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Detecting product defects is one of the manufacturing industry's most essential processes in quality control. Human 

visual inspection for product defects is the traditional method employed in the industry. Nevertheless, it can be laborious, 

prone to human mistakes, and unreliable. Deep Learning-based Convolution Neural Networks (CNN) has been extensively 

used in fully automating product defect detection systems. However, real-time edge devices installed at the manufacturing 

site generally have limited computing capability and cannot run different CNN models. A lightweight CNN model is 

adopted in this scenario to find a balance between defect detection, model training time, memory consumption, computing 

time and efficiency. This work provides lightweight CNN models with transfer learning for product defect detection on 

fabric, surface, and casting datasets. We deployed the trained model to the NVIDIA Jetson Nano-kit edge device for 

detection speed with better simulation results in terms of accuracy, sensitivity rate, specificity rate, and F1 measure in the 
workplace context of the Manufacturing Industries. 
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Introduction 

The quality of manufactured goods is readily 

impacted during the industrial production process 

because of the shortcomings and constraints of 

working conditions, current technology, and other 

factors. Traditional industrial techniques are being 

replaced by new strategies based on artificial 

intelligence to make decisions on their own, work 

independently, and also continuous learning. 

Delivering products with high quality is most 

important in manufacturing industries. The most 

prominent issue affecting the rate is the product's 

surface defects. So, product surface defect detection is 

required to guarantee the qualification ratio and 

reliable quality. As the Internet of Things has grown 

in popularity, artificial intelligence and computer 

vision have penetrated our daily lives.
1
 Across various 

industries, efforts are being made to reduce labour-

intensive and dangerous old procedures. With the 

advent of Industry 4.0, numerous businesses began to 

concentrate on automating their everyday tasks, 

deploying everything from test automation services to 

product development. Automated technology 

enhanced the production floor and assisted employees 

in avoiding monotonous or laborious activities. 

Edge computing is a distributed computing 
framework that relocates services, memory, and 
processing power to the location where data are 

generated. Deep Learning (DL) has recently been 
very successful in machine learning across many 
application domains, such as computer vision, 
medical diagnosis, agriculture/horticulture, natural 
language processing, and big data analysis.

2–4
 The DL 

depends on high-performance computing platforms 

with much storage space for the data required to train 
such models. Deep learning often uses cloud 
computing to handle the large amount of computing it 
needs. When cloud resources are used, data must be 
moved from its source on the network edge, like 
smart phones and Internet of Things (IoT) sensors, to 

a central location in the cloud. Moving the data from 
the source to the cloud could be a solution, but it has 
some problems, like latency, security, and the ability 
to grow.

5
 Machine-to-machine communication 

protocols allow smart edge devices worldwide to 
communicate with each other and share information 

all the time. Through machine-to-machine 
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communication protocols, smart edge devices 
throughout the globe communicate and exchange data 
continuously. Massive volumes of data are generated 
by a wide variety of similar sensors and endpoints; 
these data can be handled in real-time and utilized to 

construct deep convoluted learning models. End 
devices are considered edges in this context, and these 
are any gadgets, wearables or mobile devices that 
collect data closest to the user. A few of the layers of 
processing and storage that could be present at the 
edge are the device, client premises, and edge servers. 

Deep learning can enable edge devices to integrate 
and interpret unstructured types of information (audio, 
visual, and text) and take corrective measures, even 
though it comes at the expense of greater power and 
performance metrics. Because deep learning resources 
require a lot of computation time and resources to 

process the information streams generated by these 
sensors and edge devices, such information can scale 
quite rapidly. Hence it is vitally important to run the 
algorithms at the edge. Using applications and 
services that operate on the edge already benefits 
many applications. These applications can be much 

enhanced using DL techniques. 
Compared to the growing work on deep learning, 

lightweight models for resource-constrained devices 
using edge computing have more benefits related to 
shared communication and computational resources. 
The main contributions of this work are as follows:  
 

1) Exploring the different techniques for product 

defect detection in the manufacturing industry.  

