affecting INF1 but not Cf-4/Avr4-mediated PCD. 

3.1.6. SFI1-8 effectors display different sub-cellular localization patterns 

 

 

 

 

 

 

 

 

Figure 3-9.  Expression profile and pFRK1-Luc reporter gene assay for GFP-tagged SFI effectors in 

protoplasts. 

 (A, B) Protein accumulation of SFI effectors N-terminally fused with GFP in S. lycopersicum protoplasts (A) 

and N. benthamiana leaves (B). Total protein extracted from 12 hours post-transfected protoplasts or 48 hours 

post-agro-infiltrated leaves was used for immunoblot assay with anti-GFP antibody. The corresponding GFP-

C 
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fused SFI proteins with expected molecular sizes are pointed out with an arrow. Partial protein degradation was 

observed in some samples. Ponceau S staining was given as a loading control. At least two biological replicates 

were conducted and one representative result is presented. (C) Effect of GFP-fused SFI effectors on suppressing 

FRK1 promoter activity in S. lycopersicum protoplasts. Mesophyll protoplasts were transformed and the 

luciferase activity were measured as described in Figure 3-2 and Figure 3-3. Mean values ± SEM of four 

independent experiments were given. *, p-value < 0.05 by one-way ANOVA followed by Dunnett's multiple 

comparison test.   

 

Preliminary results about the functional characterization of SFI1-8 provide evidence that they 

target different steps of flg22 signaling, from the very early events upon FLS2 activation till 

more downstream responses associated with transcriptional reprogramming and the up-

regulation of immunity-associated genes. To uncover more details about the action mode of 

SFI1-8 inside plant cells, we investigated their subcellular localization by expressing GFP 

fused effectors transiently in tomato protoplasts and in N. benthamiana leaves.  

Immunodetection experiments confirmed the expression and stability of GFP-tagged SFI 

effectors (Figure 3-9 A, B) and the pFRK1-Luc assay in protoplasts showed that GFP-SFI1-8 

retain the suppression activity (Figure 3-9 C). Sub-cellular localization analysis revealed that 

GFP-SFI1, GFP-SFI2 and GFP-SFI8/Avrblb2 strongly accumulate in the nucleus though they 

display distinct sub-nuclear distribution patterns (Figure 3-10 A, B). Localization studies in N. 

benthamiana further supported the observations made in protoplasts and allowed higher 

image resolution. It revealed that GFP-SFI1 was enriched in the nucleolus and GFP-SFI2 

appeared to display several types of sub-nuclear localization, ranging from excluded of the 

nucleolus to even nucleus/nucleolus distribution and occasionally to punctuated structures 

(Figure 3-10 B). A significant proportion of GFP-SFI8/AVRblb2 is localized in the cytoplasm, 

whereas GFP-SFI1 and GFP-SFI2 are nearly exclusively localized in the nucleus/nucleolus 

(Figure 3-10 A). The nuclear localization of SFI1, SFI2 and SFI8/AVRblb2 is in accordance 

with their suppressing function on the expression of MTI-associated genes downstream of 

MAP kinase activation and could be explained by manipulation of components of the 

transcriptional or post-transcriptional machinery. GFP-SFI3 and GFP-SFI4 showed nuclear-

cytoplasmic localization with GFP-SFI3 forming a ring surrounding the nucleolus (Figure 3-

10 A, B). GFP-SFI5, GFP-SFI6 and GFP-SFI7 had different extent of cytoplasmic 

distribution and accumulation at the plasma membrane (Figure 3-10 A), which is in line with 

their suppressing effect on the earliest components involved in MAMP perception and signal 

transduction. 
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Figure 3-10. Subcellular distribution of GFP-SFI effectors in S. lycopersicum protoplasts and in N. 

benthamiana leaves.  

(A) Mesophyll protoplasts and N.benthamiana leaves transiently expressing p35S-GFP-effector were observed 

using confocal laser scanning microscope after 12 hours and 48 hours transformation, respectively. The image 

shows representative optical sections of bright field and merged fluorescence of GFP (green) and chloroplast 

(blue) in protoplasts, as well as GFP fluorescence in N.benthamiana leaves. (B) Sub-nuclear distribution of SFI1, 

SFI2 and SFI3 in N.benthamiana leaves. Confocal imaging of GFP or N-terminally GFP-SFI effectors in the 

nucleus of N.benthamiana was observed using confocal laser scanning microscope after 48 hours transformation. 
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3.1.7.  SFI effectors contribute to P. infestans virulence 

RXLR effectors have been shown to be major contributors to oomycete pathogenicity. 

Therefore, we tested in collaboration with H. McLellan (JHI, Dundee, UK) whether SFI1-8 

enhance the growth of P. infestans on N. benthamiana. We transiently expressed SFI1-8 in N. 

benthamiana leaves via Agrobacterium infiltration and after 24 hours, we proceeded to 

inoculation with a suspension of P. infestans zoospores (1 x 105 / ml). P. infestans 

development including lesion size and disease symptoms was evaluated at 7th day post-

inoculation. Ectopic expression of SFI2 caused cell death, disturbing the measure of disease 

development and therefore, we could not make a conclusion about its role in virulence. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11. Expression of SFI effectors in N.benthamiana promote the growth of P. infestans.  

 (A, B) N-terminally GFP-tagged SFI1-SFI7 and non-tagged SFI8 were transiently expressed via agro-

infiltration in one half of a N.benthamiana leaf and GFP control in the other half. After 24 hours, leaves were 

inoculated with P. infestans. (A) Typical disease development symptoms and (B) mean lesion diameter were 

measured 7 days after inoculation. Results are mean values ± SEM from three biological replicates, each of 

which used 24 leaves for inoculation per construct. Significant difference (*, p-value < 0.01) in lesion size 

compared to empty vector control was determined by one-way ANOVA. 
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The other 7 PiRXLR effectors (SFI1 and SFI3-SFI8) enhanced all the susceptibility of N. 

benthamiana to P. infestans (Figure 3-11 A and B). We measured a two- to five- fold increase 

in disease lesion size (p-value < 0.01) compared to the GFP control. The most potent PiRXLR 

effector was GFP-SFI1, which caused a 5-fold increase of the average lesion size (~25 mm) 

vs GFP control (~ 5 mm). The nucleus/nucleolus localization of SFI1 coupled to its function 

as inhibitor of flg22-induced MTI genes in both tomato and Arabidopsis downstream of 

MAPK activation prompted us to look further at the association of SFI1 nuclear localization 

with its virulence activity. 

3.1.8.  The nuclear localization is important for the function of SFI1 

Based on the preliminary data gained from the analysis of SFI1, we assumed that the nuclear 

localization is required for the inhibition of MTI responses. To test this hypothesis, a 

myristoylation site, aiming to re-direct SFI1 at the plasma membrane, was introduced at the 

N-terminus of GFP-SFI1. The resulting construct (myr-GFP-SFI1) was transformed into 

Arabidopsis protoplasts and agro-infiltrated in N. benthamiana for further analysis.  

 

 

 

 

 

 

 

 

 

 

Figure 3-12. The nuclear accumulation of SFI1 is critical for inhibiting flg22-triggered pFRK1-Luc 

expression and promoting growth of P. infestans.  

(A, B) Sub-cellular localization of GFP-SFI1 or myr-GFP-SFI1 expressed in A.thaliana protoplasts (A) or 

N.benthamiana leaves (B). (A) Representative optical sections of bright field and merged fluorescence of GFP 
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(green) and chloroplast (blue) in protoplasts were shown. (B) Confocal imaging of N. benthamiana cells 

expressing GFP-SFI1 or myr-GFP-SFI1 (left panels, in green) with the nucleolar marker RFP-fibrillarin (right 

panels, in red); the merged images are shown in the central panels.  (C) Stable and intact protein expression of 

GFP-SFI1 and myr-GFP-SFI1 in planta was detected by immunoassay using anti-GFP antibody. The band 

corresponding to the expected protein size is shown by an arrow. (D) pFRK1-Luc reporter gene activity in 

A.thaliana protoplasts expressing GFP-SFI1 or myr-GFP-SFI1, as well as GFP or AvrPto. Mean values ± SEM 

were given from four independent replicates. Significant differences (*, p-value < 0.05) in luciferase activity 

relative to GFP control were determined by one-way ANOVA followed by Dunnett's multiple comparison test.  

(E, F) Effect of GFP-SFI1 and myr-GFP-SFI1 on P. infestans virulence. Via Agrobacterium-mediated 

transfection, GFP-SFI1 and myr-GFP-SFI1 were respectively expressed in one half of a N.benthamiana leaf one 

day before inoculation with P. infestans. (E) Typical disease development symptoms and (F) mean lesion 

diameter were measured on 7 days post-inoculated leaves. Results are mean values ± SEM from three biological 

replicates. Significant difference (*, p-value < 0.01) was determined by one-way ANOVA. 

 

Subcellular localization showed that the myristoylation site prevented nuclear accumulation 

of SFI1 and myr-GFP-SFI1 was indeed targeted to the plasma membrane in both Arabidopsis 

protoplasts and N. benthamiana leaves (Figure 3-12 A, B). The expression of of myr-GFP-

SFI1 was confirmed by immunoblot (Figure 3-12 C). Notably, myr-GFP-SFI1 failed to 

repress induction of pFRK1-Luc activity by flg22 (Figure 3-12 D) and lost the ability to 

enhance P. infestans growth on N. benthamiana, compared to GFP-SFI1 (Figure 3-12 E, F), 

confirming further that the nucleus/nucleolus localization of SFI1 is critical for its ability to 

subvert MAMP-induced immune responses. 

Table 3-1 summarizes the results obtained in the first part of our work. Altogether, we have 

shown that a subset of PiRXLR effectors suppresses flg22-induced early immune responses in 

tomato and/or Arabidopsis. Some of them (SFI1, SFI2 and SFI8) are functional in a broad 

range of plants including natural host (tomato and N. benthamiana) and non-host (Arabidopsis) 

plant species of P. infestans. Other effectors (SFI5-SFI7) are efficient only in host plants or as 

shown for effectors PITG_00821, PITG_05750, PITG_16737 and PITG_21388, only active 

in the non-host Arabidopsis. Plasma membrane localization is correlated with the suppression 

of immune signaling upstream of the activation of the MAP kinase cascade whereas nuclear 

localization affects immune signaling downstream of MAP kinase activation by interfering 

with the expression of immunity-associated genes. Importantly, we have shown that MTI 

suppression is an important factor in the strategy employed by P. infestans to colonize host 

plants. 
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Table 3-1. Summary of PiRXLR effectors with MTI-suppressing activity 

 

3.2.  Functional characterization of SFI5  

The screen of P. infestans RXLR effectors disturbing the earliest signaling events of MTI 

leaded to the identification of SFI1-SFI8. These effectors were shown to be relevant for host 

adaptation. With the objective to understand how MTI-suppressing PiRXLR effectors 

manipulate the host immune network, we searched in several publicly available protein 

databases for the presence of functional domains within SFI1-SFI8 and we performed 

immunoprecipitation assays followed by mass spectrometry (MS) analysis with tomato and 

Arabidopsis protoplasts to identify potential host targets with presumed or demonstrated 

function in regulating immunity. SFI1 was initially ranked as our top candidate (see 3.1.8) but 

because of the absence of any functional domain and the lack of any putative interactor from 

the IP assay, we decided to prioritize SFI5 for a detailed functional characterization. SFI5 

showed tomato-specific suppression of flg22-induced post-translational MAP kinase 

activation, which may be related to its plasma membrane localization.  

In the second part of this thesis, we have tried to bring some new insights about the 

mechanism of action of SFI5 in modulating plant immune responses. The objectives were (i) 

to explore the structure-function relationships of identified SFI5/target pairs, and (ii) to 

determine the biochemical consequences of these relationships for MTI signalling. It is 

postulated that effectors directly or indirectly interact with host proteins, and that the 

structure-function relationship of the effector-target interaction determines complexity and 

specificity of plant-pathogen relationships.  
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3.2.1.  In silico prediction of CaM interaction with SFI5 

SFI5 is a 241-amino acid protein bearing the typical signature of RXLR effectors with the 

presence of a N-terminal signal peptide for secretion in the extracellular space, followed by a 

sequence (Ala28 to Arg62) containing the RXLR motif necessary for translocation into the host 

cytosol and a predicted C-terminal effector domain of 178 amino acid residues (Phe63 to 

Arg241) (Figure 3-13). Bioinformatics analysis run on the Calmodulin Target Database 

(http://calcium.uhnres.utoronto.ca/ctdb/ctdb/home.html) (Yap et al., 2000) revealed the 

presence of a putative calmodulin (CaM)-binding site, located at the C-terminal end of SFI5 

between Pro222 and Leu239 (Figure 3-13 B). CaMs function as calcium sensors in eukaryotes 

and after conformational change induced by Ca2+ binding to EF-hand motifs, interact and 

regulate the function of diverse target proteins (McCormack et al., 2005). They are conserved 

in plant species and important for various biological processes, including the plant immune 

responses (Snedden and Fromm, 2001; Hoeflich and Ikura, 2002; Cheval et al., 2013; 

Poovaiah et al., 2013). So far, there are very few reports describing an interaction between 

CaMs and effectors from pathogenic microorganisms (Wolff et al., 1980; Nakahara et al., 

2012; Guo et al., 2016). Thus, it is interesting to confirm and find out about the relationship 

between CaM interaction and SFI5 function. 

 

 

 

 

 

 

 

 

Figure 3-13. Schematic illustration of SFI5.  

(A) The amino acid sequence of SFI5 protein. The predicted signal peptide is boxed; The RXLR-EER motif is 

underlined. (B) Schematic representation of SFI5 showing the predicted amino acid (aa) length of the signal 

peptide (SP), the RXLR-EER motif for translocation into the host and the effector domain (ED). Numbers 
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indicate positions of amino acid residues beginning from the N terminus. The putative calmodulin-binding motif 

is underlined. 

 

3.2.2. SFI5 interacts in vitro with CaM in a Ca2+ -dependent manner  

With the help of N. Wagener, a post-doc within the Dept. of Plant Biochemistry at the ZMBP, 

we monitored the interaction between SFI5 and CaM by performing in vitro interaction 

assays. The Arabidopsis CaM1/4, fused to glutathione S-transferase (GST-AtCaM1/4), and 

SFI5, fused to maltose-binding protein (MBP-SFI5), were expressed in E. coli and 

subsequently purified from bacterial extracts by affinity chromatography using GSH agarose 

and amylose resin, respectively. GST-AtCaM1/4 and MBP-SFI5 were mixed together in a 

buffer containing calcium or the calcium chelator EDTA.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-14. In vitro Ca2+-dependent interaction between SFI5 and AtCaM1/4.  

(A) Blue Native (BN) gel analysis of the SFI5 interaction with AtCaM1/4. 25 µg of recombinant MBP-SFI5 was 

incubated with 25 µg GST-AtCaM1/4 in the presence of 5mM CaCl2 (a) or 20mM EDTA (b) at 4 °C for 1 hour. 

Samples were separated by BN-PAGE and stained with Coomassie Brilliant Blue. (B) Immunoblots of the BN 

gel described in (A). Immunodetection of GST-AtCaM1/4 and MBP-SFI5 was performed by using an anti-GST 

antibody (left panel) or anti-MBP antibody (right panel), respectively. MBP-SFI5 and GST-holoAtCaM4 

complex (1), free GST-holoAtCaM4 (2) and free GST-apoAtCaM4 (3). Unspecific band (Asterisks). These 

results are representative of three replicates. 
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After blue native (BN) gel electrophoresis, we detected in the sample with Ca2+ a band of 

approximately 220 kDa that would fit the molecular mass of a heterodimeric complex 

between MBP-SFI5 and GST-AtCaM4 (Figure 3-14 A). This band was nearly absent in 

presence of EDTA and, instead of, a higher amount of Ca2+-free AtCAM4 accumulated 

(Figure 3-14 A). It also appeared that in the absence of Ca2+ and CaM, MBP-SFI5 tends to 

aggregate and becomes insoluble, illustrated by the absence of a band corresponding to MBP-

SFI5 on BN-PAGE. The presence of both GST-AtCaM1/4 and MBP-SFI5 in the 220 kD 

complex was verified by performing immunodetection assays (Figure 3-14 B). These results 

indicate that SFI5 and AtCaM4 interact in vitro in a Ca2+-dependent manner.  

3.2.3.  SFI5 interacts in vivo with both Arabidopsis and tomato CaMs 

In order to confirm the results of the in vitro interaction between SFI5 and AtCaM4 and to 

identify additional potential host targets or interactors of SFI5, we perormed 

immunoprecipitation assays followed by liquid chromatography – tandem mass spectrometry 

(LC-MS/MS) analysis with tomato protoplasts expressing an N-terminal HA-tagged SFI5 

(HA-SFI5). In this experiment, we identified a number of candidate proteins associated with 

SFI5, which did not appear in protoplasts expressing HA-SFI1 or empty vector control 

(Appendix table 6-3).  Homologs of AtCAM1/4 and AtCaM2/3/5 were among the best 

candidates, providing additional evidence that CaM associates with SFI5 in planta.  

In Arabidopsis, there are seven distinct CaM genes encoding four protein isoforms sharing 97 

to 99 % amino acid identity between each other. AtCaM1 and AtCaM4 encode the same 

isoform, a second isoform is encoded by AtCaM2, AtCaM3 and AtCaM5. AtCaM6 and 

AtCaM7 encode for a third and fourth isoform, respectively (McCormack et al., 2005).  A 

tomato genome-wide analysis identified six CaM genes, which also encode four isoforms: 

SlCaM1, SlCaM2, SlCaM3/4/5 and SlCaM6, which share 91 %-99 % amino acid sequence 

identity between each other (Zhao et al., 2013). Phylogenetic analysis showed that the CaMs 

from Arabidopsis and tomato appear very high sequence identity. SlCaM1-SlCaM5 exhibit 

98% or 99% sequence identity to the canonical AtCaM3, while the most distantly related 

SlCaM6 still shares 91% amino acid sequence identity with AtCaM3 (Figure 3-15 A).  

In the next step, we decided to perform pair-wise interaction studies between SFI5 and 

different Arabidopsis and tomato CaMs in order to define the interaction specificities. In 

addition to AtCaM1/4 and AtCaM2/3/5, we were able to clone from a tomato cDNA library 

three CaM genes corresponding to SlCaM1, SlCaM3/4/5 and SlCaM6. The association of 
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HA-CaMs with GFP-SFI5 was tested in pull-down experiments in tomato protoplasts. This 

experiment showed that SFI5 interacts with every CaM without apparent specificity (Figure 

3-15 B). 

 

 

 

 

 

 

 

Figure 3-15.  SFI5 interacts with Arabidopsis and tomato CaMs in vivo. 

 (A) Phylogenetic tree on amino acid similarity of CaM proteins from S. lycopersicum and A. thaliana.  The full-

length protein sequences of each member were aligned and the tree was built using ClustalW method of CLC 

Main Workbench 7 program. The accession numbers for these CaMs are indicated in the brackets. (B) Co-

immunoprecipitation analysis of transiently expressed GFP-SFI5 and HA-At/SlCaMs in tomato protoplasts. 

Extracted proteins (input) were subjected to immunoprecipitation (IP) with anti-HA affinity matrix followed by 

immunobloting (IB) with anti-GFP antibodies to detect the tomato calmodulins and anti-HA antibodies to detect 

SFI5. (C) Interaction analysis of SFI5 with SlCaM3/4/5 by different treatments. Protoplast samples were treated 

with 500 nM flg22, 0.75 % DMSO (mock), 250 nM W7 (stock solution: 33 mM W7 dissolved in 99.5 % 

DMSO) or 1mM LaCl3 before the protoplasts were harvested for the IP. For EDTA treatment, total proteins 

were extracted with IP buffer containing 20mM EDTA. 

 

In vitro interaction studies have shown that the interaction between SFI5 and CaM is Ca2+-

dependent. The increase of cytosolic Ca2+ is among the earliest response to MAMP 

B C 
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perception. Therefore, we tested if the association between CaM and SFI5 might increase or 

occur in a MAMP-dependent manner. Immunoprecipitation assays with HA-SlCaM3/4/5 and 

GFP-SFI5 before and after flg22 treatment clearly showed that the association is independent 

and not modulated by flg22 (Figure 3-15 C). A pharmacological approach using the 

conventional CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulphonamide (W7), 

interfered significantly with the interaction between HA-SlCaM3/4/5 and GFP-SFI5. The 

requirement of Ca2+ for the interaction between SFI5 and CaMs in planta was tested by 

adding the Ca2+ channel blocker LaCl3 or EDTA (upon protein extraction and prior 

immunoprecipitation). In both cases, the ability of GFP-SFI5 to associate with HA-

SlCaM3/4/5 was dramatically reduced, demonstrating the absolute necessity of Ca2+ for the 

SFI5-CaM complex formation. 

