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aus Hildesheim
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Abstract

In this thesis we present a new secret sharing scheme based on binary error-correcting

codes, which can realize arbitrary (monotone or non-monotone) access structures.

In this secret sharing scheme the secret is a codeword in a binary error-correcting

code and the shares are binary words of the same length. When a group of participants

wants to reconstruct the secret, the participants calculate the sum of their shares and

apply Hamming decoding to that sum. The shares have the property that, when

the group is authorized, the secret is the codeword which is closest to the sum of the

shares. Otherwise, the sum differs strongly enough from the secret such that Hamming

decoding yields another codeword.

The shares can be described by the solutions of a system of linear equations which

is closely related to first order Reed-Muller codes. We consider the case that there are

only two different Hamming distances from the sums of the shares to the secret: one

small distance k for the authorized sets and one large distance g for unauthorized sets.

For this case a method of how to find suitable shares for arbitrary access structures is

presented.

In the resulting secret sharing scheme large code lengths are needed and the security

distance g is rather small. In order to find classes of access structures which have more

efficient and secure realizations, we classify the access structures such that all access

structures of one class allow the same parameters g and k. Furthermore we study

several changes in the access structure and their impact on the possible realizations.

This gives rise to special classes of access structures defined by veto sets and

necessary sets, which are particularly suitable for our approach.
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Zusammenfassung

In dieser Arbeit stellen wir ein neues Secret Sharing Scheme basierend auf fehlerkorri-

gierenden Codes vor, mit dem beliebige (also auch nicht monotone) Zugriffsstrukturen

realisiert werden können.

Das Geheimnis ist ein Codewort in einem binären fehlerkorrigierenden Code und

die Teilgeheimnisse sind binäre Wörter derselben Länge. Wenn Teilnehmer das Geheim-

nis rekonstruieren wollen, bilden sie die Summe ihrer Teilgeheimnisse und wenden

Hamming-Decodierung auf das Ergebnis an. Die Teilgeheimnisse sind derart beschaf-

fen, dass für alle zulässigen Konstellationen das Geheimnis das nächstgelegene Code-

wort ist. Andernfalls ist der Abstand der Summe zum Geheimnis so groß, dass

Hamming-Decodierung ein anderes Codewort liefert.

Die Teilgeheimnisse können durch Lösungen eines linearen Gleichungssystems be-

schrieben werden, welches in engem Zusammenhang zu Reed-Muller Codes erster Ord-

nung steht. Wir betrachten den Fall, dass es nur zwei verschiedene Hamming-Abstände

von den Summen der Teilgeheimnisse zum Geheimnis gibt: ein kleiner Abstand k für

die zulässigen Konstellationen und ein großer Abstand g für die unzulässigen. Für

diesen Fall stellen wir eine Methode zur Erstellung passender Teilgeheimnisse vor.

Die Codelängen im resultierenden Secret Sharing Scheme sind jedoch sehr groß

und die Sicherheitsabstände g sind eher klein. Um Klassen von Zugriffsstrukturen

zu finden, die effizientere und sicherere Realisierungen zulassen, klassifizieren wir alle

Zugriffsstrukturen, so dass alle Zugriffsstrukturen in einer Klasse dieselben Parameter

g und k erlauben. Außerdem untersuchen wir die Auswirkung einiger Änderungen an

der Zugriffsstruktur auf die möglichen Parameter.

Spezielle Klassen von Zugriffsstrukturen, die über Vetomengen und notwendige

Mengen definiert sind, erweisen sich als besonders geeignet für unseren Ansatz.
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Chapter 1

Introduction

1.1 Sharing Secrets

The security of many protocols for digital transactions is based on the secrecy of some

sensitive data. These “secrets” can be, for example, passwords or private keys in a

public-key cryptosystem, which are used for digital signatures.

There are situations, where a secret has to be provided to a group of users, which

are, viewed individually, not entirely trustworthy. Only certain groups of participants,

which are considered as trustworthy, should have access to the secret. Furthermore,

when storing highly sensitive data it might be advisable to split it up into pieces and

store these pieces in different locations. The single pieces should provide as little

as possible information about the data and only if a minimum number of pieces is

combined, the original data should be recovered. This increases the required effort for

an attacker significantly.

In both cases the use of a secret sharing scheme can be helpful. As the name

suggests, a secret sharing scheme is a method of sharing a secret among a set of

participants. For a given secret the so-called dealer calculates suitable shares and

distributes them to the participants. The shares shall have the property that only

certain predefined subsets of participants are able to reconstruct the secret from their

shares. These subsets are called authorized and the set of all authorized subsets is

called access structure. The remaining subsets are called unauthorized. They should

learn as little as possible about the secret from their shares.

Secret Sharing Schemes were introduced independently by Shamir [35] and Blakely

[7] in 1979. Both schemes are designed to realize so-called threshold access structures,

where all sets of participants are authorized if and only if their cardinalities reach a

predefined threshold. In 1991 Simmons et al. proposed a secret sharing scheme which

can be used to realize all monotone access structures ([27]). In these access structures

all supersets of authorized sets are also authorized. For further reading on monotone

secret sharing we recommend the surveys [36] and [3].

It depends strongly on the access structure if there exists a suitable secret sharing

scheme to realize it. Almost all secret sharing schemes are limited to special types of
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access structures, especially to monotone access structures.

However, there are many scenarios that require more general access structures and

it is worth developing secret sharing schemes to realize them. Suppose, for example,

that the participant set consists of two disjoint sets A and B and that the recon-

struction of the secret should be possible if and only if at least as many participants

from A as from B are involved. This access structure is non-monotone: Consider an

authorized set A∪B, A ∈ A, B ∈ B. That means |A| ≥ |B|. When we add more than

|A|− |B| participants from group B, the resulting set is unauthorized since it contains

more participants from B than from A.

Another example of non-monotone access structures are those, where certain par-

ticipants have veto power. That means there is a set V of participants, such that

all sets B with B ∩ V 6= ∅ are unauthorized. This access structure is non-monotone

since for all authorized sets A and all participants v ∈ V the superset A ∪ {v} is

unauthorized.

By now very little is yet known about secret sharing schemes realizing arbitrary

access structures. The only exception is a secret sharing scheme presented by Schulze

[34]. He proposed a linear geometric construction to realize arbitrary access structures.

However, depending on the access structure, linear spaces of very large dimensions are

needed.

In this work we present a new secret sharing scheme based on error-correcting

codes that realizes all kinds of access structures.

1.2 Our Approach towards Secret Sharing

Consider the following secret sharing scheme on the participant set T = {T1, . . . , Tt}.
The secret as well as the shares are binary words of the same length n and the recovery

of the secret is done by adding the shares in the vector space Zn2 . Then, for example,

the access structure Γ = {A ⊆ T : Tj ∈ A} for a fixed j can be realized easily by

assigning the secret s as share to the participant Tj and the zero word of length n

to each of the other participants. When a group of participants tries to reconstruct

the secret they add their words and receive s if Tj takes part in the reconstruction.

Otherwise they receive the zero word and learn nothing about the secret. The security

and efficiency of this secret sharing scheme can hardly be topped, but the example is

unrealistic as actually no secret sharing scheme is needed. Furthermore, most access

structures have no realizations like that. For example Γ = {A ⊆ T : |A| = 1} cannot

be realized with this method if there are three or more participants: Each participant

needs to receive the secret as a share and therefore each set with an odd number of

participants gains the secret.

We improve this concept by sharing codewords of an error-correcting code C ⊆ Zn2 .

Thus we can allow the sums of shares of the authorized sets to differ a little bit from

the secret. Using a decoding algorithm this error can be corrected if it does not exceed

the error-correction capability of the code C and the authorized sets receive the secret
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codeword s. That means, when a group of participants is authorized, we want the

secret to be the codeword which is closest to the sum such that Hamming decoding

yields the secret. Otherwise, when the participants are unauthorized, we want the sum

of their shares to differ strongly enough from the secret such that Hamming decoding

outputs another codeword.

1.3 Outline of this Thesis

This work is organized as follows.

In Chapter 2 we give an overview of the fundamentals of secret sharing schemes.

We start with the formal definition of secret sharing schemes and introduce the terms

perfectness and rate. Then we present two well known secret sharing schemes which

realize threshold structures and general monotone access structures. Furthermore,

we describe Schulze’s secret sharing scheme which realizes arbitrary access structures.

Finally, we have a look at management models of secret sharing schemes which include

another trusted entity, the combiner.

Chapter 3 summarizes the fundamentals of error-correcting codes. This includes

terms like the error-correction and detection capability, the minimum distance and the

covering radius of a code. Furthermore we deal with the weight distribution of a code

and its dual code and their connection given by the MacWilliams identity. Finally, we

present four important families of codes where we focus on Reed-Muller codes, which

play an important role in this work.

In Chapter 4 we present our new approach towards secret sharing based on error-

correcting codes. We start with an overview of the current state of research. Then

we turn to our approach and develop a method of how to find suitable shares for all

kinds of access structures. For this purpose the structure of the shares is extensively

studied. We restrict ourselves to the case that the share sums of all authorized sets

have the same distance k to the secret and that all sums of the unauthorized sets have

the distance g. It turns out that large code lengths are required and that the distance

g is rather small.

The rest of this work deals with the search for access structures which allow more

favorable parameters.

Chapter 5 is about the classification of access structures such that all access struc-

tures in the same class allow the same parameters b1, g, k, where b1 is the weight of

the secret. Provided that there is one access structure with favorable parameters, this

gives us the possibility to identify a whole class of access structures with these param-

eters. We also present a refinement of this classification such that all access structures

in the same refined class also have the same suitable codes.

In Chapter 6 we present several techniques of how to construct new access struc-

tures from already given access structure and study their impact on the possible pa-

rameters b1, g, k and the suitable codes. These techniques are the transition from

an access structure to its dual access structure (which consists of the unauthorized
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sets), the embedding of access structures into larger participant sets, the symmetric

difference of an access structure with an unauthorized set, the intersection of access

structures and the removal of one authorized set.

In Chapter 7 we use the results of Chapter 5 and 6 to identify special classes of

access structures which allow very good parameters. On the one hand these are access

structures related to Reed-Muller codes. On the other hand certain access structures

defined by veto sets and necessary sets have favorable parameters.

Chapter 8 summarizes the results of the previous chapters and gives a brief outlook

on possible further work.



Chapter 2

Basic Concepts of Secret Sharing

In this chapter we give an overview of the basic concepts of secret sharing. We intro-

duce the basic definitions and methods and describe the most commonly known secret

sharing schemes. Furthermore, we describe Schulze’s scheme which realizes arbitrary

access structures. We start with the formal definition of secret sharing schemes in

terms of distribution functions as Stinson proposed in [37].

2.1 Basic Definitions

Definition 2.1. Let T = {T1, . . . , Tt} be a set of participants. The subsets of T which

should be able to recreate the secret from their shares are called authorized. The other

subsets are called unauthorized. The set Γ of all authorized subsets is called access

structure.

According to our definition any subset of P(T ) is an access structure. However,

there are types of access structures which appear to be more natural than others and

have been widely studied. The most prominent types are the following.

Definition 2.2. (a) An access structure of the form Γ = {A ⊆ T : |A| ≥ α} is called

(|T |, α)-threshold structure with threshold α.

(b) An access structure with the property that for all A ∈ Γ any superset B ⊇ A

is also authorized is called monotone. Otherwise we call the access structure

non-monotone.

It is easy to see that threshold structures are monotone. For a monotone access

structure Γ let

Γmin = {U ⊆ T : U ∈ Γ and V /∈ Γ for all V ⊂ U}

be the set of all minimal authorized sets and

Γmax = {U ⊆ T : U /∈ Γ and U 6⊂ V for all V ⊆ T , V /∈ Γ}

5
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be the set of all maximal unauthorized sets with respect to Γ. Γmin and Γmax uniquely

characterize the monotone access structure Γ.

Definition 2.3. A secret sharing scheme on a participant set T which realizes the

access structure Γ is a 6-tupel (T ,Γ,S,K,F , r) with the following components:

(a) T = {T1, . . . , Tt} is a non-empty participant set.

(b) Γ is an access structure on the participant set T .

(c) S is the set of all possible secrets that can be shared with the scheme.

(d) K denotes the set of all possible shares.

(e) F =
⋃
s∈S
Fs is the set of the distribution functions. For each secret s ∈ S each

distribution function fs ∈ Fs assigns appropriate shares kj to the participants

Tj.

fs : T → K
Tj 7→ kj for all j = 1, . . . , t

(f) r is the recovery function. For each set of shares r outputs the secret s if

the shares come from a distribution function for s and if the related group of

participants is authorized. Otherwise r outputs a definitely different value s′ ∈ S,

s′ 6= s, or a random element of S. This depends on the concrete realization of

the secret sharing scheme.

r : P(K) → S

{kj1 , . . . , kj`} 7→


s if {kj1 , . . . , kj`} = fs ({Tj1 , . . . , Tj`})

with {Tj1 , . . . , Tj`} ∈ Γ,

s′ otherwise.

We use the term “function” in a general sense as random choices are involved.

The computation of the shares and their distribution to the participants are per-

formed by a trusted entity, the so-called dealer.

All components of a secret sharing scheme are public. The security of the scheme

depends on the structure of the shares. They have to be constructed in a way that the

shares of each unauthorized subset provide little to no information about the secret.

So-called perfect secret sharing schemes provide maximum security.

Definition 2.4. A secret sharing scheme (T ,Γ,S,K,F , r) is called perfect if for all

secrets s ∈ S and all distribution functions fs ∈ Fs the following equation holds:

p (s| {kj1 , . . . , kj`}) = p(s)
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for all {kj1 , . . . , kj`} = fs ({Tj1 , . . . , Tj`}) with {Tj1 , . . . , Tj`} /∈ Γ,

where p(s) is the probability of guessing the secret s and p (s| {kj1 , . . . , kj`}) is the

conditional probability of guessing the secret s when the shares kj1 , . . . , kj` are known.

That means, in a perfect secret sharing scheme the shares of each unauthorized

set of participants yield no further information about the secret. For this reason only

monotone access structures can be realized by perfect secret sharing schemes: If there

is an unauthorized set B containing an authorized set A, the participants from B get

to know the secret from the shares of A.

Next we consider the information rate, which is a measure for the efficiency of a

secret sharing scheme.

Definition 2.5. For each participant Tj, j = 1, . . . , t, let Kj = {f(Tj) : f ∈ F} =⋃
s∈S
{fs(Tj) : fs ∈ Fs} be the set of all possible shares for all possible secrets that he

might receive from a distribution function. Define

qj =
log2(|S|)
log2(|Kj|)

.

Then

q = min {qj : 1 ≤ q ≤ t}

is called information rate of the scheme.

Since there are |S| secrets, each secret can be represented by a binary word with

length log2(|S|) and one can say that each secret contains log2(|S|) bits of information.

In the same way each share of the participant Tj contains log2(|Kj|) bits of information.

That means qj is the ratio of the information contents of an arbitrary secret and an

arbitrary share of participant Tj.

A high information rate is desirable as it means an efficient distribution of the

information of each secret on the corresponding shares. In [37] Stinson shows that each

perfect secret sharing scheme realizing a monotone access structure has an information

rate q ≤ 1. This motivates the following definition.

Definition 2.6. A perfect secret sharing scheme with information rate q = 1 is called

ideal.

If, for example, a secret sharing scheme is perfect and each element of Zp can be

chosen as a secret and as a share, we have

q = qj =
log2(p)

log2(p)
= 1

and the secret sharing scheme is ideal. In the non-perfect case larger information rates

are possible. For example, consider the following t-threshold scheme on the partici-

pant set {T1, . . . , Tt}. Let S = Ztp be the secret set. Suppose that each participant
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Tj receives the jth component of the secret. Then K = Zp. The scheme is not per-

fect, since the knowledge of each component restricts the search for the secret. The

information rate is q = log2(pt)
log2(p)

= t ≥ 1.

2.2 Secret Sharing Schemes Realizing Special Ac-

cess Structures

In this section we present two very well-known secret sharing schemes realizing thresh-

old structures and (general) monotone access structures. An overview of secret sharing

schemes using error-correcting codes is given in Chapter 4.

2.2.1 Shamir’s Threshold Scheme

In [35] Shamir presents a perfect secret sharing scheme which can realize all threshold

structures. It is based on the fact that one needs at least α data points to interpolate

a polynomial of degree α− 1. Shamir’s scheme has the following components.

(a) T = {T1, . . . , Tt}

(b) Γ = Γα is a (|T |, α)-threshold structure with an arbitrary threshold 1 ≤ α ≤ t.

(c) S = Zp, p prime, is the set of all possible secrets. p is a security parameter.

When p increases it becomes more and more unlikely to guess the right secret.

(d) The share set is K = Zp \ {0} × Zp.

(e) In order to distribute a secret s ∈ Zp according to the access structure Γα the

dealer chooses randomly a polynomial f ∈ Zp[x] of degree α − 1 with f(0) = s

and pairwise disjoint values x1, . . . , xt ∈ Zp \ {0}. Then he assigns the shares

kj = (xj, f(xj)) via the distribution function

fs : T → K
Tj 7→ (xj, f(xj))

to the participants.

(f) When some participants Tj1 , . . . , Tj` want to recover the secret they apply an

interpolation algorithm on their data points, for example Lagrange interpolation.

They determine a polynomial g of degree at most `−1. If ` ≥ α the participants

receive g = f and are able to determine s = f(0). Otherwise g 6= f and no

information about f(0) is provided. The recovery function is given by

r : P(K) → S
{kj1 , . . . , kj`} 7→ g(0),
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where g ∈ Zp[x] is the result of an polynomial interpolation algorithm with input

(xj1 , f(xj1)), . . . , (xj` , f(xj`)).

Since the shares of any unauthorized set provide no information about s, Shamir’s

scheme is perfect. Additionally, when we always use the same x-values x1, . . . , xt, for

example xj = j for all j = 1, . . . , t, we have K = Zp = S and the scheme is ideal.

2.2.2 Simmons’ Linear Secret Sharing Scheme

In [27] Simmons et al. propose a linear algebraic secret sharing scheme which can

realize all monotone access structures. The shares as well as the secret s are points in

a projective space. s is the intersection point of a publicly known line L and a secret

subspace U . The participants receive elements of U such that only the authorized sets

are able to generate U and to determine s.

(a) T = {T1, . . . , Tt}

(b) Γ is an arbitrary monotone access structure on T with
∣∣Γmax

∣∣ = n.

(c) The secret set S is a 1-dimensional subspace L of a projective space P of dimen-

sion n.

(d) The set K of all possible shares is given by P(P). Each share consists of a set of

points in the projective space P. The empty set can also be a share.

(e) Let Γmax = {U1, . . . , Un}. In order to distribute a secret s ∈ L according to Γ the

dealer chooses randomly a (n− 1)-dimensional projective subspace U of P such

that the secret is the intersection point of U and the secret set L. He determines

a basis B = {b1, . . . , bn} of U such that b1, . . . , bn and s are in general position.

Now the dealer distributes the shares using the distribution function

fs : T → K
Tj 7→ {bi ∈ B : Tj /∈ Ui} .

(f) When a set T of participants wants to recover the secret they join their points

bi1 , . . . , bi` and determine the projective subspace A := 〈bi1 , . . . , bi`〉. Since Γ is

monotone we know that T is unauthorized iff T ⊆ Ui for an 1 ≤ i ≤ n. In

this case the basis element bi is missing in the shares of all participants of T .

dim(A) ≤ n− 1 and A ∩ L = ∅ since b1, . . . , bn and s are in general position.

When T is authorized, then T * Ui for all i = 1, . . . , n and each bi must be

distributed to one or more participants of T . Hence A = U and A ∩ L gives the
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secret. The recovery “function” is given by

r : P(K) → S

{kj1 , . . . , kj`} 7→

the unique element of 〈
⋃̀
m=1

kjm〉 ∩ L if 〈
⋃̀
m=1

kjm〉 ∩ L 6= ∅

a random element of L else.

Simmon’s scheme is perfect, since the shares of the unauthorized sets provide no

further information about the secret. But it is not ideal because the shares may consist

of more than one element of P.

2.3 Schulze’s Scheme Realizing Arbitrary Access

Structures

Schulze’s scheme described in [34] is inspired by Simmon’s scheme. It is based on

the following idea. Let Γ be an access structure with the authorized sets A1, . . . , An.

For each authorized set Ai =
{
Tk1,i

, . . . , Tk`i,i

}
the set {Ai} can be considered as

a monotone access structure on the participant set
{
Tk1,i

, . . . , Tk`i,i

}
with the only

authorized set Ai and with {Ai}max = {A ⊆ Ai : |A| = `i − 1} and |{Ai}max| = `i.

Hence it can be realized with Simmon’s scheme using a `i-dimensional projective

space Pi. These realizations of the single {Ai} are merged into one realization of

Γ by choosing the Pi to be independent subspaces of a larger projective space P. For

this purpose, each secret needs to have a representative in each of the Pi.
Schulze’s scheme is perfect. But unfortunately, the dimension of P increases with

the number of the authorized sets and the number of participants within these sets.

Schulze’s scheme has the following components.

(a) T = {T1, . . . , Tt} is the participant set.

(b) Γ = {A1, . . . , An} is an arbitrary access structure on T containing the authorized

sets A1, . . . , An ∈ P(T ). For i = 1, . . . , n let `i = |Ai|.

(c) In a projective space P of dimension d = n − 1 +
n∑
i=1

`i the dealer chooses n

linearly independent subspaces P1, . . . ,Pn and in each subspace Pi he chooses a

one-dimensional subspace Li. Each secret is represented by a certain element of

each Li, where all Li represent the same set of secrets. That means each secret

s has n representatives s1, . . . , sn with si ∈ Li for all i = 1, . . . , n. W.l.o.g one

can say that the secret set is S = L1 since all Li have the same cardinalities.

(d) The set K of all possible shares is given by P(P) \ {∅}. Each share consists of

a non-empty set of points in the projective space P.
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(e) Let s be the secret to be shared. Then s has a representative si in each Li. In

each Pi the dealer chooses randomly a (`i − 1)-dimensional projective subspace

Ui such that the representative si is the intersection point of Ui and Li. For each

authorized set Ai =
{
Tk1,i

, . . . , Tk`i,i

}
he chooses `i elements uk1,i

, . . . , uk`i,i of Ui

which generate Ui, such that these elements and si are in general position within

Ui. Finally, he determines a basis Bi of Pi for all i = 1, . . . , n. Now the dealer

distributes the shares using the distribution function

fs : T → K
Tj 7→

⋃
i:Tj∈Ai

{uj,i} ∪
⋃

i:Tj /∈Ai

Bi.

(f) When a set T of participants wants to recover the secret they determine the

subspace B which is generated by all their elements. Then all sections B ∩ Li
are considered Since the Pi are linearly independent, these sections can be studied

separately. We have

B ∩ Li =


Ui ∩ Li = {si} if T = Ai

∅ if T ( Ai

Pi ∩ Li = Li if T 6= Ai, T 6⊂ Ai

.

When T is authorized, there is exactly one section B ∩ Γi which consists of

one element si. This element represents the secret s. Otherwise, when T is

unauthorized, the participants do not learn anything about the secret from their

shares and can only guess a representative for the secret. Hence Schulze’s scheme

is perfect.

The recovery “function” is given by

r : P(K) → S

{kj1 , . . . , kj`} 7→



the element of S represented by the unique element of

〈
⋃̀
m=1

kjm〉 ∩ Li if 〈
⋃̀
m=1

kjm〉 ∩ Li 6∈ {∅, Li}

the element of S represented by a random element of Li

if 〈
⋃̀
m=1

kjm〉 ∩ Li ∈ {∅, Li} for all i = 1, . . . , n

.

2.4 Management Models

In this section we have a closer look at the parties involved in a secret sharing scheme

and their connections to each other. In the classical management model the lifetime

of a secret sharing scheme consists of two phases:
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1. Initially, the dealer chooses a secret s ∈ S that he wants to share according to Γ.

Then he distributes suitable shares k1, . . . , kt among the participants T1, . . . , Tt
using a distribution function fs ∈ Fs. This phase is called sharing phase.

2. In the so called recovery phase a group {Tj1 , . . . , Tj`} of participants pool their

shares kj1 , . . . , kj` together and calculate r ({kj1 , . . . , kj`}).

In this model the recovery is public in the sense that all involved shares and, if the

participants are authorized, also the secret become public to all attending participants.

Therefore the scheme can be used only for one time. But there is an even more serious

problem.

Consider a non-monotone access structure Γ and an authorized set A ∈ Γ such

that there is an unauthorized superset B ⊃ A. When the participants of B try to

recover the secret using all their shares, they fail. But since all members of B want

to know the secret and the risk of being caught is very low, it is very likely that they

will agree on the following. Only the participants from A reconstruct the secret and

the remaining members of B watch that process and learn the secret, too. This can

be avoided by introducing another trusted party: the combiner. A combiner driven

management model works as follows.

1. In the sharing phase the dealer chooses a secret s ∈ S. Then he calculates

suitable shares k1, . . . , kt as in the classical model, but keeps them secret. For

each j = 1, . . . , t the participant Tj receives a concealed share k′j instead of kj,

such that the original share kj can be recovered from k′j when some additional

information c is known (for example c is a set of keys of a symmetric encryption

system and k′j is the encryption of kj using one of these keys). The dealer sends

the additional information c to the combiner. All transmissions are performed

via secure channels.

Dealer Combiner

T1 . . . Tt

c

k′1 k′t. . .

Figure 2.1: Sharing phase in a combiner driven model

2. In the recovery phase a group {Tj1 , . . . , Tj`} of participants send their concealed

shares k′j1 , . . . , k
′
j`

via a secure channel to the combiner. Using his additional

information c he recovers the original shares kj1 , . . . , kj` . Then he calculates

r ({kj1 , . . . , kj`}) and sends the result via a secure channel to the device which

carries out the desired action if it receives the secret.
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Dealer Combiner

Tj1 . . . Tj`

k′j1
. . . k′j`

Figure 2.2: Recreation phase part 1 in a combiner driven model

Device

Dealer Combiner

Tj1 . . . Tj`

r({kj1 , . . . , kj`})

Figure 2.3: Recreation phase part 2 in a combiner driven model

In a combiner driven model the participants do not know the original shares.

Furthermore they do not learn the secret, even if they are authorized. Hence the

secret sharing scheme can be used for several times with the same secret and the same

shares. In addition to that the participants have no longer the possibility to make

their own arrangements during the recovery phase.





Chapter 3

Error-Correcting Codes (ECC)

This chapter provides basic knowledge about coding theory which is fundamental for

this thesis. We present the basic definitions and concepts and describe some families

of codes which play a role in the following chapters. A more detailed introduction into

coding theory can be found for example in [5],[43] and [21].