2) To investigate various lightweight models for 

product fault detection that can be used on 

devices with limited resources.  

3) To improve system response time, conserve 

energy by sending fewer data to the cloud, and 

enhance network robustness, we are investigating 

the history and features of edge computing edge 

devices. The architecture of lightweight CNN 

models with edge devices for manufacturing 

industrial defect detection applications is shown 

in Fig. 1. 

The proposed framework starts with considering 

the dataset for defect detection in the manufacturing 

products of industries. The trained model's accuracy 

depends on the dataset images' quality. Hence, data 

pre-processing is applied to the input images. After 

the pre-processing, the dataset is divided into training 

and testing data. The training data is input to the 

Lightweight CNN model with fewer parameters, and 

the trained CNN model is evaluated with a test 

dataset. If the model achieves good accuracy, then the 

weights and biases are considered for model 

conversion and optimization for deploying on the 

edge devices. The edge devices can detect and 

classify the defects in the manufactured products in 

the industries.  

 

Product Defect Detection Systems in 

Manufacturing Industries 

Quality control is a critical manufacturing element; 

companies use the best technologies to discover 

problems. It is essential in many manufacturing 

processes, notably mass production. Scratches, 

abrasions, pits, and internal holes are defects  

during manufacturing products in complex industrial 

processes because of defects in the machine 

production equipment, design and adverse working 

conditions.
6–7

 Due to continuous use, products may 

rust and wear out quickly. In addition to raising prices 

for enterprises, shortening the usable lives of 

produced goods, and wasting a considerable amount 

of resources, these defects seriously affect individuals 

and their safety. Manual fault diagnosis is excelled by 

 
 

Fig. 1 —Architecture for lightweight CNN Model with edge device 
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automatic fault detection technology. In addition to 

adapting to an inappropriate environment, it functions 

long-term with great accuracy and efficiency. 

Therefore, determining faults is a vital ability industry 

should have to raise the quality of manufactured 

goods without compromising output. Defect-detection 

technology research can lower production costs, boost 

productivity and product quality, and create a solid 

framework for the systematic transformation of the 

industrial sector. 

The use of technology for defect detection is a 

popular topic in both academics and the industry. 

Researchers have yet to categorize the primary 

detection methods, a summary of technology for the 

applications of defect detection, the prevailing 

equipment, and other forecasts. Product defect types 

include surface, casting, textile, and natural defects, 

which can be detected with detection techniques. 
 

Surface Defect Detection System 

Surface defects degrade the performance of 

industrial products. Manufacturers have invested 

significant effort in examining product quality and 

looking for surface defects. Machine vision-based 

techniques for surface defect detection have gained 

prominence in recent years due to their capacity to 

overcome various limitations of physical detection, 

poor real-time performance, low accuracy, and high 

labour intensity. To a certain extent, the primary 

research discusses surface defect detection systems. 

The defect detection technique for ceramic tile 

surfaces can be achieved using deep learning.
 
It is 

demonstrated in the literature that a Mask Region-

based Convolutional Neural Network (Mask R-CNN) 

can be used to construct a pixel-level instance 

segmentation approach.
8
 A dynamic bottle inspection 

system has been modelled using an Artificial Neural 

Network (ANN) trained by the differential evaluation 

(DEA), Back Propagation (BP), and Support Vector 

Machine (SVM) methods to categorize the defect 

images.
9
 Similarly, a classifier employing the 

characteristics of image patches extracted from a 

trained Deep Neural Network (DNN) is also 

considered in the existing work available in the 

literature.
10 

Further, a high-resolution Automated 

Optical Inspection (AOI) system is suggested for 

parallel computing.
11

 
 

Casting Defect Detection System 

Casting defects damaging the end product's quality 

are unavoidable during the process.
12

 If defects were 

not detectable, critical mechanical components would 

fail, so to avoid errors, each component must be 

thoroughly inspected. Early defect detection aids in 

the early discovery of defective items throughout the 

production process thus saving time and money. As a 

result, many academics have investigated defect 

detection-related applications and technologies to 

provide references for defect detection technology 

applications and studies. 