3.2.4.  The C-terminal amphipathic helix of SFI5 is critical for CaM-binding 

Although the Calmodulin Target Database search predicted a CaM-binding site spaning the 

C-terminus of SFI5, the amino acid sequence in this region does not contain a canonical CaM-

binding motif, according to a Calmodulation meta-analysis (http://cam.umassmed.edu) (Mruk 

et al., 2014). A helical wheel projection of the 18-amino acid stretch (Pro222 to Leu239) 

encompassing the putative CaM binding site showed that it exhibits a basic amphipathic 

structure with one side enriched in positively charged residues (Lys226, Lys229, Arg233, Lys236) 

and the opposite side rich in hydrophobic residues (Try225, Ile227, Phe228, Ile231), which in turns, 

is typical for a CaM recognition and binding site (Figure 3-16 A).  

To further identify the molecular determinants involved in binding of SFI5 to CaM, a 

synthetic peptide corresponding to the region from Ser223 to Arg241 (peptide1) was synthetized 

and used in BN gel mobility shift assay with recombinant GST-AtCaM4 and in presence of 

Ca2+. As shown in Figure 3-16 C, the peptide1-GST-AtCaM4 complex appears as a higher 

molecular mass band than free GST-AtCaM4, indicating that the last 19aa at the C-terminus 

of SFI5 are sufficient for physical interaction with CaM.  

In many identified CaM interacting proteins, the modification of the amphipathic property or 

net charge of the CaM-binding domain has been demonstrated to have a negative impact on 

their ability to bind CaMs (Herring, 1991; Fitzsimons et al., 1992; Kim et al., 2002; Moon et 

al., 2005; Katou et al., 2007; Wang et al., 2009). To characterize the key amino acid residues 

for CaM-binding, a series of truncated or mutated derivatives of peptide 1 were synthesized 

and tested for their CaM-binding properties in the mobility shift assay (Figure 3-16 B, C). The 
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removal of the last two amino acid residues (Lys240-Arg241) in peptide 2 decreases the net 

charge at pH 7 from +8 to +6 without affecting binding to CaM, suggesting that these two 

residues are not important for the association with CaM.  

 

   

 

 

 

 

      

 

 

 

 

 

Figure 3-16. The C-terminal -helix of SFI5 binds to CaM in vitro.  

(A) Helical wheel projection of the predicted 18-amino acid CaM-binding region of SFI5 (Pro222 to Leu239). 

Hydrophobic and potentially positively charged residues are marked with O and ✚, respectively. The dashed line 

divides the amphipathic helix into the hydrophobic side and hydrophilic side. Numbers refer to amino acid 

positions in SFI5 protein. (B, C, D) A series of synthetic peptides derived from the CaM-binding region of SFI5 

were tested for their ability to bind CaM. Peptide 1 represents the last 19aa at the C-terminus of SFI5. Peptides 

2-11 are truncated or mutated versions of peptide 1, in which the substituted amino acids are presented in red 

bold. The pI and net charge (at pH7.0) of each peptide were calculated by Editseq (Lasergene v.8; DNASTAR). 

(C) Gel mobility shift assay. Purified GST-AtCaM4 (50 μM) was incubated with different peptides (133 μM), 

respectively, in the presence of 5 mM CaCl2. Samples were separated by BN-PAGE followed by Coomasssie 

A D 

C 
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Briliant Blue staining. Arrows indicates the position of bands representing free GST-AtCaM4 and peptide-GST-

AtCaM4 complex. (D) ANS fluorescence competition assay. GST-AtCaM4 (1 μM), ANS (100 μM) in the buffer 

with 20mM Tris-HCl pH 7.5, 100 mM NaCl, 1 mM CaCl2 were incubated with increasing concentration of the 

indicated peptides and kinetic changes of fluorescence was monitored at an excitation wavelength of 360nm (λex) 

and an emission wavelength of 460nm (λem). Data points represent the mean values ± SEM of three technical 

replicates from three independent assays. 

 

The replacement of both hydrophobic residues, Trp225 and Phe228, by Ala significantly 

reduced the ability of peptide 5 to bind CaM with an equimolar ratio of peptide 5/GST-

AtCaM4 complex and unbound GST-AtCaM4. The C-terminal helix contains several lysine 

residues and some of them were predicted by computer modeling to be important for direct 

interaction with CaM. The replacement of Lys229, Lys235 and Lys236 by Glu caused a drastic 

change in the net charge of peptide 6 from +8 to + 2 and the interaction with GST-AtCaM4 

was nearly abolished. Interestingly, replacement of the lysine residues by alanine (peptide 9), 

did not affect the binding affinity to CaM, suggesting that the net charge of the helix is a 

crucial factor for CaM binding. Further analysis has shown that Lys229 seems to be 

dispensable for CaM binding (peptide 8), the most important residues apparently being Lys235 

and Lys236 (peptide 7). 

To underpin the importance of the two hydrophobic residues (Trp225 and Phe228) and the two 

basic residues (Lys235 and Lys236) for the binding with CaM, we carried out competition 

assays between a selection of mutated peptides and 1-Anilinonaphthalene-8-sulfonate (ANS), 

a compound highly affine to CaM and fluorescent upon binding. The kinetics of ANS 

fluorescence change was monitored in the presence of increasing concentration of different 

peptides. As shown in Figure 3-16 D, the fluorescence curve rapidly declined with increasing 

concentration of peptide 1 (IC50 = 1 μM), indicating that competition occurred between ANS 

and the peptide for binding to CaM. By contrast, ANS fluorescence decreased smoothly or 

remained unchanged with increasing amounts of peptide 5, peptide 7 and peptide 11 (a 

quadruple mutant of Trp225, Phe228, Lys235 and Lys236).   

We used the information gained from the in vitro binding studies to perform interaction 

analysis between GFP-SFI5 and SlCaM3/4/5 in tomato protoplasts. We generated a series of 

N-terminal or C-terminal deletion constructs of SFI5 and employed site-directed mutagenesis 

to replace the four key residues identified above to further validate their role in the interaction 

between SFI5 and CaM in vivo. Upon co-immunoprecipitation and subsequent western blot 

analysis, an interaction could be detected for all the N-terminal deletion mutants of SFI5 
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including the shortest truncated protein version corresponding to the last 63 amino acids (178-

241 aa - Figure 3-17 A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17. The C-terminal amphipathic helix is necessary and sufficient for SFI5/CaM interaction in 

vivo.   

(A) Schematic diagrams of SFI5 deletion mutants (left panel).  Numbers indicate positions of amino acid (aa) 

residues based on the full-length protein sequence.  Co-immunoprecipitation of SFI5 deletion mutants with 

SlCaM3/4/5 (right panel). S.lycopersicum protoplasts transiently co-expressing GFP-fused SFI5 deletion variants 

and HA-fused SlCaM3/4/5 were co-immunoprecipitated using anti-HA antibody. Bands corresponding to the 

GFP-tagged SFI5-deletion mutants are indicated by arrows. (B) Schematic diagrams of site-directed mutant 

constructs of SFI5 effector domain (ED) (left panel). Numbers indicate the amino acid positions based on the 

full-length protein sequence. KK/EE, WF/AA, WFKK/AAEE and KR/EE correspond to amino acid exchanges 

of Lys235 and Lys236 with Glu, Trp225 and Phe228 with Ala, Lys235 and Lys236 with Glu and Trp225 and Phe228 with 

Ala, and Lys240 and Arg241 with Glu, respectively. Mutations are indicated in red bolt letters. Co-

immunoprecipitation of SFI5 ED-point mutants with SlCaM3/4/5 (right panel). S.lycopersicum protoplasts co-

expressing GFP-tagged SFI5 ED-point mutants and HA-tagged SlCaM3/4/5 were co-immunoprecipitated by 

anti-HA antibody. Bands corresponding to GFP or GFP-tagged SFI5 ED point mutants are indicated by arrows. 

A 
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By contrast, none of the three C-terminal deletion variants, including the one lacking only the 

amphipathic helix of 19 amino acids (28-221 aa), was able to associate with HA-SlCaM3/4/5 

(Figure 3-17 A). We did also not observe an interaction with the SFI5 variants carrying 

mutations for the two hydrophobic (Trp225Ala / Phe228Ala - WF/AA) or basic (Lys235Glu / 

Lys236Glu – KK/EE) residues or the quadruple (Trp225Ala / Phe228Ala / Lys235Glu / Lys236Glu 

- WFKK/AAEE) mutant  (Figure 3-17 B). As expected, a SFI5 protein, in which the last two 

amino acids (Lys240 and Arg241) were replaced by glutamic acid (KR/EE), did not affect CaM 

binding (Figure 3-17 B).  

According to the results from the in vitro and in vivo interaction assays, we concluded that 

SFI5 has a unique CaM binding site formed by a 17-aa core region (Ser223 to Leu239) having 

an -helical folding and amphipathic properties, in which the two hydrophobic residues 

(Trp225 and Phe228) and the two basic residues (Lys235 and Lys236) fill a critical role in binding 

with CaMs.   

3.2.5. The CaM-binding motif is necessary for the plasma membrane localization of 

SFI5 

As mentioned in 3.1.6, GFP-SFI5 is distributed mainly at the plasma membrane and, to a 

lesser extent, within the cytoplasm in tomato protoplasts. To determine whether the CaM 

binding site might be relevant for the intracellular localization of SFI5, we performed co-

localization studies with selected N-terminal or C-terminal deletion variants or amino acid 

point mutants of SFI5 and the bacterial effector AvrPto, which has been shown to associate 

with the plasma membrane through the presence of a N-terminal myristoylation site (Shan et 

al., 2000; He et al., 2006). Laser scanning confocal microscopy imaging showed that the three 

N-terminal deletion mutants of SFI5 fused to GFP (GFP-SFI5 28-241aa, GFP-SFI5 63-241aa 

and GFP-SFI5 84-241aa) and AvrPto-RFP co-localize at the plasma membrane as illustrated 

by a large overlap of the GFP and RFP fluorescence signal (Figure 3-18), indicating that the 

N-terminal region of SFI5 is not required for the localization at the plasma membrane. By 

contrast, the distribution pattern of the two C-terminal deletion variants (GFP-SFI5 28-199 aa 

and GFP-SFI5 28-221aa) and the quadruple point mutant (GFP-SFI5 ED-WFKK/AAEE) 

changed, with a shift in the fluorescent peaks and only partial overlapping (Figure 3-18), 

implying a re-localization of SFI5 into the cytosol and indicating that the plasma membrane 

association of SFI5 is dependent on the C-terminal CaM-binding motif.  
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Figure 3-18. The CaM binding motif of SFI5 is required for plasma membrane localization.  

S. lycopersicum protoplasts co-expressing N-terminally GFP-tagged SFI5 deletion or point mutant variants and 

C-terminally RFP-tagged AvrPto were monitored using confocal microscopy. Confocal images were taken 12 

hours after transfection and show optical sections of bright field, chloroplast, RFP and GFP fluorescence as 

indicated. Merged fluorescence images between GFP (green), RFP (red) and chloroplast (blue) fluorescence 

were created and ImageJ software was used to analyze signal intensity of GFP and RFP fluorescence along the 

indicated distance (yellow line) from intracellular to extracellular in the overlay picture.   

 

3.2.6. Both C-terminal CaM-binding motif and N-terminal region are required for the 

full function of SFI5 

To examine the relationship between CaM binding and the suppression of early MAMP-

induced immune responses, we performed a detailed structure-function analysis of SFI5 in 

tomato protoplasts. The set of SFI5 deletion and site-point mutation variants with a N-
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terminal HA fusion were transiently expressed in tomato protoplasts (Figure 3-19 A) and 

tested in an array of bio-assays to measure early immune responses triggered by flg22. Some 

of the read-outs have already been described in 3.1.2.1 and 3.1.3.  

First, we measured the impact of truncated and mutated SFI5 proteins on the activity of the 

pFRK1-Luc reporter gene upon flg22 treatment. As shown in Figure 3-19 B, the expression of 

the three C-terminal deletion variants (HA-SFI5 28-177 aa, HA-SFI5 28-199 aa or HA-SFI5 

28-221 aa) did not block flg22-induced Luc activity in comparison to protoplasts expressing 

SFI5 without its native signal peptide (HA-SFI5 28-241aa) or AvrPto. Point mutations in the 

CaM-binding region (HA-SFI5 ED-KK/EE, HA-SFI5 ED-WF/AA or HA-SFI5 ED-

WFKK/AAEE) also reduced the ability of SFI5 to block flg22-triggered reporter gene 

activation, although the effect was less severe than with the deletion mutants. The HA-SFI5 

ED-KR/EE mutant was as active as the positive controls  (Figure 3-19 B). 

Interestingly, we also found the abolition of the suppression of the flg22-mediated reporter 

gene activation in tomato protoplasts expressing N-terminal deletion constructs of SFI5 (HA-

SFI5 84-241aa, HA-SFI5 102-241aa or HA-SFI5 178-241aa), excepted for the SFI5 variant 

lacking the RXLR motif (HA-SFI5 63-241aa) which retained full suppressing activity (Figure 

3-19 B). Altogether, these results indicate that the C-terminal CaM-binding helix and a 

domain spanning approximate 20 aa residues (Phe63- Lys84), located after the RXLR motif, 

are equally important for SFI5 function in the host cell.  

 

 

 

 

 

 

 

 

Figure 3-19. Suppression of flg22-triggered FRK1 promoter activity by HA-SFI5 deletion and point 

mutants.  

(A) Immunoblot analysis of HA-tagged SFI5 deletion mutants and site-directed mutants transiently expressed in 

S. lycopersicum protoplasts. The corresponding HA-tagged SFI5 protein variants with expected molecular sizes 

are pointed out with an arrow. Non-specific Rubisco band is pointed out with an asterisk and served as a loading 

control. (B) S. lycopersicum protoplasts co-expressing a mutated HA-SFI5 variant with the two reporter genes 
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pFRK1-Luc and pUBQ10-GUS were treated with or without flg22 (+/-flg22) and the Luc reporter activity was 

measured. GFP and AvrPto served respectively as a negative and positive control for repressing pFRK1-Luc 

activation by flg22. The promoter activity was presented by calculating the ratio of flg22-induced luciferase 

activity relative to the untreated sample, which was normalized to the internal GUS activities (pFRK1-Luc 

activity +flg22/−flg22). Each data set represents the mean ± SEM from four independent experiments, for each 

of which three technical replicates were carried out. *, p-value < 0.05 by one-way ANOVA followed by 

Dunnett's multiple comparison test. 

 

Our previous studies have shown that SFI5 blocks the flg22-dependent post-translational 

activation of SlMPK1 and SlMPK3 in tomato protoplasts. Therefore, we hypothesized that 

structural deletions or mutations in the N- and C-terminal part may impair the MAP kinase 

suppressing activity of SFI5. Immunodetection with the p44/p42 antibody was used to 

monitor flg22-dependent endogenous SlMPK1 and SlMPK3 activation in tomato protoplasts. 

This assay showed that the suppression of the activation of immunity-associated MAP kinase 

requires the same structural determinants with the same specificity as described above in the 

case of the suppression of pFRK1-Luc induction (Figure 3-20 A).  

During flg22-elicitated MTI signaling, it is thought that ROS production occurs in parallel or 

independently of the MAPK cascade activation and that Ca2+ influx acts upstream of these 

two signaling branches (Grant et al., 2000; Choi et al., 2009; Jeworutzki et al., 2010; Galletti 

et al., 2011; Segonzac et al., 2011; Xu et al., 2014). CaM serves predominantly as a Ca2+ 

sensor and is possibly involved in the regulation of Ca2+ channels and ROS production 

(Harding et al., 1997; Yang and Poovaiah, 2002a; Hua et al., 2003). In order to find out 

whether SFI5 has influence on the ROS burst and Ca2+ influx triggered by flg22, we have 

developed new assays in tomato protoplasts. 

The oxidative burst in tomato protoplasts expressing the collection of SFI deletion and point 

mutants was measured using a modified luminol-based detection method, initially established 

in Arabidopsis leaves (see material & methods). Despite a great variation in the relative 

amount of ROS generated from experiment to experiment, this assay revealed strong parallels 

with the results of the pFRK1-Luc and MAP kinase assays and validate the conclusion about 

the crucial role of both the N-terminal and C-terminal domain for the suppressing activity of 

SFI5 (Figure 3-20 B). Notably, the HA-SFI5 mutant carrying a substitution for the two 

hydrophobic residues (HA-SFI5 ED-WF/AA) retained the ability to repress ROS production 

under the defined experimental conditions (Figure 3-20 B). It implies that SFI5 needs the 

CaM-binding activity to inhibit flg22-induced oxidative burst and that the two basic lysine 
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residues may play a more critical role in the binding to CaM than the two hydrophobic amino 

acids.  

 

 

 

 

 

 

 

 

Figure 3-20. Suppression of flg22-triggered MAP kinase, ROS and Ca2+ burst by HA-SFI5 deletion and 

point mutants.  

(A) S. lycopersicum protoplasts expressing mutated HA-SFI5 variants were collected 20 minutes after flg22 

treatment (+) or without flg22 treatment (-), and the phosphorylated MAP kinases were detected by 

immunobloting with the antibody raised against phosphorylated MAP kinase p44/p42. Ponceau S staining is 

shown as a loading control. (B) The oxidative burst in S. lycopersicum protoplasts expressing mutated HA-SFI5 

variants was represented in percentage of the total photon counts measured between 6-20 minutes after flg22 

treatment of the GFP control, set to 100 %. (C) flg22-triggered Ca2+ burst was measured in tomato protoplasts 

co-expressing mutated HA-SFI5 variants,  Ca2+-sensitive Aqueorin and GUS. For each data set, cytosolic Ca2+ 

level was assessed by calculating the sum of photon counts 5-15 minutes with or without flg22 treatment (+/-

flg22) and the ratio was normalized to the internal GUS activities ([Ca2+]cyt (+flg22/-flg22)). GFP and AvrPto 

served respectively as negative and positive control for suppression of MAPK activation, ROS and Ca2+ burst by 

flg22. The result in (B) is representative of at least three independent experiments. Data in (C) and (D) represent 

the mean ± SEM from four independent experiments, for each of which three technical replicates were carried 

out. *, p-value < 0.05 by one-way ANOVA followed by Dunnett's multiple comparison test.  
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Ca2+ is crucial for SFI5 binding to CaM but also for MAMP-mediated intracellular signaling 

and activation of immune responses. The binding of flg22 to its receptor leads to a rapid 

increase in the concentration of cytosolic Ca2+ but obviously, this increase is not required for 

the association of SFI5 with CaM (Figure 3-15 C). In order to investigate the effect of SFI5 

on the flg22-mediated Ca2+ burst in tomato protoplasts, the aequorin luminescence-based 

technology provides a mean to accurately measure the change of cytosolic Ca2+ level (Knight 

et al., 1991; Knight et al., 1993). The two SFI5 variants containing an intact effector domain 

(HA-SFI5 28-241aa and HA-SFI5 63-241aa) consistently suppressed the Ca2+ burst compared 

to the GFP control, while the other N- and C-terminal deletion mutants failed to do so (Figure 

3-20 C). Unexpectedly, all the site-point mutants that are deficient in interaction with CaM 

were not significantly affected in their capability to subvert the Ca2+ burst, although HA-SFI5 

ED-WFKK/AAEE was less severe (Figure 3-20 C). A possible explanation for this 

observation is that CaM binding is not required for the suppression of the Ca2+ burst and that 

the C-terminal domain is involved in binding with other proteins than CaM to block Ca2+ 

signaling.   

 

 

 

 

 

 

 

Figure 3-21. N-terminal and CaM-binding domain deletion in SFI5 abolish growth of P. infestans in N. 

benthamiana.  

N-terminal or C-terminal deletion variants of SFI5 and empty vector (GFP) were transiently expressed via agro-

infiltration in one half of a N. benthamiana leaf, respectively. After 24h, the infiltrated leaves were inoculated 

with P. infestans. Typical disease development symptoms (A) and mean lesion diameter (B) were measured on 7 

days post-inoculation. Results are mean values ± SEM from three biological replicates, each of which used 24 

leaves for inoculation per construct Significant difference (*, p-value < 0.01) in lesion size compared to empty 

vector control was determined by one-way ANOVA. 