3.1 Basic Definitions and Concepts

The aim of coding is to modify data in a way, such that random errors, that occur

during the transmission, can be detected or even corrected. For this purpose redun-

dancy is added to the original data which makes the data more “distinguishable” from

each other. This makes it is easier to find out if errors have occurred or even which

errors these were and to restore the original data.

In our context data are words over a given alphabet. The modified data words

are called codewords and are words over the same alphabet. The set of all these

codewords is called code and the transition from the original word to the codeword

is called encoding. In this work we consider only so called block codes, where all

codewords have the same length.

Definition 3.1. Let A be a finite set (an alphabet) and n ∈ N. Then each subset

C of An = A× . . .× A︸ ︷︷ ︸
n

is a (block) code with length n. The elements of C are called

codewords. In the case A = Z2 the code C is a binary (block) code.

Example 3.2. Consider the alphabet A = Z2 and the binary block code

C = {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0),

(1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 1, 1)} ⊆ A4.

The codewords come from the eight data words (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) ∈ A3 which are encoded by adding the following

15
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redundancy bits

(0, 0, 0)→ (0, 0, 0, 0) (1, 0, 0)→ (1, 0, 0, 1)

(0, 0, 1)→ (0, 0, 1, 1) (1, 0, 1)→ (1, 0, 1, 0)

(0, 1, 0)→ (0, 1, 0, 1) (1, 1, 0)→ (1, 1, 0, 0)

(0, 1, 1)→ (0, 1, 1, 0) (1, 1, 1)→ (1, 1, 1, 1).

C is a so-called parity check code where the original words are encoded by adding a

parity check bit, such that each codeword has an even number of ones.

In the following we use the term “code” instead of “block code”. Now we specify

how words can be distinguish from each other.

Definition 3.3. Let A be a finite alphabet and n ∈ N.

(a) Consider two words a = (a1, . . . , an), b = (b1, . . . , bn) ∈ An. The number

d(a, b) := # {i : 1 ≤ i ≤ n, ai 6= bi}

is called Hamming distance of a and b.

(b) Let C ⊆ An be an arbitrary code. Then

d(C) = min {d(a, b) : a, b ∈ C, a 6= b}

is the minimum distance of C.

Example 3.4. The codewords of the binary code

C = {(0, 0, 0, 0)︸ ︷︷ ︸
a

, (0, 0, 1, 1)︸ ︷︷ ︸
b

, (0, 1, 0, 1)︸ ︷︷ ︸
c

, (0, 1, 1, 0)︸ ︷︷ ︸
d

,

(1, 0, 0, 1)︸ ︷︷ ︸
e

, (1, 0, 1, 0)︸ ︷︷ ︸
f

, (1, 1, 0, 0)︸ ︷︷ ︸
g

, (1, 1, 1, 1)︸ ︷︷ ︸
h

}.

from Example 3.2. have the Hamming distances

d a b c d e f g h

a 0 2 2 2 2 2 2 4

b 2 0 2 2 2 2 4 2

c 2 2 0 2 2 4 2 2

d 2 2 2 0 4 2 2 2

e 2 2 2 4 0 2 2 2

f 2 2 4 2 2 0 2 2

g 2 4 2 2 2 2 0 2

h 4 2 2 2 2 2 2 0
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and the minimum distance is d(C) = 2. In contrast to that there are original words

(for example (0, 0, 1) and (0, 1, 1)) that differ only in one position. Hence the encoding

enlarged the distance between the words.

Now suppose that a codeword c is sent over a channel and the word x is received.

The receiver knows that a codeword was sent and when x is a codeword, he assumes

that x is the correct codeword. Otherwise he knows that errors have occurred. De-

pending on the application he than has the possibility to request the codeword c again

or has to deduce the sent codeword c from x. The process of assigning a codeword to

a received word is called decoding.

Definition 3.5. The following decoding algorithm is called Hamming decoding. Let

C ⊆ An be an arbitrary code. Suppose that a codeword has been sent and the word

x ∈ An is received. Then Hamming decoding outputs an arbitrary codeword c ∈ C
with the property

d(c, x) = min
c′∈C

d(c′, x).

That means Hamming decoding yields one of the codewords which are closest to

the received word with respect to the Hamming distance.

Example 3.6. Consider the code C from Example 3.2. When the word x = (1, 0, 0, 0) ∈
Z4

2 is received, Hamming decoding outputs one of the data words (0, 0, 0), (1, 0, 0),

(1, 0, 1) and (1, 1, 0) since the related codewords have a Hamming distance of 1 to x.

Next we study the impact of the minimum distance of a code on its error-detection

and error-correction capability when Hamming decoding is used.

Definition and Remark 3.7. When a codeword c ∈ C ⊆ An is sent and the word

x ∈ An with d(c, x) = t is received, we know that t errors have occurred during

transmission. Whether these errors can be detected or even corrected depends on the

minimum distance of the code C in the following way.

• Let d(C) ≥ t + 1. Then x cannot be a codeword of C and we know that errors

have occurred. C is called a t-error-detecting code.

c c′ ∈ C

x

≥d(C)>t

t

• Let d(C) ≥ 2t+1. Then c is the codeword lying next to x and Hamming decoding

yields the correct codeword. C is called a t-error-correcting code.
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c c′ ∈ C

x

≥d(C)>2t
t t

That means C can correct up to
⌊
d(C)−1

2

⌋
errors, regardless of which codeword

was sent and on which positions the errors occurred. That is why
⌊
d(C)−1

2

⌋
is

called error-correction capability of C. Nevertheless, there may be codewords

and positions such that Hamming decoding still yields the right codeword when

more than
⌊
d(C)−1

2

⌋
errors occur.

Example 3.8. (a) The binary code C from Example 3.2 has minimum distance

d = 2 and is a 1-error-detecting and 0-error-correcting code.

(b) In contrast to that the binary code

C = {(0, 0, 0, 0, 0, 0), (0, 1, 0, 1, 0, 1), (1, 0, 1, 0, 1, 0), (1, 1, 1, 1, 1, 1)}

has minimum distance d(C) = 3 and is a 2-error-detecting and 1-error-correcting

code. But when the codeword c = (0, 0, 0, 0, 0, 0) is sent and x = (1, 1, 0, 0, 0, 0)

is received, 2 errors have occurred and Hamming decoding yields nevertheless

the sent codeword c.

We now introduce another important parameter of a code: the covering radius. It

describes the Hamming distance from the code to the furthest word outside the code.

Definition 3.9. Let K be a finite field, n ∈ N and C ⊆ Kn a code. The smallest

r ∈ N0 with the property that for all words x ∈ Kn there is a codeword c ∈ C with

d (x, c) ≤ r is called covering radius ρ(C) of C.

That means ρ(C) is the smallest radius r such that the balls with radius r centered

in the codewords cover the whole space An. It follows directly from the definitions

that

ρ(C) ≥
⌊
d(C)− 1

2

⌋
.

Further details about the covering radius can be found in [15].

Example 3.10. The parity check code from Example 3.2 has covering radius ρ(C) = 1:

Let x = (x1, x2, x3, x4) ∈ Z4
2 be arbitrary. Then x or x′ = (x1, x2, x3, x4 + 1) have an

even number of ones and belong to C. Therefore the Hamming distance of x to the

code is one or zero.

The most frequently used codes are so-called linear codes.
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Definition 3.11. Let K be a finite field, n ∈ N and C ⊆ Kn a code. Suppose that C
is a linear subspace of Kn. Then C is called a linear code. Let k be the dimension of

C. Then C is called a [n, k]-code or a [n, k, d(C)]-code. If K has q elements we also say

that C is a [n, k, d(C)]q-code and for q = 2 the code is called a binary [n, k, d(C)]-code.

Example 3.12. Let u = (1, 1, 0, 0, 0), v = (0, 1, 1, 0, 0) ∈ Z5
2. The linear subspace

C = 〈u, v〉Z2
= {0, u, v, u+ v} = {(0, 0, 0, 0, 0), (1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (1, 0, 1, 0, 0)}

is a binary [5, 2, 2]-code.

Using a linear code it is very easy to encode the data words or to find out, whether

a received word is a codeword or not.

Definition and Remark 3.13. Let C be a linear [n, k]-code over K.

(a) Let b1, . . . , bk be a basis of C and G =


b1

b2

...

bk

 be the (k × n)-matrix whose rows

are these basis vectors. Then G defines an encoding of the original words in Kk

by

x = (x1, . . . , xk) 7→ x ·G =
k∑
i=1

xibi for all x ∈ Kk.

G is called a generator matrix of C.

Let c1, . . . , cm be a generator set of C. Then G′ =


c1

c2

...

cm

 is called general

generator matrix of C. It has the property C =
{
x ·G′ : x ∈ Kk

}
.

(b) Since C is a k-dimensional subspace of Kn, C is the kernel of a linear function

h : Kn → Kn−k. Let H be the (n − k × n)-matrix with h(x) = H · xτ for all

x ∈ Kn (xτ denotes the transposed vector of x). Then

H · xτ = 0 ∈ Kn−k ⇔ x ∈ C.

H is called a check matrix of C.

Example 3.14. The linear code C from Example 3.12 has the following generator

matrix G and check matrix H:

G =

(
u

v

)
=

(
1 1 0 0 0

0 1 1 0 0

)
, H =

1 1 1 0 0

0 0 0 1 0

0 0 0 0 1

 .
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Definition 3.15. Let K be a finite field and n ∈ N.

(a) For all x = (x1, . . . , xn) ∈ Kn the number

wt(x) = # {i : 1 ≤ i ≤ n, xi 6= 0}

is called (Hamming) weight of x.

(b) Let C 6= {0} be a code in Kn. Then

min {wt(c) : c ∈ C, c 6= 0}

is called minimum weight of C.

Since the Hamming distance is translation invariant, the minimum distance and

the minimum weight of a code are the same when the code is linear. The minimum

distance of a linear code can be read from its check matrix:

Proposition 3.16. Let C be a linear [n, k]-code over K with check matrix H. Then

d(C) = min {r ∈ N : H has r linearly dependent columns}
= max {r ∈ N : each r − 1 columns of H are linearly independent} .

In particular that means d ≤ rk(H) + 1 = n − k + 1. This inequality is called

Singleton bound.

When the roles of G and H are changed, we obtain a linear [n, n − k]-code with

generator matrix H and check matrix G, the so-called dual code.

Definition and Remark 3.17. Let C be a linear [n, k]-code over K with generator

matrix G and check matrix H. Then

C⊥ =
{
x ·H : x ∈ Kn−k}

is called the dual code of C. G is a check matrix of C⊥ since

y ∈ C⊥

⇔ y = x ·H for a x ∈ Kn−k

⇔ y · c⊥ = 0 for all c ∈ C
⇔ G · y = 0.

Example 3.18. The dual code C⊥ of the code C from Example 3.12 is generated by

the check matrix H from Example 3.14. Therefore

C⊥ = 〈(1, 1, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)〉Z2

= {(0, 0, 0, 0, 0), (1, 1, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)

(1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (0, 0, 0, 1, 1), (1, 1, 1, 1, 1)}.
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Definition 3.19. Let C be a linear [n, k]-code over K.

(a) For all i = 0, 1, . . . , n let wi be the number of codewords in C with weight i.

Then the vector

w(C) = (w0, w1, . . . , wn)

is called weight distribution w(C).

(b) The polynomial

W (C, x) =
n∑
i=0

wix
i ∈ R[x]

is called weight counter of C.

Example 3.20. The linear code C from Example 3.12 and its dual code C⊥ have the

weight distributions

w(C) = (1, 0, 3, 0, 0, 0) and w(C⊥) = (1, 2, 1, 1, 2, 1)

and the weight counters

W (C, x) = 1 + 3x2 and W (C⊥, x) = 1 + 2x+ x2 + x3 + 2x4 + x5.

The weight counters of a linear code and its dual code have the following important

relation.

Theorem 3.21 (MacWilliams Identity). Let C be a [n, k]q-code. Then

W (C⊥, x) =
(1 + (q − 1)x)n

|C|
·W

(
C, 1− x

1 + (q − 1)x

)
.

(For more details see [26].)

Example 3.22. In our example

(1 + (q − 1)x)n

|C|
·W (C, 1− x

1 + (q − 1)x
) =

(1 + x)5

4
·

(
1 + 3

(
1− x
1 + x

)2
)

=
(1 + x)5

4
+

3

4
(1 + x)3(1− x)2

=
1

4
(1 + 5x+ 10x2 + 10x3 + 5x4 + x5) +

3

4
(1 + x− 2x2 − 2x3 + x4 + x5)

= 1 + 2x+ x2 + x3 + 2x4 + x5

= W (C⊥, x).
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3.2 Important Families of Linear Codes

In this section we present some of the best-known and frequently used families of linear

codes.

3.2.1 Hamming Codes and Simplex Codes

Hamming codes were invented by Hamming in 1950. They are linear codes with

minimum distance three, which can be defined over arbitrary finite fields. We describe

Hamming codes by constructing their check matrices.

Let K be a finite field with q elements and ` ∈ N. The linear space K` has exactly
q`−1
q−1

one-dimensional subspaces (each non-zero vector generates one of these subspaces,

where the q−1 non-zero multiples of each vector generate the same subspace). Define

the code length n = q`−1
q−1

and the dimension k = n− `. In order to construct a check

matrix for a [n, k]-Hamming code we choose one generator of each one-dimensional

subspaces of K` and write these generators as columns in matrix. This yields a

(` × n)-matrix H over K. In the binary case each non-zero vector generates its own

one-dimensional subspace. In this case the check matrix consists of all non-zero vectors

of Z`2.

Example 3.23. For q = 2 and ` = 3 we obtain n = 23−1
2−1

= 7 and k = n− ` = 4.

H =

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1


is a check matrix for a [7, 4]-Hamming code, since each one-dimensional subspaces of

Z3
2 is represented by exactly one column.

Proposition 3.16 shows that all Hamming codes have minimum distance three. We

determine m = min {r ∈ N : H has r linearly dependent columns}:

• m 6= 1 since there is no zero column in H.

• m 6= 2 since there are no two columns which are multiples of each other.

• m = 3 since the sum of two columns of H generates another one-dimensional

subspace of K`.

d = 3 means that Hamming codes can detect up to d(C)− 1 = 2 errors and correct⌊
d(C)−1

2

⌋
= 1 error. In other words, the balls B1(c) of radius one (with respect to the

Hamming distance) centered at the codewords are disjoint. Furthermore Hamming

codes have the property that the union of all balls B1(c) is already the whole space

Kn. Hence the error-correction capacity and the covering radius are equal. This makes

Hamming codes so-called perfect codes.
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The dual code of a [n, k]q = [ q
`−1
q−1

, q
`−1
q−1
− `]q-Hamming code is called [ q

`−1
q−1

, `]q-

Simplex code. Simplex codes have the property that all non-zero codewords have the

weight q`−1. Hence their minimum distance is also q`−1. For q = 2 Simplex codes have

the covering radius 2`−1 − 1.

3.2.2 Reed-Solomon Codes

Reed Solomon codes were introduced by Reed and Solomon in 1960 ([32]). These

codes are linear and non-binary. They have many applications in everyday life. For

example they are used for data storage on CDs, DVDs and for QR-codes.

Let K be a finite field with q ≥ 3 elements. Choose a code length n and a minimum

distance d with 1 ≤ d ≤ n ≤ q and an ordered subset M = (x1, . . . , xn) of K with

pairwise different elements. Then the related Reed-Solomon code C is defined by

C = {(f(x1), . . . , f(xn)) : f ∈ K[x], deg(f) ≤ n− d} .

Each word a = (a0, a1, . . . , an−d) ∈ Kn−d+1 is regarded as the polynomial fa(x) =

a0 + a1x+ . . .+ an−dx
n−d ∈ K[x] and is encoded via

a 7→ (fa(x1), . . . , fa(xn)) .

Each polynomial fa has at most n − d zeros. Therefore the codewords in C have at

least the weight d. On the other hand, the Singleton bound says d(C) ≤ n−k+1 = d.

This yields d(C) = d. Hence C is a [n, n− d+ 1, d]q-code.

Depending on the choice of M a Reed-Solomon code can have another important

property. K∗ = (K \ {0} , ·) is a cyclic group and there is an element α ∈ K∗ with

K∗ = {1 = α0, α, . . . , αq−2} and αq−1 = 1. When we choose M = (1, α, . . . , αq−2),

the related Reed-Solomon code is a so-called cyclic code. That means the cyclic shift

of any codeword yields another codeword. This property allows faster encoding and

decoding algorithms. Furthermore, cyclic codes have the ability to detect burst errors

with length l ≤ n− k, where all errors lie in a segment of the message with length l.

Example 3.24. For K = Z5 we have q = 5 and define n = q−1 = 4. α = 2 generates

K∗ since (α0, α1, α2, α3, α4, ) = (x1, x2, x3, x4) = (1, 2, 4, 3). We choose d = 3. This

yields the Reed-Solomon code

C = {(f(1), f(2), f(4), f(3)) : f ∈ Z5[x], deg(f) ≤ 1} .

The data word a = (2, 3) ∈ Z5 represents the polynomial 2+3x ∈ Z5[x] and is encoded

to

c = (2 + 3 · 1, 2 + 3 · 2, 2 + 3 · 4, 2 + 3 · 3) = (0, 3, 4, 1).
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3.2.3 Reed-Muller Codes

Reed-Muller codes are a family of binary error-correcting linear codes. They were

invented by Reed and Muller in 1954. During the Mariner expeditions 6, 7 and 9 to

Mars in 1969-1972 a Reed-Muller code was used for image transmission to earth.

A Reed-Muller Code RM(r,m) is characterized by two variables r,m ∈ N0 which

determine its parameters. Reed-Muller codes can be defined in many ways. Two of

them are the following.

Definition of RM(r,m) via Boolean polynomials:

A Boolean polynomial is a polynomial in Z2[x1, . . . , xm]. Each Boolean polynomial

function f : Zm2 → Z2 is uniquely characterized by its value table

xm 0 0 0 0 0 0 0 0 . . . 1 1 1 1 1 1 1 1
...

x3 0 0 0 0 1 1 1 1 . . . 0 0 0 0 1 1 1 1

x2 0 0 1 1 0 0 1 1 . . . 0 0 1 1 0 0 1 1

x1 0 1 0 1 0 1 0 1 . . . 0 1 0 1 0 1 0 1

f(x1, . . . , xm) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗.

The last row of the table is the vector in Z2m

2 which contains the function values for

all possible assignments of the variables x1, . . . , xm in the given order. This vector is

called evaluation vector of the Boolean polynomial function f and is denoted with f .

We write f ∼ f and say that f is related to f . It can be shown that any vector in

Z2m

2 is the evaluation vector of a Boolean polynomial function.

Now we can define RM(r,m) as the set of all evaluation vectors of Boolean poly-

nomial functions of degree less or equal r in m variables

RM(r,m) =
{
f : f : Zm2 → Z2 Boolean polynomial function with degree ≤ r

}
.

A generator matrix for RM(r,m) can be constructed by writing the evaluation

vectors of all monomial functions m : Zm2 → Z2 of degree ≤ r as rows in a matrix.

Example 3.25. Let r = 2 and m = 3. Then RM(r,m) is generated by the matrix

G =



1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1



← 1

← x1

← x2

← x3

← x1 · x2

← x1 · x3

← x2 · x3

.
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Definition of RM(r,m) via the Plotkin construction:

Let n ∈ N and A,B ⊆ Zn2 . The Plotkin construction of A and B is defined by

A ∝ B :=
{(
a, a+ b

)
∈ Z2n

2 : a ∈ A and b ∈ B
}
.

Starting with RM(0,m) := {(0, . . . , 0), (1, . . . , 1)} ⊆ Z2m

2 for all m ∈ N0 we define

RM(r,m) by the recursion

RM(r,m) := RM(r,m− 1) ∝ RM(r − 1,m− 1).

Example 3.26.

RM(1, 1) ∝ RM(0, 1) = {(0, 0), (0, 1), (1, 0), (1, 1)} ∝ {(0, 0), (1, 1)}
= {((0, 0), (0, 0) + (0, 0)) , ((0, 0), (0, 0) + (1, 1)) ,

((0, 1), (0, 1) + (0, 0)) , ((0, 1), (0, 1) + (1, 1)) ,

((1, 0), (1, 0) + (0, 0)) , ((1, 0), (1, 0) + (1, 1)) ,

((1, 1), (1, 1) + (0, 0)) , ((1, 1), (1, 1) + (1, 1))}
= {(0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0),

(1, 0, 1, 0), (1, 0, 0, 1), (1, 1, 1, 1), (1, 1, 0, 0)}
= RM(1, 2).

Both constructions yield exactly the same codes. According to the construction

the code length is n = 2m. The dimension is k =
r∑
i=0

(
m

i

)
since this is the number of

all Boolean monomial functions in m variables with degree ≤ r. Furthermore it can

be shown by induction that the minimum distance is d = 2m−r.

The Reed-Muller codes with r = 1 are called first order Reed-Muller codes. They

play an important role in the next chapters and we will need the following properties

of this family of codes.

Definitions and Remark 3.27.

(a) RM(1,m) can be constructed from RM(1,m− 1) in a very simple way:

RM(1,m) = RM(1,m− 1) ∝ RM(0,m− 1)

= RM(1,m− 1) ∝ {(0, . . . , 0︸ ︷︷ ︸
2m−1

), (1, . . . , 1︸ ︷︷ ︸
2m−1

)}

=
{(
c, c
)

: c ∈ RM(1,m− 1)
}
∪
{(
c, c
)

: c ∈ RM(1,m− 1)
}
,

where c is the complementary vector of c. The Plotkin construction assigns two

codewords (c, c) and (c, c) to each codeword c ∈ RM(1,m−1). When we consider

c to be the evaluation vector f of a Boolean polynomial f ∈ Z2[x1, . . . , xm−1]

the Plotkin construction yields
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(c, c) =
(
f(x1, . . . , xm−1)

)
f(x1, . . . , xm−1) = c

(c, c) =
(
xm + f(x1, . . . , xm−1)

)
.

(b) Define

RM0(1,m) = {f : f : Zm2 → Z2 Boolean polynomial function with degree ≤ 1

without the summand 1}
= {f : f : Zm2 → Z2, f(x1, . . . , xm) = xi1 + . . .+ xi` ,

i1, . . . , i` ∈ {1, . . . ,m} pairwise distinct} ∪ {(0, . . . , 0)}
= {c = (c1, . . . , c2m) ∈ RM(1,m) : c1 = 0}

and

RM1(1,m) = {f : f : Zm2 → Z2 Boolean polynomial function with degree ≤ 1

with the summand 1}
= {f : f : Zm2 → Z2, f(x1, . . . , xm) = 1 + xi1 + . . .+ xi` ,

i1, . . . , i` ∈ {1, . . . ,m} pairwise distinct} ∪ {(1, . . . , 1)}
= {c = (c1, . . . , c2m) ∈ RM(1,m) : c1 = 1}.

Then

RM0(1,m) = RM0(1,m− 1) ∝ Z2m−1

2

and

RM1(1,m) = RM1(1,m− 1) ∝ Z2m−1

2 .

(c) C = RM(1,m) has the weight distribution

w(C) = (1, 0, . . . , 0, 2m+1 − 2
↑

2m−1

, 0, . . . , 0, 1).

This follows directly from part (a) by induction over m.

(d) For a binary vector v let supp(v) be the set of all positions where the vector

v has the value one. supp(v) is called support of v. The complement supp(v)

consists of all positions where v has the value zero.

Let c, d ∈ RM(1,m) \ {(0, . . . , 0), (1, . . . , 1)} be two different codewords with
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c 6= d. Then

|supp(c) ∩ supp(d)| =
∣∣∣supp(c) ∩ supp(d)

∣∣∣ =∣∣∣supp(c) ∩ supp(d)
∣∣∣ =

∣∣∣supp(c) ∩ supp(d)
∣∣∣ = 2m−2.

Especially d(c, d) = 2m−1. This follows directly from part (a) by induction over

m.

(e) C = RM(1,m) has the covering radius

ρ(C)

{
= 2m−1 − 2

m−2
2 if m is even

≤ 2m−1 − 2
m−2

2 if m is odd

(see [15]).





Chapter 4

A New Approach to Secret Sharing

Using Error-Correcting Codes

There are many ways to construct secret sharing schemes using various mathematical

objects and concepts. Shamir for example uses polynomial interpolation over finite

fields ([35]). Blakeley as well as Simmons present geometric constructions based on

the intersections of hyperplanes in projective spaces and affine spaces ([7],[27]), while

Asmuth and Bloom give an algebraic construction based on the Chinese remainder

theorem ([2]). In the following chapters we study constructions using error-correcting

codes. We begin with an overview of the previous research on secret sharing schemes

based on error-correcting codes. Then we present our new approach which differs

significantly from the previous constructions.

4.1 Overview of the Current State of Research

McEliece and Sarwate were the first to observe a connection between secret sharing

and error-correcting codes [30]. They found out that Shamir’s secret sharing scheme

is closely related to Reed-Solomon codes. Using the notations of 2.2.1 the shares in

Shamir’s scheme define a vector v =
(
f(1), . . . , f(t)

)
∈ Ztp for a polynomial f(x) =∑α−1

i=0 aix
i ∈ Zp[x] of degree α−1. In other words v is a codeword in an α-dimensional

Reed-Solomon code over Zp with M = (1, . . . , t) (see 3.2.2). If at least α digits of v

are known the corresponding information word (a0, . . . , aα−1), and therefore the secret

f(0) = a0, can be calculated using an errors-and-erasures algorithm.

This construction can be generalized to arbitrary linear [t, k]q codes (see [33]). Let

G denote a generator matrix of such a code with columns G1, . . . , Gt and let v1 ∈ Fq
be the secret to be shared. Choose randomly k−1 values v2, . . . , vk ∈ Fq and calculate

the corresponding codeword (c1, . . . , ct) = (v1, . . . , vk) ·G. Then give each cj as a share

to participant Tj. A set {Tj1 , . . . , Tjs} can determine the secret by solving the related

system of linear equations (v1, . . . , vk) ·
(
Gj1 , . . . , Gjs

)
= (cj1 , . . . , cjs) if the vector

e1 = (1, 0, . . . , 0)τ is a linear combination of the columns Gj1 , . . . , Gjs . Otherwise the

participants gain no information about the secret. Hence the secret sharing scheme
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is perfect and ideal. In [33] Renvall and Ding show that each k shares determine the

secret if the underlying code is a MDS code. In terms of vector spaces these secret

sharing schemes are introduced earlier by Brickell in [9].

A similar construction is proposed in [18] by Ding et al. They use linear [t, k]q codes

to share multisecrets s = (s1, . . . , sk) ∈ Fkq consisting of k single secrets s1, . . . , sk ∈ Fq.
Let G be a generator matrix of such a code and s be a multisecret. Then s · G =

(c1, . . . , ct) is calculated and the cj are given as shares to the participants Tj for all

j = 1, . . . , t. If enough participants join the reconstruction the multisecret can be

found using a suitable decoding algorithm. It turns out that special MDS codes yield

perfect [t, k]-threshold schemes for multisecrets.