Using the Maximum Between-Class Variance, the 

authors built a defect identification method based on 

original image thresholding.
13

 In, a system for 

automatic defect detection in aluminium castings was 

proposed based on a two-step analysis: radioscopic 

image recognition and tracking. In work, the Phase-

Only Fourier Transform (POFT) is used to detect 

saliency, significantly improving vulnerable regions.
14

 

In the work, the authors employed the anchor box 

initialize clustering technique to construct an 

enhanced You Only Look Once (YOLOv3) 

algorithm.
15

 An in-depth convolution neural network 

developed, centre-peripheral difference calculation 

approach based on selective attention mechanism.
16

 

Many cutting-edge object analyzers are utilized to 

localize casting defects when the feature extraction 

layer is detached from the object identification 

architecture. 
 

Fabric Defect Detection System 

Fabric fault diagnosis has long been a focus of 

computer science and technology study. Fabric 

defects come in various forms, produced mainly by 

process issues and machine failures. Defects will 

reduce the end product's quality, resulting in a 

significant waste of all types of resources.
17

 This 

section describes and categorizes fabric defect-

detecting technologies in a broader context. 

Fabric Defects Analysis System (FDAS) has been 

proposed as a novel method for defect categorization 

in woven textiles based on visually detectable faults 

that do not require prior information.
18

 The approach 

central spatial frequency spectrum is presented to 

improve the efficiency of the analysis process and 

detect structural defects in fabrics.
19

 A successful 

automated fabric inspection system for multi-class 

defect detection and fabric categorization is proposed 

using geometrics and texture information to capture 

visual features. Fabric analysis is done using digital 

images. With the image capture device, the 

recognition system acquires digital fabric images and 

transfers them for processing to determine if the 

fabric is defect-free, or defective.
20

 A unique method 
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for finding defects in fabric images incorporates the 

Curvelet Transforms (CT) and the Gray-Level Co-

occurrence Matrix (GLCM).
21

 These methods give a 

reliable descriptive basis for fault textures derived 

from various images.  

DST-PCA is a novel feature extraction method for 

detecting faults in knitting fabrics.
22

 The features are 

obtained using the Discrete Shearlet Transform 

(DST), then optimized for a three-layer ANN using 

Principal Component Analysis (PCA). A visual 

saliency-based defect identification technique was 

described to detect fabric flaws in patterned and non-

patterned images. Histogram features are derived 

using Context-Aware (CA) saliency maps, which are 

subsequently fed into an SVM for classification.
23

 The 

Multi-Scale Convolutional Denoising Auto-Encoder 

(MSCDAE) is a technique for fabric defect detection 

centred on networks. The method reveals problematic 

regions using the residual reconstruction maps created 

by the CDAE networks, increasing the model's 

robustness.
24

 A method for detecting defects of fabric 

is based on the centrenet, a neural network with high 

accuracy and detection speed.
25

 The SFC architecture 

includes the Self-Feature Distillation (SFD) and Self-

feature Reconstruction Module (SRM).
26

 A modified 

Resnet-50 network is used to extract the feature map, 

and three independent convolutional layers are used to 

determine the item as a point with categorization 

information, centre offset, and box size.  

An overview of product defect detection systems in 

manufacturing industries is described above with 

various features, reduced human intervention, and 

optimized quality. These systems are not limited to 

deep learning features. There is a lot of scope in using 

deep neural networks with edge computing which 

attains more accuracy with low latency and high 

efficiency. 
 