 

We have shown in 3.1.7 that the suppression of early events of MTI signaling by SFI5 

contributes to the virulence of P. infestans. In order to determine the role of the N-terminal 
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and CaM binding domains for the virulence function of SFI5, we further tested, in 

collaboration with H. McLellan, JHI Dundee, UK, two GFP-SFI5 variants with a N-terminal 

deletion (GFP-SFI5 63-241 aa and GFP-SFI5 84-241 aa) and one with a C-terminal deletion 

(GFP-SFI5 28-221 aa) in patho-assays conducted with P. infestans in N. benthamiana. 

Transient expression of GFP-SFI5 84-241aa or 28-221 aa did not improve the susceptibility to 

P. infestans since we observed similar values of lesion size  (~ 9 mm) than with the GFP 

control (Figure 3-21). GFP-SFI5 63-241 aa promoted P. infestans growth to the same level 

than GFP-SFI5 28-241 aa (~ 15 mm) which was used as a positive control (Chapter 3.1.7.) 

(Figure 3-21). These results indicate that there is a correlation between CaM binding, 

suppression of early MTI signaling and virulence function of SFI5. In addition, another 

domain of unknown function, located at the N-terminal part of SFI5 is equally required for the 

activity of SFI5. 

3.2.7.  A predicted ATP/GTP-binding motif at the N-terminal of SFI5 is also important 

for suppression of MTI signaling 

Structure-function analysis have shown that, in addition of the C-terminal CaM binding 

domain, another domain within SFI5 that comprises the amino acid residues between Phe63 

and Lys84 is essential for the suppression of the flg22-dependent immune responses and for 

supporting pathogen’s growth on the host. Based on an online analysis tool used for motif 

scanning (http://myhits.isb-sib.ch/cgi-bin/motif_scan), a predicted ATP/GTP-binding site 

motif (P-loop) was found in this region and its significance was examined by replacement of 

the conserved lysine residue at position 82 with alanine (SFI5 ED-K82A). We also included 

in this analysis a mutant in which a predicted phosphorylated threonine residue at position 70, 

outside the P-loop motif, was replaced by alanine (SFI5 ED-T70A) (Figure 3-22 A).  

Subcellular localization studies and pull-down assays showed that these two mutations did not 

affect the PM localization and interaction with SlCaM3/4/5 of SFI5 (Figure 3-22 B and C). 

However, the Lys82 residue revealed to be crucial for the inhibition of pFRK1-Luc and MAPK 

activation, ROS burst and Ca2+ influx triggered by flg22, while the SFI5 ED-T70A mutant 

acted similar to the SFI5 ED control (Figure 3-23, A, B, C and D). These results suggest that 

SFI5 may be an ATP/GTP-binding protein and that an intact P-loop motif is essential for its 

function.  

 

 

http://myhits.isb-sib.ch/cgi-bin/motif_scan
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Figure 3-22. The predicted N-terminal ATP/GTP-binding motif of SFI5 is not critical for CaM binding 

and PM localization.  

(A) A schematic view of SFI5 effector domain (SFI5 ED) highlighting the predicted ATP/GTP-binding site 

motif. Numbers indicate positions of the amino acid residues in the sequence of the full-length protein. Site-

directed mutagenesis of the putative ATP/GTP-binding site motif was performed by replacing the conserved 

lysine residue at position 82 with alanine, (SFI5 ED K82A).  The putative phosphorylation site at Thr70 was also 

mutated through replacement with Ala. (B) S. lycopersicum protoplasts co-expressing mutated GFP-SFI5 ED 

variants and HA-SlCaM3/4/5 were co-immunoprecipitated using anti-HA antibody coupled to agarose beads and 

immunodetection was performed using anti-HA or anti-GFP antibodies. Signals corresponding to GFP or GFP 

fusion proteins are indicated by arrows. (C) S.lycopersicum protoplasts co-expressing GFP-tagged SFI5 ED, 

SFI5 ED-T70A or SFI5 ED-K82A and C-terminally RFP-tagged AvrPto (AvrPto-GFP) were monitored using 

confocal microscopy. Confocal images were taken 12 hours after transfection and show optical sections of 

bright-field, chloroplast, RFP and GFP fluorescence as indicated. Merged fluorescence images between GFP 

(green), RFP (red) and chloroplast (blue) fluorescence were created and ImageJ software was used to analyze 

signal intensity of GFP and RFP fluorescence along the indicated distance (yellow line) from intracellular to 

extracellular in the overlay picture.   
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Figure 3-23. The predicted N-terminal ATP/GTP-binding motif of SFI5 is required for the inhibition of 

early flg22-induced immune responses in S. lycopersicum protoplasts.  

(A) Reporter gene assay in protoplasts co-expressing the point mutant variants of SFI5 (GFP-SFI5 ED-K80A 

and GFP-SFI5 ED-T70A) with the two reporter constructs pFRK1-Luc and pUBQ10-GUS. The luciferase 

activity from samples treated with flg22 for 3 hours was compared to the untreated samples and the internal GUS 

activities were used for normalization. (B) Endogenous MAPK activation assay for the point mutant variants of 

SFI5 (GFP-SFI5 ED-K80A and GFP-SFI5 ED-T70A). Protoplasts were collected 20 minutes after flg22 

treatment (+) or without flg22 treatment (-). Total proteins were immunoblotted and activated MAP kinases were 

detected using the p42/p44 antibody. Ponceau S staining served as a loading control. The result is representative 

of three independent experiments. (C) Oxidative burst assay in protoplasts expressing WT and mutated HA-SFI5 

ED variants. The graph shows percentage relative to the total photon counts measured between 6-20 minutes 

after flg22 treatment of the GFP control, set to 100%. (D) flg22-triggered Ca2+ burst was measured in tomato 

protoplasts co-expressing WT or mutated HA-SFI5 ED variants,  Ca2+-sensitive aqueorin and GUS. For each 

data set, cytosolic Ca2+ level was assessed by calculating the sum of photon counts 5-15 minutes with or without 

flg22 treatment (+/-flg22) and the ratio was normalized to the internal GUS activities ([Ca2+]cyt (+flg22/-flg22)). 

GFP and AvrPto served respectively as negative and positive control for suppression of MAPK and pFRK1-Luc 

activation, ROS and Ca2+ burst by flg22. Data in (A), (C) and (D) represent the mean ± SEM from four 

independent experiments, for each of which three technical replicates were carried out. *, p-value < 0.05 by one-

way ANOVA followed by Dunnett's multiple comparison test.  
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3.2.8.  Does SFI5 inhibit CaM function? 

Since the CaM binding is correlated with the MTI-suppressing ability of SFI5 and based on 

the knowledge that CaMs play important roles in plant immune responses, a direct action 

mode by which SFI5 interferes with the function of the CaMs is conceivable. Alternatively, it 

is also possible that CaM is not the operative target of SFI5 but the interaction serves to 

activate SFI5 and confers the ability to target components that are critical for MTI. . 

To address the hypothesis whether CaMs are inhibited by SFI5, we measured whether tomato 

protoplasts overexpressing SlCaM3/4/5 were capable to override the MTI-suppressing effect 

of SFI5. We first verified that the overexpression of GFP-SlCaM3/4/5 alone had no effect on 

the flg22-triggered ROS burst and MAPK activation (Figure 3-24 A and B). The co-

expression of GFP-SlCaM3/4/5 and HA-SFI5 28-241 also did not alleviate the suppression of 

flg22-induced ROS production and MAPK activation, which was identical to protoplasts 

expressing HA-SFI5 28-241aa alone (Figure 3-24 A and B). Western blot analysis indicated 

that GFP-SlCaM3/4/5 expression is not influenced by SFI5 and a degradation of CaM as 

consequence of SFI5 action is very unlikely to occur (Figure 3-24 C). This result suggests that 

SFI5 does not interfere with the function of CaM in positively regulating MTI. 

To build up more evidence that would support the assumption that SFI5 binding to CaM does 

not inhibit directly MTI signaling, we performed competition experiments in tomato 

protoplasts by co-expressing an active (HA-SFI5 28-241 aa) and an inactive (HA-SFI5 178-

241 aa) SFI5 variant, both having been shown to associate with CaM (Figure 3-17 A, Figure 

3-19 B). Dose-response analyses by increasing the HA-SFI5 178-241 aa / HA-SFI5 28-241 aa 

ratio showed that a 10:1 ratio was sufficient to antagonize the suppressing effect on pFRK1-

Luc activity of the active SFI5 variant, in contrast to the control experiment with a GFP / HA-

SFI5 28-241 aa ratio of 10:1 (Figure 3-24 D). These results suggest that the inactive CaM-

binding variant, SFI5 178-241aa, competes with the active SFI5 28-241 aa for the interaction 

with CaM, but that this interaction does not block the function of CaM, which again, is 

another indirect proof that SFI5 is not an inhibitor of CaM but needs to associate with CaM to 

become able to suppress MTI signaling. 
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Figure 3-24. Overexpression of SlCaM3/4/5 did not alter SFI5 activities on suppressing flg22-triggered 

immune responses in S.lycopersicum.  

(A) ROS burst was measured in S.lycopersicum protoplasts single-transfected with HA-SFI5 28-241aa or GFP-

SlCaM3/4/5, or co-transfected with GFP-SlCaM3/4/5 and HA-SFI5 28-241aa. The graph shows relative ROS 

production represented in percentage of the total photon counts measured between 6-20 minutes after flg22 

treatment of the GFP control, set to 100 %. (B) MAPK activation was detected in S. lycopersicum protoplasts 

expressing HA-SFI5 28-241aa or GFP-SlCaM3/4/5, or co-expressing GFP-SlCaM3/4/5 and HA-SFI5 28-241aa. 

Protoplast samples were collected 20 minutes after flg22 treatment (+) or without flg22 treatment (-). Total 

extracted proteins were immunoblotted and activated MAP kinases were detected using the p42/p44 antibody. 

Ponceau S staining served as a loading control. This result is representative of three independent experiments. (C) 

Immunoblot analysis of single-expression of HA-SFI5 28-241aa or GFP-SlCaM3/4/5 as well as co-expression of 

them in S.lycopersicum protoplasts. Ponceau S staining served as a loading control. (D) Reporter gene assay in S. 

lycopersicum protoplasts transformed with increasing amount 0,05-0,50 µg/100 µl protoplasts) of the plasmid 

construct expressing HA-SFI5 28-241aa together with 5 µg/100 µl protoplasts of the construct expressing GFP 

or HA-SFI5 178-241aa and the two reporter constructs pFRK1-Luc and pUBQ10-GUS. The promoter activity 

was presented by calculating the ratio of flg22-induced luciferase activity relative to the untreated sample, which 

was normalized to the internal GUS activities (pFRK1-Luc activity +flg22/−flg22). GFP and AvrPto served 

respectively as negative and positive control for suppression of ROS burst as well as MAPK and pFRK1-Luc 

activation by flg22. The mean values ± SEM in (A) and (D) were obtained from at least three independent 

experiments, for each of which three technical replicates were carried out. *, p-value < 0.05 by one-way 

ANOVA followed by Dunnett's multiple comparison test.  
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4. Discussion 

 

Phytopthora spp form a group of pathogens that are adapted to cause disease in many crop 

plants. An important criterium for host colonization is the ability of the pathogen to turn down 

MAMP-triggered immunity (MTI), which is the most common and durable form of resistance 

in nature, characterized by a high genetic stability. The improvement of our fundamental 

knowledge about the biology of the pathogen requires better characterization of the molecular 

determinants and biochemical mechanisms of effector-triggered susceptibility with the 

objective to understand how these virulence factors function individually and in a system and 

to decipher at long-term the evolutionary forces that are shaping plant-Phytophthora 

interaction in terms of host adaptation and host specificity.  

The availability of genome sequences for different Phytophthora spp is a first step toward 

addressing these questions. RXLR effectors form the largest family of secreted proteins with 

proven virulence function. It is in this context that we have chosen to investigate the effect of 

RXLR effectors from P. infestans (PiRXLR), the causal agent of potato and tomato late 

blight, on the earliest stages of MTI signaling. As an experimental tool, we established a 

tomato protoplast transient expression system and diverse bio-assays that measure immunity-

associated responses in order to be able to perform a functional screen in a medium/high-

throughput manner. 8 out of 33 PiRXLR effectors were identified as suppressors of the early 

immune responses induced by flg22. Among them, three effectors (SFI5, SFI6 and SFI7) with 

different degrees of plasma membrane association appear to block MAMP signaling at or 

upstream of MAPKKK activation. Two of them (SFI5 and SFI7) did not affect the 

programmed-cell death (PCD)-related MAPK signal transduction associated with effector-

triggered immunity (ETI). The other five effectors act downstream of the MAPK cascades, 

three of them (SFI1, SFI2 and SFI8/AVRblb2) also subverting flg22-induced MAMP marker 

gene expression in the non-host plant Arabidopsis. These results demonstrate that P. infestans 

employs multiple effectors, which act redundantly on interrupting different steps of early MTI 

signal transduction. In a more detailed study, one of these effectors, SFI5, is shown to interact 

at its C-termini with host calmodulin (CaM) in a Ca2+-dependent manner. The CaM-binding 

site has been proved to be important for plasma membrane (PM) localization, suppression of 

MAMP-mediated signaling and full virulence function of SFI5. Additionally, we have also 

identified a putative ATP/GTP-binding motif at the N-terminus that is required for MTI 

suppression and virulence activity of SFI5 but not for the PM localization.  

Data generated in this study will be further discussed in order to integrate them into the 
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current knowledge of plant-microbe interactions and for a better understanding of the 

relevance of the MTI suppressing RXLR effectors complement of P. infestans in host 

colonization. 

4.1.  Advantages/disadvantages in using the protoplast system to study flg22-induced 

early immune responses 

It is complicated and time-consuming to characterize the > 500 predicted PiRXLR effectors 

by reverse and forward genetic methods. Therefore, the development of medium/high 

throughput approaches to explore their function in plants is very important. The tomato 

protoplast system allows to study up to 24 effectors/day making a large screen feasible in a 

reasonable amount of time. Another advantage of using a method based on DNA-

transformation of protoplasts is that it is a microorganism-free effector delivery system 

without any risk of interference on MTI signaling due to the presence of an undesired source 

of effectors and MAMPs. Although this assay is relatively convenient, it also suffers from 

some drawbacks. For instance, the ectopic expression of effectors might cause mis-

localization inside host cells and overcome certain steps of maturation or post-translational 

modifications occurring through haustorial delivery and necessary for proper function and 

targeting of the RXLR effector (Fabro et al., 2011). Other major drawbacks of the protoplast 

system are the limitations to study late-induced defense responses, cell wall-associated 

responses such as callose deposition or organ-specific responses. Nevertheless, it is not far-

reaching to conclude that early events of MTI are qualitatively conserved between protoplasts 

and plants and therefore, it justifies our choice to select this approach to perform the 

functional screen with the PiRXLR effectors. 

The use of flg22 as the MAMP to induce MTI signaling in our protoplast assays might be 

drawn into question since Phytophthora spp do not have flagellin. This choice was dictated by 

the optic to perform a comparative analysis with PiRXLR effectors on a pathway that is 

highly conserved in both host (tomato) and non-host (Arabidopsis) plants of P. infestans, thus 

our aim was to investigate the effectors’ ability to suppress a generic defense pathway and not 

the role of the FLS2 receptor in defense to oomycetes.  The principle of bacterial effector-

detector vector (EDV) systems, now being widely employed to study the impact of fungal and 

oomycete effectors in various pathosystems on late phenotype such as callose deposition, is 

based upon the effectors’ abilities to suppress generic pathways triggered by bacterial 

MAMPs (Sohn et al., 2007; Fabro et al., 2011). To date, only few MAMPs derived from 

oomycetes have been characterized, all of them with limited plant recognition specificities. 
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Pep13, the antigenic peptide motif of Phytophthora spp transglutaminase, induces immune 

responses in potato and parsley but is not active in other plant species that have been tested 

yet (Brunner et al., 2002; Halim et al., 2004). Elicitins, including INF1 used in this work, are 

a group of elicitors that are sensed in Nicotianae and to some extent in wild Solanum species 

but not in cultivated tomato or potato species or Arabidopsis (Vleeshouwers et al., 2006). The 

recently identified nlp20 peptide from the Necrosis and Ethylene-inducing like Proteins 

(NLPs), widely distributed among oomycetes, is only recognized by Arabidopsis and related 

Brassicacea species (Bohm et al., 2014; Oome et al., 2014). The receptors of nlp20 and 

elicitins, AtNLP23 (Albert et al., 2015) and StELR (Du et al., 2015) , respectively, belong to 

the LRR-RLP type and differ structurally from the LRR-RLK class of receptors, comprising 

FLS2, through the absence of intracellular kinase domain and recruitment of the LRR-RLK 

adaptor SOBIR1, in addition of BAK1, for proper signal transduction (Gust and Felix, 2014).  

Accordingly, it is anticipated that the protoplast system could be employed for dissecting 

other MAMP-inducible signal transduction pathways, triggered by different classes of cell 

surface-located receptors. Experiments in tomato protoplasts exposed to chitin or xylanase 

from T. reesei have shown that SFI5 also attenuates the induction of a Ca2+ burst and MAPK 

activation, triggered by their cognate receptors, presumably a LysM-RLK or LysM-RLP in 

the case of chitin and LRR-RLP (SlEix2) for the xylanase, whereas AvrPto only blocked 

xylanase but not chitin signaling (data not shown). By identifying and characterizing potential 

PiRXLR effectors that affect other MAMP signaling pathways we have the possibility to 

uncover novel MTI-related components. This apsect would be beneficial and facilitate the 

study of the interaction between solanaceous plants and Phytophthora spp.  

In parallel to studying the relation of PiRXLR effectors with MTI, it is also imaginable to 

exploit the protoplast system for the identification of novel sources of resistance (R) genes. 

Phytophthora pest management has become a severe problem in that R-mediated host 

resistance is rapidly overturned because of the high genetic diversity and high genome 

plasticity of Phytophthora spp.  The European plant breeding industry is currently undergoing 

a transition that will make pathogen effector biology an essential component of the decision-

making process during the breeding of disease resistance in food crops. The identification of 

PiRXLR effectors that are recognized during ETI (so-called AVR proteins), and uncovering 

the genetic variation that exists in these AVR proteins in natural P. infestans populations, 

offers the prospect for significant advances in plant breeding. Effector recognition by R 

proteins often culminates in a local PCD. Because PCD is readily detectable, PiRXLR 

effectors can be used as extremely efficient molecular markers to identify novel resistance 



Discussion 

 85 

genes in protoplasts made from germplasm collections. Therefore, effector-based screening 

can replace pathogen screens that can be extremely time-consuming. In this perspective, we 

have performed preliminary experiments in protoplasts generated from tomato cultivars 

harboring the R protein Pto and transiently expressing AvrPto and observed a remarkable 

increase of cell death rate, resulting from ETI (data not shown). This result suggests that the 

protoplast system is fully operational, suitable to measure cell death as a read-out, and can be 

applied to screen for ETI-inducing PiRXLR effectors.  

4.2. Defining the repertoire and function of MTI-suppressing PiRXLR effectors in host 

adaptation (and specificity) 

It is generally admitted that the success of infection depends on the capability of the pathogen 

to produce a sufficient number of effectors to efficiently damp down the activation of MTI. 

Several groups have performed large-scale functional screens to identify oomycete effectors 

that block late responses to MAMPs. For instance, Fabro et al., (2011) used the EDV system 

to find out that 39 out of 64 RXLR effectors from Hyaloperonospora arabidopsidis promote 

P. syringae growth when transiently expressed in Arabidopsis, the natural host of H. 

arabidopsidis. The expression of a large majority of these 39 HaRXLR effectors was 

correlated with an increased suppression of callose deposition at the cell wall, a hallmark of 

late MTI responses (Fabro et al., 2011). In another work using the Agrobacterium-based 

transient expression system, more than half of 169 RXLR effectors form Phytophthora sojae 

were able to block the programmed cell death induced by the pro-apoptotic mouse protein 

BAX in N. benthamiana (Wang et al., 2011). 23 out of a selection of 43 PsRXLR effectors 

suppressing BAX-induced cell death were also able to suppress INF1-triggered cell death 

(Wang et al., 2011). In an identical approach, 2 out of 32 PiRXLR effectors emerged as 

suppressors of INF1-mediated cell death in N. benthamiana (Oh et al., 2014). It was assumed 

that effectors from oomycetes, and thus the pathogen themselves, are able to block signal 

transduction pathways, as do bacteria, at the level of MAP kinase activation and initial 

transcriptional changes. But our work, with the identification of approximate 25 % of 

PiRXLR effector candidates impairing early MTI responses in tomato protoplasts, is the first 

formal demonstration that this is indeed the case and is an essential platform for future 

analysis of these effectors to see whether they act on the same host proteins and in the same 

way as bacterial type III effectors.  

