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Abstract

A surfing problem is a control problem of the surfing board to maintain its position on top
of an ocean wave as long as possible. There are some physical and mathematical problems
that have not yet been solved regarding a surfing problem. One of them is on translating a
target inclination problem from an ordinary differential equation (ODE) control system to the
inclination of a surfing board via the distribution of a surfer’s weight. To move the surfing
board swiftly, a correct value of the multiplier, which is notated by σ, is needed on the weight
distribution system. In this work, an investigation has been done on the effect of the multiplier
in an attempt to help moves the surfing board and fulfils the target inclination angle needed
in a simulation by using a smoothed particle hydrodynamics (SPH) method. The result from
this work shows that the best value for the multiplier is σ = 10 that gives the smallest average
positional error of 0.0412 meter for some variations of a given target position. This work
contributes on a better mathematical model for a surfing problem.
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1. Introduction

A surfing problem is a physics problem emerges on a surfing sport when the surfer tries to
balance their surfing board on top of the ocean wave as long as possible. The surfing board is
balanced by shifting the location of surfer’s feet, i.e., shifting their body weight distribution on
top of the board to counterbalance external forces that come from the ocean wave. Mathematical
modelling can be done to understand the motion of the surfing board.

A surfing problem is a relatively new research problem. Previously, research on a mathematical
model of a surfing problem is already done in [1] by simulating an ordinary differential equation
(ODE)-based control system which manipulates the inclination angle of the surfing board depends
on a position, velocity, and observed inclination angle of the surfing board. But some problems
still occur; one of them is about the swiftness of the control system. The control system is still not
fast enough in controlling the surfing board on fulfilling its target inclination angle which is the
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output of the control system. A solution that can be done to overcome that problem is by giving
a correct multiplier on the surfer’s weight distribution system which depends on the input data so
that the surfing board can tilt and follow the target inclination angle. In this research, the effect
of the multiplier on the surfer’s weight distribution system is observed on maneuvering the surfing
board. Later, the capability of the control system is validated via fluid simulations of the whole
system which make use of the smoothed particle hydrodynamics (SPH) method.

Particle simulation methods are frequently used to solve various physics problems which need
material discretization with information that are stored and moved together with particles (La-
grangian frame), e.g., calculation of porosity for material deposition process [2]. Smoothed particle
hydrodynamics (SPH) is one the most popular methods commonly used on solving various prob-
lems related with fluid. In the beginning, SPH is introduced to solve astrophysical problems [3], [4].
After that, SPH is widely used on solving fluid-related physical problems via computational fluid
dynamics (CFD). Some examples of problem solved by an SPH method are ice melting problem
[5], fluid natural convection problem [6], fluid with high viscosity [7], and ocean wave simulation
[8], [9].

A fluid-solid interaction problem Interactions between fluid and solid is a compelling problem
in a computational fluid dynamics (CFD) field to be solved by using an SPH method. Some
research regarding this problem have been done previously on [10], [11]. One method that can
be used to represent the interaction between fluid particle and solid in a particle method is by
discretizing the solid into a set of particles with similar properties with fluid particles and can
interact with fluid particles with the same interaction as fluid-fluid interaction. On some cases, the
fluid-solid interaction needs to be tweaked to suit the problem. The common problem with fluid-
solid interaction is penetration of fluid particles into solid which can be prevented by implementing
an external repulsive force between fluid particles and solid particles. There are several repulsive
force schemes that can be applied to such a problem, one of them is a Monaghan boundary
force (MBF) scheme which is introduced in [12]. But since MBF scheme is based on the fastest
relative speed between fluid particles and solid particles, the magnitude of MBF repulsive force
is occasionally too big for relatively slow-moving particles. A better method is introduced in [13]
which includes particles on domain boundaries in a particle density-updating step which also solves
a particles-deficiency problem near boundaries.

On a surfing problem simulation, a fluid-solid interaction is intensively occurred between an
ocean wave and a surfing board. In this research, a fluid-solid interaction is done by using a pure
hydrodynamic force. A solid body is going through a discretization process and is turned into
a set of particles. Solid particles interact with fluid particles utilizing the exact same interaction
between fluid-fluid particles. The fluid particles penetration problem is solved by fixing the density
of solid particles.

The goal of this research is to improve an ODE model for a control system in a surfing problem,
especially in a swiftness of a surfing board’s movement. To get a better action, the effect of a
weight distribution’s multiplier on a control system is studied here so it can mimic the maneuver
of a surfing board in a real world. In short, to find the optimal value of the multiplier, some
simulations with different values of a multiplier are executed and their result is analyzed. The
more detail explanation about the method used here is discussed in the upcoming parts.