Lightweight Network Models 

Deep learning is an enthralling subfield of machine 

learning. Massive amounts of data are used to train 

machines to perform tasks previously performed by 

humans. Some of the most intriguing and complex 

tasks involve figuring out how perception works, 

identifying what's in an image, and helping self-

driving automobiles explore and interact with their 

environment. It represents cutting-edge of computer 

vision and speech recognition technology. Its 

computational complexity has reduced its adoption in 

various fields, including computer vision and 

language processing. 

The DNN design space is vast and empirically 

investigated. It is highly beneficial in computer vision 

and image classification. In recent years, networks with 

a specific number of layers, kernels, and activation 

functions, among other factors, have been developed, 

focusing on CNN's. Deep CNN architectures are 

exceptionally computationally demanding. As a result, 

lightweight CNN architectures for edge computing are 

required. The lightweight CNN models are used to 

improve the intelligence of small devices with limited 

hardware resources. 

The deep neural networks are all focused on 

accuracy. Less accurate networks are regarded as the 

worst and are therefore excluded from further 

examination. However, when measures such as cost, 

performance, energy consumption, and hardware size 

are considered, the precise networks are not always 

improved. Allowing an uncertain drop in accuracy 

can occasionally result in a significant reduction in 

the number of parameters and procedures in a model. 

The effort required to run extensive networks on 

mobile and end devices is substantial, and in these 

circumstances, for network accuracy, the direction has 

been trade-off the device resource deployment. As a 

result, numerous network models geared toward 

mobile and end devices have been developed. This 

section describes some of these models. 
 

MobileNet 

Constructing a lightweight deep neural network 

divides the convolution into depth-wise and point-

wise. Furthermore, it offers two simple hyper 

parameters, namely the width multiplier and the 

resolution multiplier, allowing to development of tiny 

models with zero latency that match the design 

requirements of mobile end devices. MobileNet 

excels in terms of resource/accuracy trade-off. It only 

provides excellent accuracy with limited resources. 

The lightning-fast MobileNet architecture is  

ideal for real-time applications. Compared to 

MobileNetV1, it is more efficient in terms of accuracy 

and speed. MobileNet was later improved to 

MobileNetV2, which included shortcut connections 

and in-between data encoding to minimize the sum of 

operations and weights.
27

 The bottleneck residual 

block has replaced the primary building block.  
 

SqueezeNet 

SqueezeNet is a network that has comparable 

accuracy to AlexNet but with 50 fewer parameters.
28

 

More than a few policies were employed to 

accomplish the significant reduction in parameters: 
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(1) moderate the number of inputs of 3×3 filters; (2) 

replace 3×3 filters with 1×1 filters; and (3) down 

sample the network with pooling layers. SqueezeNet 

begins with a single convolution layer (conv1), 

followed by eight fire modules (fire2 to fire9), and 

then a final convolution layer (conv10). The Fire 

module is the SqueezeNet design's base, and it 

consists of two layers: a squeeze convolution layer 

with only (1×1) filters and an expanded layer with a 

combination of (1×1) and (3×3) convolution filters. 
 

ShuffleNet 

ShuffleNet is a lightweight CNN model with 
minimal computational resources for mobile devices. 
It comprises three levels of ShuffleNet units stacked 
on top of each other.

29 
The ImageNet classification 

tasks are performed better than MobileNet. In order to 
reduce the computation costs while retaining 
accuracy, the ShuffleNet design employs two novel 
processes. Stride 2 is used as the first building piece 
in each stage. Each stage's output channels are the 
same, while the next ones are doubled. Point-wise 

group convolution and channel shuffle are two of 
these operations. The shuffle operation channel 
enables the partition of each group's channels into 
several subgroups, which are subsequently fed to each 
group in the following layer. 
 

CondenseNet 

CondenseNet uses grouped convolutions; before 
training, the output maps are separated into G groups 
of the same size.

30
 During training, it learns  

which to group when the channels are randomly 
shuffled. Pruning is also integrated with another 
hyperparameter, C. 1/C parameters are pruned at the 

close of every condensing stage. Following the 
condensing stage, an additional optimization stage is 
conducted to remove less essential feature maps. 
However, it attains similar accuracy to ShuffleNet, 
with around half the parameters. 
 