One of our principal goals consisted of identifying and ascribing functions to PiRXLR 

effector proteins that interfere with early plant defense responses upon MAMP sensing. 
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Interestingly, SFI5 and SFI8/AVRblb2 but not AVR3a or PITG_14736/PexRD8 were among 

the effectors suppressing flg22-induced pFRK1-Luc activation. This is apparently in contrast 

with the results obtained from the screen for suppression of cell death mediated by INF1 in N. 

benthamiana, in which AVR3a and PITG_14736/PexRD8 but not SFI5 or SFI8/AVRblb2 

acted as a suppressor (Figure 3-8 A) (Bos et al., 2006; Bos et al., 2009; Oh et al., 2009). One 

possible explanation would be that AVR3a and PITG_14736/PexRD8 specifically target the 

signaling cascade leading to INF1-mediated cell death or hit components located downstream 

of early MAMP signal transduction, like the targeting of the host ubiquitin proteasome system 

by AVR3a (Bos et al., 2010). The opposite may be true for SFI5 and SFI8/AVRblb2. 

Currently, we cannot test these hypotheses for several reasons: 1) INF1 promotes cell death in 

N. benthamiana but not in Arabidopsis or tomato; 2) flg22 treatment does not induce cell 

death in Arabidopsis or tomato protoplasts) there is no known MAMP that induces an HR-like 

cell death in Arabidopsis protoplasts. Moreover, SFI7 suppresses flg22/FLS2-mediated signal 

transduction and attenuates INF1-mediated PCD, but not Cf-4-mediated PCD, whereas 

AVR3a attenuates both INF1-mediated and Cf-4-mediated PCD. Evidence is thus emerging 

of PiRXLR effectors with overlapping functions at the phenotypic level, that are likely 

mediated by distinct modes of action at the mechanistic level. 

SFI8, a member of the AVRblb2 family, appears as a suppressor of early MTI responses in 

our screen, which might provide a novel insight into the function of AVRblb2 and AVRblb2-

related effectors. In previous studies, AVRblb2 was identified as an avirulence factor 

recognized by resistance protein Rpi-blb2 and demonstrated to interfere with plant immunity 

by preventing secretion of C14, a defense-related apoplastic protease (Oh et al., 2009; 

Bozkurt et al., 2011). The AVRblb2 family was found to be highly variable and the amino 

acid at position 69 is critical for the avirulence function (Oh et al., 2009). SFI8 carrying a 

phenylalanine at position 69 is predicted to evade activation of Rpi-blb2 but putative avirulent 

variants of the AVRblb2 family with an isoleucine or alanine residue at position 69 also 

repressed flg22-elicted reporter gene activation in tomato protoplasts (data not shown), 

suggesting that the interference with MAMP signal transduction might be a common 

virulence function of the AVRblb2 family. It would be interesting to check if all these 

AVRblb2 variants possess the ability to perturb C14 trafficking and whether C14 and other 

papain-like cystein proteases are involved in MAMP signaling. Nevertheless, subcellular 

localization studies revealed that SFI8 mainly accumulates in the cytosol and the nucleus 

(Figure 3-10), which differs from AVRblb2, exclusively distributed at the host plasma 

membrane (Bozkurt et al., 2011). This apparent discrepancy implies that members of the 
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AVRblb2 family may display distinct or multiple cellular activity, which sustains a recent 

idea that the polymorphism within the AVRblb2 family helps P. infestants to infect diverse 

solanaceous plants (Oliva et al., 2015). 

The main achievement with the protoplast system was the identification of PiRXLR effectors 

that suppress early MTI signalling involving ROS production, activation of MAP kinase 

cascades and transcriptional re-programming of genes associated with immunity. However, 

the protoplast system does not permit to assess the importance of PiRXLR effectors in the 

adaptation of P. infestans to its host. The ectopic expression of 7/8 MTI-suppressing SFI 

effectors in N. benthamiana promoted the growth of P. infestans during infection. These 

results suggest a strong correlation between the MTI-suppressing potential of PiRXLR 

effectors and successful disease development. The protoplast system revealed that about 1/4 

of the PiRXLR effectors interfere with early events of the signal transduction cascade initiated 

by flg22. Nevertheless, and as stated previously with AVR3a and PITG_14736/PexRD8, 

more effectors that contribute to pathogenicity might emerge as MTI suppressors by affecting 

late MAMP-induced responses or alternative signaling branches. Recently, several PiRXLR 

effectors figuring in our list of tested candidates have been demonstrated to contribute to P. 

infestans growth, but none of them showed MTI-suppressing activity in our assay 

(PITG_03192/PexRD28 (McLellan et al., 2013), PITG_04089/PexRD41 (Wang et al., 2015) 

and PITG_04314/PexRD24 (Boevink et al., 2016)). Ultimately, gene gain- and loss-of 

function experiments in P. infestans would further confirm the importance of the SFI1-8 

effectors in host adaptation. Because of the technical difficulty to realize these experiments, 

genetic manipulation of P. infestans could be performed in tight collaboration with the lab of 

P. Birch at JHI in Dundee, UK. Stable silencing of SFI1-8, either individually or multiple, 

could be achieved using RNAi-mediated post-transcriptional gene silencing or a 

CRISPR/Cas-based genome editing method, recently adapted to Phytophthora sojae (Personal 

communication B. Tyler, Oregon State University, USA) and tested for virulence on 

solanaceous host plant species (tomato, potato and N. benthamiana). In a complementary 

gain-of-function approach, individual effectors or combinations of SFI1-8 could be expressed 

in a heterologous Phytophthora spp. genetic background to see whether they increase the 

virulence of these transgenic strains. However, it should be noticed that the SFI effectors 

studied here display functional redundancy on inhibiting early flg22/FLS2 signaling events 

and therefore, they may have a limited impact on pathogen virulence. Nevertheless, silencing 

experiments with some PiRXLR effectors, such as AVR3a (Bos et al., 2010) and 

PITG_03192/PexRD28 (McLellan et al., 2013) resulted in compromised pathogenicity of P. 
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infestans, indicating that the function of several effectors is not redundant and indispensible 

for full virulence.  

In summary, we have demonstrated that the effector repertoire of P. infestans contains a 

comparatively high degree of redundancy in suppressing different steps of early MTI signal 

transduction and defense gene activation (Figure 4-1). A question that needs to be addressed 

in the future is why such functional redundancy is necessary or has been selected for and why 

Phytophthora spp, in contrast to phytopathogenic bacteria, have evolved such large repertoire 

of RXLR effectors to confound the host immune system.    

 

 

     

 

 

 

 

 

 

 

Figure 4-1.   SFI1-8 effectors act at different steps to suppress early MTI signaling in tomato cells.  

MTI signal transduction and interfering SFI effectors (in colored boxes) are depicted. See main text for 

additional details. Abbreviations used in the figure: MAMPs, microbe-associated molecular pattens; SlFLS2, 

Solanum lycopersicum FLS2; SlRLK?/RLP?, unknown Solanum lycopersicum MAMP  receptor-like kinase or 

receptor-like protein; SlMAP3Kα, Solanum lycopersicum MAP kinase kinase kinase α; SlMEK2, Solanum 

lycopersicum MEK2; SlMPK1, Solanum lycopersicum MAP kinase 1; SlMPK3, Solanum lycopersicum MAP 

kinase 3; SlWRKY, Solanum lycopersicum WRKY transcriptional factors. 

 

4.3. MTI-suppressing PiRXLR effectors in non-adapted plant species 

It is proposed that most effectors implicated in manipulation of host immunity are under 

strong positive selection and co-evolved with their targets during host-pathogen interaction 
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(Kamoun, 2007; Win et al., 2007), while in non-host plants, effectors fail to efficiently 

interfere with MTI because they are not able to interact and to manipulate components of the 

signaling pathway. Accordingly, P. Schulze-Lefert and R. Panstruga recently provided a 

molecular evolutionary concept that connects non-host resistance and pathogen host range 

(Schulze-Lefert and Panstruga, 2011). The concept predicts that MTI prevails in non-host 

plant species that are distantly related to the plant host species of a given pathogen  (Figure 4-

2). So far, there are very little experimental evidence supporting or confirming this concept. 

Our results, to some extent, support the hypothesis that failure to suppress MTI is likely to 

contribute to non-host resistance to P. infestans in Arabidopsis. Only SFI1, SFI2 and 

SFI8/AVRblb2 but not SFI3-SFI7 function in Arabidopsis. This result is in line with a 

comparative assay showing that only 13 out of 39 HaRXLR identified as enhancers for P. 

syringae growth in Arabidopsis promoted bacterial disease development in turnip (Brassica 

rapa), which is closely related to Arabidopsis but a non-host of H. arabidopsidis (Fabro et al., 

2011). The authors did not provide molecular evidence for the influence of these RXLR 

effectors on MTI but again, it is very likely that failure to block MTI plays a significant role 

in the non-adaptation of P. syringae to turnip. 

More recently, Antonovics et al. (2013) preferred to use the term of non-evolved resistance, 

suggesting that failure of infection on a non-host plant may be the result of an incidental by-

product of ongoing pathogen evolution by specialization on its operative host (Antonovics et 

al., 2013). In concordance with this theory, Dong et al. (2014) recently reported the 

biochemical specialization of two orthologous protease inhibitors from P. infestans and P. 

mirabilis that target only the cognate proteases of their respective hosts, tomato and M. jalapa. 

PiEPIC1 from P. infestans was able to inhibit activity of the defense-related protease (RCR3) 

from tomato and potato, while PmEPIC1, the P. mirabilis homologue of PiEPIC1, specially 

suppresses RCR3-like protease (MRP2) activity in M. jalapa. In both cases, the absence of 

inhibition by protease inhibitors originated from non-adapted Phytophthora species was 

related to single amino acid polymorphisms (Dong et al., 2014). Although, the authors did not 

show whether the interaction between the protease and its inhibitor was important for host 

adaptation and specificity, this study provides a molecular fundament to the non-evolved 

resistance hypothesis. In a similar way, we could imagine that the failure of SFI5-SFI7 to 

block MAPK activation by flg22 in Arabidopsis is caused by a lack of interaction with 

components of MTI signaling. In the case of SFI5, the interaction with CaM has proven to be 

insufficient to explain the absence of effect on MAP kinase activation since SFI5 interacts 

with CaMs from both tomato and Arabidopsis. As part of existing studies in the P. Birch and 
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our groups, a screen of a potato - P. infestans interaction Yeast-two-Hybrid library and the co-

immunoprecipitation assays in tomato protoplasts revealed additional candidate host targets 

for SFI5 with presumed or demonstrated function in regulating immunity. Notably, two 

membrane-located kinase domain-containing proteins including a MAPKKKK and the 

malectin-like LRR-RLK IOS1 were identified. The interaction with IOS1 is of special 

interest, because this protein has been identified recently as a susceptibility factor in 

Arabidopsis to H. arabidopsidis by H. Keller from the “Interactions Plantes-Oomycètes” team 

at INRA Sophia Antipolis, France (Hok et al., 2011; Hok et al., 2014). Future work will 

consist to verify and confirm these interactions in tomato vs Arabidopsis, to explore the 

structure-function relationships of the effector/target pairs, to determine the biochemical 

consequences of these relationships for the host cells and eventually to provide an explanation 

for the hypothesized lack of interaction in the non-host plant. 

Host jumps are considered to be major drivers of oomycete diversity and may become 

necessary for pathogen survival in response to biotope changes, for instance by culture 

rotation, when natural host populations in the pathogen’s habitat are replaced by non-host 

plant species (Raffaele and Kamoun, 2012). By performing a comparative analysis in tomato 

and Arabidopsis, we found that the biological activity of some PiRXLR effectors e.g SF1, 

SFI2 and SFI8/AVRblb2 is not necessarily restricted to the source host of P. infestans, but is 

extended to plant species that are not natural hosts of the pathogen. Functional 

characterization of two homologous RXLR effectors from H. arabidopsidis and P. sojae also 

revealed that both were able to affect immune responses in soybean, N. benthamiana and 

Arabidopsis (Anderson et al., 2012). These results corroborate our conclusion that a core set 

of RXLR effectors is probably targeting proteins that are ubiquitous in all plant species and 

likely key players in regulating immunity. Accordingly, Mukhtar et al. and more recently, 

Weßling et al., postulated that an overlapping subset of host proteins, so-called hubs, are 

targeted by oomycete (H. arabidopsidis), bacterial, (P. syringae) and fungal (Golovinomyces 

orontii) effectors that have arisen independently through convergent evolution (Mukhtar et al., 

2011; Wessling et al., 2014). Our attempt to identify protein interactors of SFI1, SFI2 and 

SFI8/AVRblb2 by performing IP experiments in Arabidopsis protoplasts failed to yield 

candidates of interest (data not shown). However, the nuclear localization of these effectors 

and the demonstrated correlation between localization and suppression of flg22-induced 

pFRK1-Luc activity in the case of SFI1, suggests that these effectors might directly interact 

with host plant DNA. Pathogenic bacteria of the genus Xanthomonas produce transcription 

activation-like (TAL) effectors that bind with a high specificity to promoters of host genes in 
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order to re-programme host cellular functions (Boch et al., 2009; Bogdanove et al., 2010). 

In an effort to investigate the general contribution of SFI1, SFI2 and SFI8/AVRblb2 to 

Arabidopsis susceptibility, we tried to deliver them in planta utilizing the bacterial EDV 

system that has proven to work for RXLR effectors (Sohn et al., 2007; Fabro et al., 2011). 

However, the bacterial growth was not significantly enhanced in Arabidopsis Col-0 

inoculated with P. syringae expressing the SFI effectors individually. The same tendency was 

observed with SFI effectors expressed in the less virulent P. syringae ΔCEL or ΔAvrPto / 

ΔAvrPtoB mutant strains (data not shown). One possible explanation would be that the tested 

SFI effectors and the T3 effectors in these P. syringae strains are playing redundant roles in 

dampening plant immunity, resulting in unobvious improvement in pathogenicity. Thus, the 

molecular basis of this manifestly broad-range activity requires further investigation. 

To our surprise, we discovered that a set of 4 PiRXLR effectors, which has no impact on 

reporter gene activation in tomato, prevents flg22-triggered pFRK1-Luc expression in the 

non-host Arabidopsis (Figure 3-3). It is tempting to speculate that these RXLR effectors are 

preparing the terrain for P. infestans to adapt to a novel host. However, none of these effectors 

is capable of inhibiting flg22-induced MAP kinase activation or up-regulation of FRK1 

expression (Figure 3-4). Currently we cannot explain the reason of the suppression of reporter 

gene activation in Arabidopsis protoplasts but it becomes obvious that additional experiments 

should be designed to determine which and to what degree MAMP-activated post-

transcriptional or translational processes are affected by these effectors. Given that in total 8 

PiRXLR effectors were active in Arabidopsis protoplasts, the number may be sufficient to 

block early flg22-induced responses in Arabidopsis and therefore, we cannot state for now 

that PiRXLR effectors are more effective in suppressing MTI in tomato plants than in 

Arabidopsis. A systematic analysis of the whole repertoire of PiRXLR effectors on MTI 

signaling in both tomato and Arabidopsis including testing individual or combination of 

effectors and validation of the data generated in protoplasts by functional analysis in planta 

would be necessary to better understand how the expansion of host range is possible in P. 

infestans. 

The molecular evolutionary concept also predicts that ETI becomes increasingly important in 

closely related non-host plant species and even critical, as we learned from ETI studies in the 

case of host-resistance. Interestingly, 7 HaRXLR effectors that promoted P. syringae growth 

in Arabidopsis had an opposite effect in turnip suggesting that they had activated ETI (Fabro 

et al., 2011). Recently, Agrobacterium-mediated transient expression of 54 P. infestans RXLR 
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effectors in different pepper cultivars has shown that multiple R gene-dependent recognition 

events could be the major determinant of the non-host resistance against P. infestans in 

pepper, a close relative of potato and tomato (Lee et al., 2014). None of the 8 SFI effectors in 

our study significantly promoted cell death in Arabidopsis protoplasts. A detailed analysis of 

the results obtained in the pFRK1-Luc assay indicates that only one PiRXLR effector 

(PITG_18670) among the 33 that we have tested stimulated reporter gene activation 

significantly above the empty vector control (Figure 3-3). One possible explanation would be 

that PITG_18670 targets a component of early flg22-induced signaling that is guarded by an 

R protein resulting in a much stronger activation of pFRK1-Luc as a consequence of the 

activation of the ETI pathway. Such a scenario is supported by the guarding of MPK4, which 

is activated upon flg22 treatment, by the R protein SUMM2 (Zhang et al., 2012). Further 

work is needed to determine the relative contributions of ETI versus failure to suppress MTI 

in Arabidopsis but also in non-host plants among the Solanaceae, such as pepper.   

 

 

 

 

 

 

Figure 4-2. Relative contribution of MTI to non-host resistance.  

The chart adapted from Schulze-Lefert and Panstruga (2011) illustrates the supposed relation between ETS (blue) 

and MTI (red) to non-host resistance against P. infestans as a function of the evolutionary distance of the 

authentic host plant species (S. lycopersicum) of that pathogen to an assumed non-host species (A. thaliana). 

This model is based on two assumptions: (i) the proportion of pathogen effectors that fail to ‘find’ corresponding 

targets raises with increasing divergence time between host and non-host, and (ii) the co-evolutionary arms race 

in host-adapted interactions ‘depletes’ the capacity of phylogenetically distant non-hosts to recognize effectors of 

host-adapted pathogens. 

 

4.4. SFI5 is a member of a larger family of RXLR effectors  

According to our work, SFI5 (PITG_13628/PexRD27) is a host-specific effector blocking 
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MAPK activation upon flg22 treatment in tomato, but not in Arabidopsis. The interaction with 

host CaM is necessary for the SFI5 localization at the plasma membrane as well as the MTI-

suppressing effect and P. infestans growth promotion. 

Originally, SFI5 is identified as a member of RXLR effector family 6  in P. infestans (Haas et 

al., 2009; Cooke et al., 2012) comprising 18 different RXLR effector-encoding genes (Figure 

4-3). Another member of this family, PITG_11384/PexRD2 was recently reported to interact 

with the kinase domain of MAP3Kε in planta (King et al., 2014). This interaction blocked 

specifically PCD induced by several but not all Avr-R pairs tested and did not interfere with 

INF1-mediated cell death in N. benthamiana. In our study, SFI5 also did not suppress INF1-

induced cell death and although we did not test multiple Avr/R combinations, it did not 

interfere with AVR4-Cf-4 triggered PCD (Figure 3-8). Structural analysis revealed that SFI5 

did not possess the core α-helical fold, called “WY-domain”, which is characteristic of 

PexRD2 and hypothesized to serve as an interaction module with kinases (Boutemy et al., 

2011). On the other hand, we did not observe an interaction between PexRD2 and CaM 

although the effector is predicted to contain a CaM-binding motif (data not shown).  

 

 

 

 

 

 

 

 

Figure 4-3. A neighbor-joining tree of RXLRfam6 members from P. infestans.   

The maximum-likelihood relationship was constructed based on the full-length protein sequences of these 

effectors using CLC Main Workbench 7. 

 

Altogether, these results indicate that structurally related RXLR effectors have evolved 
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different functions and different target specificities to affect different branches of the immune 

system. Based on BLASTP analysis within NCBI database 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins), homologs of SFI5 and PexRD2, 

sharing 30% - 59% protein sequence identity, are present in the genome of P. parasitica, P. 

ramorum and P. sojae pointing toward a conservation of their function across Phytophthora 

spp. However, the fast evolution of this family suggests the presence of paralogs suppressing 

MAMP and/or effector-mediated signal transduction by a different mechanism than SFI5 or 

PexRD2. A comparative analysis of the MTI and ETI-suppressing specificities of all the 

members of RXLRfam6 offers a very good opportunity to explore evolutionary aspects at the 

molecular level of effector/target specialization.  