2. Methods

A Smoothed particle hydrodynamics
Smoothed particle hydrodynamics (SPH) is a method that mathematically approximating a
field function f(x) by convoluting those field function with a smooth-enough mollifier function
Ψ(x) which is also known as a kernel function. The approximation can be written as Eq. 1,

f(x) ≈
∫
Rn

f(y)Ψh(x− y)dy, (1)

where Ψh(x) := 1
hΨ(xh ) is a kernel function which distribution is determined by a parameter

h. When h → 0, a function Ψh(x) will be more concentrated on an origin point compared
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with the original function Ψ(x) [14]. The approximation for a derivative of f(x) is written
as Eq. 2,

∂αf(x) ≈
∫
Rn

f(y)∂αΨh(x− y)dy. (2)

A kernel function used in this research is a compact-supported cubic kernel function which
is second-order differentiable which can be written as Eq. 3,

Ψ(x) =
1

4π

 (2− |x|)3 − 4(1− |x|)3, 0 ≤ |x| < 1
(2− |x|)3, 1 ≤ |x| ≤ 2

0, 2 ≤ |x|
(3)

for a 3-dimension case.

To solve the problem numerically with an SPH method, Equation (1) and (2) must be
discretized. A discretized form of a field function f(x) is written in Eq. 4,

f(x) ≈
N∑
i=1

f(ri)Ψh(x− ri)V (Ei). (4)

And a discretized form for a derivative of a field function f(x) is written in Eq. 5,

∂αf(x) ≈
N∑
i=1

f(ri)∂
αΨh(x− ri)V (Ei), (5)

where V (Ei) is a volume of a set Ei around a point ri The most used approximation for
V (Ei) is written in Eq. 6,

V (Ei) =
mi

ρi
, (6)

where mi dan ρi are a mass and density in a point ri, respectively. Equation (4) and (5) will
be used to approximate governing equations that control the movement of all particles in the
system.

B Fluid dynamics
SPH method models a system in the Lagrangian specification. Governing equations used
here for modeling fluid dynamics in the Lagrangian specification are [15]:

(a) Mass conservation, which can be written as Eq.7,

Dρ

Dt
= −ρ div(u) (7)

(b) Momentum conservation, which can be written as Eq. 8

Du

Dt
= −1

ρ
∇p + b (8)

Equation 7 and 8 are parts of a set of Navier-Stokes equations. An energy conservation
equation is not used here since there is no significant energy transfer. A momentum equation
used here is a momentum equation for an inviscid fluid. Viscosity of the fluid in our case
is modeled directly into the SPH method by using a numerical viscosity. D

Dt
operator is a

substantial derivative operator defined as Eq. 9,

Df

Dt
=
∂f

∂t
+ u.∇f, (9)
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for each field function f(x, t) and field velocity u. A substantial derivative operator shows a
change of value of field function f(x, t) with respect to time as the entity that brings those
aforementioned field function moves in a field velocity u.

One of the most common SPH approximation for a mass conservation equation is the one in
its anti-symmetric form which is used in [16]. The approximation can be written as Eq. 10,

dρi
dt

= ρi

N∑
j=1

mj

ρj
(ui − uj).∇Ψh(ri − rj). (10)

with mj , ρi, and ui are mass, density, and velocity in a point rj and time t, respectively. An
SPH approximation for a momentum conservation in its anti-symmetric form which is also
used in [16] can be written as Eq. 11,

dui
dt

= −
N∑
j=1

(
mj

(
pi
ρi

2
+
pj
ρ2j

)
∇Ψh(ri − rj)

)
+ bi, (11)

with pi is a pressure in a point ri at time t. SPH approximations for mass and momentum
conservation which are shown in (10) and (11) are used in this research.

Pressure in a point ri shown in Eq. 13 is calculated by using a Tait’s relation equation which
shows the relation between a fluid density and a fluid pressure. Tait’s relation equation for
an SPH method can be written as Eq. 12 [17], [18], [19],

pi =
c2ρ0
γ

({
ρi
ρ0

)γ
− 1

)
, (12)

where ρ0 is a reference density, c is a speed of sound in a fluid, and γ = 7 is a constant used
for a water-like fluid.