Another construction of threshold schemes with linear codes is described in [22]

by Karnin et al. In this construction the secret is defined as a part of the codeword

and not as a part of the information word. In order to share a secret c0 ∈ Fq among

t participants a linear [t + 1, k]q code C is used. The dealer chooses a codeword

c = (c0, . . . , ct) with the first component c0 equal to the secret and distributes the

remaining components as shares to the participants. Tj receives the share cj for all

j = 1, . . . , t. Suppose that a group of participants wants to recover the secret. When

the number of participants which are not in this group is below the error-correction

capacity of the code C, the group can recover the secret using a decoding algorithm.

Otherwise the recovery may be successful or not. This depends on the structure of

the code C. In [33] Renvall and Ding show that this construction also yields a perfect

[k, t]-threshold scheme if C is a MDS code.

In [40] Tang et al. present a criterion of whether a monotone access structure

Γ can be realized using Karnin’s ideal construction. Furthermore they propose an

algorithm which outputs a suitable linear code realizing Γ such that the information

rate is optimal, if there is no ideal solution.

Bertilsson and Ingemarsson ([6]) extend Karnin’s construction for arbitrary mono-

tone access structures. They present an algorithm which generates a suitable generator

matrix using the minimal subsets of Γ. The resulting secret sharing schemes are per-

fect but in general codes of length > t are necessary because some participants need

to receive more than one component of the codeword as shares.

In [28], [29] Massey shows an important relationship between the access structures

related to a linear code C and the dual code C⊥ in Bertilsson’s and Ingemarsson’s

construction. Let G0, . . . , Gt denote the columns of the generator matrix G. Sup-

pose that d = (d0, . . . , dt) is a word in the dual code with d0 = 1 and further s > 0

nonzero components dj1 , . . . , djs . Since d · Gτ = 0 the first column G0 can be writ-

ten as linear combination G0 =
∑s

j=1 aijGij and the secret can be computed easily

as c0 =
∑s

j=1 aijcij . Based on this consideration Massey characterizes the minimal

authorized sets in terms of minimal codewords of C⊥. A nonzero codeword d is called

minimal if there exists no other codeword d′ such that supp(d) ⊃ supp(d′). Each

(minimal) codeword d = (d0, . . . , dt) ∈ C⊥ can be associated with a set S of partic-

ipants by stating Tj ∈ S iff dj 6= 0 for all j = 1, . . . , t. Massey proves that the sets

of participants associated to the minimal codewords in C⊥ starting with one are ex-
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actly the minimal subsets of the monotone access structure related to the code C via

Karnin’s construction.

Van Dijk ([42]) pointed out that Massey’s approach is a special case of the gener-

alized vector space construction introduced by Bertilsson in [6].

Inspired by Massey’s results different classes of codes and their duals were studied.

Ding et al. apply Karnin’s construction to classes of ternary codes ([17]) Li et al.

study classes of binary codes [25] and Carlet and Ding use codes from perfect nonlinear

mappings ([10]).

Another interesting class of codes are the algebraic-geometric codes. Using these

codes Karnin’s approach yields ideal ramp schemes ([11], [12], [13], [14], [24]). Ramp

schemes are a generalization of threshold-schemes with an upper threshold t2 and a

lower threshold t1 such that any subset of at least t2 participants can recover the secret

and all subsets containing t1 or less participants are unauthorized. The difference t2−t1
is called threshold gap. The authors show how the threshold gap depends on the genus

of the algebraic curve which defines the code. In [13] Chen et al. show that random

error-correcting codes also provide ramp schemes with high information rate.

There is a close relation between the minimal distances d and the dual distance d⊥

of the underlying codes C and the thresholds t1 and t2. Sodan shows that Massey’s

construction yields a ramp scheme with t1 = d⊥ − 2 and t2 = t − d + 2 ([38]). In

[31] Paterson and Stinson find out that a (not necessarily linear) code with minimal

distance d and dual distance d⊥ provides a [d⊥ − s − 1, t − d + 1] ramp scheme with

arbitrary information rate s ≤ d⊥ − 2. Kurihara et al. improve the bounds on t1 and

t2 using the concept of relative generalized Hamming weights ([23]).

In general it is hard to determine the minimal codewords of a given code. This

problem is called covering problem. Even the restriction to minimal words starting

with one is no simplification. However the Ashikhmin-Barg lemma gives a criterion

that ensures that all nonzero words of a code are minimal [1]. Roughly speaking that

lemma tells us that all nonzero codewords are minimal if the weights of all codewords

are close to each other. Ding and Yuan show in [20] that the access structure related

to C has some interesting properties when all nonzero words in C⊥ are minimal: With

the above notations C⊥ is a [t + 1, t + 1 − k]q code. Let H = (H0, . . . , Ht) denote a

generator matrix for C⊥ and assume that no column is the zero vector. Then there are

exactly qk−1 minimal authorized subsets. Furthermore if Hj is a multiple of H0 the

participant Tj has to be part of any authorized set (Tj is called dictatorial). Otherwise

Tj is part of exactly (q−1)k−2 minimal authorized sets. In [20] [19], [44] several classes

of linear codes are studied. Using the Ashikhmin-Barg lemma the authors show that

all nonzero codewords in the dual codes are minimal and obtain secret sharing schemes

with the stated properties.

In [39] Tan and Wang improve Massey’s scheme such that the participants are able

to detect cheating by the dealer.

Tentu et al. provide an ideal computationally perfect secret sharing scheme based

on MDS codes realizing conjunctive hierarchical access structures ([41]). In such access

structures the set of participants consists of disjoint subsets T =
⋃m
i=1 Ti. Each level
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Ti is assigned a threshold ti and set A ⊆ T is authorized iff
∣∣∣A ∩⋃i

j=1 Tj
∣∣∣ ≥ ti for all

i = 1, . . . ,m. The secret s is divided into the sum s = s1+. . .+sm. Then m codewords

c1, . . . , cm are constructed such that each ci has the first component si. Some of the

remaining components are made public and the other components are distributed as

shares to the participants such that any set A ⊆
⋃i
j=1 Tj of at least ti participants can

recover the codeword ci and therefore the summand si. If a group consists of at least

ti participants for all i = 1, . . . ,m, they can determine all components si and are able

to calculate s.

In [16] Cramer et al. improve Bertilsson’s and Ingemarsson’s construction by using

linear hash functions. In the proposed secret sharing scheme the secret is the image

s = h(x) of a suitable vector x ∈ Fk under a randomly chosen linear hash function

h : Fk → Fl. The vector x is encoded to a codeword c of a linear error-correcting

code and the entries of c are distributed as shares to the participants. The resulting

schemes are ramp schemes and due to the use of the hash function the threshold gap

depends only on the rate of the underlying code.

All these previous secret sharing schemes using error-correcting codes have the limi-

tation that they can only realize monotone access structures. In contrast to that our

approach yields a secret sharing scheme which can realize arbitrary access structures.

First results concerning the properties of the shares were achieved in cooperation

with Michael Beiter ([4]).

4.2 The Basic Idea of Our Approach

In the previous constructions the secret and the shares are certain parts of an infor-

mation word or a codeword. In our secret sharing scheme the secret is a complete

codeword of a binary error-correcting code and the shares are binary words of the

same length as the secret. When a group of participants is authorized we want the

secret to be the codeword next to the sum of their shares, such that Hamming de-

coding yields the secret. Otherwise, when the participants are unauthorized, we want

the sum of their shares to differ strongly enough from the secret such that Hamming

decoding outputs the wrong codeword. Let C be a binary code and s ∈ C the secret

to be shared. In terms of the minimum distance d of C the shares k1, . . . , kt ∈ Zn2
distributed to the participants T1, . . . , Tt shall have the properties

1. d (kj1 + . . .+ kj` , s) ≤
⌊
d−1

2

⌋
if {Tj1 , . . . , Tj`} ∈ Γ and

2. For all unauthorized sets {Tj1 , . . . , Tj`} there is a codeword c ∈ C, c 6= s such

that d (kj1 + . . .+ kj` , s) > d (kj1 + . . .+ kj` , c).

The first property guarantees that all authorized groups of participant are able to

reconstruct the secret. Since the Hamming distance from kj1 + . . .+ kj` to s does not

exceed the error correcting capability of C the secret can be computed with a suitable
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decoding algorithm. The second requirement ensures that Hamming decoding does

not yield the secret when the set is unauthorized.

In a certain way, our approach is related to Karnin’s construction. In this con-

struction each participant Tj receives the jth entry cj of a codeword c. Instead of this,

Tj could receive the word (0, . . . , 0, cj, 0, . . . , 0). When enough participants add their

words, Hamming decoding yields c and therefore the secret c0.

The difficulty consists in finding suitable codes C and secrets s ∈ C and in construct-

ing shares with the desired properties. In the next sections we will deal with these

problems. We will see that suitable codes, secrets and shares which meet condition 1.

and 2. can be found for all access structures. However, in general the resulting secret

sharing scheme is neither perfect nor ideal, even when monotone access structures

are considered: Using Hamming decoding each unauthorized set receives a codeword

which is definitely not the secret. Since these codewords can be excluded, not all

secrets are equiprobable.

By now the only known access structures which have perfect realizations using

our approach are those of the the form Γ = {A ⊆ T : Tj ∈ A} for a fixed j when the

secret is a non-zero codeword. We assign the secret as share to Tj and the zero word

to the other participants. Then the unauthorized sets gain no information about the

secret and Hamming decoding always yields the zero word which is not the secret.

Furthermore, the realization is almost ideal since there are |C| possible shares and

|C| − 1 possible secrets.

So far our secret sharing scheme has the following formal components.

(a) T = {T1, . . . , Tt} is the set of participants.

(b) Γ ⊆ P(T )\{∅} is arbitrary. We have to omit the empty set because at least one

share is necessary during the recovery of the secret. In the following we consider

only access structures which do not contain the empty set.

(c) The possible secrets are certain codewords of a suitable binary error correcting

code C with length n: S ⊆ C ⊆ Zn2 .

(d) K = Zn2 is the set of all possible shares.

(e) The distribution functions will be constructed in the following sections.

(f) r : P(Zn2 ) → C assigns each set of shares {kj1 , . . . , kj`} a random element of

dec (kj1 + . . .+ kj`). dec : Zn2 → P(C) is a decoding function for C and yields

the set of all codewords with minimum Hamming distance to the input vector.

In order to find a suitable selection of shares for a given access structure we need

to learn more about the structure that the shares must have. This will be done in

the next section. We will see that the shares are characterized by a system of linear

equations. In Section 4.4 we use that knowledge to prove the existence of a suitable

selection of shares for any access structure on an arbitrary number of participants

fulfilling condition 1. and 2.
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It will turn out that a large code length n is necessary to realize arbitrary access

structures. However, large shares must be expected when arbitrary access structures

are realized. When there are t participants there are 2t−1 possible authorized subsets.

Hence it takes already up to 2t−1 bits of information to declare all authorized subsets.

Furthermore it turns out that in the realization provided by Section 4.4 the dis-

tances from the share sums of unauthorized subsets to the secret are rather small.

There are only a few codewords closer to these sums than the secret. That is why our

secret sharing scheme is far from being perfect, even when monotone access structures

are realized. However, since we are going to realize arbitrary access structures which

are generally non-monotone, the participants must not receive their shares in plain

text and the use of a combiner is vital. In a combiner driven management model the

small distances are unproblematic as long as conditions 1. and 2. are satisfied.

Later we will identify access structures which allow smaller code lengths and larger

distances from the sums of the shares of unauthorized sets to the secret. For this

purpose we will classify all access structures on the same participant set and develop

several techniques of how to derive the realization of one access structure from the

realizations of others.

4.3 The Structure of the Shares

Let T = {T1, . . . , Tt} be a set of t participants and Γ an arbitrary access structure

on T . We need to find a suitable error correcting binary code C of suitable length n

with minimal distance d and to construct vectors k1, . . . , kt ∈ Zn2 such that the secret

is represented by a codeword s ∈ C and the following requirements are satisfied:

1. d (s, kj1 + . . .+ kj`) ≤
⌊
d−1

2

⌋
⇔ {Tj1 , . . . , Tj`} ∈ Γ

2. For all unauthorized sets {Tj1 , . . . , Tj`} there is a codeword c ∈ C, c 6= s such

that d (s, kj1 + . . .+ kj`) > d (c, kj1 + . . .+ kj`).

In the following we assume that a secret s has already been chosen and suitable shares

k1, . . . , kt ∈ Zn2 are already distributed to the participants. We deduce conditions on

the code length n and the structure of the shares, such that the requirements 1. and 2.

are satisfied. This will lead to a procedure of how to find a suitable code length n and

how to construct suitable shares in terms of solutions of a system of linear equations.

We develop the description of n and the shares k1, . . . , kt by these linear equations in

the following four steps.

4.3.1 Defining Total Orders

In the first step we define total orders on P(T ), on the set of all sums of the distributed

shares, on the set of the distances of these sums to the secret and on the binary codes

RM0(1, t) and RM1(1, t).
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(a) At first we define a total order 4 on the power set P(T ) of the participant set.

We number the participants and order them according to the natural order of

the indices:

T1 ≤ T2 ≤ . . . ≤ Tt.

Then we use this order to define a total order on P(T ) inductively.

• Let ∅ be the smallest set in P(T ).

• Assume that the power set of the first r participants, 0 ≤ r < t is already

ordered. Then we have the ordered series

∅ 4 . . . 4 Sj 4 . . . 4 S2r−1

of all subsets of {T1, . . . , Tr}. We receive the ordered series for r + 1 par-

ticipants by extending the series to

∅ 4 . . . 4 Sj 4 . . . 4 S2r−1 4

{Tr+1} 4 . . . 4 Sj ∪ {Tr+1} 4 . . . 4 S2r−1 ∪ {Tr+1}.

(b) Now suppose that each participant Tj ∈ T has received a share kj ∈ Zn2 . We use

the ordered set (P(T ),4) as index set to order the set{∑̀
m=1

kjm : kjm ∈ {k1, . . . kt}

}

of all possible sums of the distributed shares. We define

kj1 + . . .+ kj` 4 ki1 + . . .+ kiu

⇔
{Tj1 , . . . Tj`} 4 {Ti1 , . . . Tiu} .

(c) Next we use the ordered set (P(T ),4) as index set to order the set{
d

(
s,
∑̀
m=1

kjm

)
: kjm ∈ {k1, . . . kt}

}

of the distances from all possible sums of distributed shares to the secret in the

same way. We define

d (s, kj1 + . . .+ kj`) 4 d (s, ki1 + . . .+ kiu)

⇔
{Tj1 , . . . Tj`} 4 {Ti1 , . . . Tiu} .

This order on the set of distances allows us to define the so called distance vector.
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Definition 4.1. The distance vector corresponding to the secret s and the shares

k1, . . . , kt is the vector

b = b(s, k1, . . . , kt) =
(
b1, b2, . . . , b2t

)τ

:=



d (s, 0)

d (s, k1)
...

d

(
s,
∑̀
m=1

kjm

)
...

d

(
s,

t∑
j=1

kj

)


such that bi 4 bi+1 for all 1 ≤ i ≤ 2t − 1.

Example 4.2. For three participants T1, T2, T3 with shares k1, k2, k3 ∈ K = Zn2
the total order on P(T ) is given by

∅ 4 {T1} 4 {T2} 4 {T1, T2} 4 {T3} 4 {T1, T3} 4 {T2, T3} 4 {T1, T2, T3} .

The sums of shares are ordered by

0 4 k1 4 k2 4 k1 + k2 4 k3 4 k1 + k3 4 k2 + k3 4 k1 + k2 + k3

and the distances by

d (s, 0) = wt(s) 4 d (s, k1) 4 d (s, k2) 4 d (s, k1 + k2) 4 d (s, k3)

4 d (s, k1 + k3) 4 d (s, k2 + k3) 4 d (s, k1 + k2 + k3) .

(d) Finally we use (P(T ),4) as index set to define total orders on the subsets of the

polynomial ring Z2[x1, . . . , xt] consisting of Boolean polynomials of degree one

with or without the constant summand 1. These orders imply total orders on

the binary codes RM0(1, t) and RM1(1, t). We define

xj1 + . . .+ xj` 4 xi1 + . . .+ xiu

⇔
{Tj1 , . . . Tj`} 4 {Ti1 , . . . Tiu}

and
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1 + xj1 + . . .+ xj` 4 1 + xi1 + . . .+ xiu

⇔
{Tj1 , . . . Tj`} 4 {Ti1 , . . . Tiu} .

Example 4.3. For t = 3 the total orders on RM0(1, t) and RM1(1, t) are given by

the orders on the related Boolean polynomials

0 4 x1 4 x2 4 x1 + x2 4 x3 4 x1 + x3 4 x2 + x3 4 x1 + x2 + x3 and

1 4 1+x1 4 1+x2 4 1+x1 +x2 4 1+x3 4 1+x1 +x3 4 1+x2 +x3 4 1+x1 +x2 +x3.

This yields the following total orders on RM0(1, 3)

(00000000) ∼ 0 4 (01010101) ∼ x1 4 (00110011) ∼ x2

4 (01100110) ∼ x1 + x2 4 (00001111) ∼ x3 4 (01011010) ∼ x1 + x3

4 (00111100) ∼ x2 + x3 4 (01101001) ∼ x1 + x2 + x3

and on RM1(1, 3)

(11111111) ∼ 1 4 (10101010) ∼ 1 + x1 4 (11001100) ∼ 1 + x2

4 (10011001) ∼ 1 + x1 + x2 4 (11110000) ∼ 1 + x3 4 (10100101) ∼ 1 + x1 + x3

4 (11000011) ∼ 1 + x2 + x3 4 (10010110) ∼ 1 + x1 + x2 + x3.

At this point we give a representation of the evaluation of a Boolean polynomial

p ∈ Z2[x1, . . . , xt] of constant degree one on a vector w ∈ Zt2 in terms of the order 4
that we need later on.

Remark 4.4. The interpretation of the elements (a0, . . . , at−1) of Zt2 as binary repre-

sentations of natural numbers
t−1∑
i=0

ai2
i yields an order ≤ on Zt2:

(0, . . . , 0) ≤ (1, 0, . . . , 0) ≤ (0, 1, 0, . . . , 0) ≤ (1, 1, 0, . . . , 0) ≤ . . . ≤ (1, . . . , 1).

Let v = (v1, . . . , vt) be the ith element of (Zt2,≤) and p the Boolean polynomial which

belongs to the ith element of (RM0(1, t),4) for an arbitrary 1 ≤ i ≤ 2t. Then p is

related to v = (v1, . . . , vt) in the following way: vj = 1 iff the monomial xj is a term

of p. Hence the evaluation of p on an arbitrary vector w ∈ Zt2 can be expressed by

calculating the scalar product

p(w) = v · wτ .

4.3.2 Characterization of the Distance Vector

In the second step we characterize the distance vector b(s, k1, . . . , kt) in terms of the

supports of the secret and the shares.
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The shares as well as the secret are binary vectors of length n. Let I = {1, . . . , n}
denote the set of all positions in such a vector. In this step we define a partition

I = I t1
.
∪ , . . . ,

.
∪ I t2t+1 such that the support of each sum of shares is the union of

a uniquely determined selection of the I ti . The term ”partition” is used in a general

sense since some I ti could be empty. Define s := k0. Then each position in I belongs

to a unique set of the form

supp (kj0) ∩ . . . ∩ supp (kj`) ∩ supp
(
kj`+1

)
∩ . . . ∩ supp (kjt).

with j0, . . . , jt ∈ {0, . . . , t} pairwise distinct. We will see that this classification of the

positions yields a partition of I into 2t+1 disjoint sets with the required properties.

Initially consider a scheme with only one participant T1. We fragment I = supp(s)
.
∪

supp(s) into four disjoint subsets

I =
(

supp(s) ∩ supp(k1)
)

.
∪
(

supp(s) ∩ supp(k1)
)

.
∪(

supp(s) ∩ supp(k1)
)

.
∪ (supp(s) ∩ supp(k1))

= I1
1

.
∪ I1

2

.
∪ I1

3

.
∪ I1

4

with I1
1 := supp(s)∩ supp(k1), I1

2 := supp(s)∩ supp(k1), I1
3 := supp(s)∩ supp(k1) and

I1
4 := supp(s) ∩ supp(k1).

When we add a second participant we obtain a refinement of the above partition into

eight disjoint subsets

I2
1 = supp(s) ∩ supp(k1) ∩ supp(k2)

I2
2 = supp(s) ∩ supp(k1) ∩ supp(k2)

I2
3 = supp(s) ∩ supp(k1) ∩ supp(k2)

I2
4 = supp(s) ∩ supp(k1) ∩ supp(k2)

I2
5 = supp(s) ∩ supp(k1) ∩ supp(k2)

I2
6 = supp(s) ∩ supp(k1) ∩ supp(k2)

I2
7 = supp(s) ∩ supp(k1) ∩ supp(k2)

I2
8 = supp(s) ∩ supp(k1) ∩ supp(k2).

Inductively we can partition I for an arbitrary number of t participants. Given the

partition I = I t−1
1

.
∪ . . .

.
∪ I t−1

2t for t− 1 participants define

I ti := I t−1
i ∩ supp(kt) and I ti+2t := I t−1

i ∩ supp(kt).

for all 1 ≤ i ≤ 2t. This gives a partition I = I t1
.
∪ . . .

.
∪ I t2t+1 with the following

properties.
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Remark 4.5. Let kj1 + . . . + kj` be an arbitrary sum of shares, jm 6= 0 for all m =

1, . . . , `. Then the support supp (kj1 + . . .+ kj`) of the sum is the (disjoint) union of

all I ti such that I ti ∩ supp (kjm) 6= ∅ for an odd number of shares kjm ∈ {kj1 , . . . , kj`}.

Definition 4.6. for i = 1, ..., 2t+1 we define

ai = ai(s, k1, . . . , kt) := |I ti | and

a(s, k1, . . . , kt) = (a1, . . . , a2t+1).

Note that a permutation on the positions has no effect on the ai. That means for

each s ∈ Zn2 with weight wt(s) = b1 ≤ n all choices a1, . . . , a2t+1 ∈ Nn
0 with

2t∑
i=1

a2i = b1

and
2t∑
i=1

a2i−1 = n − b1 determine shares k1, . . . , kt uniquely up to the order of their

entries. Since the support of an arbitrary sum of shares is the disjoint union of a

suitable selection of the I ti we can write the weight of each sum of shares as the sum

of the corresponding ai. Furthermore we have a representation of the distance from

each sum of shares to the secret in terms of the ai.

Remark 4.7. Let kj1 + . . . + kj` be an arbitrary sum of shares, jm 6= 0 for all m =

1, . . . , `. Assume that supp (kj1 + . . .+ kj`) = Ii1
.
∪ . . .

.
∪ Iik . Then

(a) wt (kj1 + . . .+ kj`) = ai1 + . . .+ aik

(b) wt(s) =
2t∑
i=1

a2i

(c) d (s, kj1 + . . .+ kj`) = wt (s+ kj1 + . . .+ kj`) =
k∑
v=1
iv odd

aiv +
k∑

i even
i 6= i1, . . . , ik

ai

The first sum counts the positions where s has the value 0 and kj1 + . . . + kj`
has the value 1. The second sum counts the positions where s has the value 1

and the sum kj1 + . . .+ kj` has the value 0.

Example 4.8. Let C = RM(1, 3) and t = 2. Consider the following secret s ∈ C ⊆ Z8
2

and the shares k1, k2 ∈ K = Z8
2:

positions 1 2 3 4 5 6 7 8

s =
(
1 1 1 1 0 0 0 0

)
k1 =

(
1 1 0 1 0 1 1 1

)
k2 =

(
1 0 1 0 0 1 1 0

)
The supports are

supp(s) = {1, 2, 3, 4} , supp(k1) = {1, 2, 4, 6, 7, 8} and supp(k2) = {1, 3, 6, 7} .
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This yields

I2
1 = supp(s) ∩ supp(k1) ∩ supp(k2) = {5} ⇒ a1 = 1

I2
2 = supp(s) ∩ supp(k1) ∩ supp(k2) = ∅ ⇒ a2 = 0

I2
3 = supp(s) ∩ supp(k1) ∩ supp(k2) = {8} ⇒ a3 = 1

I2
4 = supp(s) ∩ supp(k1) ∩ supp(k2) = {2, 4} ⇒ a4 = 2

I2
5 = supp(s) ∩ supp(k1) ∩ supp(k2) = ∅ ⇒ a5 = 0

I2
6 = supp(s) ∩ supp(k1) ∩ supp(k2) = {3} ⇒ a6 = 1

I2
7 = supp(s) ∩ supp(k1) ∩ supp(k2) = {6, 7} ⇒ a7 = 2

I2
8 = supp(s) ∩ supp(k1) ∩ supp(k2) = {1} ⇒ a8 = 1.

For example

supp (s+ k1 + k2) = supp(10000001) = {1, 8} = I2
3

.
∪ I2

8

yields

d (s, k1 + k2) = wt (s+ k1 + k2) = a3 + a8 = 1 + 1 = 2.

Furthermore, wt(s) = |supp(s)| = | {1, 2, 3, 4} | = a2 + a4 + a6 + a8.

4.3.3 The Connection of the ai to the Distance Vector b

In the third step we show that the components ai are related to the distance vector b

by a system of linear equations.

Each participant Tj receives a share kj ∈ Zn2 and the partition I = I1

.
∪ . . .

.
∪ I2t+1

enables us to write the distance d

(
s,
∑̀
m=1

kjm

)
of each sum of shares to the secret as a

sum of suitable ai. Hence there must be a matrix M(t) ∈M2t,2t+1(Z) with the entries

0 and 1 depending only on t such that for all possible secrets s and shares k1, . . . , kt
and the resulting vectors a(s, k1, . . . , kt) and b = (s, k1, . . . , kt) the equation

M(t) ·


a1

a2

...

a2t+1


︸ ︷︷ ︸

=aτ

=


wt(s)

d (s, k1)
...

d

(
s,

t∑
j=1

kj

)
 =


b1

b2

...

b2t


︸ ︷︷ ︸

=b

(4.1)

holds.

In the following we describe the structure of such a matrix M(t). We start with

a lemma which shows a close relation between M(t) and the first order Reed Muller

codes RM(1, t) and RM(1, t+1). This relation determines M(t) uniquely. In the next

section we deal with the question for which types of distance vectors b ∈ N2t

0 there is

a suitable vector a ∈ N2t+1

0 coming from the same s, k1, . . . , kt as b such that 4.1 holds.
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Lemma 4.9. Let M(t) ∈ M2t,2t+1(Z) be a matrix with entries in {0, 1} such that

Equation 4.1 holds for all a = a(s, k1, . . . , kt) and b = b(s, k1, . . . , kt) coming from the

same secret s and the same shares k1, . . . , kt. Then M(t) has the following properties:

(a) The odd numbered columns of M(t) are the codewords of RM0(1, t) and the

even numbered columns of M(t) are the codewords of RM1(1, t). The even and

the odd numbered columns appear in ascending order with respect to 4 (from

left to right).