4.5. The molecular basis of SFI5-CaM interaction     

Structure-function analysis accurately delimited the domain and residues of SFI5 that were 

involved in CaM binding. Similar to CaM-binding motifs in other proteins, the 18 aa-region 

of SFI5 binding to CaM forms an amphipathic α-helix wheel with the segregation of basic and 

hydrophobic residues on opposite sides (O'Neil and DeGrado, 1990; Meador et al., 1992; 

Crivici and Ikura, 1995). However, the CaM-binding sites are extremely variable in their 

amino acid sequence and length and several classes have been categorized based on the 

spacing between hydrophobic anchor residues (Rhoads and Friedberg, 1997). Generally, IQ 

([FILV]Qxxx[RK]Gxxx[RK]xx[FILVWY]) and IQ-like motif ([FILV]Qxxx[RK]xxxxxxxx) 

are characterized as Ca2+-independent CaM-binding motifs, while Ca2+-dependent CaM-

binding motifs include 1-8-14 ([FILVW] xxxxxx [FAILVW] xxxxx [FILVW]), 1-5-8-14 

([FILVW] xxx [FAILVW] xx [FAILVW] xxxxx [FILVW]) and 1-5-10  ([FILVW] xxx 

[FAILVW] xxxx [FILVW]) motifs (Rhoads and Friedberg, 1997; Mruk et al., 2014). 

Moreover, several recent reports have revealed that CaM can bind to atypical motifs in which 

the spacing between the hydrophobic anchors is either further apart (16 or 17 amino acids) or 

closer together (6 amino acids) than the classical Ca2+/CaM-binding motifs, or helicity of 

which is likely not a strict requirement (Maximciuc et al., 2006; Ataman et al., 2007; Juranic 

et al., 2010; Kumar et al., 2013).  

The CaM-binding site of SFI5 appears to be non-canonical due to the absence/weak similarity 

to any known CaM-binding domain and rather be characterized as a 1-X-4 or 1-4-X motif. 

The two hydrophobic residues (Trp225 and Phe228) are critical anchor residues but another 

hydrophobic residues at the same side of the α-helix wheel (Ile227, Ile231 or Leu239) might also 

be important for the interaction with CaM. It is worth noting that mutation of the Trp225 and 
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Phe228 residues did not dramatically affect the suppression of flg22-triggered oxidative burst 

(Figure 3-20 B SFI5-ED WF/AA). Although the ANS fluorescence competition assay and 

binding studies with synthetic peptides in vitro rather suggest the abrogation of interaction 

with CaM (Figure 3-16 C, D), it is possible that replacement of the two strong hydrophobic 

amino acids with a weak hydrophobic residue (alanine) compromised, but did not completely 

abrogate CaM-binding activity of SFI5 in vivo. Dose-response assays with SFI5 and SFI5 

variants would help to correlate in a more quantitative way CaM binding with the impact on 

the biological response and underpin unambiguously the importance of CaM binding for the 

MTI-suppressing activity of SFI5. Alternatively, to rule out any binding of a Trp225/Phe228 

mutant, we could convert these two hydrophobic residues into hydrophilic arginine or lysine 

residues as suggested elsewhere (Kim et al., 2002; Yamakawa et al., 2004; Yoo et al., 2005; 

Katou et al., 2007; Wang et al., 2009). 

The molecular determinants of CaM that are engaged in the interaction with SFI5 are 

unknown. CaMs and CaMs-like (CMLs) form a remarkable and highly conserved Ca2+ sensor 

protein family, which is present in all eukaryotes. The 3D structure of CaM has the hallmark 

of a dumbbell shape with four EF-hand Ca2+-binding motifs organized in pairs and embedded 

in two globular domains separated by a long flexible helix. After Ca2+ binding, CaM 

undergoes conformational changes that exposes its hydrophobic surfaces and subsequently 

interacts with a large array of proteins that are implicated in many cellular processes (Bouche 

et al., 2005; McCormack et al., 2005). Therefore, it would be interesting to solve the crystal 

structure of SFI5 in complex with CaM, which could possibly provide new insights on the 

structural variability of CaM/CaM-binding protein interactions and on the action mode of 

SFI5 in planta. 

 4.6. CaMs regulate multiple biological functions in plants  

Plant dispose of a large repertoire of CaMs and and CMLs, and because of their redundancy 

and the variabilty of interacting proteins, it is difficult to define the exact functions of each 

CaM or CML. Therefore, loss-of-function experiments by knocking down individual CaMs or 

CMLs sparely revealed their function. Atcam3 knock-out mutants showed clearly reduced 

tolerance and survival ability to high temperature (45°C), indicating that AtCaM3 plays a key 

role in heat shock signal transduction (Zhang et al., 2009). Recently, AtCML10 was 

demonstrated to positively regulate oxidative and osmotic stresses through binding to a 

protein phosphomannomutase (PMM), an enzyme engaged in the biosynthesis of ascorbic 

acid (Cho et al., 2016). Large scale protein-protein interaction screens combined with the 
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availability of genome and transcriptome resources revealed considerable amout of putative 

CaM/CML-binding proteins, with implication in the regulation of plant immunity, several of 

them having been documented to act as transcriptional regulators of plant resistance (Yang 

and Poovaiah, 2003; Ranty et al., 2006; Cheval et al., 2013; Poovaiah et al., 2013). For 

instance, one member of the CaM-binding transcription activator (CAMTA) family in 

Arabidopsis, AtCAMTA3 (also designated as AtSR1), was shown to suppress the expression 

of genes of the salicylic acid (SA) biosynthetic pathway thereby repressing SA-dependent 

plant defense against bacteria and fungi (Galon et al., 2008; Du et al., 2009). On the contrary, 

AtCAMTA3 has a positive effect in plant resistance to herbivore attack/wounding by 

modulating the biosynthesis of jasmonates (JA) (Qiu et al., 2012). In addition, AtCAMTA3 

can directly bind to the promoter regions of Non-race-specific Disease Resistance 1 (NDR1) 

and Ethylene Insensitive 3 (EIN3) to regulate plant defense and ethylene-induced senescence 

(Nie et al., 2012). Another plant-specific CaM-binding transcription factor, calmodulin 

binding protein 60g (CBP60g), contributes to MAMP-induced SA accumulation and plant 

defense against bacterial infection by promoting the expression of Isochorismate Synthase 1 

(ICS1) encoding a key enzyme in SA production (Wang et al., 2009; Zhang et al., 2010b). 

Both AtCAMTA3 and CBP60g have several homologs with Ca2+/CaM-binding activity in 

plants, but if and how they have effects on plant defense responses remains to be uncovered 

(Reddy et al., 2002; Yang and Poovaiah, 2002c). Although there are also several reported 

CaM-interacting TFs, such as TGA3, WRKY7 and WRKY11, playing either positive or 

negative roles in plant resistance, the functional significance of CaM binding in modulating 

these proteins is still unknown (Reddy et al., 2011). Moreover, a PM-resident protein, Mildew 

resistance Locus O (MLO), which does not function as a TF, requires Ca2+/CaM association 

to repress the defense against powdery mildew in barley (Kim et al., 2002). 

Although CaMs and CMLs fulfill an important role in plant immune signaling, there are few 

publications reporting an interaction with microbial effectors. A tobacco CML, termed rgs-

CaM, was found to interact and to destabilize viral RNA silencing suppressors (RSSs), 

thereby having a positive contribution to host RNAi-based defense against virus infection 

(Nakahara et al., 2012). However, rgs-CaM being itself an endogenous RSS, it has been 

recently shown that the RSS βC1 protein encoded by the DNA satellite of tomato yellow leaf 

curl china virus induces the expression of rgs-CaM to repress the expression of RNA-

dependent RNA polymerase 6 (RDR6), which plays a key role in antiviral RNA silencing 

pathway (Li et al., 2014a). Although a direct interaction between βC1 and rgs-CaM remains 

to be shown, these data suggest that viruses have also evolved CaM/CML-dependent effectors 
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that manipulate cellular regulators of RNA silencing to counteract plant antiviral defenses. In 

bacteria, the Bacillus anthracis Anthrax edema factor toxin and Bordetella pertussis toxin 

display both CaM-dependent adenylate cyclase activity leading to increased cellular 

concentrations of cAMP (Wolff et al., 1980; Leppla, 1982). Very recently, a T3 effector from 

P. syringae, HopE1, was discovered to interact with CaM and this interaction was required for 

further association with host microtubule-associated protein 65 (MAP65). Upon association, 

MAP65 dissociates from the microtubule network which is thought to cause suppression of 

MAMP-induced Pathogensesis-Related protein secretion and enhanced susceptibility to 

bacterial infection (Guo et al., 2016). To date, it is unclear how HopE1 manipulates MAP65, 

but a conclusion of the authors was that CaM serves as a factor to activate HopE1 function in 

host cells, which is the same interpretation we have about the biological meaning of the 

interaction between SFI5 and CaM. Given that SFI5 does not display specificity in binding 

distinct CaMs from tomato and Arabidopsis, it is possible that SFI5 association with CaM 

promotes the interaction with other plant (CaM-binding?) components. In this respect, the 

identification of potential targets included in SFI5-CaM complexes might provide new 

findings on the action mode of SFI5. 

4.7. Site of action of SFI5 in the host cell 

The subcellular localization studies in tomato protoplasts with SFI5 and SFI5 variants with C-

terminal deletions or point mutations indicate that the CaM binding motif, and thus CaM 

binding, is required for the localization of SFI5 at the plasma membrane.  

In general, CaMs are distributed in the cytoplasm but they have been found to have multiple 

subcellular localizations, also depending on the nature of the CaM-binding protein. For 

example, AtCaM7 has been demonstrated to act as a transcriptional regulator of light-

inducible genes, e.g. Chlorophyll a/b-binding protein 1 (CAB1) and Long Hypocotyl 5 (HY5), 

and physically associates with the transcription factor HY5 in the plant nucleus (Kushwaha et 

al., 2008; Abbas et al., 2014).  Moreover, AtCaM7 was recently shown to interact and to co-

localize with ATP-binding cassette (ABC) transporter PENETRATION 3 (PEN3) at the 

plama membrane-cytoplasm interface and affect PEN3-mediated nonhost resistance (Campe 

et al., 2016). The PM-resident PSK receptor, PSKR1, binds to all CaM isoforms, a step that is 

necessary for the activation of the PSK-promoted growth signaling pathway (Hartmann et al., 

2014). 

Several hypotheses can be formulated about the role of CaM in SFI5 PM localisation. 
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Bioinformatics do not predict the presence of a transmembrane or membrane-anchoring 

domain in the sequence of SFI5 and therefore, it is possible that upon CaM binding and 

activation, SFI5 interacts with operative targets that are localized at the PM. We have tried 

first to perform co-localization studies with SFI5 and SlCaM3 using bimolecular fluorescence 

complementation (BiFC) in N. benthamiana, but a high background, due to the possible 

interaction of CaM with cYFP or nYFP, prevented us to draw any conclusion (data not 

shown). In vivo Förster Resonance Energy Transfer-Fluorescence Lifetime Imaging 

Microscopy (FRET-FLIM) would provide an alternative approach to study the interaction 

between SFI5 and CaM and even give information about the dynamic of their coupling. This 

method has been successfully applied to study the spatio-temporal interaction dynamics of 

barley MLO with its activator, CaM. It revealed an increasing number of MLO/CaM complex 

in the vicinity of the penetration sites coincident with successful pathogen entry into host cells 

(Bhat et al., 2005). 

In addition, we do not know whether the CaM-bound form of SFI5 is required for MTI-

suppressing activity or whether CaM can dissociate from SFI5 upon activation and 

conformational change. This hypothesis emerged with the observation that a weak proportion 

of SFI5 localizes in the cytoplasm, which may reflect different mode of actions of SFI5 and 

interactions with different targets in the host cell. To further determine the role of CaM-

mediated PM-localization for the SFI5 MTI-suppressing activity, a PM anchor myristoylation 

site could be introduced into SFI5 and SFI5 variants deficient in CaM-binding and the 

resulting proteins could be tested for their MTI-suppressing activity. Such an approach has 

been successfully used in our work to re-locate SFI1 from the nucleus to the plasma 

membrane and to demonstrate that SFI1 must enter the nucleus to suppress MTI (Figure 3-12)  

An interesting question is the order of the sequence for the activation of SFI5 or, in other 

words, what is the correlation between CaM binding, nucleotide binding and biochemical 

function. The fact that SFI5 ED-K82A was still localized at the PM and associated with CaM 

(Figure 3-22 B, C) suggests that nucleotide binding occurs after CaM binding and even that 

CaM binding is prerequisite for the nucleotide binding. It would explain why deletion of the 

N-terminal domain encompassing the putative ATP/GTP binding site resulted in inactive SFI5 

variants while keeping associated with CaM.   

4.8. Molecular mechanisms underlying SFI5 MTI-suppressing activity 

Our work revealed that, in the presence of SFI5, the flg22-induced Ca2+ burst, ROS 
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production and MAP kinase activation were dramatically suppressed in tomato protoplasts, 

suggesting that SFI5 interferes at an very early step of MTI signaling (Figure 3-20).  Although 

we have confirmed that CaM-binding and the presence of a putative ATP/GTP binding site 

are required for full function of SFI5, it is still unclear how SFI5 interferes with MTI 

signaling.  

The Ca2+ influx is one of the first event occurring after PRR activation and has been 

demonstrated to be necessary for the downstream MAMP-induced ROS production, MAPK 

activation, as well as defense gene expression (Jeworutzki et al., 2010; Segonzac et al., 2011). 

How the Ca2+ signal is decoded and integrated to allow a concerted cellular response is 

largely unknown. It has been shown that cyclic nucleotide gated channels (CNGCs) and Ca2+-

ATPases (ACAs) pumps involved in Ca2+ transport can be either inactivated or activated by 

binding of CaM, indicating that it is a key factor in the modulation of cytosolic Ca2+ 

oscillations (Hua et al., 2003; Kaplan et al., 2007; Giacometti et al., 2012). A conserved IQ 

motif for Ca2+/CaM binding is present at the C-terminus of CNGC20, which is strongly up-

regulated in response to salt stress (Kugler et al., 2009; Fischer et al., 2013).  A more recent 

study revealed that CNGC17 is able to interact with BAK1 as well as H+-ATPases AHA1 and 

AHA2, forming a functional complex with the phytosulfokine (PSK) receptor PSKR1 to 

mediate the PSK signaling (Ladwig et al., 2015). It is conceivable that Ca2+/CaM-regulated 

CNGC members might be implicated in MAMP-induced RLK/BAK1 or RLP/BAK1 

signaling and that this step is targeted by SFI5. It is also conceivable that SFI5 through its 

association with CaM has a pleitropic effect and affects simultaneously different steps of 

MAMP-dependent signaling cascade. Ca2+/CaM seems to have both positive and negative 

effects on the regulation of H2O2 levels in plants. It was shown that the H2O2 level is down-

regulated by the Ca2+/CaM-activated plant catalase (Yang and Poovaiah, 2002a). On the other 

hand, the generation of H2O2 in tobacco is strongly enhanced by the activation of Ca2+/CaM-

dependent NAD kinases, likely through the increase of NADP for the NADPH-Oxidase 

(Harding et al., 1997). The NADPH-oxidase AtRBOHD, which is activated in response to 

flg22, has been identified as a substrate of AtCPK5, a calmodulin-like Ca2+ binding domain-

containing protein kinase (Dubiella et al., 2013). Similarly, StCPK5 positively regulates the 

function of RBOHB in basal resistance in Solanacea species (Kobayashi et al., 2007). In 

addition, CaM was also reported to regulate MAPK signaling as Ca2+/CaM binding is either 

observed in some MAP kinase phosphatases, such as NtMKP1 and OsMKP1, or required for 

full activation of Arabidopsis MPK8, which are components engaged in the wound signaling 

pathway (Yamakawa et al., 2004; Katou et al., 2007; Takahashi et al., 2011).  
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One possible mechanism of MTI-signaling suppression is that SFI5 directly targets and 

inhibits the function of CaM or CMLs that consists to regulate the activity of downstream 

CaM- and CML-binding proteins  (like the CNGCs and RBOHs), which have a positive role 

on MTI. However, the gain-of-function experiment with the overexpression of SlCaM3/4/5 

did not titrate out the SFI5-mediated MTI suppressing effect with no recovery, even partial, of 

the ROS production and MAP kinase activation by flg22 (Figure 3-24 A, B). In our 

experimental conditions, SFI5 interacts with all CaM isoforms in protoplasts but, under 

natural conditions of infection, a certain level of interaction specificity may exist and we 

cannot rule out that some CaMs, eventually those that are more specifically involved in 

MAMP signaling, are more affine to SFI5 and would eventually attenuate the MTI-

suppression by SFI5 when overexpressed in protoplasts. To test further the hypothesis of SFI5 

antagonizing CaM activity, we performed competition assays in which we co-expressed SFI5 

with an inactive N-terminal deletion mutant of SFI5 that is still able to interact with CaM. 

This assay led to a reduction of the inhibition of the flg22-dependent pFRK1-Luc induction, 

which can be interpreted as a competition between inactive and active SFI5 forms to bind to 

CaM and an indirect proof that SFI5 does not inhibit CaM function. These results further 

support our proposition that CaM is not the operative target of SFI5 but that SFI5 utilizes 

plant CaMs as positive regulators of its effector activity after translocation into the host cell.  

During the structure-function analysis with deletion and mutated constructs of SFI5, we found 

that a 21 amino acid residues stretch (from Phe63 to Ser83) was critical for the MTI-

suppressing activity and virulence function of SFI5 (Figure 3-19, 3-20, 3-21). Bioinformatic 

analysis and motif scanning revealed an ATP/GTP-binding site (A76MMKAGKS83 - Figure 3-

22 A) within this stretch, which is similar to the Walker A motif [AG]XXXXGK[ST], also 

called P-loop, that has been found in a wide variety of ATP- or GTP-binding proteins from 

eukaryotic and prokaryotic organisms (Higgins et al., 1986; Saraste et al., 1990; Higgins, 

1992). Mutations of the conserved GK[ST] residues in the P-loop result in inactive proteins 

that have lost the ability to bind ATP or GTP (van der Wolk et al., 1993; Sandkvist et al., 

1995; Deyrup et al., 1998; Doublet et al., 1999; Nishiwaki et al., 2000). Similarly, substitution 

of  lys82 by alanine leaded to a SFI5 mutant that was no longer capable of subverting the early 

MTI immune responses (Figure 3-23). Based on our data (CaM interaction, putative 

ATP/GTP binding site, putative phosphorylation sites) our primary assumption was that SFI5 

does eventually display a Ca2+/CaM-dependent protein kinase (CCaMK) activity in planta 

that is targeting and probably inactivating components involved in early MAMP signaling.  

CCaMK plays an essential role in symbiotic interactions between plants and arbuscular 
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mycorrhiza fungi through sensing the nuclear Ca2+ spiking (Miller et al., 2013). CCaMK is 

also involved in response to pathogens and was proposed to cope with stress triggered by 

penetration of the fungus Colletotrichium trifolii (Genre et al., 2009). To assess this 

hypothesis, we performed an in vitro kinase assay with immunoprecipitated material from 

HA-SFI5-expressing tomato protoplasts, but we measured neither phosphorylation of the 

MBP substrate nor detected autophosphorylation of SFI5 (data not shown). Future work will 

consist to carry out molecular and biochemical studies in order to demonstrate, both in vitro 

and in vivo, the ATP and/or GTP binding properties of SFI5. This work will hopefully lead to 

generate new hypotheses about the biochemical function of SFI5 and possible plant 

interacting partners or substrates. 