C Rigid body dynamics
A rigid body which has a total mass M which is time-independent can be defined as Eq. 13,

M =

∫
R

ρ(x)dx, (13)

where ρ is a density and R is a configuration of a rigid body in a principal frame. If a rigid
body moves with a velocity U(t) = d

dtX(t) with X(t) is a position of a center of mass of a
rigid body, a linear momentum of those rigid body can be written as Eq. 14,

G(t) = MU(t), (14)

Let us define F i(t) ≡ F (xi, t) as a force works on a point xi located on a rigid body at a time
t and F (t) =

∑
i F

i(t) is a total external force works on a rigid body, a relation between a
total force works on a rigid body and a rate of change of a linear momentum can be written
as Eq. 15,

F (t) =
d

dt
(MU(t)) = M

d

dt
U(t) = MA(t) (15)

where A(t) is a linear acceleration of a rigid body at a time t.
A rotational dynamic of a rigid body can be written in a Euler equation for a rigid body as
Eq. 16 [20],

K̂(t) = ω̂(t)× Jω̂(t) + J ¯̂ω(t), (16)

where K̂(t) = RT (t)K(t), ω̂ = RT (t)ω(t), and ¯̂ω(t) = d
dt ω̂(t).R(t) is a rotational ma-

trix, ω(t) is an angular velocity vector, and a total moment of force (torque) K(t) =
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d
dt (R(t)JRT (t)ω(t))is a rate of change of angular momentum through time. J is a prin-
cipal moment of inertia tensor of a rigid body. The diagonal components of J are written in
Eq. 17, 

J1 := J11 =
∫
R

ρ(x)(x22 + x23)dx,

J2 := J22 =
∫
R

ρ(x)(x21 + x23)dx,

J3 := J33 =
∫
R

ρ(x)(x21 + x22)dx,

(17)

In this research, the interaction between a surfing board and an ocean wave is done via the
fluid-solid particles interaction. A surfing board which acts as a rigid body is discretized
into a set of particles and interact with fluid particles. The difference between solid particles
and fluid particles is in the density. Solid particles density is never updated and always be
the same with the solid reference density, which results in zero interactions between solid
particles.

Same as fluid particles, solid particles also bring information about physical quantities which
are used to calculate the dynamic of a rigid body. In time t, the position vector of each
particle i of a rigid body can be written as ri(t) = (ri,1(t), ri,2(t), ri,3(t)). The position vector
ri(t) is used to calculate inertia tensor J which is used on many calculations for rigid body
dynamics. Diagonal components of J in a discretized form can be written as Eq. 18,


J11 = ρb

∑Nb

i=1(x2i,2 + x2i,3)dx,

J22 = ρb
∑Nb

i=1(x2i,1 + x2i,3)dx,

J33 = ρb
∑Nb

i=1(x2i12 + x2i,2)dx,

(18)

and non-diagonal components can be written as Eq. 19,
J12 = J21 = −ρb

∑Nb

i=1 ri,1ri,2dx,

J13 = J31 = −ρb
∑Nb

i=1 ri,1ri,3dx,

J23 = J32 = −ρb
∑Nb

i=1 ri,2ri,3dx.

(19)

The interaction between a rigid body and fluid particles is calculated by using a pure hydro-
dynamics force. Total force works on a rigid body particle in a position ri can be written as
Eq. 20,

fi = −micV

 N∑
j=1

mj
pj
p2j
∇Ψh(ri − rj)

+ bi

 (20)

where cV = h3

V (Ei)
is a multiplier used to handle a volume discrepancy issue between a

volume on an SPH calculation (V (Ei)) with a volume of a cube with a length h. After that,
a movement of a rigid body is done by calculating total moment of force K(t) and updating
the position of all rigid body particles by following the scheme in [1].

D Mathematical modelling of a surfing problem
The goal of the surfing is to maintain the position of the surfer to be on top of the ocean wave
as long as possible by controlling the inclination angle of the surfing board. The inclination
angle is controlled by using an ODE-based control model which in general can be written as
Eq. 21,

θ̇(t) = a(z(t)− Z̃) + b(V (t)− Ṽ )c(θ(t)− θ̃) (21)

where Z(t) and V (t) are third components of a position vector and a linear velocity vector,
respectively, in a time t. θ(t) is an inclination angle of a surfing board in a time t.Z̃, Ṽ , and
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θ̃ are target values for a position, a linear velocity, and an inclination angle, respectively. a,
b, and c are constant multipliers related with a position, a linear velocity, and an inclination
angle, respectively. θ̇ is a derivative of an inclination angle with respect to time.