(b) The rows of M(t) are the codewords of RM0(1, t+ 1) corresponding to Boolean

polynomials with the term x1. They appear in ascending order with respect to

4 (from top to bottom).

Proof. Proof by induction on t.

Let t = 1. For arbitrary s and k1 we have the partition

I =
(

supp(s) ∩ supp(k1)
)

︸ ︷︷ ︸
I1

.
∪
(

supp(s) ∩ supp(k1)
)

︸ ︷︷ ︸
I2

.
∪

(
supp(s) ∩ supp(k1)

)
︸ ︷︷ ︸

I3

.
∪ (supp(s) ∩ supp(k1))︸ ︷︷ ︸

I4

with a1(s, k1) = |I1|, a2(s, k1) = |I2|, a3(s, k1) = |I3| and a4(s, k1) = |I4|.
b1 = wt(s) = a2(s, k1) + a4(s, k1). Hence the first row of M(1) is

(
0 1 0 1

)
. The

second row is given by
(
0 1 1 0

)
since d (s, k1) = a2(s, k1) +a3(s, k1) is the number

of positions where k and s1 have different values. We obtain

M(1) =

(
0 1 0 1

0 1 1 0

)
.

Now, compare the columns and rows of M(1) with the codewords of RM(1, 1) and

RM(1, 2).

RM0(1, 1) = {(0, 0), (0, 1)} with (0, 0) ∼ 0 4 x1 ∼ (0, 1)

These codewords correspond to the odd numbered columns of M(1). The even num-

bered columns of M(1) correspond to

RM1(1, 1) = {(1, 1), (1, 0)} with (1, 1) ∼ 1 4 1 + x1 ∼ (1, 0).

Furthermore the codewords of RM0(1, 2) corresponding to Boolean polynomials with

summand x1 are x1 ∼ (0, 1, 0, 1) and x1 + x2 ∼ (0, 1, 1, 0) with x1 4 x1 + x2. These

are the rows of M(1). Hence the assertion holds for t = 1.

Assume the assertion is true for t − 1 ∈ N. When we add another participant Tt
with an arbitrary share kt of the same length than s, k1, . . . , kt−1, the weight vector

b(s, k1, . . . , kt−1) for t− 1 participants is extended to the weight vector b(s, k1, . . . , kt)

for t participants via
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

d (s, 0)

d (s, k1)
...

d

(
s,
∑̀
m=1

kjm

)
...

d

(
s,

t−1∑
j=1

kj

)


︸ ︷︷ ︸

=b(s,k1,...,kt−1)

→



d (s, 0)

d (s, k1)
...

d

(
s,
∑̀
m=1

kjm

)
...

d

(
s,

t−1∑
j=1

kj

)

d (s, kt)

d (s, k1 + kt)
...

d

(
s,
∑̀
m=1

kjm + kt

)
...

d

(
s,

t−1∑
j=1

kj + kt

)


︸ ︷︷ ︸

=b(s,k1,...,kt)

.

The refined partition I = I t1
.
∪ . . .

.
∪ I t2t+1 is represented by

a1(s, k1, . . . , kt−1)
...

a2t(s, k1, . . . , kt−1)


︸ ︷︷ ︸

=a(s,k1,...,kt−1)τ

→



a1(s, k1, . . . , kt)
...

a2t(s, k1, . . . , kt)

a2t+1(s, k1, . . . , kt)
...

a2t+1(s, k1, . . . , kt)


︸ ︷︷ ︸

=a(s,k1,...,kt)τ

with ai(s, k1, . . . , kt) + ai+2t(s, k1, . . . , kt) = ai(s, k1, . . . , kt−1) for all i = 1, . . . , 2t.

At first we examine the rows of M(t). Let ri(t − 1) denote the ith row of M(t − 1)

and Si denotes the ith sum of shares with summands in {k1, . . . , kt−1}, 1 ≤ i ≤ 2t−1.

Then

ri(t− 1) · (a1(s, k1, . . . , kt−1), . . . , a2t(s, k1, . . . , kt−1))τ = d (s, Si)

This yields the equations
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ri(t− 1) · (a1(s, k1, . . . , kt), . . . , a2t(s, k1, . . . , kt))
τ

= d
(
s|supp(kt)

, Si|supp(kt)

)
= d

(
s|supp(kt)

, (Si + kt)|supp(kt)

)
,

ri(t− 1) · (a2t+1(s, k1, . . . , kt), . . . , a2t+1(s, k1, . . . , kt)) τ

= d
(
s|supp(kt), Si|supp(kt)

)
,

ri(t− 1) · (a2t+1(s, k1, . . . , kt), . . . , a2t+1(s, k1, . . . , kt))
τ

= |supp(kt)| − d
(
s|supp(kt), Si|supp(kt)

)
= d

(
s|supp(kt), Si|supp(kt)

)
= d

(
s|supp(kt), Si|supp(kt) + kt

)
= d

(
s|supp(kt), (Si + kt)|supp(kt)

)
.

Hence on the one hand the distances d (s, Si) and d (s, Si + kt) can be calculated by

(ri(t− 1), ri(t− 1)) · (a1(s, k1, . . . , kt), . . . , a2t+1(s, k1, . . . , kt))
τ

= d
(
s|supp(kt)

, Si|supp(kt)

)
+ d

(
s|supp(kt), Si|supp(kt)

)
= d (s, Si) = bi(s, k1, . . . , kt)

and (
ri(t− 1), ri(t− 1)

)
· (a1(s, k1, . . . , kt), . . . , a2t+1(s, k1, . . . , kt))

τ

= d
(
s|supp(kt)

, (Si + kt)|supp(kt)

)
+ d

(
s|supp(kt), (Si + kt)|supp(kt)

)
= d (s, Si + kt) = b2t+i(s, k1, . . . , kt).

On the other hand these distances are defined by the scalar products ri(t)·a(s, k1, . . . , kt)
τ

and ri+2t−1(t) · a(s, k1, . . . , kt)
τ , where ri(t) is the ith row and ri+2t(t) is the i+ 2t−1th

row of M(t). Therefore we can assume that the rows of M(t) have the form

ri(t) = (ri(t− 1), ri(t− 1)) for all 1 ≤ i ≤ 2t−1 and

ri(t) =
(
ri(t− 1), ri(t− 1)

)
for all 2t−1 + 1 ≤ i ≤ 2t.

This means that the rows of M(t) are given by the Plotkin construction on the rows of

M(t−1). By induction the rows of M(t−1) correspond to the words of RM0(1, t) with

summand x1. Therefore the rows of M(t) correspond to the words of RM0(1, t + 1)

with summand x1 in the desired order.
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Let cj(t−1) denote the jth column of M(t−1). The Plotkin construction on the rows

yields a Plotkin construction on the columns. We have

cj(t) =

(
cj(t− 1)

cj(t− 1)

)
and

c2t+j(t) =

(
cj(t− 1)

cj(t− 1)

)
for all j = 1, . . . , 2t.

Let j be odd. According to our assertion, the column cj(t − 1) belongs to a Boolean

polynomial xj1 + . . . + xj` ∈ Z2[x1, . . . , xt−1]. As cj(t) is the repetition of cj(t − 1) it

corresponds to the same Boolean polynomial xj1 + . . . + xj` ∈ Z2[x1, . . . , xt], however

defined on t variables. Since (0, . . . , 0︸ ︷︷ ︸
2t−1

, 1, . . . , 1︸ ︷︷ ︸
2t−1

) ∼ xt the column cj+2t(t) belongs to

the polynomial xj1 + . . . + xj` + xt ∈ Z2[x1, . . . , xt]. Therefore the assertion holds

for the odd numbered columns. By the same argument the even numbered columns

correspond to the codewords of RM1(1, t) ordered by 2: When j is even the column

cj(t−1) is related to a Boolean polynomial 1+xj1 + . . .+xj` ∈ Z2[x1, . . . , xt−1]. Hence

cj(t) =

(
cj(t− 1)

cj(t− 1)

)
belongs to the Boolean polynomial 1+xj1+. . .+xj` ∈ Z2[x1, . . . , xt]

and c2t+j(t) =

(
cj(t− 1)

cj(t− 1)

)
is related to 1 + xj1 + . . .+ xj` + xt ∈ Z2[x1, . . . , xt].

For abbreviation we denote the submatrix of M(t) consisting of the odd numbered

columns with M(t)odd and the submatrix of the even numbered columns with M(t)even.

Example 4.10. For t = 3 participants we have the matrix

M(3) =



0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0



.

The rows are the codewords of RM0(1, 4) corresponding to Boolean polynomials with

summand x1:
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

x1

x1 + x2

x1 + x3

x1 + x2 + x3

x1 + x4

x1 + x2 + x4

x1 + x3 + x4

x1 + x2 + x3 + x4


.

The columns of

M(3)odd =



0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1


are the codewords of RM0(1, 3) belonging to the Boolean polynomials

(0, x1, x2, x1 + x2, x3, x1 + x3, x2 + x3, x1 + x2 + x3)

and the columns of

M(3)even =



1 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

1 0 0 1 1 0 0 1

1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1

1 1 0 0 0 0 1 1

1 0 0 1 0 1 1 0


are the codewords of RM1(1, 3) defined by the Boolean polynomials

(1, 1+x1, 1+x2, 1+x1+x2, 1+x3, 1+x1+x3, 1+x2+x3, 1+x1+x2+x3) .

4.3.4 Simplification of Equation 4.1

In this step we transform Equation 4.1 to make the relation between a(s, k1, . . . , kt)

and b(s, k1, . . . , kt) clearer. We use the relation of M(t) to the Reed-Muller code

RM(1, t) described in Lemma 4.9. At first we define two more useful matrices.
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Definition 4.11.

• ε(t) ∈ M2t,2t({0, 1}) is the matrix whose rows correspond to the codewords of

RM0(1, t) ordered by 4 in ascending order (from top to bottom).

• E(t) ∈ M2t,2t ({±1}) is the matrix generated by replacing the zeros in ε(t) by

ones and the ones by minus ones. Ei(t) denotes the ith row of E(t) for all

i = 1, . . . , 2t.

When the number of participants is clear we omit the parameter t. ε and E have

the following properties.

Lemma 4.12. (a) ε and E are symmetric. The columns of ε correspond to the

codewords of RM0(1, t) ordered by 4, too. Hence ε = M odd.

(b) E is invertible as matrix over Q.

(c)
2t∑
i=1

Ei =
(
2t, 0, . . . , 0

)
.

(d)
2t∑
i=2

Ei =
(
2t − 1,−1, . . . ,−1

)
.

Proof. (a) Let pi denote the ith element of RM0(1, t) and vj the jth element of Zt2
with respect to the order on Zt2 defined in Remark 4.4. Per definition the element

of ε in the ith row and jth column is εi,j = pi(vj) and ε has the form



0(0, . . . , 0) 0(1, 0, . . . , 0) . . . 0(1, . . . , 1)

x1(0, . . . , 0) x1(1, 0, . . . , 0) . . . x1(1, . . . , 1)

x2(0, . . . , 0) x2(1, 0, . . . , 0) . . . x2(1, . . . , 1)

x1 + x2(0, . . . , 0) x1 + x2(1, 0, . . . , 0) . . . x1 + x2(1, . . . , 1)
...

...
...

x1 + . . .+ xt(0, . . . , 0) x1 + . . .+ xt(1, 0, . . . , 0) . . . x1 + . . .+ xt(1, . . . , 1)


.

As stated in Remark 4.4, pi(vj) = vi ·vτj = vj ·vτi = pj(vi). Hence ε is symmetric.

(b) E is invertible since E · E = 2t · E2t (where E2t denotes the identity matrix).

With part (a) the diagonal entries are clear since 1 and −1 are the only entries

in E. The zeroes come from the fact two different codewords in RM0(1, t) differ

in the half of their entries. (see 3.27 (d))

(c),(d) The first entries are clear since the first column of ε is the zero word. The other

columns come from words in RM0(1, t) \ {(0 . . . 0)} which have weight 2t−1 and

start with a zero. (see 3.27 (c))
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Example 4.13. For t = 3 participants we have

ε(3) =



0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1



.

The rows are related to the Boolean polynomials

0, x1, x2, x1 + x2, x3, x1 + x3, x2 + x3 x1 + x2 + x3.

E(3) =



1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1


Based on these preliminary thoughts we find a simplification of the linear system

4.1.

Lemma 4.14. Let a = a(s, k1, . . . , kt) = (a1, a2, . . . , a2t+1) and b = b(s, k1, . . . , kt).

Then Equation 4.1 is equivalent to the following system of linear equations:

2t∑
i=1

a2i = b1

a4 − a3 =
1

2t−1
E2 · b

...

a2i − a2i−1 =
1

2t−1
Ei · b (4.2)

...

a2t+1 − a2t+1−1 =
1

2t−1
E2t · b.

Proof. Let aodd = (a1, a3, . . . , a2t+1−1) and aeven = (a2, a4, . . . , a2t+1). Then
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M · aτ = b

⇔ M odd · (aodd)τ +M even · (aeven)τ = b

⇔ E ·M odd · (aodd)τ + E ·M even · (aeven)τ = E · b (4.3)

Since E is invertible (see Lemma 4.12 (b)) the last two equations are equivalent. Next

we compute the matrices E ·M odd and E ·M even separately using the information about

the columns of M given in Lemma 4.9 and the properties of first order Reed-Muller

codes stated in 3.27.

• For j = 1, . . . , 2t let M odd
j denote the jth column of M odd. Then M odd

j corresponds

to the jth element of RM0(1, t). The ith row Ei of E corresponds to the ith

element of RM0(1, t). Now we calculate all scalar products Ei ·M odd
j . We have

to distinguish four cases.

1. j = 1.

Ei ·M odd

1 = Ei · (0, . . . , 0)τ = 0

2. i = 1, j 6= 1.

E1 ·M odd

j = (1, . . . , 1) ·M odd

j = wt
(
M odd

j

)
= 2t−1

since all codewords in RM0(1, t) except for the zero vector have weight 2t−1.

3. Let i, j 6= 1, i 6= j. Ei has the values ±1 and M odd
j has the values 0 and

1. Therefore each multiplication during the calculation of Ei ·M odd
j has the

form 1 · 0, −1 · 0, 1 · 1 or −1 · 1. In this case Ei and M odd
j correspond to

different nonzero codewords in RM0(1, t). These codewords have both 2t−1

times the value 0 and 2t−1 times the value 1 such that they coincide exactly

in 2t−2 positions with value 0 and 1, respectively. This yields

Ei 1 −1 1 −1

M odd
j 0 0 1 1

# 2t−2 2t−2 2t−2 2t−2

.

where # denotes the number of positions with the specified combinations.

Thus

Ei ·M odd

j = 2t−2 − 2t−2 = 0.

4. Let i = j 6= 1. Then Ei and M odd
j belong to the same nonzero codeword of

RM0(1, t) and we have

Ei 1 −1 1 −1

M odd
i 0 0 1 1

# 2t−1 0 0 2t−1

.
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Therefore

Ei ·M odd

i = −2t−1.

This yields

E ·M odd =


0 2t−1 . . . 2t−1

0 −2t−1

...
. . .

0 −2t−1

 .

• For j = 1, . . . , 2t let M even
j denote the jth column of M even. Then M even

j corre-

sponds to the jth element of RM1(1, t). Again we calculate all scalar products

Ei ·M even
j . There are five different cases.

1. i = j = 1.

E1 ·M even

1 = (1, . . . , 1) · (1, . . . , 1)τ = 2t

2. i 6= 1, j = 1.

Ei ·M even

1 = Ei · (1, . . . , 1)τ = 0

since Ei has exactly 2t−1 ones and 2t−1 minus ones.

3. i = 1, j 6= 1.

E1 ·M even

j = (1, . . . , 1) ·M even

j = wt
(
M even

j

)
= 2t−1

since all codewords in RM1(1, t) \ {(1, . . . , 1)} have the weight 2t−1.

4. Let i, j 6= 1, i 6= j. Then the vectors Ei and M even
j belong to different

codewords in c, d ∈ RM(1, t) \ {(0, . . . , 0), (1, . . . , 1)} with c 6= d. This

yields

Ei 1 −1 1 −1

M even
j 0 0 1 1

# 2t−2 2t−2 2t−2 2t−2

and

Ei ·M even

j = 2t−2 − 2t−2 = 0.

5. Let i = j 6= 1. Then there is a polynomial p ∈ Z2[x1, . . . , xt] of degree one

without the summand 1 such that Ei is related to p and M even
i ∼ 1 + p. p

and 1 + p have exactly 2t−1 times the value 0 and the value 1 and differ for

all inputs. Therefore

Ei 1 −1 1 −1

M even
i 0 0 1 1

# 0 2t−1 2t−1 0

and

Ei ·M even

i = 2t−1.
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We obtain

E ·M even =


2t 2t−1 . . . 2t−1

0 2t−1

...
. . .

0 2t−1

 .

Using these results on E ·M odd and E ·M even, Equation 4.3 is equivalent to
2t−1 ·

2t∑
i=2

aodd
i

−2t−1aodd
2

...

−2t−1aodd

2t

+


2t−1

(
aeven

1 +
2t∑
i=1

aeven
i

)
2t−1aeven

2
...

2t−1aeven

2t

 =


E1 · b
E2 · b

...

E2t · b

 .

Replace the first row by the sum of all rows. Then


0

−2t−1aodd
2

...

−2t−1aodd

2t

+


2t ·

2t∑
i=1

aeven
i

2t−1aeven
2

...

2t−1aeven

2t

 =


2t∑
i=1

Ei · b

E2 · b
...

E2t · b

 .

According to Lemma 4.12 (c), this is equivalent to
2t∑
i=1

a2i

2t−1 (a4 − a3)
...

2t−1 (a2t+1 − a2t+1−1)

 =


b1

E2 · b
...

E2t · b

 .

Example 4.15. Consider a scheme on t = 3 participants.

E ·M odd · (aodd)τ + E ·M even · (aeven)τ

=



0 4 4 4 4 4 4 4

0−4 0 0 0 0 0 0

0 0−4 0 0 0 0 0

0 0 0−4 0 0 0 0

0 0 0 0−4 0 0 0

0 0 0 0 0−4 0 0

0 0 0 0 0 0−4 0

0 0 0 0 0 0 0−4



·



a1

a3

a5

a7

a9

a11

a13

a15



+



8 4 4 4 4 4 4 4

0 4 0 0 0 0 0 0

0 0 4 0 0 0 0 0

0 0 0 4 0 0 0 0

0 0 0 0 4 0 0 0

0 0 0 0 0 4 0 0

0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 4



·



a2

a4

a6

a8

a10

a12

a14

a16



→



8∑
j=1

a2j

4 (a4 − a3)

4 (a6 − a5)

4 (a8 − a7)

4 (a10 − a9)

4 (a12 − a11)

4 (a14 − a13)

4 (a16 − a15)


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E · b

=



b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8

b1 − b2 + b3 − b4 + b5 − b6 + b7 − b8

b1 + b2 − b3 − b4 + b5 + b6 − b7 − b8

b1 − b2 − b3 + b4 + b5 − b6 − b7 + b8

b1 + b2 + b3 + b4 − b5 − b6 − b7 − b8

b1 − b2 + b3 − b4 − b5 + b6 − b7 + b8

b1 + b2 − b3 − b4 − b5 − b6 + b7 + b8

b1 − b2 − b3 + b4 − b5 + b6 + b7 − b8



→



b1

b1 − b2 + b3 − b4 + b5 − b6 + b7 − b8

b1 + b2 − b3 − b4 + b5 + b6 − b7 − b8

b1 − b2 − b3 + b4 + b5 − b6 − b7 + b8

b1 + b2 + b3 + b4 − b5 − b6 − b7 − b8

b1 − b2 + b3 − b4 − b5 + b6 − b7 + b8

b1 + b2 − b3 − b4 − b5 − b6 + b7 + b8

b1 − b2 − b3 + b4 − b5 + b6 + b7 − b8


We obtain the equations

a2 + a4 + a6 + a8 + a10 + a12 + a14 + a16 = b1 and

a4 − a3 =
1

4
(b1 − b2 + b3 − b4 + b5 − b6 + b7 − b8)

a6 − a5 =
1

4
(b1 + b2 − b3 − b4 + b5 + b6 − b7 − b8)

a8 − a7 =
1

4
(b1 − b2 − b3 + b4 + b5 − b6 − b7 + b8)

a10 − a9 =
1

4
(b1 + b2 + b3 + b4 − b5 − b6 − b7 − b8)

a12 − a11 =
1

4
(b1 − b2 + b3 − b4 − b5 + b6 − b7 + b8)

a14 − a13 =
1

4
(b1 + b2 − b3 − b4 − b5 − b6 + b7 + b8)

a16 − a15 =
1

4
(b1 − b2 − b3 + b4 − b5 + b6 + b7 − b8).

Remark 4.16. (a) We are only interested in solutions a ∈ N2t+1

0 for Equation 4.2

because the ai represent the cardinalities of the sets I ti and cannot be negative.

(b) a1 is the number of all positions where the secret and all shares have the value

zero. These positions still contain only zeros when sums of shares are considered.

Hence a1 has no effect on the distances of these sums to the secret and on whether

a group of participants is authorized or not. That is why a1 does not appear in

the system of linear equations 4.2. a1 can be regarded as a free parameter which

can be used to adjust to a given code length n ≥
2t∑
i=1

a2i︸ ︷︷ ︸
b1

+
2t∑
i=2

a2i−1.

So far we expressed the structure of the shares in terms of the cardinalities a1, . . . ,

a2t+1 of sets determined by the supports of the shares and the secret. Furthermore

we found out that for a given secret s the distance vector b(s, k1, . . . , kt) is possible if
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there is a solution (a1, . . . , a2t+1) ∈ N2t+1

0 of the system of linear equations in 4.2. This

solution determines the shares uniquely up to the order of their entries.

4.4 The Existence of an Universal Realization

In this section we show that any access structure can be realized using our construc-

tion. For the sake of simplicity we restrict ourselves to the case that there are only

two possible distances from the sums to the secret: one small distance k and one

large distance g. When a set of participants is authorized the distance of the related

sum to the secret shall be k. Otherwise we want the distance to be g. We develop

non-negative integer solutions of Equation 4.2 for such distance vectors.

Remark 4.17. Suppose that C is a binary code with length n and minimum distance

d. Let s ∈ C be the secret to be shared with our construction.

(a) The secret s is a codeword in C. Therefore its weight b1 has to be at least as

large as the minimum weight of C.

(b) When the small distance k fulfills the inequality d ≥ 2k + 1, then k does not

exceed the error-correction capacity of C. That guarantees that the secret is

the codeword lying next to the sum of the shares of each authorized set. Using

Hamming decoding the secret can be found and condition 1 from Section 4.2 is

fulfilled.

(c) The large distance g can be regarded as the security distance of our scheme.

It is the number of positions in which the sum of the shares of each unautho-

rized subset differ from the secret and has to be larger than the error-correction

capability. Hence we require g >
⌊
d−1

2

⌋
. This condition is necessary, but not

sufficient, to guarantee that no unauthorized set is able to reconstruct the secret

using Hamming decoding. Depending on the structure of C, the secret may still

be the codeword next to the sum of the shares. Condition 2 from Section 4.2 is

definitely met when, for instance, g exceeds the covering radius of C.

In the following we show that for all access structures there are suitable codes and

distances b1, k, g ∈ N depending only on the number t of the participants such that

for all codewords s with weight b1 there are shares k1, . . . , kt ∈ Zn2 with the following

properties:

• bj = d (s, Sj) = k if the jth set in P (T ) is authorized. Sj denotes the jth sum

of shares which belong to the jth set of participants.

• bj = d (s, Sj) = g > k if the jth set in P (T ) is unauthorized.

b = (b1, . . . , b2t)
τ is the distance vector b(s, k1, . . . , kt). Using specific values for n,

b1, g and k we prove the existence of a solution a = (a1, . . . , a2t+1) ∈ N2t+1

0 for the
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linear system 4.2. Since ai = |I ti | for all i = 1, . . . , 2t+1, these solutions determine

suitable shares k1, . . . , kt uniquely up to permutations of the positions.

Unfortunately the price for this generality is a large word length n and a relatively

small security distance g. Later we will see that special classes of access structures

allow choices of b1, g and k which have significantly more efficient and secure realiza-

tions.

4.4.1 First Definitions

The linear system 4.2 states requirements for the differences a2i − a2i−1, i = 2, . . . , 2t,

and not for the single ai. Thus, for the sake of simplicity, we can consider solutions

with a2i = 0 or a2i−1 = 0.

Definition 4.18. Let Γ be an arbitrary access structure on t participants and let

b1, g ∈ N and k ∈ N0 such that b1, g > k.

(a) The distance vector b = (b1, b2, . . . , b2t)
τ defined by

bj =

{
k if the jth subset of T is authorized

g if the jth subset of T is unauthorized
for all j = 2, 3, . . . , 2t.

is called elementary distance vector for Γ with respect to (b1, g, k).

(b) Consider the system of linear equations 4.2:

2t∑
i=1

a2i = b1

a2i − a2i−1 =
1

2t−1
Ei · b for all i = 2, 3, . . . , 2t

For i = 2, 3, . . . , 2t let

a2i =
1

2t−1
Ei · b and a2i−1 = 0 if

1

2t−1
Ei · b > 0

and

a2i = 0 and a2i−1 = − 1

2t−1
Ei · b if

1

2t−1
Ei · b ≤ 0.

Then a3, . . . , a2t+1 ∈ N0 solve all equations of 4.2 but the first one. If additionally

the inequality
2t∑
i=2

a2i ≤ b1

holds, we define a2 = b1 −
2t∑
i=2

a2i ≥ 0 and obtain a solution (a2, a3, . . . , a2t+1) ∈

N2t+1−1
0 for all equations of 4.2. In this case we say that (b1, g, k) realizes Γ

elementarily and call (a2, a3, . . . , a2t+1) an elementary solution for (Γ, b1, g, k).
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Now we have a look at the structure of E · b for an elementary distance vector

b with respect to arbitrary parameters b1, g, k. The following lemma gives us three

important properties.

Lemma 4.19. Let Γ be an access structure on t participants and let b = (b1, b2, . . . , b2t)
τ

be an elementary distance vector for Γ with respect to (b1, g, k). Suppose that there

are u non-empty unauthorized sets. Let Ei denote the ith row of the matrix E(t).