 In order to improve the understanding of the molecular mechanisms underlying the function 

of SFI5 in planta, we have tried to generate stable transgenic tomato lines expressing SFI5 

constitutively or using an estradiol-inducible promoter. Although, we could amplify by PCR 

the genomic fragment corresponding to SFI5 in primary transformants and detected SFI5 

protein when transiently expressed in N. benthamiana, we failed to detect the expression of 

the RXLR effector in tomato plants (data not shown). It is possible that transcriptional or 

post-transcriptional gene silencing is responsible for the lack of SFI5 expression or that SFI5 

possesses toxic features when overexpressed in tomato, leading to fast degradation by the 

proteasome. Another and more elegant explanation would be that, in the absence of stimuli 

and increase of cytosolic Ca2+ level, SFI5 does not bind to CaM and becomes unstable. It 

would be in relation with the in vitro binding experiments that have shown that, in the absence 

of CaM, SFI5 has tendency to form aggregates. The protoplast and the Agrobacterium-based 

approaches might be less problematic for SFI5 expression because they cause a certain level 

of stress that could be correlated with higher steady-state levels of Ca2+. We need to test this 

hypothesis and see whether activation of MTI signaling in tomato transformants will permit 

the detection of SFI5 protein. Infiltration experiments with the P. syringae hrc- or hrp- strains, 

unable to secrete T3 effectors and to grow on tomato, would be very helpful. The advantage 

for P. infestans to produce an effector that is functional only in the early stage of infection, 

when the suppression of MTI signaling is of key importance, would be to avoid complication 

during later stages of the infection, when SFI5 activity might interfere with cellular processes 

that could be detrimental to the pathogen. A similar hijacking strategy of immune signaling 

has been evolved by Agrobacterium to transfer its T-DNA into the nucleus of the host cell 

using the activation of the transcription factor VIP1 by MPK3 after pathogen recognition 

(Djamei et al., 2007). 
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The finding of a physical association of SFI5 with different CaM isoforms firstly revealed the 

direct link between an oomycete plant pathogen effector with components of Ca2+/CaM 

signaling in plants. Our current model predicts that SFI5 activation in host cells requires a 

two-step process. The first step is the association with CaM, in a Ca2+-dependent manner, at 

the C-terminal Pro222-Leu239 -helix, triggering a conformational change of SFI5. The second 

step is the hypothetical binding of ATP/GTP at Lys82, which is crucial for a yet undiscovered 

enzymatic activity of SFI5, to affect MAMP signal transduction pathway by manipulating one 

or several unknown membrane-associated proteins, likely pattern recognition receptors and/or 

signaling components (figure 4-4). Further molecular and biochemical studies are needed to 

dissect the specific mode of action of SFI5 in host cells and to unravel the molecular basis of 

the non-functionality of SFI5 in non-host plants.                 

  

 

 

 

 

 

 

 

 

 

Figure 4-4. Schematic mode of action of P. infestans RXLR effector SFI5 in tomato. 

Both N-terminal predicted ATP/GTP-binding motif (P-loop) and C-terminal CaM-binding motif are required for 

full activation of SFI5 after delivery into the host cell. Active SFI5 inhibits MAMP-induced early MTI responses 

by targeting one or several unknown PM-associated components involved in MTI, most likely pattern 

recognition receptor complexes i.e. SlFLS2/SlBAK1 and/or ion channels or NADPH oxidase (SlRBOHB). Solid 

line: demonstrated function, dashed line: hypothetical function. Abbreviations used in the figure: Sl, Solanum 

lycopersicum; BAK1, BRI1 associated receptor kinase 1; FLS2, receptor kinase Flagellin-Sensing 2; CaM, 

calmodulin; RBOHB, respiratory burst oxidase homolog B; MAPKKK, mitogen-activated protein kinase kinase 

kinases; MEK, mitogen-activated protein kinase kinases; MPK1/3, mitogen-activated protein kinase 1 and 3; 

CPK, calcium-dependent protein kinase; MTI, MAMP-triggered immunity. 



Discussion 

 103 

4.9. Conclusion 

Our understanding about RXLR effectors targeting mechanisms is beginning to emerge 

although it is fragmentary compared with the information gained form studies with effectors 

from phytopathogenic bacteria. An important question for understanding infection biology is 

which processes are targeted to dampen plant resistance. Thus, unravelling the mode of action 

of these effectors and understanding the effector-target biology will certainly continue to 

represent an important aspect of research activities among the scientific community working 

on plant-oomycete interactions. Although RXLR effector repertoires are diverse among 

Phytophthora species and even among strains of the same species, they share several 

properties suggesting that they operate in a repertoire as components of a system. A 

comparative functional study of effectors originated from different Phytophthora spp. in host 

and non-host plant species will permit to investigate pathogen speciation, host adaptation and 

the phenomenon of non-host resistance at the molecular level and it offers insights into the 

plasticity of oomycete genomes, increasing our knowledge on the evolutionary conservation 

or diversification of RXLR effectors, driven by host-imposed positive selection. A better 

understanding of the molecular basis of the striking differences in host spectrum between 

different Phytophthora spp. under natural conditions will be instrumental to rationalize and to 

model pathogen co-evolution with hosts that are either closely (host range expansion) or 

distantly (host jump) related to the present hosts.   
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6. Appendix 

Table 6-1.  List of Primers mentioned in this study 

 

Primer name Sequence (5` - 3`) 

For_FRK1_qRT GATGGCGGACTTCGGGTTATC 

Rev_FRK1_qRT CGAATAGTACTCGGGGTCAAGGTAA 

For_WRKY17_qRT GCCGCTTTCTGGTCTTCCTTACAG 

Rev_WRKY17_qRT CCGTGGATGTGGTGAGCCTTTG 

For_4CL_qRT CCCTGAGACGGAGAGATACGACTTG 

Rev_4CL_qRT TCGGTCATTCCATAACCCTGACCA 

For_EF1α_qRT GCCCATGGTTGTGGAGACCTTC  

Rev_EF1α_qRT  CACCTGCGGCAGATAGAGTTTTGAG 

For_actin_qRT AGTGGTCGTACAACCGGTATTGT 

Rev_actin_qRT GAGGAAGAGCATACCCCTCGTA 

SlMAP3Kε-KD_attB1 AAAAAGCAGGCTTCACCATGAAATATATGCTTGGAGATGAG 

SlMAP3Kε-KD_attB2 AGAAAGCTGGGTCTATCCAAGGATGTGAAAGC 

SlMAP3Kα-KD_attB1 AAAAAGCAGGCTTCACCATGAAATGGAAGAAAGGCAGG 

SlMAP3Kα-KD_attB2 AGAAAGCTGGGTCAACAAAAGGGTGCTCTAGTAGT 

SlMEK2_attB1 AAAAAGCAGGCTTCACCATGCGACCAGCCGCCAAC 

SlMEK2_attB2 AGAAAGCTGGGTCAGAAGAGGAGGAAAAATGAGGAG 

SlMEK1_attB1 AAAAAGCAGGCTTCACCATGAAGAAAGGATCTTTTG 

SlMEK1_attB2 AGAAAGCTGGGTCTAGCTCAGTAAGTGTTGCC 

AtCaM1-attB1 AAAAAGCAGGCTTCATGGCGGATCAACTCACT 

AtCaM1-attB2 AGAAAGCTGGGTCTCACTTAGCCATCATAATCTTG 

AtCaM2-attB1 AAAAAGCAGGCTTCATGGCGGATCAGCTCACAGAC 

AtCaM2-attB2 AGAAAGCTGGGTCTCACTTAGCCATCATAACCTTCAC 

SlCaM1-attB1 AAAAAGCAGGCTTCATGGCGGATCAGCTCACCGAA 

SlCaM1-attB2 AGAAAGCTGGGTCTCACTTAGCCATCATAACCTTGAC 

SlCaM3-attB1 AAAAAGCAGGCTTCATGGCGGATCAGCTTACAGATG 

SlCaM3-attB2 AGAAAGCTGGGTCTCACTTAGCCATCATGAC 

SlCaM6-attB1 AAAAAGCAGGCTTCATGGCAGAGCAGCTGAC 

SlCaM6-attB2 AGAAAGCTGGGTCTCACTTGGCAAGCATCAT 

SFI5 28aa-attB1 AAAAAGCAGGCTTCACCATGGCCTCCGACCAGAAT 
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SFI5 63aa-attB1 AAAAAGCAGGCTTCACCATG TTCCTGACAGAACCCCC 

SFI5 84aa-attB1 AAAAAGCAGGCTTCACCATGAACAGCGGGCTACCAGAT 

SFI5 102aa-attB1 AAAAAGCAGGCTTCACCATGAACAGCGGGCTACCAGAT 

SFI5 178aa-attB1 AAAAAGCAGGCTTCACCATGGATCCTTTAAATAGGGAGCAG 

SFI5 199aa-attB2 AGAAAGCTGGGTCTTAAGCCTGATTCTTTTTAAGAGCAA 

SFI5 221aa-attB2 AGAAAGCTGGGTCTTATTTGGACTTGGCTGCCATA 

SFI5 ED-WF/AA-F AGCACGGCTAAAATCGCTAAAATTATCTCGA 

SFI5 ED-WF/AA-R TTAGCGATTTTAGCCGTGCTTGGTTTGGA 

SFI5 ED-KK/EE-F GGCTTGAGGAGTTAAAGCTAAAACGTTAACACCC 

SFI5 ED-KK/EE-R TTAACTCCTCAAGCCTCGAGATAATTTTAAAGATTTTC 

SFI5 ED-KR/EE-F GCTAGAGGAGTAACACCCAGCTTTCTTGTAC 

SFI5 ED-KR/EE-R TGTTACTCCTCTAGCTTTAATTTTTTAAGCCTCG 

attB1-adapter GGGGACAAGTTTGTACAAAAAAGCAGGCT 

attB2-adapter GGGGACCACTTTGTACAAGAAAGCTGGGT 
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Table 6-2.  List of the PiRXLR effector genes tested in the MTI-suppressor screen in S. 

lycopersicum and A. thaliana protoplasts.     

Gene identification number, affiliation to an RXLR gene family, nucleotide and protein 

sequence (without signal peptide) are presented. 

Gene ID RXLR Family Cloned Nucleotide Sequence Translated Amino Sequence 

PITG_00366 80 >pDonr_00366_1 

ATGAACGTGCTACATGTACCGACACAAGT

GACGAAATCACACGCGGTCTCGCCAGATG

CGCAGTTTGTCGTCGCCATGGGCAGAAGAT

CTTTGCGAACGAGTGGCGAAGCTAATGAA

GAGAGAACCAGACTGAACACGCTGCTTCT

CCTCGACGACGTCACTGAAGCAGAAATGT

CATCAATAAAGAAACTAGCTTCGACGTTTG

CGAAATTGGAAAATAGGAACGACGGAGCA

GCTGACCTATTCAACATGCTACGTCGCCAA

GGACATACGAAGGAAAGTGCAAGAAACGC

CGGCAACCTATACACCAAATACCTTCAAAA

CCCTTCAGCATTTCATACTTAG 

>pDonr_00366_1 

MNVLHVPTQVTKSHAVSPDAQFVVA

MGRRSLRTSGEANEERTRLNTLLLLDD

VTEAEMSSIKKLASTFAKLENRNDGAA

DLFNMLRRQGHTKESARNAGNLYTKY

LQNPSAFHT* 

PITG_00821 

(PexRD21) 

108 >pDonr_00821_2 

ATGACCCCCGTCATAAAAGAAGCGAACCA

GGCCATGCTCGCTAATGGACCACTACCTAG

CATCGTCAATACGGAGGGTGGGCGACTTTT

GCGTGGCGTCAAGAAGCGTACAGCGGAGA

GAGAAGTGCAGGAAGAGAGGATGTCTGGC

GCGAAACTCAGCGAAAAGGGGAAACAATT

CTTAAAATGGTTTTTTCGTGGCAGCGATAC

ACGCGTTAAAGGCAGAAGCTGGAGATAA 

>pDonr_00821_2 

MTPVIKEANQAMLANGPLPSIVNTEGG

RLLRGVKKRTAEREVQEERMSGAKLS

EKGKQFLKWFFRGSDTRVKGRSWR* 

PITG_03192 

(PexRD28) 

66 >pDonr_03192_16 

ATGGAGAGCACCGTCGTCATGAATAACCG

GAATTTCGACTCCATCAACGTCCCCATTAG

CGATGATATCACAAGTCGCAACCTCAGGG

CGAGCGGTGAAGAGAGAGCCTACGCCTTT

GTGGACAAGATCAAGAGTCTTTTTAGCAGG

CCTGGTATCAGCCAGAAAGTCGAGAGTCT

GCAGAAGAATCCCGCCATGGTCAAGAACT

TGGAGAAGGCTGCGTTAAGCCAGAAGGGC

TCCAGCAAGGTCCGCGACTGGTTCATGCAT

ATGTACAACAACAGCTCCAAGAGAGACAA

GTTCTTCATTCTCGCGACCCTCGTCATGTTC

CCTATCGGCGTATGGGCAGTTGTTACTAAT

TATAGGAGGTAG 

>pDonr_03192_16 

MESTVVMNNRNFDSINVPISDDITSRN

LRASGEERAYAFVDKIKSLFSRPGISQK

VESLQKNPAMVKNLEKAALSQKGSSK

VRDWFMHMYNNSSKRDKFFILATLVM

FPIGVWAVVTNYRR* 

PITG_04089 

(PexRD41) 

5 >pDonr_04089_1 

ATGGCGCTTCCGAATCCCGACGAAACTCGG

CTCTTATCAGACACTTTTACCAAAAGATCC

CTTCGGGTCGCAGGCCAAGAAGCTGCCCG

GGGCGAAGAGATTGTGAGAGTTACAGCCC

AGAGTACTAACAAAATCTTCAAGAGACCG

GCGGAAAAAGACATGAGCAAACTGCTTGA

AGCGGCTAAGAAGGCGCTGTTGGAGAAAA

GGATGGCTGAGCTCTCAAAGGTCATTAAG

AAGCCAGCGAAGTAG  

>pDonr_04089_1 

MALPNPDETRLLSDTFTKRSLRVAGQE

AARGEEIVRVTAQSTNKIFKRPAEKDM

SKLLEAAKKALLEKRMAELSKVIKKPA

K* 

SFI1/PITG_04097 5 >pDonr_04097_1 

ATGTTCCCGAATCCCAAGGAGCCTCAGCTC

TTGTCAAAGGCGTCCCCTGACAAAAGATCC

CTTCGGGTCGAAGGCCAAGAAGTTGTCCA

AGGCGGCACGCTGGACGGGAACGGTGGAG

TCTGGAAAGCCATAGCCCATACTACTAATA

AGATCGTCAAGAAGCCGGAGATAGACGTT

AGCAAACTCATCGACGTGGCCAAGAAGGC

AAAAAAGGTGAAGAAGTTGAAAAACTTGA

TGAAGCTTAAGAAATCGTCATCGTAG 

>pDonr_04097_1 

MFPNPKEPQLLSKASPDKRSLRVEGQE

VVQGGTLDGNGGVWKAIAHTTNKIVK

KPEIDVSKLIDVAKKAKKVKKLKNLM

KLKKSSS* 
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SFI2/PITG_04145 17 >pDonr_04145_2 

ATGTTCACGAATGCCGATGACTCTCAGCTC

TTGTCGAAGGTCTCTCCCGACTTCGCAGCC

AACGATATGACCTATACTGTTTCCCGGAAG

AGACTTCTTCGAGTCGCAGGCCGGGAAGA

TGATGACGCGACGACCGATGAAGAAGATC

GAGGTTTTACCAGCATCGTTGATGTCATCA

AGAGATCGGATGCCGCCGAAGCACTACAA

AAGTTATCGAAAGCCTCCGCCAAAAAAGT

GAAAAAGGCCGGCAAAGCTGTCAAAGAAC

TGACTGCAAAAGAGAAAGAGGCCTTGAAA

GCCCTCTTGGCACTGAAGGACGGCAATTAA 

>pDonr_04145_2 

MFTNADDSQLLSKVSPDFAANDMTYT

VSRKRLLRVAGREDDDATTDEEDRGF

TSIVDVIKRSDAAEALQKLSKASAKKV

KKAGKAVKELTAKEKEALKALLALKD

GN* 

PITG_04266 RXLRsng248 >pDonr_04266 

ATGCGCGTCCAGTACATCGCTCTGGTAGCT

GCTATCGCCTATCTCTCGAGTATCGACGGT

CTTCAGATCGTCCCATATTCGGCCAAATCC

TCATCTCTTCGAGCGCCTGCTGACGCCCGC

AACCAACCTTACGTGGAAGGCAAGACAGA

CCGGTTCCTGATCAGCGAGTCTAAGACTTA

CGAAGCCACCAAGGCTCCGACTGGGTACG

TGTTTGATACCCTCCACGATGACGATGATA

TGCTATGGAAGGACGAGGATAATGAGTAC

GAAGACGAAGACGAAAACTCGTCGTTTGA

CAACGACGAGCGTGGTCTTTTTAAGAGGA

GGAAAAGAAAGAAGAAGAAAAAGAAACA

CAAAGAGACGCTGACGCCAACCCCTGCAC

TAAATAGTACGGCGACACCCACACCCACA

CCAACTCCAAAGCCTACGCGTGGTGGTCTC

CTCGGGTGGATTGATCGTATTAGCGAT  

>pDonr_04266 

MRVQYIALVAAIAYLSSIDGLQIVPYSA

KSSSLRAPADARNQPYVEGKTDRFLIS

ESKTYEATKAPTGYVFDTLHDDDDML

WKDEDNEYEDEDENSSFDNDERGLFK

RRKRKKKKKKHKETLTPTPALNSTATP

TPTPTPKPTRGGLLGWIDRISD* 

PITG_04314 

(PexRD24) 

49 >pDonr_04314_1 

ATGGTATCGACCGAAGCTAATGGGCAGGT

TGCCCTATCTACGAGCAAAGGCCAACTAGC

TGGCGAGCGTGCTGAGGAGGAAAACAGCA

TCGTCAGGTCCCTCCGCGCAGTCGAGACAA

GTGAAGACGAAGAAGAGAGGGATTTGCTT

GGGCTTTTTGCCAAGAGCAAGCTGAAGAA

GATGATGAAAAGCGAAAGCTTCAAGCTGA

AGAGGTTTGGAGAATGGGACGATTTCACA

GTGGGTTATATTCGTGAAAAGCTCAAAAAC

AAGTATCCGGACCTCCTTTTGAACTACCTA

AATGTCTACAAGAAGGCAGGCAATGAGAT

CGTTAGACACGCTAACAATCCCAACAAGG

TGACTTTCTCGAACAAAGTCCGAGCTCGTA

TCTACAAAACCAACTCGTAG 

>pDonr_04314_1 

MVSTEANGQVALSTSKGQLAGERAEE

ENSIVRSLRAVETSEDEEERDLLGLFA

KSKLKKMMKSESFKLKRFGEWDDFTV

GYIREKLKNKYPDLLLNYLNVYKKAG

NEIVRHANNPNKVTFSNKVRARIYKTN

S* 

PITG_04339 

(PexRD20) 

81 >pDonr_04339_1 

ATGACGACGGACGCCCAGCTGAGTGACGC

CCGAGCGGTCCGCGCCTCTTTTAATACCAA

GCGCGCGCTGCGGTCCCATACTAAGGCGA

CTGACCATGGCGAGGAGAGAGCTTACAAG

CCCAGTCTCAGTGTCGTCGAGAGCCTCAAC

AACTGGATGCAAAGAGCATCGAAGAATAT

CTTGCCTGACGACGTTATTTTGGTCATGGC

CAGTAAGGCGATGACAAAGAAGACCTCAT

CTTCGGACGCTGTCTTCGCGATGCTCCAGC

TTGACCAGGGACTAAAGGGAATCCTGAGC

AATCCCAACTTGAAACAATTTGCCTACTAT

CTCGTATTGACGGAGAAAGCGCCAAGCCA

GGCTCTGATCACCAAGTTGATCAGTCAATA

CGGAGACGACGTAGTGGCGAAATATCTCTT

CGACATCAAGCACAAAGCGATCAACGTGA

GCGAGAAACTCAAGGCCGAAGCGAGGTTT

TGGCAAGGCGCGCAGTATGTCAAGTGGTTC

GATGAAGGGGTAACGCCAGCTCTGGTCCG

TCAAAAATACAACGTCCACCCCGAAACGT

GGTACAAGAACCCGTACGAGGGCGTGTAC

TGGGAATACACTGGCGTGTACGCCAAATTG

GCGAGCAAGTCAAATAAACCCCTGCCCGT

GGAAGTATAG 

>pDonr_04339_1 

MTTDAQLSDARAVRASFNTKRALRSH

TKATDHGEERAYKPSLSVVESLNNWM

QRASKNILPDDVILVMASKAMTKKTSS

SDAVFAMLQLDQGLKGILSNPNLKQFA

YYLVLTEKAPSQALITKLISQYGDDVV

AKYLFDIKHKAINVSEKLKAEARFWQ

GAQYVKWFDEGVTPALVRQKYNVHP

ETWYKNPYEGVYWEYTGVYAKLASK

SNKPLPVEV* 
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PITG_04388 1 >pDonr_04388_2 