In a stable position, when a surfing board is already in a target position, a surfing board
should not move anymore, or in another word, its linear velocity should be zero, Ṽ = 0. A
target position, Z̃, is a given parameter. θ̃ is a target inclination angle needed to stabilize a
surfing board in its target condition. The frame of the system in simulations is illustrated in
Figure 1.

Figure 1. Illustration of the frame of the system.

A linear velocity is defined as a derivative of position with respect to time, Ż(t) = V (t).
Assuming the system is close to a stationary condition, an acceleration of the system can
be modeled as a linear function of a position, a linear velocity, and an inclination angle of a
surfing board. Denoting ξ(t) = (Z(t), V (t), θ(t)) as an unknown parameter in the system, a
simplified ODE model of the system can be written as Eq. 22,

{
Ż(t) = V (t)

V̇ (t) = −µθ(t)− µvV (t)− µzZ(t)− µ0,

θ̇(t) = a(Z(t)− Z̄) + bV (t) + c(θ(t)− θ̄),
(22)

where µ, µv, µz, dan µ0 are constants related to variables that affect linear velocity. By
simplifying µv = µz0 and analyzing the stability of the system mathematically, constant
multipliers a, b, and c can be set to be a = 60

µ , b = 46
µ , and c = −12 [1].

A target inclination angle as an output of the ODE control system is an inclination angle
aimed by a surfer. To satisfy a target inclination angle, a surfer needs to correctly distribute
their body weight force on a surfing board. Those body weight force distribution control
system is a main focus of this research. Body weight force distribution system can be simply
modeled by two forces given on two contact points on a surfing board located at both of
its edges. Total magnitude of both forces must be the same with the weight of a surfer.
Locations of both contact points can be seen on Figure 2. Total magnitude of both forces
must be the same with the weight force of a surfer. The ratio of both forces can be written



2 METHODS 71

Figure 2. Locations of both contact forces on a body weight force distribution system.

as Eq. 23 and 24,

Fc1 = T (t)W, (23)

Fc2 = (1− T (t))W, (24)

where T (t) is a function that determines the ratio of magnitude of both forces and W is a
weight forces of a surfer. Function T (t) can be defined as Eq. 25,

T (t) = 0.5− σ(θ̂(t)−min(θ(t), θm)), (25)

where θ(t) is a target inclination angle from the ODE control system on Eq. 20, θm is a
maximum allowed inclination angle, and θ̂(t) is an observed inclination angle at a time t.
σ is a parameter that controls the rate of change of weight forces ratio with respect to the
difference between an observed inclination angle with a target inclination angle. A clipped
function is used to prevent a surfing board becomes too inclined that can cause a surfing
board sunk into an ocean wave. An inclination angle is chosen to be a negative value when
a surfing board is inclined toward a sky (upward direction).

E Simulation algorithm
In general, for each timesteps in a simulation consists of a calculation of interparticle in-
teractions with an SPH method continued with an ODE solving to get a target inclination
angle. After that, the target inclination angle is forwarded to a surfing board through a body
weight force distribution function. Next, rotational dynamics of a rigid body is calculated
and ended with a position updating process for all particles in the system. Those cycle is
done up to a given maximum simulation time. The algorithm of the simulation can be seen
on Figure 3.
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Figure 3. The algorithm of the simulation with an SPH method.

3. Result and Discussion

An initial configuration of the system used in this research can be seen on Figure 4(a). Before
a simulation started, a relaxation process is done to minimize the energy of the system so that
the simulation can be started on a more stable condition. An initial condition after a relaxation
process can be seen on Figure 4(b).

Figure 4. An initial configuration of the system: (a) before relaxation, and (b) after relaxation.

Simulation is run with reference density of the water is equal to ρ0 = 1000 kg.m/s and for a
solid body is ρb = 100 kg.m/s. Fluid is initialized with an initial velocity toward +z-axis with
magnitude Vf = 2.5 m/s. A kernel function used is a cubic-spline kernel shown in Eq. 3 with a
kernel parameter is set to h = 0.02 m. All particles are initialized in grids with the length of each
grid is set to equal with h. Mass of all particles is set to mi = 0.008 kg. The size of a timestep
is τ = 0.0005 s with a speed of sound in a fluid is set to c = 20 m/s. We assume that the fluid is
inviscid.

The system also has a free boundary condition which is implemented into an SPH method by
using a ghost point technique. Fluid particles that leave a domain up to h will be marked as ghost
points. Ghost points still interact with other particles as usual, but their density is fixed to be the
same with reference density and they will not undergo any changes in their velocity. If a ghost
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point enters the domain again, its status will be returned into a usual fluid particle. In contrast,
any ghost points that are going further than h from the domain will be erased from the system.