Define ci to be the number of ones in Ei being multiplied with g while calculating Ei ·b
and di to be the number of minus ones being multiplied with g . Then

(a) Ei · b = b1− k+ (2ci−u)(g− k) = b1− k+ (u− 2di)(g− k) for all i = 2, 3, . . . , 2t

(b)
2t∑
i=2

Ei · b = (2t − 1)(b1 − k)− u(g − k)

(c) 2ci − u ≥ −2t−1 for all i = 2, 3, . . . , 2t

Proof. (a) By construction each row Ei, i ≥ 2, consists of 2t−1 ones and 2t−1 minus

ones and starts with one. Therefore

Ei · b = b1 + ci · g − (u− ci)g + (2t−1 − ci − 1)k − (2t−1 − (u− ci))k
= b1 − k + (2ci − u)(g − k)

= b1 − k + (u− 2di)(g − k) since ci = u− di

(b) Lemma 4.12 (d) yields

2t∑
i=2

Ei · b = (2t − 1)b1 − ug − (2t − u− 1)k = (2t − 1)(b1 − k)− u(g − k).

(c) Let i ≥ 2. If u < 2t−1, the smallest possible value for ci is 0 since each row Ei
contains exactly 2t−1 ones and we have

2ci − u ≥ −u > −2t−1.

If u ≥ 2t−1, we write u = 2t−1 +u′ for a suitable 0 ≤ u′ < 2t−1. Since Ei contains

2t−1 ones and 2t−1 minus ones, ci is at least u′. This yields

2ci − u ≥ 2u′ − u = u′ − 2t−1 ≥ −2t−1.

Next we specify what we mean by a “suitable” code.

Definition 4.20. Let C be a binary code with length n. Suppose that (a2, . . . , a2t+1)

is a (not necessary elementary) solution for the linear system 4.2 with respect to an

access structure Γ and a distance vector b = (b1, . . . , b2t)
τ . Then C is called suitable

for (s,Γ, b) iff
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(a) s is a codeword in C with weight b1.

(b) The inequality

n ≥ b1 +
2t∑
i=2

a2i−1

holds.

(c) There are shares k1, . . . , kt defined by (a2, . . . , a2t+1) and s with the following

properties: For all j = 2, 3, . . . , 2t let Sj be the sum of the shares of the jth set

Aj in P(T ).

i. When Aj is authorized, then

d (s, Sj) = bj

and there is no other codeword c ∈ C with d (c, S) ≤ bj.

ii. When Aj is unauthorized, then

d (s, Sj) = bj

and there is at least one other codeword c ∈ C with

d (c, Sj) < d (s, Sj) .

We define a1 = n− b1−
2t∑
i=2

a2i−1 and call (a1, a2, . . . , a2t+1) ∈ N2t+1

0 a solution for (Γ, b)

with respect to C.
If additionally b is an elementary distance vector for Γ with respect to (b1, g, k) and

(a2, . . . , a2t+1) is an elementary solution for (Γ, b1, g, k), we say that C is suitable for

(s,Γ, b1, g, k) and call (a1, a2, . . . , a2t+1) ∈ N2t+1

0 an elementary solution for (Γ, b1, g, k)

with respect to C.

Remark 4.21. (a) When C is suitable for (s,Γ, b), s can be shared with our con-

struction such that the conditions 1. and 2. of section 4.2 are fulfilled.

(b) Let u ≤ 2t − 1 be the number of the non-empty unauthorized sets and g ≤ b1.

When (a2, . . . , a2t+1) is an elementary solution for (Γ, b1, g, k), condition (b) in

Definition 4.20 is definitely fulfilled when n ≥ 2b1 − a2 holds: The equation

2t∑
i=2

a2i︸ ︷︷ ︸
b1−a2

−
2t∑
i=2

a2i−1 =
2t∑
i=2

(a2i − a2i−1)

=
1

2t−1

(
(2t − 1)(b1 − k)− u(g − k)

)
(see Lemma 4.19 (b))
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yields

2t∑
i=2

a2i−1 = b1 − a2 −
1

2t−1

(
(2t − 1)(b1 − k)− u︸︷︷︸

≤2t−1

(g − k)︸ ︷︷ ︸
≤(b1−k)

)
≤ b1 − a2.

That means n ≥ 2b1 − a2 ≥ b1 +
2t∑
i=2

a2i−1.

(c) For all j = 2, 3, . . . , 2t let Aj be the jth set in P(T ). Define

k∗ = max
Aj∈Γ
{bj} and g∗ = min

Aj∈Γ
{bj} .

i. The first requirement of condition (c) in Definition 4.20 is fulfilled when the

minimum distance d(C) satisfies 2k∗+ 1 ≤ d(C). In this case the maximum

error k∗ does not exceed the error-correction capability of C.
ii. The second requirement of condition (c) in Definition 4.20 is fulfilled when

the minimum security distance g∗ is larger than the covering radius ρ(C).

4.4.2 The Universal Realization

Now we are ready to state our main theorem about the existence of an universal ele-

mentary realization (b1, g, k) depending only on the number t of the involved partici-

pants, which can be used for all access structures. Furthermore we prove the existence

of suitable binary codes for these realizations.

Theorem 4.22. Let t ∈ N be arbitrary and Γ an arbitrary access structure on t

participants.

(a) Suppose that the parameters b1, g, k have the following properties.

• b1 ∈ N, b1 ≥ 22t − 2t such that 2t | b1

• k = b1
2
− 2t−1

• g ∈ N, b1
2
< g ≤ b1

(
1
2

+ 1
2t

)
− 2t−1 such that 2t−1 | g

Then (b1, g, k) realizes Γ elementarily.

(b) Let b1, g, k be defined as in part (a) and let C be an arbitrary binary (not nec-

essary linear) code with minimum distance d(C) = b1 which contains the zero

word. Then C is suitable for (s,Γ, b1, g, k) for all codewords s ∈ C with weight

b1.

It will turn out that the conditions stated in part (a) are sufficient, but generally

not necessary (see Example 5.23).

Proof. (a) With the results and notations from Lemma 4.19 (a) Equation 4.2 can

be written as
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E · b = E ·M odd · (aodd)τ + E ·M even · (aeven)τ

⇔



b1

b1 − k + (2c2 − u)(g − k)
...

b1 − k + (2ci − u)(g − k)
...

b1 − k + (2c2t − u)(g − k)



=



2t∑
i=1

a2i

2t−1 (a4 − a3)
...

2t−1 (a2i − a2i−1)
...

2t−1 (a2t+1 − a2t+1−1)



.

Hence for all i ≥ 2 the following inequality holds

b1 − k + (2ci − u)(g − k) ≥ b1 − k − 2t−1(g − k) (Lemma 4.19 (c))

≥ b1 − k − 2t−1 · b1

2t
since g − k ≤ b1

2t

=
b1

2
− k

= 2t−1 > 0 as k =
b1

2
− 2t−1.

That means a2i − a2i−1 = 1
2t−1 (b1 − k + (2ci − u)(g − k)) > 0 for all i ≥ 2.

We obtain an elementary solution by choosing

a2i =
1

2t−1
(b1 − k + (2ci − u)(g − k)) and a2i−1 = 0 for all i ≥ 2.

(Note that aj ∈ N0 for all j = 3, 4, . . . , 2t+1 since 2t−1 | (b1−k) and 2t−1 | (g−k).)

Next we show that the inequality
2t∑
i=1

a2i ≤ b1 holds.

2t∑
i=1

a2i = a2 +
1

2t−1

2t∑
i=2

(b1 − k + (2ci − u)(g − k))

= a2 +
1

2t−1

(
(2t − 1)(b1 − k)− u(g − k)

)
(Lemma 4.19 (b))

= a2 + 2b1 −
1

2t−1

(
b1 + ug +

(
2t − u− 1

)
k
)

Since the sum
2t∑
i=1

a2i has to be b1 and a2 cannot be negative the following in-

equality has to be satisfied.

1

2t−1

(
b1 + ug +

(
2t − u− 1

)
k
)
− b1︸ ︷︷ ︸

a2

≥ 0

⇔ u(g − k) ≥ (2t−1 − 1) b1 − (2t − 1) k



58 Chapter 4. A New Approach to Secret Sharing Using ECC

If this equation holds for u = 0 it holds for all u ≥ 0. For u = 0 we have

0 ≥
(
2t−1 − 1

)
b1 −

(
2t − 1

)
k

=
(
2t−1 − 1

)
b1 −

(
2t − 1

)(b1

2
− 2t−1

)
= −b1

2
+ 2t−1(2t − 1)

which is true for b1 ≥ 22t − 2t. We define a2 = b1 −
2t∑
i=2

a2i and obtain the

elementary solution (a2, a3, . . . , a2t+1) for (Γ, b1, g, k).

(b) According to part (a), the parameters b1, g, k provide an elementary solution

(a2, a3, . . . , a2t+1) for (Γ, b1, g, k) where all odd numbered components are zero.

Let C be a binary code with d(C) = b1 and let s ∈ C be a codeword with weight

b1. This fulfills condition (a) of Definition 4.20. The code length n has to be at

least the minimum distance b1. This length is sufficient since

n ≥ b1 =
2t∑
i=1

a2i︸ ︷︷ ︸
=b1

+
2t∑
i=2

a2i−1︸︷︷︸
=0

.

Thus condition (b) of Definition 4.20 is fulfilled. Furthermore the first part of

condition (c) is fulfilled since

d(C) = b1 > b1 − 2t = 2k + 1

(see Remark 4.21 (c)). Now let a1 = n− b1 and consider shares k1, . . . , kt given

by (a1, a2, . . . , a2t+1). Since all odd numbered components of the elementary

solution (a2, a3, . . . , a2t+1) are zero there are no positions where s has the value

zero and one of the shares or a share sum has the value one. Let S be the share

sum of an arbitrary unauthorized set. Then there are exactly g > b1
2

positions

where s and S differ. In these positions s has the value one and S has the value

zero. Hence S has the weight b1− g < b1
2

and Hamming decoding yields the zero

word.

Example 4.23. The following parameters fulfill the conditions of Theorem 4.22 (a):

b1 = 22t, k = 22t−1 − 2t−1 and g = 22t−1 + 2t−1.

A possible suitable code for the universal realization is the following.
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Corollary 4.24. Let a ∈ N, a ≥ 2t. Choose

• b1 = 2a

• k = b1
2
− 2t−1 = 2a−1 − 2t−1

• g = b1

(
1
2

+ 1
2t

)
− 2t−1 = 2a−1 + 2a−t − 2t−1

• C = RM(1, a+ 1)

Then C is suitable for (s,Γ, b1, g, k) for all access structures Γ on t participants and all

codewords s ∈ C \ {(0, . . . , 0), (1, . . . , 1)}.

Proof. b1, g, k fulfill the conditions of Theorem 4.22 (a). C has minimum distance

d = b1, contains the zero word and all codewords s ∈ C \ {(0, . . . , 0), (1, . . . , 1)} have

the weight b1 = 2a. Hence condition (b) is also met.

Example 4.25. For t = 3 participants let

Γ = {{T1} , {T3} , {T1, T2} , {T2, T3}} .

The non-empty unauthorized sets are

{T2} , {T1, T3} , {T1, T2, T3} .

These are the 3rd, the 6th, and the 8th element of P(T ). Define the parameters b1, g, k

as in Example 4.23:

b1 = 22t = 64, k =
b1

2
− 2t−1 = 28, g =

b1

2
+
b1

2t
− 2t−1 = 36.

The corresponding distance vector is given by

b =
(
64, 28, 36

↑
3

, 28, 28, 36
↑
6

, 28, 36
↑
8

)τ
.

Since
1

4
· E · b = (71, 7, 7, 7, 7, 15, 7, 7)τ

we are looking for an elementary solution a = (a1, . . . , a16) ∈ N16
0 such that

a2 + a4 + . . .+ a16 = 64

a4 − a3 = 7

a6 − a5 = 7

a8 − a7 = 7

a10 − a9 = 7

a12 − a11 = 15

a14 − a13 = 7

a16 − a15 = 7.
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We define

a2 = a4 = a6 = a8 = a10 = a14 = a16 = 7

a3 = a5 = a7 = a9 = a11 = a13 = a15 = 0

a12 = 15.

As in Corollary 4.24 for a = 2t = 6 we choose the binary code

C = RM(1, a+ 1) = RM(1, 7).

The code length is n = 128 and we have to choose a1 = 64. Let

s = 1111 1111 1111 1111 1111 1111 1111 1111

0000 0000 0000 0000 0000 0000 0000 0000

1111 1111 1111 1111 1111 1111 1111 1111

0000 0000 0000 0000 0000 0000 0000 0000 ∈ C.

the secret to be shared. Next we construct the shares.

•
a1 = |I3

1 | =
∣∣∣supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3)

∣∣∣ = 64

means that s, k1, k2 and k3 have all the value zero in exactly 64 positions.

•
I3

1 ∪ I3
3 ∪ I3

5 ∪ I3
7 ∪ I3

9 ∪ I3
11 ∪ I3

13 ∪ I3
15 = supp(s)

Therefore a3 = a5 = a7 = a9 = a11 = a13 = a15 = 0 means that there are no

positions with zeros in s and a one in one of the shares.

•
a2 = |I3

2 | =
∣∣∣supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3)

∣∣∣ = 7

implies that there are exactly 7 positions with ones in s and zeros in k1, k2 and

k3. Choose the first 7 positions.

•
a12 = |I3

12| =
∣∣∣supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3)

∣∣∣ = 15

implies that there are exactly 15 positions with ones in s, k1 and k3 and zeros

in k2. Choose positions 8, . . . , 22.

• The remaining positions are chosen in the same way by
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i ai I3
i positions s k1 k2 k3

4 7 supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) 23− 29 1 1 0 0

6 7 supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) 30− 32, 1 0 1 0

65− 68

8 7 supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) 69− 75 1 1 1 0

10 7 supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) 76− 82 1 0 0 1

14 7 supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) 83− 89 1 0 1 1

16 7 supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) 90− 96 1 1 1 1

We obtain the shares

k1 = 0000 0001 1111 1111 1111 1111 1111 1000

0000 0000 0000 0000 0000 0000 0000 0000

0000 1111 1110 0000 0000 0000 0111 1111

0000 0000 0000 0000 0000 0000 0000 0000

k2 = 0000 0000 0000 0000 0000 0000 0000 0111

0000 0000 0000 0000 0000 0000 0000 0000

1111 1111 1110 0000 0011 1111 1111 1111

0000 0000 0000 0000 0000 0000 0000 0000

k3 = 0000 0001 1111 1111 1111 1100 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0001 1111 1111 1111 1111 1111

0000 0000 0000 0000 0000 1111 0000 0000

and the sums

k1 + k2 = 0000 0001 1111 1111 1111 1111 1111 1111

0000 0000 0000 0000 0000 0000 0000 0000

1111 0000 0000 0000 0011 1111 1000 0000

0000 0000 0000 0000 0000 0000 0000 0000

k1 + k3 = 0000 0000 0000 0000 0000 0011 1111 1000

0000 0000 0000 0000 0000 0000 0000 0000

0000 1111 1111 1111 1111 1111 1000 0000

0000 0000 0000 0000 0000 0000 0000 0000

k2 + k3 = 0000 0001 1111 1111 1111 1100 0000 0111

0000 0000 0000 0000 0000 0000 0000 0000

1111 1111 1111 1111 1100 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

k1 + k2 + k3 = 0000 0000 0000 0000 0000 0011 1111 1111

0000 0000 0000 0000 0000 0000 0000 0000

1111 0000 0001 1111 1100 0000 0111 1111

0000 0000 0000 0000 0000 0000 0000 0000.
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C = RM(1, 7) has minimum distance d = 26 and can correct up to
⌊

26−1
2

⌋
= 31 errors.

Since

d (s, k1) = d (s, k3) = d (s, k1 + k2) = d (s, k2 + k3) = 28 ≤ 31,

Hamming decoding yields the secret s when the set is authorized. Furthermore

wt(k2) = wt(k1 + k3) = wt(k1 + k2 + k3) = 28

means

d (0, k2) = d (0, k1 + k3) = d (0, k1 + k2 + k3) = 28 ≤ 31.

Hence Hamming decoding yields the zero word when the set is unauthorized.

In general Γ is non-monotone and the use of a combiner is necessary in any case.

But there is another reason why the participants must not have their shares in plain

text. It is public knowledge that the zero word cannot be the secret since b1 > 0. So

the members of an unauthorized set may look for the codeword lying next to their

sum which is not the zero word. Since g is rather small it is very likely that they find s.

Example 4.26. For s, k1, k2, k3 and C from Example 4.25 the following table shows

the results of Hamming decoding of the share sums of the unauthorized sets. We see

that the closest code word, which is not the zero word, is already the secret s.

unauthorized c ∈ C with c ∈ C with next c ∈ C with

sum S d (S, c) < 36 d (S, c) = 36 d (S, c) > 36

k2 c ∼ 0 c = s ∼ 1 + x6 c ∼ x7, c ∼ x6 + x7; d= 42

k1 + k2 c ∼ 0 c = s c ∼ x7, c ∼ x6 + x7; d= 50

k1 + k2 + k3 c ∼ 0 c = s c ∼ x4, c ∼ x4 + x6,

c ∼ x3 + x4 + x7,

c ∼ x3 + x4 + x6 + x7; d= 52

This problem can be overcome by the use of a combiner. The following management

model may be used.

1. For a given secret the dealer chooses a codeword s in a suitable binary code of

length n which represents it. Then he constructs suitable shares k1, . . . , kt in

Zn2 such that conditions 1. and 2. from Section 4.2 are satisfied. In addition

to that he chooses random vectors r1, . . . , rt ∈ Zn2 and distributes the vectors

k1 +r1, . . . , kt+rt as shares to the participants. Since the ri are chosen randomly

the shares are also random vectors and provide no information about s to the

participants. The dealer gives (r1, . . . , rt) to the combiner.



4.4. The Existence of an Universal Realization 63

Dealer Combiner

T1 Tt

r1, . . . , rt

r1 + k1 rt + kt. . .

2. When a group {Tj1 , . . . , Tj`} of participants wants to reconstruct the secret they

calculate the sum
∑`

m=1(kjm + rjm) of their shares and send it together with

their numbers j1, . . . , j` to the combiner.

Dealer Combiner

Tj1 Tj`

( ∑̀
m=1

(kjm + rjm), j1, . . . , j`

)

3. The combiner adds
∑`

m=1 rjm to the received sum and obtains
∑`

m=1 kjm . Then

he applies a Hamming decoding algorithm on
∑`

m=1 kjm . If the participants

are authorized the algorithm outputs the secret since condition 1 is satisfied.

Otherwise the output is another codeword since condition 2 is satisfied.

4. The dealer sends the output of the decoding algorithm to the device which carries

out the desired action if it receives the secret.

However, if an unauthorized group gets to know their random vectors rj, they have

their shares in plain text. Then it is very likely that they gain the secret by looking for

the nearest codeword with weight b1 (see Example 4.26). Furthermore, the problem

of the large code length n, which has a negative impact on the effectiveness of the

scheme, remains.

In the following chapters we identify access structures which allow smaller code

lengths and larger security distances. We start with the classification of access struc-

tures on the same number of participants, such that the access structures lying in the

same class allow the same parameters b1, g, k and also have the same suitable codes

when some additional conditions are met.





Chapter 5

Classification of Access Structures

As in the previous section we consider the case that the sums of the subsets have either

distance k or distance g to the secret, depending on whether the subset is authorized

or not. This chapter identifies an invariant which enables us to classify all access

structures on the same number of participants such that each class allows the same

valid parameters b1, g and k. Furthermore we present a refinement of this classification

such that all access structures lying in the same refined class have the same suitable

codes and are able to share the same secrets.

Throughout this section we consider access structures on t participants. We start

with an important definition.

Definition 5.1. Consider an access structure Γ 6= P(T ) \ {∅}. The set

Γ = P(T ) \ (Γ ∪ {∅})

of all non-empty unauthorized sets is called dual access structure of Γ.

Now we have a closer look at the matrix ε defined in 4.11. The first row of ε is

the zero vector. Hence the first entry of each column is zero. For all j = 1, . . . , 2t we

denote the jth column with the first entry deleted by εj.

Definition 5.2. Consider an access structure Γ 6= P(T ) \ {∅} with the dual access

structure Γ = P(T ) \ (Γ ∪ {∅}) = {A1, . . . , Au}. Assume that Aj is the `jth element

in P ({T1, . . . , Tt}) with respect to 4 for all j = 1, . . . , u and that Aj 4 Aj+1 for all

j = 1, . . . , u− 1. Define εΓ to be the following binary (2t − 1× u)-matrix:

εΓ =
(
ε`1 , . . . , ε`u

)
.

Suppose that b is an elementary weight vector with respect to the parameters

b1, g, k. Since Γ = {A1, . . . , Au}, b`j = g for all j = 1, . . . , u. The first component of b

is b1 and all other components have the value k. Hence a column ε`j occurs in εΓ iff

the `jth column of E is multiplied with g while calculating 1
2t−1E · b.
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Example 5.3. Let Γ = {{T1} , {T2} , {T1, T3} , {T1, T2, T3}} be an access structure on

3 participants. Then

Γ =
{
{T1, T2}︸ ︷︷ ︸

=A1

, {T3}︸︷︷︸
=A2

, {T2, T3}︸ ︷︷ ︸
=A3

}
.

A1 is the 4th element, A2 the 5th element and A3 the 7th element of (P(T ),4). Hence

εΓ consists of the 4th, the 5th and the 7th column of ε without the first entry.

ε =



0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 0

0 0 1 1 1 1 0 0

0 1 1 0 1 0 0 1


and εΓ =



1 0 0

1 0 1

0 0 1

0 1 1

1 1 1

1 1 0

0 1 0


.

For all i = 2, 3, . . . , 2t the number of ones in the (i− 1)th row of εΓ is exactly the

number of summands −g in the equation a2i − a2i−1 = 1
2t−1Ei · b in the linear system

4.2. The number of zeros in the ith row of εΓ says how many summands of the form

+g occur in that equation. Each row of ε, except for the first row, consists of 2t−1

ones and 2t−1 zeros and starts with a one. Therefore the number of summands k, −k
in the equation a2i− a2i−1 = 1

2t−1Ei · b is also determined by the weight of the ith row

of εΓ. That means the weight distribution of the rows characterize equations 2 up to

2t of the linear system 4.2 uniquely.

In the next step we identify a class of permutations on the indices of the rows of εΓ

such that the first t rows of the resulting matrix represent the non-empty unauthorized

sets A1, . . . , Au. For all j = 1, . . . , u the jth column of this (t × u)-submatrix should

represent the unauthorized set Aj. That means a vector in Zt2 has to characterize a

subset of {T1, . . . , Tt}. This can be done as follows.

Definition 5.4. LetA be an arbitrary subset of {T1, . . . , Tt}. Define v = (v1, . . . , vt)
τ ∈

Zt2 by

vi =

{
1 if Ti ∈ A
0 if Ti /∈ A

for all i = 1, . . . , t.

v is called the characteristic vector of A.

Example 5.5. The characteristic vectors of the non-empty unauthorized sets A1 =

{T1, T2}, A2 = {T3}, A3 = {T2, T3} in Example 5.3 are1

1

0

 ,

0

0

1

 ,

0

1

1

 .
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For a permutation P on the indices of the rows of εΓ we denote the resulting matrix

with the permuted rows by P (εΓ). That means we have to find a class of permutations

P such that the columns of the submatrix consisting of the first t rows of P (εΓ) are

the characteristic vectors of the non-empty unauthorized sets. The following lemma

provides such a class of permutations.

Lemma 5.6. Let Γ = {A1, . . . , Au} and let P : {1, 2, . . . , 2t − 1} → {1, 2, . . . , 2t − 1}
be an arbitrary permutation such that

P (2l−1) = l for all l = 1, . . . , t.

For each subset Aj, j = 1, . . . , u, let vj be the characteristic vector. Then P (εΓ) has

the form

P (εΓ) =


v1 . . . vu
∗ . . . ∗
...

...

∗ . . . ∗


} t 2t − t− 1

where the first t rows are given by the column vectors v1, . . . , vu and the remaining

2t−t−1 rows consist of the remaining 2t−t−1 non-trivial linear combinations modulo

2 of the first t rows.

Proof. 1. At first we have a look at the structure of the rows of the matrices ε and

εΓ. Let pj denotes the Boolean polynomial corresponding to the jth codeword in

RM0(1, t). According to Lemma 4.12 (a), the jth column of ε is the evaluation

vector of pj for all j = 1, . . . , 2t. Therefore each row of ε consists of all possible

evaluations (
p1

(
t∑
i=1

aiei

)
, . . . , p2t

(
t∑
i=1

aiei

))

on one specific element
t∑
i=1

aiei ∈ Zt2 (e1, . . . , et denote the canonical basis vectors

of Zt2). The order of the vectors
t∑
i=1

aiei which characterize the rows of ε corre-

sponds to the order ≤ on Zt2 mentioned in Remark 4.4. Hence the (2l−1 + 1)th

row belongs to the canonical basis vector el for all l = 1, . . . , t and has the form

(p1(el), . . . , p2t(el)). Due to the linearity(
p1

(
t∑
i=1

aiei

)
, . . . , p2t

(
t∑
i=1

aiei

))
=

t∑
i=1

ai (p1(ei), . . . , p2t(ei))

the remaining rows are the remaining linear combinations of the rows belonging

to the canonical basis vectors e1, . . . , et.

Suppose that A1, . . . , Au are the l1th, . . ., luth element of P(T ) with l1 < . . . < lu.

When we delete the first row and all columns of ε which do not belong to the
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non-empty unauthorized sets we obtain the matrix εΓ with the rows(
pl1

(
t∑
i=1

aiei

)
, . . . , plu

(
t∑
i=1

aiei

))

for all sums
t∑
i=1

aiei 6= 0. For all l = 1, . . . , t the 2l−1th row has the form(
p1(e1), . . . , p2t(el)

)
as the first row is missing.

2. In this step we identify the positions in the columns of εΓ which belong to

the characteristic vectors v1, . . . , vu. Since all plj , j = 1, . . . , u, are Boolean

polynomials of degree one without the constant summand 1, plj(ei) = 1 iff the

monomial xi is a summand of plj . According to Remark 4.4, this happens exactly

if Ti ∈ Aj. Hence (plj(e1), . . . , plj(et))
τ = vj for all j = 1, . . . , u.

Now we apply the permutation P on εΓ. Because of the observations in 1. and 2. the

first t rows of the resulting matrix are
pl1(e1) . . . plu(e1)

pl1(e2) . . . plu(e2)
...

...

pl1(et) . . . plu(et)

 =
(
v1, . . . , vu

)

and the remaining 2t−t−1 rows of εΓ are the remaining non-trivial linear combinations

of the first t rows.