ATGGAGCAAGCTGCCGCAGCCAAGGAGCT

TCGACTAAACTCTTTCGTGCACCGATCATT

CGACGCCCATATTCATGCCCAGCGGCTCTT

GAGGGATCGTCGCTCCGTCGATGAAGAGA

GAGGGCTTCCGACCGTAATTGAGAAAACC

AAGACTTTGTTTTCGACGAAGGTGACCGAC

AAGACGCTACAGCGCTGGGCAGCCAACAA

GAAGTCCCCCCAACACGCTCTGATTCGCTT

GGACCTTGACAATGCAGGAAAAGACCTTTT

CACAAAAGCTAAATTCGCCGACTGGGTCTC

CTTTATGACAAAACGGAATCCGCAGAACG

CCGAGGCGGCCATGCTGTCCGCACTGATGA

CACGCTATAGCGACGACGTTCTGTCAGGCA

TGCTTATAGCAGCAAAGAAGGCTCCTGATA

CGAAGACTATTGCCACTAACCTGCAAATCC

AGCAGCTTCGGGGGTGGATGAAGAAGGGG

AAAACCGCGGACGACGTTTTCAACCTATTT

AACCTCAAGGGAAAGGCAACGAGCTTGGA

TGATCTCGTCAGTGACGGTCAATTCGCCCC

TTGGGTCACCTACGTGACTGCTCTTAACAA

AGGAGATCCCAAGAAGACAAACATGATGG

TGGTAAAGACGTTGACAACTTACAACAAG

AAAACACACAAGGGCGTGTACGATATGCT

CAGTGCGTCCAAGAATAAGCAGCTGGCCG

CAGACTTGCAAAGAGGACAGTTCGACAAC

TGGTTGGCTAACAATGTCCAATTCTACGAT

GTTAGTGCCATGGTGGGAGCGAAGGGAAC

TCCACGAGGTAGTCCGCAGAGACTGTTCGT

GAAGGACTATGTTGCTGCGTACAACAAGA

AGCACCAGCTGTAA 

>pDonr_04388_2 

MEQAAAAKELRLNSFVHRSFDAHIHA

QRLLRDRRSVDEERGLPTVIEKTKTLF

STKVTDKTLQRWAANKKSPQHALIRL

DLDNAGKDLFTKAKFADWVSFMTKR

NPQNAEAAMLSALMTRYSDDVLSGML

IAAKKAPDTKTIATNLQIQQLRGWMK

KGKTADDVFNLFNLKGKATSLDDLVS

DGQFAPWVTYVTALNKGDPKKTNMM

VVKTLTTYNKKTHKGVYDMLSASKN

KQLAADLQRGQFDNWLANNVQFYDV

SAMVGAKGTPRGSPQRLFVKDYVAAY

NKKHQL* 

PITG_05750 

(PexRD49) 

29 >pDonr_05750_1 

ATGCGCTCGGCCACCGAACATGCCCAGCTC

ATGGTGTCGCAGTCGGAGCTGGACCAACC

CACCCGGTGGAACGTCGCCGACAAACGCT

TACTGCGGGCCAACGACGGCACGAATGCT

GCCGAGGAAGAACGAGGAATGGCGGACAT

TGCAACGAAGATGAAGACGTGGACACAAA

GCTTAAAAACTCATGTCGGCAGCTCGAAGC

CGTTTCAGATAGCGGCTCAGAAATGGAGA

AACACGAAGGTGCAGCGAATGATCAAAAA

GGGAATTTCTGATACGGCTTTGTTTGAAAA

CAAGGTCACTCCTGACGAATTTTTCAAGGC

GCTGAGGCTGAAACCAGGGTTGAAACAAT

CGTCTGTTACAAACAACCCTGCTCTGAACA

AGTACCGCGCCTACAAGAGCTTTTACGAGT

CCAAGATCAAGACTGCTGCTACGTAA 

>pDonr_05750_1 

MRSATEHAQLMVSQSELDQPTRWNVA

DKRLLRANDGTNAAEEERGMADIATK

MKTWTQSLKTHVGSSKPFQIAAQKWR

NTKVQRMIKKGISDTALFENKVTPDEF

FKALRLKPGLKQSSVTNNPALNKYRA

YKSFYESKIKTAAT* 

SFI3/PITG_06087 

(PexRD16) 

87 >pDonr_06087_1 

ATGGCGGTCGCTGAGACGTCAAATGACAT

CAACACGATGAACAACAACCAGGAATTTG

CTCGATCTCTGCGCAACACGGAGGAGCGCT

CGATTGCGGCAATTCTCGCCGAAGCGGGTG

AAGAGGACCGCGCAGCGTGGAGGATCAAT

TATCGTGCCTGGTACAAGGCTAAGCTGACG

CCGACGCAAGTCAAGACGGTGCTGGGCGT

CTCCCAAGCAGAGATGAATAATGTTGCGA

AGCAACTCCAGCGACTATACCTCGGCTACT

ACTCCTTCTACACGGCGATGGAGAAGAAG

AAAGAAGAGAAGAAGAGGCTGGCCACACC

TTGA 

>pDonr_06087_1 

MAVAETSNDINTMNNNQEFARSLRNT

EERSIAAILAEAGEEDRAAWRINYRAW

YKAKLTPTQVKTVLGVSQAEMNNVA

KQLQRLYLGYYSFYTAMEKKKEEKKR

LATP* 
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PITG_06099 

(PexRD50) 

36 >pDonr_06099_4 

ATGTCGGACTCGGAGAAAGCTGCTAAGAT

TTCCAACGACCAAGTGCTTTCAGGCCGCCA

GTTGATTGACACTGTCGCCAAGGACAACA

AGAAGCGCTTGCTGCGAGCCTACAAAGAT

GCTGAGGACGACAGCGAAGACTCCAAGAA

CGTGAAACCCACCGCTGACTCCAAGCACG

CCGACGAATCGGAAGACTCTGAAGACAGC

CAGGAGGAGCGGTTCTCGCTCATCCAGAC

GTCCAACCAGCCCCGATACTACTGGTGGTT

CCAGCATCACATGACTCCTCTCGATGTTCG

TCGGGACCTGGAATTGACGGCGGACACGA

TCAATCCCATTAAGCGCTCGGTCTACACAG

GTTATGTCGACTACTACGAGGACCACTGCT

CTTACTACGAAAACCGCAAGGAGGAATTTT

GCAAGGCAGAAGACTTTTAG 

>pDonr_06099_4 

MSDSEKAAKISNDQVLSGRQLIDTVAK

DNKKRLLRAYKDAEDDSEDSKNVKPT

ADSKHADESEDSEDSQEERFSLIQTSNQ

PRYYWWFQHHMTPLDVRRDLELTAD

TINPIKRSVYTGYVDYYEDHCSYYENR

KEEFCKAEDF* 

PITG_06308 

(Avr3b 

homolog P.sojae) 

23 >pDonr_06308-1 

ATGTCGATCTCTTCTTTCTCCGACCCAACA

AGCATTGTGAACATCAATCACGATGCTAAC

CGTCTGTCTCGTGCGCTAGCTGCTGGTCAG

AATCAAACTCAGCGATCTCTTCGTCAGCAT

GAAGGTGAAGACAGAGGGGCCATTGACAA

GGCGGACGAGGTCGTATCAAAGATGAAAG

CGTTAATGGGAACTGCAAAAAACGTTCCG

AACAATCTGGCCGCTTTGATCGCGAAAAG

GTCAAAAACCGCTGGAGAATTTGTGAGGC

GTCCGTTTCTAGTGAGCAAATTATCCAAGA

GATACAACATTGCTGACCAATTAAGCTTCT

CGACACTGAAGCAATTGGACAAGATCGAC

AACATGAGGATCGTGGATATCAAAAATGG

TATTAAAGGCAATAAGAAGACCCCAAACG

GCATGCGAAGAAAAATCAAGCACTTTGAG

GGAATGAAAACGGCTCCTCAAAAGTTTCTA

GAATCCCACGTCGGTCGTGACATGCAACGT

TATGGAAAGGATGGAAGCCGGTGGCTATC

AGCCGGCGTGGTTACGCGGACAACTGATC

AAGGCGAGCGTCAGATCTTATTGATATCGA

GCTCGAACCCGGCGAGAGGGGACTTTCTG

CTTCCTAAGGGAGGCTGGGATAGAGGCGA

GAAAATTAAAAAGGCGGCGTTGCGTGAGG

TCATGGAAGAAGGAGGAGTATGTCGTGCT

CTTTGA 

>pDonr_06308-1 

MSISSFSDPTSIVNINHDANRLSRALAA

GQNQTQRSLRQHEGEDRGAIDKADEV

VSKMKALMGTAKNVPNNLAALIAKRS

KTAGEFVRRPFLVSKLSKRYNIADQLS

FSTLKQLDKIDNMRIVDIKNGIKGNKK

TPNGMRRKIKHFEGMKTAPQKFLESH

VGRDMQRYGKDGSRWLSAGVVTRTT

DQGERQILLISSSNPARGDFLLPKGGW

DRGEKIKKAALREVMEEGGVCRAL 
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PITG_06478 16 >pDonr_06478_2 

ATGCAAACACCCCCTGGACAAGCCGACAA

GTCGAAGCTGATTGCTCACGATGTTCTCAT

GAAGACCACGTCACTGTCAGAAACCACAA

TTGCTACTTCATCTAAGCGGTTCTTGAGGC

TCTACGACGCAGAAGTCCGAGATACAGTC

CGCGGAGATAATGACGTAGACCGCGAGGA

GAGAGGAAGCTCGCCGTTGTTATCGAAGG

TCGACGATCTGATACACAAAGTATTTAAAT

CCAATCCGGAGCAAGCACAAATCAAGGCG

TGGATGAAGTCTGGAATGCACCCTCAAAC

AATTTTTGATACTTTGCGTCTAGCAAAGAG

TACGACAAAACAGAACGATGACCCGAATC

TTCTCCTTTGGCTCAAGCTCGTTGCTGCTTT

TAGAGCTAAGAATGGTAACCAGGCGTTTTC

GGATCTGGATCTTTACTATTTGCTACTGAA

GAGAAGCAGTGGCGACGAGCTGAAAATAC

TTATTGAGTCTTTTCGGAAGACTGGAGCCT

TAAAGGAGCTAGGCAAAAGTATGCAGAAA

TCGCTATCTGGTTCGTGGGTGTCAAAAACC

TTACAGCACGAAACAGGTCCAAAAATTGTT

TACGATACATTACGTCTTCAAGAGGCTGGC

ACGAAACTGGTCGATTCGCCAATCTTTCAT

CAGTGGCTGGCCTACGCGCAGCAGTATCG

GGCGCAGAAGGGGATCCACTGGTTCGGAG

ACGACGATATGCTCGACCTGTTTCGAAAAA

CCATGCCGGAAAAAGACGTGGTAACGCTT

CTGCATTTGCTTCGAAACGTCCCGGGCATG

AAAGATCATGGCGATACGATGCAGCGGTT

CTTGTTTTTATCGTCTAAAACCAGCCGAAA

AATGATGCACGACGTGTGGCTGAACTACG

ACGTACCGCCCGAACAAGTTTTCAAGATTT

TACGCTTGGTAAAGGTCAATATGGACGCTG

TGGATACGAACGCAATGTTTATACATTGGC

TTAGGTACGTCAACTTGTACAGGAGCCACA

CAAAAAAAAACGTTTTATCCAGCGTACAA

ATGGTGCATTTCCTTGCGGACACCAAACCG

TTGCGGTCAGAGTGGCAATTTGCCACATTT

TTTGAATCGCTCAAGGACGTCCCTGATTTA

AAGAGGCTGGCTGAAAACATGCAAACTTA

CCTATTCCAAAACTGGCTGCACACGGAGTG

GGACCCGAAGGCTGTGTCGAGTATGCTGG

CCATTCCTTTTCCTACGAGTGCTGTGTATCT

GCCGAAGAACGATCCCATTTACAAGACTTG

GGTGGCGTACACCCTTTACTATACAGAGAG

GAAGGGCGGGGTGTCGTTGCTGAATAAAG

TGAAGACACTGCTCGACAACGACAACCCT

ATCGGCGCACTTACCGCAGCTATGAAAGCT

CAGTGA 

>pDonr_06478_2 

MQTPPGQADKSKLIAHDVLMKTTSLSE

TTIATSSKRFLRLYDAEVRDTVRGDND

VDREERGSSPLLSKVDDLIHKVFKSNPE

QAQIKAWMKSGMHPQTIFDTLRLAKS

TTKQNDDPNLLLWLKLVAAFRAKNGN

QAFSDLDLYYLLLKRSSGDELKILIESF

RKTGALKELGKSMQKSLSGSWVSKTL

QHETGPKIVYDTLRLQEAGTKLVDSPIF

HQWLAYAQQYRAQKGIHWFGDDDML

DLFRKTMPEKDVVTLLHLLRNVPGMK

DHGDTMQRFLFLSSKTSRKMMHDVW

LNYDVPPEQVFKILRLVKVNMDAVDT

NAMFIHWLRYVNLYRSHTKKNVLSSV

QMVHFLADTKPLRSEWQFATFFESLKD

VPDLKRLAENMQTYLFQNWLHTEWD

PKAVSSMLAIPFPTSAVYLPKNDPIYKT

WVAYTLYYTERKGGVSLLNKVKTLLD

NDNPIGALTAAMKAQ 

PITG_07387 

(Avr4) 

52 >pDonr_07387_1 

ATGGATTCTTTAGCTCGTACCGTCAGCGTT

GTTGACAACGTCAAAGTAAAAAGCAGATT

TCTGAGGGCTCAAACGGACGAGAAGAACG

AAGAGAGAGCAACGATAACGCTTGGAGAC

AGGGTTGTTTCCGACAAGGCGGCGACAAA

AGATCTGCTACAGCAGCTTCTTGCACTGGG

CACGCCACTGGAAAAAGTCCAGAAGCAAT

TCCTGAACATACCGCAGATGAAAACATTTG

CGGAGTTGAGCAAACACCCGAACTGGAAA

GCGCTTGACAAATATGAACGGATGCAGTG

GCAGAAGCTAAAGGAGGGCGAAACACTGA

CATTTATGCGTCTTGGCGATCGATTATACT

CTAAAGAGAAAGCGCAAGAACAGCTCCTT

AGGTGGGTTGCGCAGAAAAAACCTGTGGA

GAGTGTATATGATGACCTACAAGTGGCAG

GCTTTGCACATAATACTGTTGCTGCTCGCC

AGAACTGGAGAGCATATATTATGTACGAC

AAGTGGTTTACGGCGGCCTCACAAATGCA

GAGGAACCCGCAGCAGTATGCCAAGTTCG

GCACGGGATATCATTCGGAGCAAAAGACG

>pDonr_07387_1 

MDSLARTVSVVDNVKVKSRFLRAQTD

EKNEERATITLGDRVVSDKAATKDLLQ

QLLALGTPLEKVQKQFLNIPQMKTFAE

LSKHPNWKALDKYERMQWQKLKEGE

TLTFMRLGDRLYSKEKAQEQLLRWVA

QKKPVESVYDDLQVAGFAHNTVAARQ

NWRAYIMYDKWFTAASQMQRNPQQY

AKFGTGYHSEQKTTELFEKWAMEGTH

IKSVITTLKLNGKSASEMANNENFPALL

KYVKLYLDFKPVRDLNAKSRLQARRPI

S 
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ACGGAGTTGTTCGAGAAGTGGGCCATGGA

GGGAACCCATATAAAAAGTGTCATCACGA

CGCTTAAACTCAACGGTAAGTCGGCGTCTG

AGATGGCAAATAACGAGAATTTTCCCGCG

CTCCTGAAGTATGTCAAGTTGTATCTTGAT

TTTAAACCAGTCAGGGACCTTAACGCAAA

ATCCCGTCTCCAAGCTAGACGGCCCATATC

TTAG 

SFI4/PITG_09585 90 >pDonr_09585_1 

ATGGCTGAAGACGAACCTAAGACTCCGGA

GTCCACATCTAGCGCGAACCCGCGTGACA

ATGACCCCGTTATCCAAGAGATCCGTGGAT

TACGGAACTCTGGCATGAAGCTGAACGAC

GCCAAGGACTTTAAAGGCGCCATCGCGAA

GCTACGTGGGGCTATTACACTGCTACACGA

CCGAGTGTTTGGTGAAGGACGTGAGGCCA

TCACCGACCCCAGCGACATCTCGCAGGAC

GCGGCTCTCTACGCCCAGATCCTCAACGAC

TACGGCACGGTACTTATCCGTGCCAAGCAA

TACGACGAGGCCATCGAAGTGCTGGAGGA

CTCGGTAGCGATGGTAGAGAAGATCTACG

GAGACAGCCACCCGTCGCTCGGTCTGTCGC

TGCGTAGCTTGGCCGACGCATACATGGCCA

AGGAGGAGTACAAGATGGCCATTAAAAAG

TACAAAACCCTCCGCAAACATGTCAAAAA

GGGCCTGGAAACGACCCACGAAGCGTACA

TTGAGGCGTCGTTGAGGATTGCCGAGGGGT

ACAAGAAACTGGGCAATACAAAGAAGAAC

TTAAAGGTGCTAAAGGACGCCGTGGAGGC

TCAAAACGGAGAGATCAATGGCCTGACGA

CGGGCATCGCCGAGCTCTACATGGAGCTGT

CGACGGCTCACGTGGCTGTGGGCGAGATC

GATGACGCTCTGAGAGCCGCGGAGGTTGC

AAGTGCGATCTTCCGGCAACGTGACGGCG

AGGACACGCTGTCGTTTGCGTTCAGCTTGA

ATGCTCTGGCCGGCGTCAAGATGCGCCAG

AAGAAGGTGGACGAGGCCATTAAGTTGCT

GGAACAGGCCCACAGAATTGCTGTGCAGA

TCTACGGCGAGAAGGACCCAATCACTCAA

GCTAGCGCAAAGACTCTACGAGAGGTGAA

GGAGTACAAACTCGACTTGCAGGCGCAGA

AGGACGAGCTGTAG 

>pDonr_09585_1 

MAEDEPKTPESTSSANPRDNDPVIQEIR

GLRNSGMKLNDAKDFKGAIAKLRGAI

TLLHDRVFGEGREAITDPSDISQDAALY

AQILNDYGTVLIRAKQYDEAIEVLEDS

VAMVEKIYGDSHPSLGLSLRSLADAY

MAKEEYKMAIKKYKTLRKHVKKGLET

THEAYIEASLRIAEGYKKLGNTKKNLK

VLKDAVEAQNGEINGLTTGIAELYMEL

STAHVAVGEIDDALRAAEVASAIFRQR

DGEDTLSFAFSLNALAGVKMRQKKVD

EAIKLLEQAHRIAVQIYGEKDPITQASA

KTLREVKEYKLDLQAQKDEL 

PITG_12722 4 >pDonr_12722_1 

ATGCTACCCATTGCCAAGGAGTCCATCCCT

ACCATCAAGAACGAAGCCTCACCTGATAT

AGATCGAATAGTAGACGCAGACGGTGGTC

GAATGCTGCGTCGTGCCGAGCAACACGCA

ACAAACGAAGTGGGGGTCGAAGAAGAAAG

ATTCTACACGAAGGCTAAGCAGCTCTTCAA

TCAAGCTATTTACGCTGCGAAGGTGAAGGC

CAACAGTAACGACGCAGGGTATTTTGCCGC

CCAGCTAGCACGTCTAAGGGGGGAGGGCA

AGTAA 

>pDonr_12722_1 

MLPIAKESIPTIKNEASPDIDRIVDADGG

RMLRRAEQHATNEVGVEEERFYTKAK

QLFNQAIYAAKVKANSNDAGYFAAQL

ARLRGEGK* 
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SFI5/PITG_13628 

(PexRD27) 