PeleeNet 

PelleNet is efficient embedded platform 
architecture comprising four rounds of feature 
extraction and a stem block; each stage has a stride 

two average pooling layer, except for the last layer.
31 

The PeleeNet model is 66% more compact than the 
MobileNet model. It is 1.8x faster and achieves higher 
precision on ImageNet ILSVRC 2012 using NVIDIA 
Jetson T×2 than the two MobileNet variants. 
 

NASNet 

NASNet begins with an overall architecture and a 

set of non-predefined blocks rather than training a 

predetermined network.
32 

The two types of blocks in 

the architecture are normal (maintains the feature 

maps size) and reduction (lowers the feature maps 

size by 4). A reinforcement learning search strategy is 

used to control the structure of the blocks.  

To restrict the processes and parameters, every 

network experimented with several main module 

topologies. The lightweight CNN models described 

above are all categorized according to model 

complexity. The lightweight network models are 

approximately ten times faster and contain fewer 

parameters than Deep Neural Network models but are 

less accurate. 

 

Edge Computing 

The practice of physically bringing compute power 
closer to the source of data, which is typically an IoT 
device or sensor, is known as Edge Computing (EC). 
It is named after the method of delivering computing 

power to a device's or network's "edge". By 
processing data at the network's edge, edge computing 
decreases the need for big data to travel among 
servers, the cloud, and devices or edge locations. The 
intelligence at the edge domain can be achieved by 
model partitioning, simplification, and the IT 

industry's latest hardware and software solutions. 
Therefore, EC and Intelligent manufacturing with 
information-enabled operations provide vast 
opportunities to enhance business performance. Edge 
computing has the following benefits: Lower network 
latency, increased compute, storage and network 

capacity, network bandwidth expansion, an increase 
in overall system response time, Node-aware security 
and privacy, At-node fault tolerance and mitigation, 
and reduced the amount of data sent to the cloud to 
save energy. 

Integrating computer vision and AI into the IoT 

and edge device prototypes is now more accessible to 
the improved capabilities of the Intel Neural Compute 
Stick. The NVIDIA Jetson Nano Developer Kit is a 
compact but powerful computer that simultaneously 
operates multiple neural networks for speech 
processing, image classification, segmentation, and 

object detection. It explores the major supporting 
hardware for edge intelligence, including specialized 
AI processors and standard parts for edge nodes. 
OpenMV aspires to be the "Arduino of Machine 
Vision" by creating Python-powered machine vision 
modules, low-cost and scalable. Machine vision 

algorithms are simple to run on the OpenMV Cam; to 
track, and detect faces, colours, and more in seconds 
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and then control I/O pins in real time. The 
Thundercomm TurboX AI Kit is a high-performance 
embedded development device based on Qualcomm 
SDA845 processors. The TurboX AI Kit is designed 
to aid in developing on-device AI applications in 

robotics, augmented reality/virtual reality, intelligent 
cameras, automotive, smart retail, smart factory, 
smart home, and smart city. 
 

Experiments and Discussion 

The proposed framework runs on a DELL Power 

Edge R740 Server with an Intel Xeon Gold 6226R-

2.9G processor, 128 GB of RAM, and an NVIDIA 

Quadro RTX8000 GPU - 48 GB of GDDR6 memory. 

The deep learning framework PyTorch and the 

Ubuntu operating system were used in the 

implementation. All edge research was conducted 

using the Jetson Nano-kit. 
 

Dataset 

The fabric defect dataset, the surface of ball screw 

drives dataset, and the submersible pump impeller 

dataset were used to assess the lightweight CNN 

Models. The aliyun-FD-10500 fabric defect detection 

dataset contains 10500 images divided into seven 

classes.
33

 The surface of the Ball Screw Drives 

Dataset
34

 can contain 21835 images classified as "P, 

N," where P denotes surface failures known as pitting 

(also known as pitting (s)) and N denotes no pitting 

(no surface failures). The total number of images in 

the submersible pump impeller casting defect 

detection dataset
35

 is 7340 images with two classes. 