Example 5.7. Γ =
{
{T1, T2}︸ ︷︷ ︸

=A1

, {T3}︸︷︷︸
=A2

, {T2, T3}︸ ︷︷ ︸
=A3

}
from Example 5.3 corresponds to the

Boolean polynomials p4 = x1 + x2, p5 = x3, p7 = x2 + x3 ∈ Z2[x1, . . . , xt]. Therefore

εΓ =



1 0 0

1 0 1

0 0 1

0 1 1

1 1 1

1 1 0

0 1 0


=



p4(100) p5(100) p7(100)

p4(010) p5(010) p7(010)

p4(110) p5(110) p7(110)

p4(001) p5(001) p7(001)

p4(101) p5(101) p7(101)

p4(011) p5(011) p7(011)

p4(111) p5(111) p7(111)



← x1

← x2

← x3.

We apply the candidate P =

(
1 2 3 4 5 6 7

1 2 4 3 5 6 7

)
for a permutation described in

Lemma 5.6 on εΓ and receive the matrix
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P (εΓ) =



1 0 0

1 0 1

0 1 1

0 0 1

1 1 1

1 1 0

0 1 0


=



v1 v2 v3

row 1 + row 2

row 1 + row 3

row 2 + row 3

row 1 + row 2 + row 3


.

As already mentioned we are interested in the weight distribution of the rows of

εΓ because these weights characterize the equations in the linear system 4.2. These

weights can be written in a vector, the so called weight vector of εΓ, which is defined

as follows.

Definition 5.8. Let A be an arbitrary (x × y)-matrix over Z2. For j = 0, . . . , y let

wj be the number of rows with exactly j ones. The weight vector of A is the vector

wA := (wj)
y
j=0 .

For A = εΓ the weight vector wεΓ =: wΓ is called weight vector of the access structure

Γ.

Obviously the order of the rows (and columns) of a matrix has no effect on its

weight vector. Hence the permutation P , which brings the characteristic vectors of

the unauthorized sets in the first t rows, does not change the weight vector.

Example 5.9. The weight vector of the access structure Γ from Example 5.3 is

wΓ = (0, 3, 3, 1).

For abbreviation we denote the matrix consisting of the first t rows of P (εΓ) with

ε1
Γ
. According to our construction, the columns of this matrix are the characteristic

vectors of the unauthorized sets in Γ ordered by 4.

Using the weight vector wΓ we can specify how εΓ determines the equations of the

linear system 4.2.

Remark 5.10. The weight vector wΓ describes the equations of the linear system 4.2

up to the order. Let wΓ = (w0, w1, . . . , wu). Then there are exactly wj equations with

exactly j minus ones being multiplied with g. According to Lemma 4.19 (a) these

equations have the form

a2i − a2i−1 =
1

2t−1
(b1 − k + (u− 2j)(g − k)).

Example 5.11. The weight vector wΓ = (0, 3, 3, 1) of the access structure in Example
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5.3 yields the following system of linear equations:

8∑
i=1

a2i = b1

a2i − a2i−1 = 1
4
(b1 − k + (3− 2 · 1)(g − k)) = 1

4
(b1 + g − 2k) 3 times

(i = 2, 4, 8)

a2i − a2i−1 = 1
4
(b1 − k + (3− 2 · 2)(g − k)) = 1

4
(b1 − g) 3 times

(i = 3, 5, 7)

a2i − a2i−1 = 1
4
(b1 − k + (3− 2 · 3)(g − k)) = 1

4
(b1 − 3g + 2k) once (i = 6)

When two access structures Γ,Γ′ have the same weight vectors, the right hand

sides of the related equations 2 to 2t of the linear system 4.2 are the same. Only their

orders may be different. However, a change in the order of the right hand sides has no

impact on the validity of the parameters b1, g, k. Hence the same parameters (b1, g, k)

realize Γ and Γ′ elementarily. For this reason we classify the set of all access structures

in the following way.

Definition 5.12. Two access structures Γ and Γ′ on the same set of t participants

belong to the same class of access structures iff

wΓ = wΓ′ .

Example 5.13. Let Γ′ = {{T1} , {T2} , {T1, T2}}, Γ′′ = {{T1, T2} , {T3} , {T1, T2, T3}}
be access structures on the same participant set T = {T1, T2, T3}. Then

ε1
Γ′

=

1 0 1

0 1 1

0 0 0

 and ε1
Γ′′

=

1 0 1

1 0 1

0 1 1

 .

The related weight vectors are

wΓ′ = wΓ′′ = (1, 0, 6, 0).

Hence Γ′ and Γ′′ belong to the same class. The access structure Γ from Example 5.3

belongs to another class since the weight vector wΓ = (0, 3, 3, 1) is different.

The following proposition summarizes our previous considerations. It says that we

have achieved our first aim to classify the access structures such that each class allows

the same parameters b1, g, k.

Proposition 5.14. Let Γ,Γ′ be two access structures in the same class. Suppose that

(b1, g, k) realizes Γ elementarily. Then (b1, g, k) realizes Γ′ elementarily, too.

When we want to find out, whether two access structures belong to the same class

or not, we can do this by determining the weight vectors of the related ε-matrices. In

this context the following remark is very helpful for the following course of this work.
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Remark 5.15. Let A be an (x× 2x− 1)-matrix over Z2 which contains each non-zero

vector in Zx2 as column. Then A is a generator matrix of a binary simplex code I of

dimension x. I has the weight distribution

w(I) = (1, 0, . . . , 0, 2x − 1
↑

2x−1

, 0, . . . , 0).

Therefore the (2x−1×2x−1)-matrix B over Z2, whose rows are all possible non-trivial

linear combination of the rows of A (which are the non-zero codewords of I), has the

weight vector

wB = (0, . . . , 0, 2x − 1
↑

2x−1

, 0, . . . , 0).

Our next aim is to find a refinement of the classification explained above, such

that all access structures in the same refined class allow not only the same parameters

b1, g, k, but also have the same suitable codes and possible secrets. To achieve this

we give another presentation of our classification in terms of linear algebra. For this

purpose we introduce an invariant of binary matrices of the same size, the so-called

linearity type of the matrix.

Definition 5.16. (a) Let A be an arbitrary (x×y)-matrix over Z2. For i = 1, . . . , y

let `i denote the number of all sets of i pairwise different columns Aj1 , . . . , Aji of

A such that Aj1 + . . . + Aji = 0. Define `A := (`1, . . . , `y). `A is called linearity

vector of A.

(b) We say that two binary (x × y)-matrices A, A′ have the same linearity type if

they have the same linearity vector `A = `A′ .

(c) Denote `ε1
Γ

by `Γ. We say that two access structures Γ, Γ′ have the same linearity

type, if `Γ = `Γ′ .

Example 5.17. Consider the access structure Γ from Example 5.3. The first 3 rows

of P (εΓ) are

ε1
Γ

=

1 0 0

1 0 1

0 1 1

 .

`1 = 0, since there is no zero vector.

`2 = 0, since no column occurs twice.

`3 = 0, since the columns are linearly independent.

We obtain the linearity vector `Γ = (0, 0, 0).

In contrast to that the access structures Γ′, Γ′′ from Example 5.13 with

Γ′ = {{T1} , {T2} , {T1, T2}} , Γ′′ = {{T1, T2} , {T3} , {T1, T2, T3}}
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and

ε1
Γ′

=

1 0 1

0 1 1

0 0 0

 , ε1
Γ′′

=

1 0 1

1 0 1

0 1 1


both have the linearity vector (0, 0, 1):

`1 = 0, since there is no zero vector.

`2 = 0, since no column occurs twice.

`3 = 1, since the sum of the three columns is the zero vector.

Since the columns of ε1
Γ

are the characteristic vectors of the unauthorized sets, they

are pairwise different and non-zero. That means `1 = `2 = 0 for all ε1
Γ
.

In Example 5.17 it is noticeable, that the access structures Γ′ and Γ′′, which belong

to the same class according to Example 5.13, have the same linearity vector. The access

structure Γ belongs to another class and also has another linearity type. This is not a

coincidence. In the next step we show that two access structures have the same weight

vector iff they have the same linearity type.

To achieve this we have a look at the matrix εΓ from a different perspective: Sup-

pose that the (t×u)-submatrix ε1
Γ

has the rank r. Then ε1
Γ

has r linearly independent

rows and can be considered as a general generator matrix of a binary linear [u, r]-code

D. The rows of εΓ and the zero word of length u are the codewords of D because they

are all possible linear combinations of the rows of ε1
Γ

(see Lemma 5.6). Depending on

the rank r each codeword occurs several times.

Lemma 5.18. Consider an arbitrary (x × y)-matrix A over Z2 with rk(A) = r. Let

U be the r-dimensional linear subspace of Zy2 generated by the rows of A. Then each

vector in U can be written as linear combination of the rows of A in 2x−r different

ways.

Proof. Let R1, . . . , Rx denote the rows of A.

For r = x all rows are linearly independent and U = 〈R1, . . . , Rx〉 is a r-dimensional

subspace of Zy2 with the basis {R1, . . . , Rx}. Hence each vector in U has a unique

representation as linear combination of the rows R1, . . . , Rx and can be represented in

1 = 2x−r ways.

Let r < x. The rank is the maximal number of linearly independent rows and

we can assume w.l.o.g. that the rows R1, . . . , Rr are linearly independent and that

the rows Rr+1, . . . , Rx are linear combinations of the first r rows. Let u ∈ U and

br+1, . . . , bx ∈ Z2 be arbitrary. Then u +
x∑

i=r+1

biRi is a vector in U and there are

uniquely determined coefficients b1, . . . , br such that

u+
x∑

i=r+1

biRi =
r∑
i=1

biRi.

Since there are 2x−r possibilities to choose br+1, . . . , bx the assertion holds.
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Lemma 5.18 yields

Lemma 5.19. Consider an arbitrary (x×y)-matrix A over Z2 with rk(A) = r. Let B

be a (z×y)-submatrix of A consisting of z ≤ x rows of A which also has rank r. Define

N to be the binary (2x × y)-matrix whose rows are all possible linear combinations

of the rows of A and M to be the (2z × y)-matrix consisting of all possible linear

combinations of the rows of B. Then

wN = 2x−zwM .

Proof. There must be r linearly independent rows which appear in the matrix A as

well as in B. Hence the linear subspace U generated by the rows of A is the same as

the subspace generated by the rows of B. Lemma 5.18 says that each vector in U can

be written as a linear combination of rows of A in exactly 2x−r ways and as a linear

combination of rows of B in exactly 2z−r ways. Let P be the binary (2r × y)-matrix

whose rows are the vectors of U . Then

wN = 2x−rwP and wM = 2z−rwP .

This yields wN = 2x−zwM .

Going back to the code D generated by the rows of ε1
Γ

Lemma 5.18 says that each

codeword, except for the zero word, occurs exactly 2t−r times as a row of the matrix

εΓ. The zero word occurs 2t−r − 1 times since the first row of ε, which contains only

zeros, has been removed during the construction of εΓ.

Lemma 5.19 gives the following relation between the weight distribution w(D) of

D and the weight vector wΓ of the matrix εΓ:

wΓ = 2t−r · w(D)− (1, 0, . . . , 0).

In other words, the weight vector wΓ of each access structure Γ and the weight

distribution of the binary code generated by ε1
Γ

determine each other uniquely.

The following lemma explains the connection between the weight distribution of

the dual [u, u− r]-code D⊥ and the linearity vector `Γ of ε1
Γ
.

Lemma 5.20. Let A be an arbitrary (x×y)-matrix over Z2 of rank r with the columns

C1, . . . , Cy and the rows R1, . . . , Rx. Let E be the binary [y, r]-code generated by A.

Then

(a) A is a check matrix of the dual code E⊥ and

(b) `A = w(E⊥).

Proof. Part (a) is a well known fact, so we only prove part (b).

Let d = (d1, . . . , dy) be a binary vector with weight w. Then there are positions
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i1, . . . , iw where d has the value one. In all other position d has the value zero. Fur-

thermore

d ∈ D⊥ ⇔
y∑
i=1

diCi = 0 ⇔
w∑
j=1

dijCij = 0.

That means each codeword d ∈ D⊥ with weight w corresponds to a selection of w

pairwise different columns of A whose sum is the zero vector and vice versa.

We also know that, due to the MacWilliams identity stated in Theorem 3.21,

w(D⊥) determines w(D) uniquely and vice versa. With these preliminary thoughts we

can prove the following proposition.

Proposition 5.21. Let Γ, Γ′ be arbitrary access structures on t participants. Then

wΓ = wΓ′ ⇔ `Γ = `Γ′ .

Proof. Let D be the binary code generated by the rows of ε1
Γ

and D′ be the binary

code generated by the rows of ε1
Γ′

.

“⇒” Suppose that wΓ = (w0, . . . , wu) = (w′0, . . . , w
′
u) = wΓ′ . For rk(ε1

Γ
) = r we have

2t−r − 1 = w0 = w′0. Hence rk(ε1
Γ′

) = r, too, and both codes have the same

dimension r and the same weight distributions

w(D) =
1

2t−r
(wΓ + (1, 0, . . . , 0)) =

1

2t−r
(wΓ′ + (1, 0, . . . , 0)) = w(D′).

Using the MacWilliams identity we see that the weight distributions `Γ and `Γ′

of the dual codes D⊥ and (D′)⊥ are also the same.

“⇐” Suppose that the dual codes D⊥ and (D′)⊥ have the same weight distribution

`Γ = `Γ′ . The sum of all entries in `Γ determines the dimension of D⊥ and

therefore the dimension ofD. Hence the codesD andD′ have the same dimension

r. Furthermore w(D) = w(D′) due to the MacWilliams identity. This yields

wΓ = 2t−r · w(D)− (1, 0, . . . , 0) = 2t−r · w(D′)− (1, 0, . . . , 0) = wΓ′ .

The equivalence stated in Proposition 5.21 provides a linear algebraic view on

the classification of the access structure. This yields one possible refinement of the

classification such that all access structures of the same refined class have the same

suitable codes and allow the same secrets.

Proposition 5.22. Consider two access structures Γ,Γ′. Suppose that there is an

invertible binary (t× t)-matrix B with

B · ε1
Γ

= ε1
Γ′
.

(a) Then Γ and Γ′ lie in the same class.
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(b) Let (b1, g, k) be an elementary realization for Γ (and thus also for Γ′) and C a

binary code which is suitable for (s,Γ, b1, g, k) for a codeword s ∈ C with weight

b1. Then C is also suitable for (s,Γ′, b1, g, k).

Proof. Since B ·ε1
Γ

= ε1
Γ′

for an invertible matrix B, the rows of ε1
Γ′

are linear combina-

tions of the rows of ε1
Γ

and vice versa. Therefore the matrices εΓ and εΓ′ have the same

rows. Only the orders of these rows may be different. Hence there is a permutation

π : {1, 2, . . . , 2t − 1} → {1, 2, . . . , 2t − 1} such that the ith row of εΓ is the π(i)th row

of εΓ′ for all i = 1, 2, . . . , 2t − 1. This yields:

(a) wΓ = wΓ′ .

(b) The right hand sides of the related equations of the linear system 4.2 differ only in

their order. Hence an elementary solution a′ = (a′2, a
′
3, . . . , a

′
2t+1) for (Γ′, b1, g, k)

can be gained from an elementary solution (a2, a3, . . . , a2t+1) for (Γ, b1, g, k) by

permuting the even and the odd numbered components separately using the

permutation π:

a2i = a′2(π(i−1)+1) and a2i−1 = a′2(π(i−1)+1)−1 for all i = 2, 3, . . . , 2t.

We check the requirements of Definition 4.20.

• By assumption requirement (a) is fulfilled.

• Requirement (b) is met since n ≥ b1 +
2t∑
i=1

a2i−1 = b1 +
2t∑
i=1

a′2i−1.

• Let a = (a1, . . . , a2t+1) be an elementary solution for (Γ, b1, g, k) with respect

to C. Consider shares k1, . . . , kt defined by a and s which share the secret

s according to Γ and let K =

k1

...

kt

 be the matrix whose rows are these

shares. We define

K ′ =

k
′
1
...

k′t

 = (B−1)τ ·K

and give the rows k′1, . . . , k
′
t as shares to the participants T1, . . . , Tt. These

shares have the following properties:

– Let S1, . . . , S2t be all possible sums of the shares k1, . . . , kt and S ′1, . . . , S
′
2t

be all possible sums of the shares k′1, . . . , k
′
t. Since (B−1)τ is invertible,

each sum of the shares k1, . . . , kt can be by represented as a suitable

sum of the shares k′1, . . . , k
′
t and vice versa. That means (S1, . . . , S2t)

and (S ′1, . . . , S
′
2t) differ only in the order of their components.

– Let Si1 , . . . , Siu be the sums related to the unauthorized sets in Γ and



76 Chapter 5. Classification of Access Structures

S ′i′1
, . . . , S ′i′u be the sums related to the unauthorized sets in Γ′. ThenS

′
i1
...

S ′iu

 =
(
ε1

Γ′

)τ ·K ′
=

(
ε1

Γ′

)τ · (B−1)τ ·K
=

(
ε1

Γ

)τ ·K
=

Si1...
Siu

 .

Hence the sums of the shares k1, . . . , kt of the (un)authorized sets in Γ are

the same as the sums of the shares k′1, . . . , k
′
t for the (un)authorized sets in

Γ′. Since k1, . . . , kt fulfills the requirements of Definition 4.20 (c) the same

is true for k′1, . . . , k
′
t.

Indeed, we receive a refinement of our classification by saying that two access

structures Γ, Γ′ belong to the same (refined) class, iff there is an invertible binary

matrix B with B · εΓ = εΓ′ : Proposition 5.22 says that access structures with this

property have the same weight distributions. But the converse is not true. For example

consider the access structures Γ,Γ′ with the ε1-matrices

ε1
Γ

=

1 0 1 0 0

0 1 1 0 1

0 0 0 1 1

 and ε1
Γ′

=

1 1 1 0 1

0 1 0 1 1

0 0 1 1 1

 .

Both access structures have the same weight distribution (0, 0, 2, 4, 1, 0), but there is

no matrix B with the properties stated above.

However, when there is no such matrix B, the same code C and the same secret

s ∈ C can be suitable for both access structures. This depends on the structure of C,
on k and on g.

Example 5.23. Consider the access structures Γ, Γ′ with

Γ = {{T1, T2} , {T3} , {T2, T3}} , Γ′ = {{T1} , {T2} , {T1, T2, T3}} .

Then there is an invertible (3× 3)-matrix B such that0 1 0

0 0 1

1 1 0


︸ ︷︷ ︸

B

·

1 0 0

1 0 1

0 1 1


︸ ︷︷ ︸

ε1
Γ

=

1 0 1

0 1 1

0 0 1


︸ ︷︷ ︸

ε1
Γ′

.
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The parameters b1 = g = 6 and k = 2 realize Γ elementarily since for these parameters

there is an elementary solution for the linear system in Example 5.11. According to

Proposition 5.14 b1 = g = 6 and k = 2 also realize Γ′ elementarily. The related

ε-matrices and elementary solutions (a2, . . . , a16), (a′2, . . . , a
′
16) are

a4 = 2, a3 = 0

a6 = 0, a5 = 0

a8 = 2, a7 = 0

a10 = 0, a9 = 0

a12 = 0, a11 = 2

a14 = 0, a13 = 0

a16 = 2, a15 = 0



1 0 0

1 0 1

0 0 1

0 1 1

1 1 1

1 1 0

0 1 0


︸ ︷︷ ︸

=εΓ

π−−→



1 0 1

0 1 1

1 1 0

0 0 1

1 0 0

0 1 0

1 1 1


︸ ︷︷ ︸

=ε
Γ′

a′4 = 0, a′3 = 0

a′6 = 0, a′5 = 0

a′8 = 0, a′7 = 0

a′10 = 2, a′9 = 0

a′12 = 2, a′11 = 0

a′14 = 2, a′13 = 0

a′16 = 0, a′15 = 2

,

where π is the permutation π =

(
1 2 3 4 5 6 7

5 1 4 2 7 3 6

)
of the rows of εΓ.

For a1 = a′1 = a2 = a′2 = 0 we receive the word length

n =
8∑
i=1

a2i +
8∑
i=1

a2i−1 =
8∑
i=1

a′2i +
8∑
i=1

a′2i−1 = 8.

We choose the code C =
{

(1, 1, 1, 1, 1, 1, 0, 0)︸ ︷︷ ︸
s

, (1, 1, 0, 0, 0, 0, 1, 1)︸ ︷︷ ︸
c

}
and the secret s.

For all i ∈ {4, 8, 11, 16} the components ai of the elementary solution a are nonzero.

We choose the following positions to be defined by the ai:

I4 = |supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3)| : positions 1, 2

I8 = |supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3)| : positions 5, 6

I11 = |supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3)| : positions 7, 8

I16 = |supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3)| : positions 3, 4

This yields the shares k1, . . . , k8. The shares k′1, . . . , k
′
8 are defined by

k′j = (B−1)τ · kj for all j = 1, . . . , 8.

We obtain the following sums:
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S1 = s = 1 1 1 1 1 1 0 0 = 1 1 1 1 1 1 0 0 = s = S ′1
S2 = k1 = 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 = k′1 = S ′2
S3 = k2 = 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 = k′2 = S ′3
S5 = k3 = 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 = k′3 = S ′5
S4 = k1 + k2 = 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 = k′1 + k′2 = S ′4
S6 = k1 + k3 = 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 = k′1 + k′3 = S ′6
S7 = k2 + k3 = 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 = k′2 + k′3 = S ′7
S8 = k1 + k2 = 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 = k′1 + k′2 = S ′8

+k3 +k′3

We see that the same sums occur for both access structures. Only their order is

different. Furthermore the matrices K, K ′ whose rows are the shares have the relation

1 1 0

0 0 1

1 0 0


︸ ︷︷ ︸

(B−1)τ

·

1 1 1 1 1 1 1 1

0 0 1 1 1 1 0 0

0 0 1 1 0 0 1 1


︸ ︷︷ ︸

K

=

1 1 0 0 0 0 1 1

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1


︸ ︷︷ ︸

K′

.

A look at the distances of the sums to the secret s and to the wrong codeword c shows

that C is suitable for both access structures.

d(Si, s) d(Si, c)

S2 = S ′5 2 4

S3 = S ′6 2 8

S4 = S ′2 6 0

S5 = S ′3 6 4

S6 = S ′7 2 4

S7 = S ′8 6 4

S8 = S ′4 2 4

Remark 5.24. Let Γ,Γ′ be two access structures in the same class realized elemen-

tarily by (b1, g, k) and let C be a binary code which is suitable for (s,Γ, b1, g, k) for a

codeword s ∈ C with weight b1. Suppose that additionally

2k + 1 ≤ d(C) and g > ρ(C)

holds. Then C is also suitable for (s,Γ′, b1, g, k) and the existence of a matrixB with the

properties stated above is not necessary. In this case wΓ = wΓ′ holds by assumption

and in the proof of Proposition 5.22 only part (c) of Definition 4.20 requires the

existence of the matrix B. But with the additional requirements on k and g part (c)

is already satisfied according to remark 4.21 (c).

Even when Γ and Γ′ belong to different classes, they can nevertheless have the

same elementary realization (b1, g, k). Under certain conditions the same code C and

the same secret s ∈ C are suitable for both access structures.
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Lemma 5.25. Consider two access structures Γ,Γ′ which allow the same parameters

(b1, g, k) with g ≤ b1. Assume that there are u′ ≤ 2t−1 unauthorized sets with regard

to Γ′ and let a′ = (a′2, a
′
3, . . . , a

′
2t+1) be an elementary solution for (Γ′, b1, g, k).

Consider a binary code C with length n, minimal distance d(C) and covering radius

ρ(C), which is suitable for (s,Γ, b1, g, k) for a secret s ∈ C with weight b1. Suppose

that

• n ≥ 2b1 − a′2

• 2k + 1 ≤ d(C)

• g > ρ(C).

Then C is also suitable for (s,Γ′, b1, g, k).

Proof. We check the conditions of Definition 4.20:

Condition (a) holds by definition of s.

Remark 4.21 (b) shows that the elementary solution a′ = (a′2, . . . , a
′
2t+1) for (Γ′, b1, g, k)

has the property
2t∑
i=2

a′2i−1 ≤ b1− a′2. Hence b1 +
2t∑
i=2

a′2i−1 ≤ 2b1− a′2 ≤ n. This satisfies

condition (b).

Finally, condition (c) is met because of Remark 4.21 (c).

In this chapter we dealt with the question under which conditions two different

access structures Γ, Γ′ on the same set of participants have the same elementary real-

izations or even the same suitable codes and secrets. The following graphic summarizes

our results.

Γ,Γ′ lie in
the same class

`Γ = `Γ′
wΓ = wΓ′

same suitable C,
s ∈ C for Γ,Γ′

Γ,Γ′ have same el.
realization (b1, g, k)

Def. 5.12

Prop. 5.14

Prop. 5.21

Prop. 5.22,

if B · εΓ = ε
Γ′

Lem. 5.25, if n ≥ 2b1 − a′2,

2k + 1 ≤ d(C), g > ρ(C)
u′ ≤ 2t − 1, g ≤ b1

Rem. 5.24, if

2k + 1 ≤ d(C), g > ρ(C)

Figure 5.1: Results of Chapter 5
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At the end of this chapter we present two kinds of especially favorable parameters.

Lemma 5.26. Let Γ be an arbitrary access structure with an elementary realiza-

tion (b1, g, k) and a (not necessarily elementary) solution a = (a2, a3, . . . , a2t+1) for

(Γ, b1, g, k).

(a) Suppose that k = 0 < g. Let n ∈ N be arbitrary with n ≥ b1 +
2t∑
i=2

a2i−1 and let

s ∈ Zn2 be arbitrary with weight b1. Then C = Zn2 is suitable for (s,Γ, b1, g, k).

Especially for n ≥ 2b1 the code C = Zn2 is suitable for (s,Γ, b1, g, k) for all s ∈ Zn2
with weight b1.

(b) Assume that there are u ≤ 2t − 1 unauthorized sets. Suppose that b1 = 2e ≥
g > 2e − 2

e−1
2 and k < b1

2
= 2e−1 for an arbitrary e ∈ N. Then the first order

Reed Muller code C = RM(1, e+1) is suitable for (s,Γ, b1, g, k) for all codewords

s ∈ C \ {(0. . . . , 0), (1, . . . , 1)}.

Proof. We check the requirements of Definition 4.20.

(a) Requirement (a) is obviously fulfilled. Requirement (b) holds because of Remark

4.21 (b).

(c) i. is fulfilled since k = 0 yields 1 = 2k+ 1 ≤ d(C) = 1 (see Remark 4.21 (c)).

(c) ii. holds since the sum of the shares of each unauthorized set is already a

codeword 6= s.

(b) Requirement (a) is fulfilled since all codewords in RM(1, e + 1) except for the

zero word and the word (1, . . . , 1) have the weight 2e = b1.