6 >pDonr_13628_2 

ATGGCCTCCGACCAGAATTCGAACGTTGCA

TCGATCACGAGCCAAGTCCAGCGGCTTCTG

CGGACTCATCACGCTACCATAAAAGTCAAC

GCTGACTCTGAAGAAAGATTCCTGACAGA

ACCCCCGCTGACGACGGATGAAATGATGG

CGATGATGAAGGCAGGGAAGTCTAAAAAT

GCGTACGCTTTCGAGCTGGGTATTGCTGGA

CAAATGGCCGATTTCATCAACAGCGGGCTA

CCAGATATAGAAACGTTCAAGAAGACTCC

GGAGTTCCAGAAGTACGAATTCTACATGA

ACTTCTTGAACGATATGCGGAAGGACGAC

GATTATAAGCCGTTGGTGGAGATGATCAA

GAAGAACAAGGGCGAGACAGAAGCTTTTA

AGACTTTGTTGGTGAAGGTCGAGGATAATG

TAAGCAAGAAGAAGGCTTCTCCGTCGGCC

ATTGTCAAGCTTGATCCTTTAAATAGGGAG

CAGGCTATCGTGGAGAAGATCGAGCTTGCT

CTTAAAAAGAATCAGGCTTTAAATAAGAA

TAAGGCTTCGTTGGAGACGATCGAGCACA

CTGTACGTATGGCAGCCAAGTCCAAACCA

AGCACGTGGAAAATCTTTAAAATTATCTCG

AGGCTTAAAAAATTAAAGCTAAAACGTTA

A  

>pDonr_13628_2 

MASDQNSNVASITSQVQRLLRTHHATI

KVNADSEERFLTEPPLTTDEMMAMMK

AGKSKNAYAFELGIAGQMADFINSGLP

DIETFKKTPEFQKYEFYMNFLNDMRKD

DDYKPLVEMIKKNKGETEAFKTLLVK

VEDNVSKKKASPSAIVKLDPLNREQAI

VEKIELALKKNQALNKNKASLETIEHT

VRMAAKSKPSTWKIFKIISRLKKLKLK

R* 

SFI6/PITG_13959 3 >pDonr_13959_1 

ATGGATCAGGCCAGTGAGTTGAACGTGGA

TGTTCACTCCTCAAATGTTCTCGCTACCGA

GGACACGAGATTTCTTCGAAGTCACCAGAT

AACGGATGACAAGGTCGAAATTAACGAAC

ACGGCGAGGAAGAGAGGATGTCTGGGTCT

AATTTGTTCTCTGCACTGAAGCTGGAGAAA

ATGGGGCGGGATACATCTTACCGCGATAA

GGAGTTCCAGCGTTGGAAAAACTATGGAA

ATTCAGTGGGAGATGTTACTCCCCATGTGC

CAGTTTCTCTCAAAGAAGCGTACGCAACAT

ACTTGCGAATCCGAGAAATGGTTTTGGTCA

ACGACTAG 

>pDonr_13959_1 

MDQASELNVDVHSSNVLATEDTRFLR

SHQITDDKVEINEHGEEERMSGSNLFS

ALKLEKMGRDTSYRDKEFQRWKNYG

NSVGDVTPHVPVSLKEAYATYLRIREM

VLVND* 

PITG_14371 

(Avr3a fam, 

Avr3aEM, 

PexRD7 

58 >pDonr_14371 

ATGATCGACCAAACCAAGGTCCTGGTGTAT

GGGACGCCAGCTCACTACATACACGATTCA

GCCGGCAGAAGACTTCTTCGCAAGAACGA

AGAGAATGAAGAAACGTCTGAGGAGCGAG

CCCCAAATTTCAATTTGGCGAATCTAAATG

AGGAGATGTTTAATGTGGCTGCGTTGACGG

AGAGAGCAGATGCCAAAAAGCTAGCGAAA

CAGCTTATGGGTAATGATAAGCTGGCGGAT

GCTGCATACATGTGGTGGCAGCACAACAG

GGTTACGCTAGACCAGATTGACACGTTCCT

GAAGCTTGCAAGCCGCAAGACGCAAGGCG

CAAAGTACAATCAGATCTACAATAGCTAC

ATGATGCACCTGGGGCTCACTGGATATTAG 

>pDonr_14371 

MIDQTKVLVYGTPAHYIHDSAGRRLL

RKNEENEETSEERAPNFNLANLNEEMF

NVAALTERADAKKLAKQLMGNDKLA

DAAYMWWQHNRVTLDQIDTFLKLAS

RKTQGAKYNQIYNSYMMHLGLTGY* 

PITG_14371 

(Avr3a fam, 

Avr3aKI) 

58 >pDonr_14371 

ATGATCGACCAAACCAAGGTCCTGGTGTAT

GGGACGCCAGCTCACTACATACACGATTCA

GCCGGCAGAAGACTTCTTCGCAAGAACGA

AGAGAATGAAGAAACGTCTGAGGAGCGAG

CCCCAAATTTCAATTTGGCGAATCTAAATG

AGGAGATGTTTAATGTGGCTGCGTTGACGA

AGAGAGCAGATGCCAAAAAGCTAGCGAAA

CAGCTTATGGGTAATGATAAGCTGGCGGAT

GCTGCATACATTTGGTGGCAGCACAACAG

GGTTACGCTAGACCAGATTGACACGTTCCT

GAAGCTTGCAAGCCGCAAGACGCAAGGCG

CAAAGTACAATCAGATCTACAATAGCTAC

ATGATGCACCTGGGGCTCACTGGATATTAG 

>pDonr_14371 

MIDQTKVLVYGTPAHYIHDSAGRRLL

RKNEENEETSEERAPNFNLANLNEEMF

NVAALTKRADAKKLAKQLMGNDKLA

DAAYIWWQHNRVTLDQIDTFLKLASR

KTQGAKYNQIYNSYMMHLGLTGY* 
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PITG_14736 

(PexRD8) 

3 >pDonr_14736_8 

ATGGCAGCCGAAGCCTCCGAGCCCATGCC

CAATATCGCGAAGTATGCATCACCAGAAG

TTTCAGTTCACCTTGGTGCTGAGCGCGAGA

AGAGGCTTTTGCGCTTCGACAGCAACGATT

ATCGCGACGATGACGATGAAGAGGAAAGG

GCGAATGCTGCCAACCTCTTCAACGTCGAC

AAGCTAACGGTGTATGTAAACAAAGCCCA

GAAGCGAACTGCCAACAATGTGAGTGGAA

GCCTCTTGAATTATTTTAAGAGATTGGAAG

CATACGGCTACAGCCCTGTCAAACTCGGTA

ACAGAATTCCTGACGAGGAGTACGACAAT

CTCCGTATGCTGTACCGCAGCTGGTACTAC

CACAACAAGTAA 

>pDonr_14736_8 

MAAEASEPMPNIAKYASPEVSVHLGAE

REKRLLRFDSNDYRDDDDEEERANAA

NLFNVDKLTVYVNKAQKRTANNVSGS

LLNYFKRLEAYGYSPVKLGNRIPDEEY

DNLRMLYRSWYYHNK* 

PITG_14783 6 >pDonr201_14783 

ATGCTCGTGAACTCGAACCAAGCTATGCTC

TCTTCACCAAATGAGCAGCACCAACGTCAA

TTGCGGTCTCACCAGACCCCTGTGGAGGAT

CAGGAACCCGATGAGGAGAGGTCTCTATC

TAAAGCCGAGATGAAGCGGTTATTTGAAG

CGGGGAATTCTTTGGACGATTTTGCTAAGC

ACTTAGGCATTGCTGACGATGTTGTACGTG

CTCAAAGCTCGAACACCGTTCTCCAGCGGC

TCATGCAAACGGACGAGTACATGAAGTAC

TCTACGTATCTCAACTTTCTGTCGAAACAA

AACAAGAAGAAGAAGCCACCTACTTTCTA

CCATTTATAA 

>pDonr201_14783 

MLVNSNQAMLSSPNEQHQRQLRSHQT

PVEDQEPDEERSLSKAEMKRLFEAGNS

LDDFAKHLGIADDVVRAQSSNTVLQR

LMQTDEYMKYSTYLNFLSKQNKKKKP

PTFYHL* 

PITG_15287 

(PexRD1, 

Nuk10) 

96 >pDonr_15287_1 

ATGCTATCTGCCCATCGGGCGCAGATAATG

AACGTCGCGACGTCAGATCTCATCTCACCG

ATCGAGTCTACAGTCCAAGACGACAACTA

CGACAGACAGTTGCGGGGGTTCTACGCTAC

AGAAAATACAGACCCTGTTAACAATCAAG

ACACTGCGCATGAGGATGGCGAGGAGAGG

GTCAATGTCGCCACGGTGCTTGGAAAGGG

GGATGAAGCTTGGGACGATGCACTGATGC

GCTTGGCCTATCAGCACTGGTTCGACGGAG

GCAAAACTAGTGACGGCATGCGATTAATA

ATGGACCTTCCAGCGAAAGGTGAAGCACT

CCGACACCCGAATTGGGGGAAATACATTA

AATACTTAGAGTTCGTTAAGGAGAAAAAG

AAGGAGGCTGCAGACGCTGCGGCAGTCGC

GGCGCTCAAGCGAAGGCGGACTTACAGGG

GATGGTATGTCGACGGGAAAACGGAGAAA

GACGTACGCAAGATTTTCGGACTTCCGGCA

ACAGGAAAAGCCAAGAACCACCCAAACTG

GGCAGATTTTCAGGAATACTTAAACGTCGT

CAGAGAATACTCAAAAGTAGTTTTTAAATA

A 

>pDonr_15287_1 

MLSAHRAQIMNVATSDLISPIESTVQD

DNYDRQLRGFYATENTDPVNNQDTA

HEDGEERVNVATVLGKGDEAWDDAL

MRLAYQHWFDGGKTSDGMRLIMDLP

AKGEALRHPNWGKYIKYLEFVKEKKK

EAADAAAVAALKRRRTYRGWYVDGK

TEKDVRKIFGLPATGKAKNHPNWADF

QEYLNVVREYSKVVFK* 

PITG_16240 

(PexRD12) 

9 >pDonr_16427_1 

ATGTTGACCACGACTGTGGCTGACACGGCC

CAGACGGCAACCAGCATTCTAACTCCTGTT

CTAGCTGGGGAGCCGAACAAACACGTTGC

AACGCGATCTTTGAGAACGCATCCGATAG

ACGACAGCGACGATGGCGAAGAGCGACTG

CTTAATGGTATGACAGATTTTTTCAAGTAC

CACGCTGGAAAGATGAGTCCCGAGCAGCT

TTACAAGTACTTAAACTTAAAAGGACTTGG

TCAAGAAGCCTACAAACACAAGAACTACG

CTAGTTACATTAAGAAGTCGAAGAAGTGG

TGGAAGAACCAGTAA 

>pDonr_16427_1 

MLTTTVADTAQTATSILTPVLAGEPNK

HVATRSLRTHPIDDSDDGEERLLNGMT

DFFKYHAGKMSPEQLYKYLNLKGLGQ

EAYKHKNYASYIKKSKKWWKNQ* 
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PITG_16663 

(Avr1) 

2 >pDonr_16663_2 

ATGTTCGACCACGACAAGGTTCCAAGGACT

GTTGAACGAGGTGGCGGTGCAAGACAACT

GCGCACGGCCACGATGAGCGACGACGAAG

CTAGAGTGTCGAAATTGCCGTCGTTTATCG

AGTCCTTCGTTAAAAACCGAAAAATCGAGT

CTTGGATTCAGAACAAAGTTACTGACGACT

TTGTCCTGAGCGAGCTAAAACTCGTGAGAT

TGCCCGGAACGAGCCTGGCGGACGACCCA

AATTTCAAGCTCTTTCAAAAGTTTAAGATT

GGCGGCTGGCTCGAGGAAAAGGCTACTAC

AACGAAAGCCTGGGAAAACCTTGGCTTGG

ATTCACTCCCATTTGATCAAGTGAGCAAGA

TCGACGAGTTCAAGACTTATACGCAGTATG

TGACGGTGCTTAACAAGAAGGCAAGCAAA

CTCGATATTGATCAGTGGCACGGGCTGTTA

AGTGGAGGATCACCTGAGGAATTGATGGC

CAAAGCAATGATATTGAGGACTTTGGGCA

GAGATGTTCTAGAGCGCAGAGTCATGCTTG

GTGGACATGTTGTGGTACCATTTTAA 

>pDonr_16663_2 

MFDHDKVPRTVERGGGARQLRTATM

SDDEARVSKLPSFIESFVKNRKIESWIQ

NKVTDDFVLSELKLVRLPGTSLADDPN

FKLFQKFKIGGWLEEKATTTKAWENL

GLDSLPFDQVSKIDEFKTYTQYVTVLN

KKASKLDIDQWHGLLSGGSPEELMAK

AMILRTLGRDVLERRVMLGGHVVVPF

* 

PITG_16737 8 >pDonr_16737_1 

ATGACAAGGGAATTGAATATGAGGGCCGC

CCCTAGCGATTCAACTCGCGTTGTCGACTA

CGCCACGACTGAGAGGCTTCTAAGGGCCC

ACAGTAGTGACAAGGAAGAACAAAAAGAA

GAAGAGGAAAGGGCAATTTCGATAAATTT

TTCAAGCCTGGAGAAAATCTTTAAAAAAGT

TACGTCAGCCAAAACTACGGAGCTGCAAG

GAATGCTTAAGGCTGACGAGGCCCTTGGG

AGTGCTTTCAAGACGCTAAAACTTGGTACA

ATGCGGATTGGCAAGGATGGCTCTGTCGAT

CCCAAGATGGTGGCAAAATTTCTGTCAAGT

CGCAATTTCAAGATTTGGTCCCAGCACGCC

GTCAAGATCAACAAAGATGATCCCTATGG

CGAGATGCTTAAAGCACTCACAAATGTCTT

TGGTGAGAAAAATGTGGCGATGATGATCC

TAGTCGGGAACCTGTCCAGAAACTCGCGC

GACGTCGCAAAGAAGTTAGAAAAGGCCCA

GTTCTACAAGTGGTACTTCGTTGATAAGTA

CAAGACAGCAGATGAGGTTTTCACGAACG

TGCTGAAAGCTGATCGAAATAGAATTCATG

GGTATGGTCGGGAGAAAGAAATTTGGGGA

GATTACGCGAAGTACGTCACGACCACAGT

GATGAAATATTGA 

>pDonr_16737_1 

MTRELNMRAAPSDSTRVVDYATTERL

LRAHSSDKEEQKEEEERAISINFSSLEKI

FKKVTSAKTTELQGMLKADEALGSAF

KTLKLGTMRIGKDGSVDPKMVAKFLS

SRNFKIWSQHAVKINKDDPYGEMLKA

LTNVFGEKNVAMMILVGNLSRNSRDV

AKKLEKAQFYKWYFVDKYKTADEVF

TNVLKADRNRIHGYGREKEIWGDYAK

YVTTTVMKY* 

SFI7/PITG_18215 124 >pDonr_18215 

ATGACGTACTCGACTTCAAAGGGGGAGAT

GAATTTAACCGGAACTGTCGAAAATAACC

GCCCGACTCGCTCTCTTCGTGTTGCACCCA

GTGGCGGCAATGGTGAAGAAAGATCGTGG

TCAACCATTTACGGAATTTCTCGATCGAAG

GCGGAGACTGTGAGAGATTGGTTGATGCC

CCGGCTTAACCAAGGAATGGACGTACAGG

CGCTCGCCAGAGAAATGGGGATTACTTCG

AGACAGGCGGCTACGCAGCATCAGAACTG

GGACGCTCTCGTGAAGTACCTGAAGATGTA

TAATTACGCTGTAAGGGGCGAAAAGATGT

CGAAATCGATGGCTGAGAGCGTACTCCTCC

ATAACGTCCTGACCGCAAAGAACAATTTCT

AA 

>pDonr_18215 

MTYSTSKGEMNLTGTVENNRPTRSLR

VAPSGGNGEERSWSTIYGISRSKAETV

RDWLMPRLNQGMDVQALAREMGITS

RQAATQHQNWDALVKYLKMYNYAV

RGEKMSKSMAESVLLHNVLTAKNNF* 

PITG_18670 5 >pDonr_18670_1 

ATGTTCCCGAATCCCGACGAAACTCGGCTC

TTACCAGACACTTTTACCAAAAGATCCCTT

CGGGTCGCAGGCCAAGAAGTTGCCCGGGG

CGACCGGGGCGAAGAGATTGTGAGAGTTA

TAGTCCAGAGTACTAACAAAATCTTCAAGA

GACCGGCGGAAAAAGACATGAGCAAACTG

>pDonr_18670_1 

MFPNPDETRLLPDTFTKRSLRVAGQEV

ARGDRGEEIVRVIVQSTNKIFKRPAEKD

MSKLIAAAKIAMLEKKMAKLSFVGKK

AAK* 
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ATTGCAGCGGCTAAGATTGCGATGTTGGAG

AAAAAGATGGCTAAGCTCTCATTCGTCGGT

AAGAAGGCAGCGAAGTAG 

SFI8/PITG_20303 

(AVRblb2 fam) 

5 >pDonr_20303 

ATGTTCCCAATCCCCGACGAGTCTCGCCCC

TTGTCGAAGACATCTCCTGACACTGGGGCC

ACAAGATCGCTTCGGGTCGAGGCCCAAGA

AGTTATTCAGAGCGGCCGGGGAGACGGAT

ATGGTGGGTTCTGGAAAAACGTTTTTCCGA

GTACTAACAAGATCATCAAGAAGCCGGAT

ATCAAGATAAGCAAACTTATCGCGGCGGC

CAAGAAGGCAAAAGCAAAAATGACGAAGT

CCTGA 

>pDonr_20303 

MFPIPDESRPLSKTSPDTGATRSLRVEA

QEVIQSGRGDGYGGFWKNVFPSTNKII

KKPDIKISKLIAAAKKAKAKMTKS* 

PITG_21388 

(AVRblb1 fam, 

ipiO1, PexRD6) 

54 >pDonr_IPI01_1 

ATGGTTTCATCCAATCTCAACACCGCCGTG

AATTACGCTTCCACATCCAAGATTCGCTTT

CTGTCGACTGAGTACAACGCCGATGAAAA

AAGAAGCTTGCGAGGTGACTACAACAATG

AGGTCACAAAAGAGCCCAACACGTCTGAC

GAAGAGCGGGCGTTTTCTATCTCAAAGTCT

GCGGAATACGTGAAGATGGTACTTTATGG

ATTCAAACTTGGATTTTCTCCTCGCACTCA

GTCCAAGACGGTGTTGCGATACGAAGATA

AACTGTTTACGGCTCTCTATAAATCCGGAG

AGACGCCGAGAAGCCTAAGGACCAAGCAT

CTCGATAAGGCTTCCGCTAGCGTATTTTTC

AACAGATTCAAAAAATGGTACGATAAAAA

CGTTGGCCCTAGCTAG 

>pDonr_IPI01_1 

MVSSNLNTAVNYASTSKIRFLSTEYNA

DEKRSLRGDYNNEVTKEPNTSDEERA

FSISKSAEYVKMVLYGFKLGFSPRTQS

KTVLRYEDKLFTALYKSGETPRSLRTK

HLDKASASVFFNRFKKWYDKNVGPS* 

PITG_21388 

(AVRblb1 fam, 

ipiO4) 

54 >pDonr_IPI04_1 

ATGGTTTCATCCAATCTCAACACCGCCGGG

AATGACGCTTCCACATCCAAGATTCGCTTT

CTGTCGACTGAGTACAACGCCGATGAAAA

AAGAAGCTTGCGGGGTGACTACAACAATG

AGGTCACAAAAGAGCCCAACACGGCTGAC

GAAGAGCGGGCGTTTTCTATCTCAAACTCT

GTGGAAAAAGTGAAGTTGGGATTGTATGC

ATTAAAGATTGCTTTTTCCCCTCGCACTCA

GTCCAAGACGGTGTTGCGATACGAAGATA

AACTGTTTACGTATCTCCATAAATCCGGAG

AGACGCCGGCTAGCTACAAGAACAAGCAT

CCCGATAAGGCTTCCGCTGGCGTATTTTTC

AACAGATTCAAAAACTGGTACGATAAAAA

CGTTGGCCCTAGCTAG 

>pDonr_IPI04_1 

MVSSNLNTAGNDASTSKIRFLSTEYNA

DEKRSLRGDYNNEVTKEPNTADEERA

FSISNSVEKVKLGLYALKIAFSPRTQSK

TVLRYEDKLFTYLHKSGETPASYKNKH

PDKASAGVFFNRFKNWYDKNVGPS* 
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Table 6-3.  Potential SFI5-interacting proteins identified by LC-MS/MS analysis.  

HA-SFI5-expressing protoplasts of S.lycopersicium were immunoprecipitated with anti-HA 

affinity matrix and the eluted protein was subject to mass spectrum analysis. Protein eluted 

from protoplasts expressing HA-SFI1 served as a negative control. The table shows the 

selected proteins that were identified only in the presence of HA-SFI5. 
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