To find the best value of σ, here simulations with combinations of various parameters are run
to obtain a combination of parameters that gives a smallest error. An error here is an average of
differences between a third component of vector position of a surfing board (represented by Z) and
a target position (represented by Z̃). Simulations are done with a value of parameter σ in a range
of σ ∈ {0.5, 1, 2, 5, 10, 20, 50, 100} for each Z̃ ∈ {−0.6,−0.5,−0.4,−0.3,−0.2}. The difference is
calculated for each timesteps of simulations and averaged out toward a whole simulation time. An
average of positional error can be seen on Table 1.

Table 1. An average of positional error of a surfing board for different σ.

Z̄/σ 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0

−0.6 8.93e−02 8.60e−02 5.69e−02 5.163e−02 8.03e−02 1.31e−01 6.78e−01 7.00e−01

−0.5 8.01e−02 8.90e−02 4.59e−02 4.59e−02 4.49e−02 2.84e−01 5.78e−01 6.00e−01

−0.4 1.43e−01 1.31e−01 4.39e−02 4.39e−02 3.03e−02 1.84e−02 4.78e−01 5.00e−01

−0.3 2.20e−01 1.35e−01 3.08e−02 3.08e−02 2.77e−02 1.72e−01 1.93e−02 1.63e−02

−0.2 2.79e−01 1.42e−01 3.95e−02 3.95e−02 2.52e−02 2.71e−01 2.61e−01 2.60e−01

Average 1.62e−01 1.13e−01 6.76e−02 4.32e−02 4.17e−02 1.26e−01 4.03e−01 4.15e−01

The best value of σ can be determined by calculating the average of average positional differ-
ences for all values of Z̃ for each value of σ. Those average value can be seen on the last row in
Table 1. Based on the data, when σ = 10 the smallest value of average of average of positional
error is obtained with value 4.17e02. The graph of a surfing board’s position vs. time for various
combinations of parameters can be seen on Figure 5.

Figure 5 shows a position of a surfing board in a z-axis vs. time for various combination of σ
dan Z̃. In general, by using smaller values of σ could prevent overshooting occures on the control
system. But smaller values of σ give slow convergences on the system [21]. In our case, σ can be
seen as a proportional gain parameter (Kp) on a proportional control system [22] in Eq. 26,

u(t) = Kpe(t) (26)

where u(t) dan e(t) are an output of a control system and an error from input signal on a control
system at time t.

On the other hand, larger values of σ give a large control action to the system which leads to a
faster convergence with its own downside: a higher probability of overshoot occurrences. Overshoot
phenomenon can be seen easily in Figure 5 starting from σ = 20. It can be seen clearly from the
graph that for Z̃ = −0.2, Z̃ = −0.4, and Z̃ = −0.6 a surfing board is drifting away out of the
system frame by the ocean wave as a result of an overshoot that happened on a control system.
As the value of σ is getting higher, an overshoot happens faster. An overshoot is a common thing
happens in a proportional control system as the value of a multiplier Kp increases. The comparison
between a simulation without a control system and a simulation with a good control system can
be seen on Figure 6 and Figure 7.
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Figure 5. The third component of a surfing board’s position vs. time for various value of σ.

Figure 6. A visualization of a simulation without a control system.

Overshoot problems in our case can be managed by using a more sophisticated control system
which can do a more fine-tuned control system. The weight force distribution control system can
be modified to implement a proportional-integral-derivative (PID) control system which can give
a better result since it utilizes the result from previous timesteps to predict and control the output
of a control system in upcoming timesteps. Another control system that can be used is a fuzzy
PID control system that can give better control on a non-linear system [23].
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Figure 7. A visualization of a simulation that utilizes a control system with parameters Z̃ =
−0.2, µ = 5, θ̃ = −0.07, dan σ = 10 on some timesteps.

4. Conclusion

The implementation of an ODE-based control system on a surfing board simulation by using
an SPH method is successfully done with good results, proven by its ability on controlling a
movement of a surfing board so it can maintain its position to be always on top of the ocean wave
with some parameters values. One of many parameters that determine its successfulness is σ which
is a multiplier on a weight force distribution control system on a surfing board. On our example
case, the best value for σ is σ = 10 which gives the smallest average of an average of positional
error 4.17 × 10−2 for 10-second simulations The occurrences of overshoot problems still observed
in simulations with a control system, especially with larger values of σ. That problem can be
managed by using a better control system on a weight force distribution control system, such as
by implementing a PID control system.
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