The code length of C is n = 2e+1 = 2b1 and according to Remark 4.21 (b)

requirement (b) is fulfilled.

According to Remark 4.21 (c), requirement (c) holds since 2k + 1 ≤ 2e = d(C)
and since g > 2e − 2

e−1
2 exceeds the covering radius of C (see 3.27).

One advantage of variant (a) is that no decoding is necessary. The authorized sets

receive the secret s directly by adding their shares. Furthermore the knowledge of n

yields neither the weight of the secret b1 nor the number g of the incorrect positions.

Hence the members of the unauthorized sets learn only very little about the secret

from the sums of their shares.

Variant (b) has the advantage that g exceeds the covering radius of C. When a

set is unauthorized, Hamming decoding yields a wrong codeword. In contrast to the

general solution stated in Theorem 4.22 this codeword is generally not the zero word.

For both variants the additional properties 2k+1 ≤ d(C) and g > ρ(C) are fulfilled.

That means, if one access structure of an arbitrary class allows the given parameters,

all other access structures of that class allow the same parameters and the given codes

are suitable for all access structures of that class (see Remark 5.24).



81

In the next chapter we examine how specific operations on the access structures

influence the elementary realizations. The classification of the access structures de-

scribed above will become a very useful tool for this task.





Chapter 6

Operations on the Access

Structures

For many access structures there are elementary realizations (b1, g, k) which are supe-

rior to the universal realization provided by Theorem 4.22. The security distance g

might be larger or the weight of the secret b1 smaller, such that smaller code lengths

are possible. For instance in Example 5.23 the parameters b1 = g = 6 and k = 2

and the code length n = 8 are possible for an access structure on t = 3 partici-

pants. In contrast to that Theorem 4.22 provides parameters b1 ≥ 22t − 2t = 56,

g ≤ b1

(
1
2

+ 1
2t

)
− 2t−1 = 5

8
b1 − 4 and k = b1

2
− 2t−1 = b1

2
− 4 and a code length

n ≥ b1 = 56.

In this chapter we study how certain operations performed on the access structures

influence the possible elementary realizations and solutions. Starting with an access

structure with favorable parameters this gives us the possibility to identify further

access structures which allow parameters that are superior to the parameters of the

universal solution.

Again we consider access structures on t participants and restrict ourselves to the

case that there are only two different distances g, k from the sums of the shares to the

secret.

6.1 The Dual Access Structure

At first we have a look at access structures and their duals. In order to find a relation

between their elementary realizations we start with some fundamental considerations.

Remark 6.1. Let Γ ( P(T ) \ {∅} be an arbitrary access structure and Γ = P(T ) \
({∅} ∪ Γ) the dual access structure.

(a) Γ ∪ Γ = P(T ) \ {∅}

(b) Γ = Γ
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(c) Let u = |Γ|. Then u > 0 since Γ 6= ∅. We know that all rows of the matrix ε,

except for the first row, contains 2t−1 ones and 2t−1 zeros. Furthermore the first

column of ε is the zero vector. Hence the weight vector wΓ = (w0, . . . , wu) of Γ

determines the weight vector wΓ = (w′0, . . . , w
′
2t−u−1) of the dual access structure

Γ uniquely by

w′j =

{
w2t−1−j for all j = 2t−1 − u, . . . , 2t−1

0 else
.

(d) Let Γ,Γ′ ( P(T ) \ {∅} be access structures on the same set of t participants.

Then Γ and Γ′ belong to the same class of access structures iff the matrices ε1
Γ

and ε1
Γ′

have the same linearity type, or equivalently iff the access structures

have the same weight vector wΓ = wΓ′ (see Proposition 5.21). Using part (b)

we see that this is equivalent to the dual access structures Γ and Γ′ having the

same weight vector wΓ = wΓ′ . Equivalently the matrices ε1
Γ and ε1

Γ′ have the

same linearity type which means that Γ and Γ′ belong to the same class of access

structures.

We will see that in some cases the same parameters b1, g, k can be used for realizing

the access structure Γ and also its dual Γ. Furthermore the same codes can be suitable

for both access structures.

Proposition 6.2. Let Γ ( P(T ) \ {∅} be an arbitrary access structure realized

elementarily by (b1, g, k) such that 2b1 − g − k ≥ 0 and 2t−1|(2b1 − g − k). Let

a = (a2, . . . , a2t+1) be an elementary solution for (Γ, b1, g, k).

Define x to be the number characterized by equation 2 up to 2t of the linear system

4.2 in the following way:

• a2i <
1

2t−1 (2b1 − g − k) for x different indices i and

• a2i ≥ 1
2t−1 (2b1 − g − k) for 2t − 1− x different indices i

and define

S :=
2t∑
i=2

0≤a2i<
2b1−g−k

2t−1

a2i.

Suppose that

x · 2b1 − g − k
2t−1

− S ≤ b1 −
2t∑
i=2

a2i−1

holds. Then (b1, g, k) realizes Γ elementarily, too.

Proof. All non-empty sets which are unauthorized with regard to Γ are authorized

with regard to Γ and vice versa. Hence the elementary weight vector b for (Γ, b1, g, k)

can be gained from the elementary weight vector b for (Γ, b1, g, k) by interchanging all
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g’s and k’s. For u = |Γ| and u = |Γ| = |Γ| we have u = 2t − u− 1. Furthermore there

are exactly ci = 2t−1 − ci − 1 ones in the ith row of E being multiplied with g while

calculating E · b, where ci is the number of ones in the ith row of E being multiplied

with g in the calculation of E · b.
Hence an elementary solution a = (a2, . . . , a2t+1) for (Γ, b1, g, k) is related to a as

follows:

a2i − a2i−1 =
1

2t−1
Ei · b (see Lemma 4.19 (a))

=
1

2t−1
(b1 − k + (2ci − u)(g − k))

↓

a2i − a2i−1 =
1

2t−1
Ei · b

=
1

2t−1

(
b1 − k +

(
2 · (2t−1 − 1− ci︸ ︷︷ ︸

ci

)−2t + u+ 1︸ ︷︷ ︸
−u

)
(g − k)

)
=

1

2t−1
(b1 − g − (2ci − u)(k − g))

=
1

2t−1
(2b1 − g − k − (b1 − k + (2ci − u)(g − k)))

=
2b1 − g − k

2t−1
− a2i + a2i−1 for all i = 2, . . . , 2t.

There are two cases to consider:

• Let 0 ≤ a2i <
1

2t−1 (2b1 − g + k), a2i−1 ≥ 0. Then a2i − a2i−1 > 0. We define

a2i = 2b1−g−k
2t−1 − a2i + a2i−1 and a2i−1 = 0. This case occurs for x times.

• Let a2i ≥ 1
2t−1 (2b1 − g + k) > 0. Then a2i−1 = 0. Hence a2i − a2i−1 ≤ 0. We

define a2i = 0 and a2i−1 = a2i − 2b1−g−k
2t−1 .

(a3, a4, . . . , a2t+1 ∈ N0 since 2t−1|(2b1 − g − k).) With these results we calculate

2t∑
i=2

a2i =
2t∑
i=2

0≤a2i<
2b1−g−k

2t−1

a2i +
2t∑
i=2

a2i≥
2b1−g−k

2t−1

a2i

︸ ︷︷ ︸
=0

= x · 2b1 − g − k
2t−1

−
2t∑
i=2

0≤a2i<
2b1−g−k

2t−1

a2i

︸ ︷︷ ︸
= S

+
2t∑
i=2

a2i−1

= x · 2b1 − g − k
2t−1

− S︸ ︷︷ ︸
≤b1−

2t∑
i=2

a2i−1

+
2t∑
i=2

a2i−1 ≤ b1.
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For a2 = b1 −
2t∑
i=2

a2i we obtain
2t∑
i=1

a2i = b1. Hence (a2, a3, . . . , a2t+1) is an elementary

solution for (Γ, b1, g, k) and (b1, g, k) realizes Γ elementarily.

Remark 6.3. (a) Suppose that the conditions of Proposition 6.2 are satisfied and

additionally g ≤ b1 holds. Let C be a binary code with the properties 2k + 1 ≤
d(C), g > ρ(C) and n ≥ 2b1 − a2, which is suitable for (s,Γ, b1, g, k) for a secret

s ∈ C. According to Lemma 5.25, C is also suitable for (s,Γ, b1, g, k).

(b) Suppose that Γ allows the security distance g = b1. Then all differences a2i−a2i−1

have to be multiples of g−k
2t−1 . Hence the inequality a2i <

2b1−g−k
2t−1 yields a2i <

g−k
2t−1

which means a2i = 0. Therefore S = 0. In this case x counts the number of

equations with a2i = 0. That means the parameters b1, g = b1, k realize the dual

access structure elementarily if 2b1− g− k = g− k is divisible by 2t−1 and if the

inequality

x ≤ 2t−1

g − k

(
b1 −

2t∑
i=2

a2i−1

)
holds.

Example 6.4. For t = 3 participants let

Γ = {{T1}, {T2}, {T3}, {T1, T2, T3}}.

The dual access structure is

Γ = {{T1, T2}, {T1, T3}, {T2, T3}}.

We show that any parameters (b1, g, k) with b1 = g and k < g realize the access

structure Γ. If additionally g ≤ 3k holds, (b1, g, k) is also an elementary realization

for Γ. Furthermore we show that any binary simplex code with length n = 2l − 1 for

l ≥ 6 is suitable for both access structures. We have

u = 3, ε1
Γ

=

1 1 0

1 0 1

0 1 1

 and wΓ = (1, 0, 6, 0).

Therefore the equations given in 4.2 are the following: For exactly one i ∈ {2, 3, . . . , 8}
we have ci = 3 and therefore the equation

a2i − a2i−1 =
1

4
(b1 − k + (2ci − u)(g − k))

=
1

4
((g − k) + (2 · 3− 3)(g − k))

= g − k.

We define a2i = g − k and a2i−1 = 0.



6.1. The Dual Access Structure 87

In the remaining six equations ci = 1 and the equations have the form

a2i − a2i−1 =
1

4
(b1 − k + (2ci − u)(g − k))

=
1

4
((g − k) + (2 · 1− 3)(g − k)) = 0.

In this cases we define a2i = a2i−1 = 0. This yields

8∑
i=2

a2i = g − k ≤ g = b1.

This shows that arbitrary parameters (g, g, k) with k ≤ g realize Γ elementarily.

According to Remark 6.3 (b), the number of the components a2i for i = 2, . . . , 8 in

the range from 0 to 1
2t−1 (2b1 − g − k) is x = 6 and the sum of these a2i is S = 0. This

yields

x ≤ 2t−1

g−k

(
b1 −

2t∑
i=2

a2i−1

)
⇔ 6 ≤ 4

g−k · g
⇔ g ≤ 3k.

Hence Γ is realized elementarily by any (g, g, k), too, provided that g ≤ 3k and 4|g−k.

Now choose an arbitrary l ∈ N, l ≥ 6, and consider a binary simplex code C with

length n = 2l−1. All codewords in C, except for the zero word, have weight 2l−1. The

minimal distance is d(C) = 2l−1 and the covering radius ρ(C) = 2l−1 − 1.

We define g = b1 = 2l−1 and k = 2l−2 − 4. This yields g > ρ(C) and 2k + 1 ≤ d(C).
Furthermore g ≤ 3k holds and 4|(g − k). Hence (2l−1, 2l−1, 2l−2 − 4) is an elementary

realization for both access structures. We have

a2 = b1 −
2t∑
i=1

a2i = g − (g − k) = k and a1 = n− b1 −
2t∑
i=1

a2i−1︸ ︷︷ ︸
0

= g − 1.

According to Remark 4.21, C is suitable for (s,Γ, b1, g, k) for all nonzero codewords

s ∈ C. It remains to show that n ≥ 2b1 − a2 holds. In this case Remark 6.3 (a) says

that C is also suitable for (s,Γ, b1, g, k).
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2b1 − a2 = 2b1 −

(
b1 −

2t∑
i=2

a2i

)

= b1 +
2t∑
i=2

a2i

= b1 +
(
x︸︷︷︸
6

·2b1 − g − k
2t−1

− S︸︷︷︸
0

+
2t∑
i=2

a2i−1︸ ︷︷ ︸
0

)

= b1 +
3

2
(g − k)

= 2l−1 +
3

2
· (2l−2 + 4)

= 2l − 1︸ ︷︷ ︸
n

−2l−3 + 7︸ ︷︷ ︸
≤0

≤ n.

6.2 Embedding of Access Structures

Let Γ be an access structure on a set T of participants. Consider an arbitrary superset

T ′ of T . Then Γ is also an element of the power set P(T ′) and therefore an access

structure on the superset T ′. We denote it ΓT ′ and call this access structure the

embedding of Γ in P(T ′).
In this section we show under which conditions an elementary realization (b1, g, k)

for Γ is also suitable for all its embeddings ΓT ′ .

Example 6.5. Consider the access structure Γ = {{T1, T2}} ⊆ P({T1, T2}︸ ︷︷ ︸
=T

) with the

non-empty unauthorized sets {T1} and {T2}.
The embedding ΓT ′ of Γ in P({T1, T2, T3, T4}︸ ︷︷ ︸

T ′

) consists also of the authorized set

{T1, T2}. The non-empty unauthorized sets are

{T1} , {T2} , {T3} , {T1, T3} , {T2, T3} , {T1, T2, T3} , {T4} , {T1, T4} ,
{T2, T4} , {T1, T2, T4} , {T3, T4} , {T1, T3, T4} , {T2, T3, T4} , {T1, T2, T3, T4} .

Proposition 6.6. Consider an access structure Γ on a set T of t participants and its

embedding ΓT ′ in the power set of a participants set T ′ ⊇ T with t′ ≥ t participants.

Suppose that there are u non-empty unauthorized sets with regard to Γ and that

(b1, g, k) realizes Γ elementarily such that

b1 − k ≤ (2t − u)(g − k)

holds. Then (b1, g, k) is also an elementary realization for ΓT ′ .
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Proof. Consider the matrix ε1
Γ whose columns are the characteristic vectors of the

authorized sets with regard to Γ. Suppose that the matrix εΓ, whose rows are the

non-trivial linear combinations of the rows of ε1
Γ, has the weight vector

wΓ = (w0, . . . , w2t−u−1).

For T ′ = {Tt+1, . . . , Tt′} the matrix ε1
ΓT ′

, which consists of the characteristic vectors

of the authorized sets in ΓT ′ , has the form.

ε1
ΓT ′

=


ε1

Γ

0 . . . 0
...

...

0 . . . 0


︸ ︷︷ ︸

2t−u−1

} t t′ − t.

Hence the matrix εΓT ′
has the weight vector

wΓT ′
= (2t

′−t − 1 + 2t
′−tw0, 2

t′−tw1, . . . , 2
t′−tw2t−u−1)

(see Lemma 5.19). There are u′ = 2t
′ − 1 − (2t − u − 1) = 2t

′ − 2t + u non-empty

unauthorized sets with regard to ΓT ′ and the matrix εΓT ′
has the following row weights:

2t
′−t − 1 + 2t

′−tw0 rows have the weight 2t
′−1 and

2t
′−twj rows have the weight 2t

′−1 − j for all j = 1, 2, . . . , 2t − u− 1.

Let (a2, a3, . . . , a2t+1) be an elementary solution for (Γ, b1, g, k). In the first case there

are indices i such that

a′2i − a′2i−1 =
1

2t′−1

(
b1 − k + (2t

′ − 2t + u− 2 · 2t′−1)(g − k)
)

=
1

2t′−1

(
b1 − k + (u− 2t)(g − k)

)︸ ︷︷ ︸
≤0

=
1

2t′−t
(a2i − a2i−1)

and we define a′2i = 0 and a′2i−1 = − 1
2t
′−1 (b1 − k + (u− 2t)(g − k)).

In the second case there are indices i such that

a′2i − a′2i−1 =
1

2t′−1

(
b1 − k + (2t

′ − 2t + u− 2 · (2t′−1 − j))(g − k)
)

=
1

2t′−1

(
b1 − k + (u− 2 · (2t−1 − j))(g − k)

)
=

1

2t′−t
(a2i − a2i−1)

and we define a′2i = 1
2t′−t

a2i and a′2i−1 = 1
2t′−t

a2i−1.

This yields
2t
′∑

i=2

a′2i = 2t
′−t 1

2t
′−t

2t∑
i=2

a2i = b1 − a2 and we define a′2 = a2 and obtain the
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elementary solution (a′2, a
′
3, . . . , a

′
2t′+1) for (ΓT ′ , b1, g, k).

There is also another kind of embedding. Γ defines an access structure Γ′ on the

superset T ′ with the property that each subset A of T ′ is (un-)authorized iff the

intersection A ∩ T is (un-)authorized. That means

Γ′ = {A ∪B : A ∈ Γ, B ∈ P(T ′ \ T )} ⊆ P(T ′).

In this access structure the participants of T ′ \ T have no influence on whether a

subset is authorized or not.

Example 6.7. Consider the access structure

Γ = {{T1, T2}} ⊆ P({T1, T2}︸ ︷︷ ︸
=T

).

Then Γ′ in P({T1, T2, T3, T4}︸ ︷︷ ︸
T ′

) is just the access structure

Γ′ =
{
{T1, T2} , {T1, T2, T3} , {T1, T2, T4} , {T1, T2, T3, T4}

}
.

Suppose that there are shares for the participants in T = {T1, . . . , Tt}, which can

be used to share a secret s in a suitable code C of length n according to Γ. By assigning

the participants of T ′\T the zero word of length n as shares, the secret s can be shared

among the participants of T ′ according to Γ′.

6.3 Symmetric Difference

The next technique is to replace all authorized sets A of an access structure Γ1 by the

symmetric differences A M B for a given unauthorized subset B ∈ Γ1. This leads to

an interesting access structure Γ with the same number of authorized sets. We will

see that the transition from ε1
Γ1

to the matrix ε1
Γ

related to the new access structure

is characterized by adding the characteristic vector of B to all columns of ε1
Γ1

. Only

the column related to B remains unchanged. With that knowledge we identify pairs

(Γ1, B) such that both ε1-matrices have the same linearity type. Where this is the

case the access structures Γ1 and Γ belong to the same class and can be realized using

the same parameters.

Definition 6.8. Consider an arbitrary set M and a set B ⊆ M and let U ⊆ P(M).

Define the symmetric difference of U and B to be the set

U M B := {A M B : A ∈ U} .

We consider the case that M is the set T of the participants T1, . . . , Tt, U is an

access structure Γ1 and B is an unauthorized set in Γ1.
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Example 6.9. Let Γ1 = {{T2} , {T3} , {T1, T3} , {T2, T3}} and B = {T1} ∈ Γ1. Then

Γ = Γ1 M B = {{T2} M {T1} , {T3} M {T1} , {T1, T3} M {T1} , {T2, T3} M {T1}}
= {{T1, T2} , {T1, T3} , {T3} , {T1, T2, T3}} .

Next we study the effect of the symmetric difference on the dual access structure.

For this we need the following lemma.

Lemma 6.10. Let M be an arbitrary set and B ⊆M a subset. Then

P(M) = {A M B : A ⊆M} = P(M) M B.

Proof. P(M) ⊇ P(M) M B is clear since B ⊆M . Additionally

P(M) = {A : A ⊆M}
= {(A M B) M B : A ⊆M}
⊆ P(M) M B.

We use Lemma 6.10 to describe the dual access structure Γ1 M B.

Lemma 6.11. Let Γ1 ( P(T ) \ {∅} be an arbitrary access structure and B ∈ Γ1 an

unauthorized set. Define Γ = Γ1 M B. Then Γ =
(

(Γ1 \ {B}) M B)
)
∪ {B}.

Proof.

Γ = (P(T ) \ Γ) \ {∅}
= ((P(T ) M B) \ Γ) \ {∅} (Lemma 6.10)

=
(
(P(T ) M B) \ (Γ1 M B)

)
\ {∅}

=
(
(P(T ) \ Γ1) M B

)
\ {∅}

=
(
(Γ1 ∪ {∅}) M B

)
\ {∅}

=
(
((Γ1 \ {B}) M B) ∪ ({B} M B︸ ︷︷ ︸

{∅}

) ∪ ({∅} M B︸ ︷︷ ︸
{B}

)
)
\ {∅}

=
(
(Γ1 \ {B}) M B)

)
∪ {B}

Example 6.12. For Γ1, B as in Example 6.9 we have(
(Γ1 \ {B}) M B)

)
∪ {B}

= ({{T1, T2} , {T1, T2, T3}} M {T1}) ∪ {{T1}}
= {{T2} , {T2, T3}} ∪ {{T1}}
= {{T1} , {T2} , {T2, T3}}
= Γ.
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Remark 6.13. Let A,B ⊆ T with the characteristic vectors x = (x1, . . . , xt)
τ , y =

(y1, . . . , yt)
τ ∈ Zt2 and let z = (z1, . . . , zt) ∈ Zt2 be the characteristic vector of A M B.

Then z = x+ y, since for all j = 1, . . . , t

zj = 1 ⇔ Tj ∈ A M B

⇔ Tj ∈ A XOR Tj ∈ B
⇔ xj = 1 XOR yj = 1

⇔ xj + yj = 1.

In terms of the ε1-matrices the transition from Γ1 to Γ = Γ1 M B means the

following.

Lemma 6.14. Let v1, . . . , vu ∈ Zt2 be the characteristic vectors of the unauthorized

sets in Γ1. W.l.o.g. assume that v1 = b is the characteristic vector of B. Let Γ = Γ1 M
B. Then the columns of ε1

Γ
are b, v2 + b, . . . , vu + b.

Proof. According to Lemma 6.11, the columns of ε1
Γ

have to be the characteristic

vectors of the set B and of all sets A M B with A ∈ Γ1, A 6= B. These vectors are

exactly b and v2 + b, . . . , vu + b by Remark 6.13.

In general the access structures Γ1 and Γ1 M B have different linearity types.

Example 6.15. For t = 3 participants let Γ1 = {{T1} , {T1, T2} , {T3} , {T1, T2, T3}}
and B = {T1}. Then

ε1
Γ1 =

1 1 0 1

0 1 0 1

0 0 1 1

 and ε1
Γ

=

1 0 1 0

0 1 0 1

0 0 1 1

 .

The linearity vectors are `Γ1 = (0, 0, 1, 0) 6= `Γ = (0, 0, 0, 1).

However, there are cases where Γ1 and Γ1 M B belong to the same class. In these

cases the same parameters can be used for both access structures. The following

proposition describes pairs of access structures Γ1 and unauthorized sets B with this

property.

Proposition 6.16. Let Γ1 ( P(T ) \ {∅} be an access structure and B ∈ Γ1 an

unauthorized set with the characteristic vector b ∈ Zt2. Let v1 = b, v2, . . . , vu be the

columns of ε1
Γ1

. Suppose that
n∑
p=1

vjp = 0 implies

• b /∈ {vj1 , . . . , vjn} and n even or

• b ∈ {vj1 , . . . , vjn} and n odd.

Then Γ1 and Γ = Γ1 M B belong to the same class.
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Proof. According to Lemma 6.14, the columns of ε1
Γ

are v′1 = b, v′2 = v2 + b, . . . , v′u =

vu + b. Since their order has no effect on the linearity type we assume w.l.o.g. that

ε1
Γ

=
(
v′1, . . . , v

′
u

)
=
(
b, v2 + b, . . . , vu + b

)
. We show that

n∑
p=1

vjp = 0 ⇔
n∑
p=1

v′jp = 0

holds for all n = 1, . . . , u and all choices {j1, . . . , jn} ⊆ {1, . . . , u}. Then both matrices

have the same linearity type and belong to the same class (see Proposition 5.21).

According to the restrictions in the proposition, there are two cases with
n∑
p=1

vjp = 0:

1. Suppose that b /∈ {vj1 , . . . , vjn} and n is even. Then

n∑
p=1

vjp = nb︸︷︷︸
=0

+
n∑
p=1

vjp =
n∑
p=1

(vjp + b) =
n∑
p=1

v′jp .

2. Let b ∈ {vj1 , . . . , vjn} and n be odd. W.l.o.g assume that vj1 = b. Since b = v1

that means j1 = 1. Then

n∑
p=1

vjp = b︸︷︷︸
vj1

+
n∑
p=2

vjp = (n− 1)b︸ ︷︷ ︸
=0

+b+
n∑
p=2

vjp = b︸︷︷︸
v′j1

+
n∑
p=2

(vjp + b︸ ︷︷ ︸
=v′jp

) =
n∑
p=1

v′jp .

Now suppose that
n∑
p=1

v′jp = 0.

1. Let b 6∈
{
v′j1 , . . . , v

′
jn

}
. Then

0 =
n∑
p=1

v′jp = nb+
n∑
p=1

vjp .

If n is even, this implies
n∑
p=1

vjp = 0. Otherwise, when n is odd, we have 0 =

b+
n∑
p=1

vjp . This is a contradiction since the summand b occurs and the number

of summands (including b) is even.

2. Let b ∈
{
v′j1 , . . . , v

′
jn

}
. W.l.o.g assume that v′j1 = b. Then

0 =
n∑
p=1

v′jp = nb+
n∑
p=2

vjp .

If n is even,
n∑
p=2

vjp = 0. This is a contradiction since the number of summands
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is odd and the summand b is not involved. When n is odd, we receive 0 =

b+
n∑
p=2

vjp =
n∑
p=1

vjp .

Remark 6.17. Let Γ1 be an access structure with an unauthorized set B such that

the requirements of Proposition 6.16 are met. Then Γ1 and Γ = Γ1 M B have the same

elementarily realizations (see Proposition 5.14).

Additionally, if there is an invertible binary matrix M such that ε1
Γ1

= M · ε1
Γ

holds,

the same codes are suitable for both access structures (see Proposition 5.22).

Example 6.18. The access structure Γ1 and the unauthorized set B from Example

6.9 yield

ε1
Γ1 =

1 1 1

0 1 1

0 0 1

 = (v1, v2, v3) = (b, v2, v3)

and

ε1
Γ

=

1 0 0

0 1 1

0 0 1

 = (v′1, v
′
2, v
′
3) = (b, v2 + b, v3 + b).

Since v1, v2, v3 are linearly independent, there are no sums
n∑
p=1

vjp = 0 and the require-

ments of Proposition 6.16 are fulfilled. Hence both access structures belong to the same

class. Furthermore there is an invertible (3× 3)-matrix M such that ε1
Γ1

= M · ε1
Γ
:1 1 1

0 1 1

0 0 1


︸ ︷︷ ︸

ε1
Γ1

=

1 1 0

0 1 0

0 0 1


︸ ︷︷ ︸

M

·

1 0 0

0 1 1

0 0 1


︸ ︷︷ ︸

ε1
Γ

and Γ1 and Γ have the same suitable codes.