The datasets summary report is displayed in Table 1.  
 

Data Augmentation 

On three datasets, data augmentation was  

done to improve the model's robustness. Random 

transformations are applied to the image scale, 

ranging from 100 to 150 percent, shear from 0 to 30 

degrees, flip from 0 to 30 degrees, and rotation from  

0 to 45 degrees, as shown in Table 2.  
 

Fine-Tune the Hyper Parameters 
The parameters utilized for testing to fine-tune the 

model are shown in Table 3; they include batch sizes 

ranging from 16 to 64 and 25 to 100 epochs, as well 

as learning rates ranging from 0.01 to 0.0001. After 

considerable testing, the batch size, learning rate, and 

a number of epochs were found to be 0.001, 50, and 

32, respectively. 
 

Result Analysis 

We examined the pre-trained model, applied the 

fine-tuning techniques, and performed the 

experiments on three datasets. The Aliyun-FD-10500 

dataset used MobileNetV2; the model's test accuracy 

and training accuracy achieved are 96.87% and 

98.25%. The surface of the Ball Screw Drives dataset 

with the CondenseNetV2 model achieves an accuracy 

of 98.08%, and the Casting Defect Detection  

dataset with the ShuffleNet V2 model achieves an  

accuracy of 99.58% classification results are shown in 

Table 4. 

Table 4 — Classification report 

Dataset Lightweight 

CNN Model 

Accuracy 

(%) 

Precision  

(%) 

Recall  

(%) 

F1-Score  

(%) 

Aliyun-FD-10500 MobileNetV2 96.87 96.87 97.04 96.87 

Surface of the Ball Screw Drives ShuffleNetV2 99 100 99 99.58 

Casting Defect Detection CondenseNetV2 98.08 98.5 98.5 98.5 
 

Table 1 — Datasets summary report 

Dataset name Dataset 

size 

Number of classes Application 

Aliyun-FD-10500 10500 7 (stain, broken end, 

hole, felter, crack, 

broken picks, and 

normal) 

Fabric Defect 

Detection 

Surface of the 

Ball Screw Drives 

21835 2(Surface failure, No 

Surface failure) 

Surface Defect 

Detection 

Casting Defect 

Detection 

7340 2(OK, Defective) Casting Defect 

Detection 
 

Table 2 — Image transformations used for dataset augmentation 

Parameters Value 

Scale Random between 100 and 150% 

Rotation Random between 0 and 45° 

Horizontal flip Random 25% 

Vertical flip Random 25% 

Shear Random between 0 and 30° 
 

Table 3 — Training and testing phase parameters 

Parameters Value 

Optimizer SGD 

Loss Cross Entropy 

Learning rate 0.001 

Batch Size 32 

Activation function ReLU6 

Alpha 1.0 

Epochs 50 
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Conclusions 

Defect detection is one of the most crucial parts of the 

manufacturing industry to ascertain product quality 

while delivering to the customers. I4.0 concentrates on 

automated processes or devices for defect detection in 

the quality-checking phase of the products. The 

experimented lightweight CNN models for product 

defect detections with edge devices achieve highly 

accurate results in detecting the defects. Edge computing 

is one technology used to incorporate the models with 

intelligence on the hardware devices. Most edge devices 

will include machine intelligence since deep learning has 

made substantial advancements recently, enabling 

lightweight CNN models to run exact algorithms on 

hardware with constrained resources. Relating deep 

learning model services to the edge has allowed 

numerous product defect detection in industrial 

applications, including surface, casting, and fabric, to 

execute with real-time constraints. The developed model 

of this research work is tested with three different 

datasets for each type of surface, casting and fabric 

defect. The work can be extended by considering 

multiple types of defects in each category of the 

products in manufacturing industries. 
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