Sometimes it is easier to determine the characteristic vectors of the authorized sets,

than the characteristic vectors of the unauthorized sets, and it is easier to find the

matrix ε1
Γ1 than the matrix ε1

Γ1
. Furthermore, in some cases it is easier to find out,

which sums of the columns of ε1
Γ1 yield the zero vector, than to check the sums of the

columns of ε1
Γ1

. The following remark shows the connection between the columns of

ε1
Γ1 and ε1

Γ1
. Moreover, we give a criterion concerning the columns of ε1

Γ1 for Γ1 and Γ

belonging to the same class.

Remark 6.19. (a) Let Γ = Γ1 M B, B ∈ Γ1. Suppose that ε1
Γ1 consists of the

columns vu+2, . . . , v2t . Let v1 = b be the characteristic vector of B and let

v2, . . . , vu denote the remaining nonzero vectors of Zt2. Using Lemma 6.10 the
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set Zt2 of all characteristic vectors of the subsets of T can be written as

Zt2 =
{
v1, . . . , vu︸ ︷︷ ︸

columns of ε1
Γ1

, 0, vu+2, . . . , v2t︸ ︷︷ ︸
columns of ε1

Γ1

}

=
{

0, v2 + b, . . . , vu + b, b︸ ︷︷ ︸
columns of ε1

Γ

, vu+2 + b, . . . , v2t + b︸ ︷︷ ︸
columns of ε1Γ

}
.

We know from Lemma 6.14 that the vectors v2 + b, . . . , vu + b, b characterize the

elements of Γ. Hence the remaining nonzero vectors vu+2 + b, . . . , v2t + b must

be the columns of ε1
Γ.

(b) Suppose that the columns vu+2, . . . , v2t of the matrix ε1
Γ1 have the property that

a sum of pairwise distinct columns vj1 , . . . , vjn can only be the zero vector when

the number n of the summands is even. The columns of ε1
Γ have the form

vu+2 + b, . . . , v2t + b and the equivalence

n∑
p=1

(vjp + b) = 0 ⇔
n∑
p=1

vjp = 0

holds. That means ε1
Γ1 and ε1

Γ have the same linearity type. Therefore Γ1 and Γ

lie in the same class. According to Remark 6.1 (d), their duals Γ1 and Γ lie in

the same class, too.

6.4 The Intersection of Access Structures

Another technique to create new access structures is to intersect two initial access

structures Γ1 and Γ2 on the same set T of t participants. At first we show how

solutions for the initial access structures provide a solution for their intersection if

the dual access structures Γ1 and Γ2 are disjoint. Then we generalize our results to

arbitrary dual access structures.

First we analyze the dual of the intersection Γ. It turns out that it is the union of

the dual access structures Γ1 and Γ2:

Γ = (P(T ) \ {∅}) \ (Γ1 ∩ Γ2)

= ((P(T ) \ {∅}) \ Γ1) ∪ ((P(T ) \ {∅}) \ Γ2)

= Γ1 ∪ Γ2.

In terms of the related ε-matrices this means that the columns of εΓ are exactly

the columns which occur in εΓ1
or in εΓ2

. When Γ1 and Γ2 are disjoint then εΓ is the

concatenation of εΓ1
and εΓ2

, except for the order of the columns. We use this fact to

construct a solution for Γ from solutions for Γ1 and Γ2.
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Proposition 6.20. Let Γ1,Γ2 ( P(T ) \ {∅} be access structures on the same set of

t participants with disjoint dual access structures.

(a) Suppose that (b1, g, k) realizes Γ1 elementarily and that (b′1, g
′, k′) realizes Γ2

elementarily with g − k = g′ − k′. Then

(b̂1, ĝ, k̂) = (b1 + b′1, g + k′, k + k′)

realizes Γ elementarily.

(b) Additionally, let C ⊆ Zn2 be a suitable code for (s,Γ1, b1, g, k) for a codeword

s ∈ C with weight b1 and C ′ ⊆ Zn′2 be suitable for (s′,Γ2, b
′
1, g
′, k′) for a codeword

s′ ∈ C ′ with weight b′1. Then the concatenation Ĉ of C and C ′ is suitable for

(ŝ,Γ, b̂1, ĝ, k̂), where ŝ is the concatenation of the codewords s and s′.

Proof. (a) Let |Γ1| = u and |Γ2| = u′. Then Γ has û = u + u′ elements since

Γ1 ∩ Γ2 = ∅. The matrix εΓ consists of the columns of εΓ1
and of εΓ2

. Hence

the number ĉi of zeros in the ith column of εΓ is the sum ci + c′i of zeros in the

ith columns of εΓ1
and εΓ2

.

We are looking for an elementary solution â = (â2, . . . , â2t+1) for (Γ, b̂1, ĝ, k̂) =

(Γ1 ∩ Γ2, b1 + b2, g + k′, k + k′). Let a = (a2, . . . , a2t+1) and a′ = (a′2, . . . , a
′
2t+1)

be elementary solutions for (Γ1, b1, g, k) and (Γ2, b
′
1, g
′, k′), respectively. Then â,

a and a′ have the following relations given by Equation 4.2:

â2i − â2i−1 =
1

2t−1

(
b̂1 − k̂ + (2ĉi − û)(ĝ − k̂)

)
=

1

2t−1

(
b1 + b′1 − (k + k′) + (2(ci + c′i)− (u+ u′))(g + k′ − (k + k′)︸ ︷︷ ︸

=g−k=g′−k′

)
)

=
1

2t−1
(b1 − k + (2ci − u)(g − k) + (b′1 − k′ + (2c′i − u′)(g′ − k′))

= a2i − a2i−1 + a′2i − a′2i−1 for all i = 2, 3, . . . , 2t.

We have to distinguish the following cases.

• If a2i > 0 and a′2i > 0 then a2i−1 = a′2i−1 = 0 and â2i− â2i−1 = a2i+a′2i > 0.

Hence

â2i = a2i + a′2i and â2i−1 = 0 = a2i−1 + a′2i−1.

• If a2i = a′2i = 0 then a2i−1, a
′
2i−1 ≥ 0 and â2i − â2i−1 = −a2i−1 − a′2i−1 ≤ 0.

Hence

â2i = 0 = a2i + a′2i and â2i−1 = a2i−1 + a′2i−1 ≥ 0.

• Let a2i > 0 and a′2i = 0. Then a2i−1 = 0, a′2i−1 ≥ 0 and â2i − â2i−1 =

a2i − a′2i−1.
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If a2i − a′2i−1 > 0 then

â2i = a2i − a′2i−1 ≤ a2i + a′2i and â2i−1 = 0 ≤ a2i−1 + a′2i−1.

If a2i − a′2i−1 ≤ 0 then

â2i = 0 ≤ a2i + a′2i and â2i−1 = a′2i−1 − a2i ≤ a2i−1 + a′2i−1.

(a2i = 0 and a′2i > 0 analogously)

In all cases the following equations are satisfied

â2i ≤ a2i + a′2i and â2i−1 ≤ a2i−1 + a′2i−1.

Therefore

2t∑
i=2

â2i ≤
2t∑
i=2

(a2i + a′2i)

=
2t∑
i=2

a2i +
2t∑
i=2

a′2i ≤ b1 + b′1 = b̂1.

This shows that (b1 + b′1, g + k′, k + k′) realizes Γ elementarily.

(b) Let Ĉ be the concatenation of the codes C and C ′ and ŝ the concatenation of the

codewords s and s′. We check the requirements of Definition 4.20.

• Requirement (a) is met since ŝ is a codeword in Ĉ with weight b1 + b′1 = b̂1.

• The code length of Ĉ is

n̂ = n+ n′

≥ b1 +
2t∑
i=2

a2i−1 + b′1 +
2t∑
i=2

a′2i−1

(since C is suitable for (s,Γ1, b1, g, k) and

C ′ is suitable for (s′,Γ2, b
′
1, g
′, k′))

= b1 + b′1︸ ︷︷ ︸
b̂1

+
2t∑
i=2

(a2i−1 + a′2i−1︸ ︷︷ ︸
≥â2i−1

)

≥ b̂1 +
2t∑
i=2

â2i−1 (see proof of part (a)),

which satisfies requirement (b) of Definition 4.20.

• Let k1, . . . , kt and k′1, . . . , k
′
t be shares which satisfy the conditions of Defi-

nition 4.20 (c) for s,Γ1, b1, g, k and s′,Γ2, b
′
1, g
′, k′, respectively. Define the
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shares k̂1, . . . , k̂t for Γ, b̂1, ĝ, k̂ to be the concatenations k̂i = (ki, k
′
i) for all

i = 1, . . . , t. For all j = 1, . . . , 2t let Sj, S
′
j, Ŝj be the sums of the shares of

the jth set Aj ∈ P(T ) with respect to the shares ki, the k′i and k̂i.

– Suppose that Aj ∈ Γ. Then Aj ∈ Γ1 and Aj ∈ Γ2. Therefore d (Sj, s) =

k, d
(
S ′j, s

′) = k′ and there are no codewords c ∈ C, c′ ∈ C ′ with

d (Sj, c) ≤ k and d
(
S ′j, c

′) ≤ k′. That means

d
(
Ŝj, ŝ

)
= d (Sj, s) + d

(
S ′j, s

′) = k + k′ = k̂

and there is no other codeword ĉ ∈ Ĉ with d
(
Ŝj, ĉ

)
≤ k̂.

– For Aj ∈ Γ, Aj ∈ Γ1 ∩ Γ2 or Aj ∈ Γ1 ∩ Γ2. W.l.o.g we assume that the

first case occurs. Then d (Sj, s) = g and d
(
S ′j, s

′) = k′. We also know

that there must be a codeword c ∈ C with d (Sj, c) < g. Hence

d
(
Ŝj, ŝ

)
= d (Sj, s) + d

(
S ′j, s

′) = g + k′ = ĝ.

Let ĉ ∈ Ĉ be the concatenation of c and s′. Then

d
(
Ŝj, ĉ

)
= d (Sj, c) + d

(
S ′j, s

′) < g + k′ = ĝ.

This satisfies condition (c) of Definition 4.20.

Example 6.21. Consider the access structures

Γ1 = {{T3}, {T1, T2}, {T2, T3}, {T1, T3}, {T1, T2, T3}} and

Γ2 = {{T1}, {T2}, {T3}, {T2, T3}, {T1, T2, T3}}

on the participants set T = {T1, T2, T3}. The dual access structures

Γ1 = {{T1}, {T2}} and

Γ2 = {{T1, T2}, {T1, T3}}

are disjoint. Define

Γ = Γ1 ∩ Γ2 = {{T3}, {T2, T3}, {T1, T2, T3}} .

Then

Γ = {{T1}, {T2}, {T1, T2}, {T1, T3}} = Γ1 ∪ Γ2.

At first we show that the parameters (b1, g, k) = (b′1, g
′, k′) = (64, 64, 28) realize Γ1

and Γ2 elementarily. Then we find suitable codes for Γ1 and Γ2 and apply Proposition
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6.20 to find an elementary realization and a suitable code for Γ.

ε1
Γ1

=

1 0

0 1

0 0

 and wΓ1
= (1, 4, 2)

The numbers di of the ones in the ith row of εΓ1
are

di =


0 once

1 4 times

2 2 times

.

Hence the equations 2 to 8 in the linear system 4.2 equations are

• a2i− a2i−1 = 1
4
(b1− k+ (u− 2di)(g− k)) = 1

4
(64− 28 + (2− 2 · 0)(64− 28)) = 27

for one time. In this case we choose a2i = 27 and a2i−1 = 0.

• a2i− a2i−1 = 1
4
(b1− k+ (u− 2di)(g− k)) = 1

4
(64− 28 + (2− 2 · 1)(64− 28)) = 9

for four times. We choose a2i = 9 and a2i−1 = 0.

• a2i−a2i−1 = 1
4
(b1−k+ (u− 2di)(g−k)) = 1

4
(64− 28 + (2− 2 · 2)(64− 28)) = −9

for two times and we choose a2i = 0 and a2i−1 = 9.

This yields
8∑
i=2

a2i = 27 + 4 · 9 = 63 ≤ 64 = b1.

Hence (64, 64, 28) realizes Γ1 elementarily. In order to show that (64, 64, 28) is also an

elementary realization for Γ2 we have a look at the matrix

ε1
Γ2

=

1 1

1 0

0 1

 .

It also consists of two linearly independent columns. That means ε1
Γ1

and ε1
Γ2

have

the same linearity type and Γ1 and Γ2 belong to the same class of access structures.

Hence (64, 64, 28) realizes Γ2 elementarily, too.

Lemma 5.26 (b) tells us that the first order Reed Muller code RM(1, 7) is suitable

for (s,Γ1, 64, 64, 28) and for (s′,Γ1, 64, 64, 28) for all codewords s, s′ ∈ RM(1, 7) \
{(0, . . . , 0), (1, . . . , 1)}.
According to Proposition 6.20 (a), Γ is realized elementary by

(b̂1, ĝ, k̂) = (b1 + b′1, g + k′, k + k′) = (128, 92, 56).

Finally Proposition 6.20 (b) says that the concatenation

Ĉ = {(c, c′) : c, c′ ∈ RM(1, 7)}
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is suitable for (ŝ,Γ, 128, 92, 56) for all codewords ŝ ∈ Ĉ, ŝ 6= (0, . . . , 0︸ ︷︷ ︸
128

, 1, . . . , 1︸ ︷︷ ︸
128

),

(1, . . . , 1︸ ︷︷ ︸
128

, 0, . . . , 0︸ ︷︷ ︸
128

), with weight 128.

Let us now consider the general case where Γ1 and Γ2 are not disjoint. Suppose

that Γ1,Γ2 ( P(T ) \ {∅} such that Γ1 * Γ2 and Γ2 * Γ1. Then Γ1 ∪ Γ2 consists of

the three non-empty and pairwise disjoint sets Γ1 \ Γ2, Γ2 \ Γ1 and Γ1 ∩ Γ2. In order

to find a realization for Γ1 ∩ Γ2 we apply Proposition 6.20 twice:

• on Γ1 \ Γ2 = Γ1 ∪Γ2 and Γ2 \ Γ1 = Γ1 ∪Γ2, this yields an elementary realization

for (Γ1 ∪ Γ2) ∩ (Γ1 ∪ Γ2) = (Γ1 ∩ Γ2) ∪ (Γ1 ∩ Γ2);

• on (Γ1∩Γ2)∪(Γ1∩Γ2) and Γ1 ∩ Γ2 = Γ1∪Γ2, this yields an elementary realization

for ((Γ1 ∩ Γ2) ∪ (Γ1 ∩ Γ2)) ∩ (Γ1 ∪ Γ2) = Γ1 ∩ Γ2.

Corollary 6.22. Let Γ1,Γ2 ( P(T ) \ {∅} be access structures on the same set of t

participants such that Γ1 * Γ2 and Γ2 * Γ1. Suppose that the dual access structures

are not disjoint. Let Γ′1 := Γ1 ∪ Γ2, Γ′2 := Γ1 ∪ Γ2 and Γ3 = Γ1 ∪ Γ2.

(a) Suppose that (b1, g, k), (b′1, g
′, k′) and (b′′1, g

′′, k′′) are elementary realizations for

Γ′1, Γ′2 and Γ3, respectively, such that g − k = g′ − k′ = g′′ − k′′ holds. Then

(b̂1, ĝ, k̂) = (b1 + b′1 + b′′1, g + k′ + k′′, k + k′ + k′′)

realizes Γ1 ∩ Γ2 elementarily.

(b) Additionally, let C ⊆ Zn2 be a suitable code for (s,Γ′1, b1, g, k) for a codeword

s ∈ C with weight b1, C ′ ⊆ Zn′2 be a suitable code for (s′,Γ′2, b
′
1, g
′, k′) for a

codeword s′ ∈ C ′ with weight b′1 and C ′′ ⊆ Zn′′2 be suitable for (s′′,Γ3, b
′′
1, g
′′, k′′)

for a codeword s′′ ∈ C ′′ with weight b′′1. Then the concatenation Ĉ of C, C ′ and C ′′
is suitable for (ŝ,Γ1 ∩Γ2, b̂1, ĝ, k̂), where ŝ is the concatenation of the codewords

s, s′ and s′′.

Remark 6.23. Let Γ 6= P(T ) \ {∅} be an arbitrary access structure such that there

are u > 0 unauthorized sets. The dual access structure Γ can be partitioned into at

most u disjoint smaller sets, which can be regarded as the duals of some suitable access

structures. This yields another approach towards an universal solution for all access

structures on the same number of participants: We partition the dual access structure

into u pairwise different sets, each containing one unauthorized set. Then we apply

Proposition 6.20 for u − 1 times. Unfortunately, access structures with dual access

structures of size one do not allow small code lengths and large security distances.

This has the consequence that the alternative approach based on Proposition 6.20

does not improve the universal solution given in Theorem 4.22 with regard to the code

length and the security distance.
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Let us take a detailed look at this construction. Let Γ1 be an arbitrary access

structure with one unauthorized set. Then u = 1 and wΓ1
= (2t−1 − 1, 2t−1) yields

ci = 1 for 2t−1 − 1 times and ci = 0 for 2t−1 times. We obtain the equations

a2i − a2i−1 =

{
1

2t−1 (b1 − k + (g − k)) 2t−1 − 1 times
1

2t−1 (b1 − k − (g − k)) 2t−1 times
.

We choose b1 = g and b1

(
1
2
− 1

2t−2

)
≤ k < b1

2
such that 2t−2|b1 − k. Then

2t∑
i=2

a2i ≤ b1

⇔ 1
2t−1 ((2t−1 − 1) · 2 · (b1 − k)) ≤ b1

⇔ b1 · (2t−2 − 1) ≤ k · (2t−1 − 1)

⇔ b1 ·
(

1
2
− 1

2t−2

)
≤ k.

Hence the parameters (b1, b1, k) with the properties described above realize Γ1 ele-

mentarily. In order to guarantee that 2t−2|b1 − k we choose k = b1
2
− 2t−2 and b1

to be divisible by 2t−1. However, a consequence of this is that b1 has to be at least

22t−2 − 2t−1.

For b1 = 22t−2 the first order Reed Muller code RM(1, 2t − 1) is suitable for

(s,Γ1, b1, b1, k) for all codewords in s ∈ RM(1, 2t − 1) \ {(0, . . . , 0), (1, . . . , 1)} (see

Lemma 5.26 (b)).

Now let Γ be an access structure with u > 0 unauthorized sets. We split the dual

access structure into u disjoint sets with one element and apply Proposition 6.20 (a)

for u − 1 times. This yields the following elementary realizations depending on the

size u of Γ.

u = 1 : (b1, b1, k)

u = 2 : (2b1, b1 + k, 2k)
...

1 ≤ u ≤ 2t − 1 : (ub1, b1 + (u− 1)k, uk) = (b̂1,u, ĝu, k̂u)
...

u = 2t − 1 : ((2t − 1)b1, b1 + (2t − 2)k, (2t − 1)k) = (b̂1, ĝ, k̂)

For all u = 1, . . . , 2t − 1 Proposition 6.20 (b) says that the u-fold concatenation C
of RM(1, 2t− 1) is suitable for (ŝ,Γ, ub1, b1 + (u− 1)k, uk) for all secrets ŝ ∈ C, which

are concatenations of codewords in RM(1, 2t− 1) \ {(0, . . . , 0), (1, . . . , 1)}.
Let (b̃1, g̃, k̃) be the parameters provided by theorem 4.22 for t participants. That

means especially

b̃1 ≥ 22t − 2t and g̃ ≤ b̃1

(
1

2
+

1

2t

)
− 2t−1.

In the worst case the alternative construction yields

b̂1 = (2t − 1)b1 ≥ 23t−2 − 3 · 22t−2 + 2t−1
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and fails to improve the efficiency of the scheme. In order to make a statement about

the security provided by the two different realizations we study the “relative security

distances” ĝ

b̂1
and g̃

b̃1
. We know from Remark 4.21 (b) that the code lengths 2b̂1 and 2b̃1,

respectively, are arithmetically possible. Hence the relative security distance measure

the proportions of digits in the share sums of the unauthorized sets which differ from

the secret. Unfortunately the new approach means no essential improvement with

regard to the security either since both relative security distances are below the (very

small) bound 1
2

+ 1
2t

:

The relative security distance provided by the universal solution is

b̃1

g̃
=

1

2
+

1

2t
− 2t−1

b̃1

≤ 1

2
+

1

2t
.

In the worst case u = 2t − 1 we have ĝ = b1 + (2t − 2)k = 2t−1b1 − 22t−2 + 2t−1 and

therefore
ĝ

b̂1

=
1

2
+

1

2t+1 − 2︸ ︷︷ ︸
≤ 1

2t

− 22t−2

(2t − 1)b1

+
2t−1

(2t − 1)b1︸ ︷︷ ︸
≤0

≤ 1

2
+

1

2t
.

However, for smaller numbers u of unauthorized sets, the weights b̂1,u are con-

siderably smaller than b̃1 and relative security distances above the bound 1
2

+ 1
2t

are

possible:

ĝu

b̂1,u

=
b1 + (u− 1)k

ub1

=
b1

(
1 + u−1

2

)
ub1

− u− 1

u
· 2t−2

b1

≥ u+ 1

2u
− u− 1

u
· 2t−2

22t−2 − 2t−1

=
1

2
+

1

2u
− u− 1

u

(
1

2t
+

1

22t−1 − 2t

)
︸ ︷︷ ︸

≤ 1
2t−1

≥ 1

2
+

1

2u
− u− 1

2t−1u

which is larger than 1
2

+ 1
2t

for all u < 2t−1+2
3

.

6.5 Removal of One Authorized Subset

This section deals with very small changes in the access structure. We study the effect

on the possible parameters when one single set of the access structure is removed.
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Let Γ′ be an access structure realized elementarily by (b1, g, k). It will turn out that

any authorized set, which is disjoint to all unauthorized sets, can be removed from Γ′

such that the resulting access structure Γ is also realized elementarily by (b1, g, k).

Proposition 6.24. Let Γ′ ( P(T ) \ {∅} be an arbitrary access structure on t par-

ticipants. Consider a set of participants V ∈ Γ′ which is disjoint to all unauthorized

sets in Γ′.

(a) Suppose that (a′2, . . . , a
′
2t+1) is an elementarily solution for (Γ, b1, g, k) such that

there is no pair (a′2i, a
′
2i−1) with

0 ≤ |a′2i − a′2i−1| <
g − k
2t−1

.

Then (b1, g, k) realizes the access structure

Γ := Γ′ \ {V }.

elementarily, too.

(b) Let C be suitable for (s,Γ′, b1, g, k) for a codeword s ∈ C with weight b1. Suppose

that the minimum distance d(C) and the covering radius ρ(C) satisfy d(C) ≥
2k + 1 and ρ(C) < g. Then C is also suitable for (s,Γ, b1, g, k).

Proof. (a) Without loss of generality let V = {T1, . . . , Tv}. Let |Γ′| = u′. Γ =

Γ′ ∪ {V } yields |Γ| = u = u′ + 1 and

ε1
Γ′

=


0 . . . 0
...

...

0 . . . 0

∗


︸ ︷︷ ︸

u′

 v

} t− v

and ε1
Γ

=



1 0 . . . 0
...

...
...

1 0 . . . 0

0
... ∗
0


︸ ︷︷ ︸

u=u′+1

 v

 t− v

for a suitable (t−v×u′)-matrix (∗). The rows of the matrices εΓ′ and εΓ consist

of all possible sums of the rows of the matrices ε1
Γ′

and ε1
Γ
, respectively, with at

least one summand. Let c′i denote the number of zeros in the ith row of εΓ′ . The

number ci of zeros in the ith row of εΓ is characterized by the matrix (∗) and

has the following relation to c′i:

• Suppose that the ith row of εΓ′ is the sum of at least one of the last t− v
rows of ε1

Γ′
. Then this row is the sum of a sum R′ of the last t− v rows and

a multiple m · (0, . . . , 0), m = 0, . . . , v, of the zero row. Since there are 2v

combinations of the first v rows, there are 2v rows like the ith row.

Let R be the vector consisting of R′ with an additional leading zero. Then
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the ith row of εΓ is the sum R + m · (1, 0, . . . , 0). If m is even (possibly

zero), then the ith row is just R. In this case ci = c′i + 1. This happens

2v−1 times. If m is odd, the ith row looks like R with the first bit flipped.

In this case ci = c′i. This also happens 2v−1 times.

Hence each c′i occurs for a multiple of 2v times and there are 2v−1 rows of

εΓ with ci = c′i + 1 zeros and 2v−1 rows with ci = c′i zeros.

2v−1 times ci = c′i + 1

2v times c′i

2v−1 times ci = c′i

• Let the ith row of εΓ′ be a sum of the first v rows of ε1
Γ′

. Then the row is

a multiple m · (0, . . . , 0), m = 1, . . . v. Since there are 2v − 1 possibilities to

choose at least one of the first v rows, there are 2v − 1 rows in εΓ′ of that

form. The ith row of εΓ is m · (1, 0, . . . , 0). When m is even, the row is also

the zero vector and ci = c′i + 1. This happens 2v−1 − 1 times. Otherwise,

when m is odd, the ith row of εΓ is the vector (1, 0, . . . , 0) and ci = c′i. This

happens 2v−1 times.

2v−1 − 1 times ci = c′i + 1 = u

2v − 1 times c′i = u′

2v−1 times ci = c′i = u− 1

These observations show that there are indices i1, . . . , i2t−v−1 such that for all

j ∈ {i1, . . . , i2t−v−1} there are exactly 2v rows of εΓ′ with c′j zeros. In εΓ there

are exactly 2v−1 rows with cj = c′j zeros and 2v−1 rows with cj = c′j + 1 zeros.

Furthermore there are 2v − 1 rows of εΓ′ with u′ zeros, 2v−1 − 1 rows of εΓ with

u = u′+ 1 zeros and 2v−1 rows of εΓ with u−1 = u′ zeros. Let i2t−v be the index

of such a row of εΓ′ .

Hence the elementary solution a′ for (Γ′, b1, g, k) yields an elementary solution

a = (a2, . . . , a2t+1) for (Γ, b1, g, k):

Consider the case ci = c′i + 1:
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a2i − a2i−1 =
1

2t−1
(b1 − k + (2ci − u)(g − k))

=
1

2t−1
(b1 − k + (2c′i + 2− u′ − 1)(g − k))

= a′2i − a′2i−1 +
g − k
2t−1

.

In the other case ci = c′i and we have

a2i − a2i−1 =
1

2t−1
(b1 − k + (2ci − u)(g − k))

=
1

2t−1
(b1 − k + (2c′i − u′ − 1)(g − k))

= a′2i − a′2i−1 −
g − k
2t−1

.

According to our hypothesis |a′2i − a′2i−1| ≥
g−k
2t−1 for all i = 2, . . . , 2t, we have to

distinguish two cases:

• Suppose that a′2i > 0. Then a′2i−1 = 0 and a′2i ≥
g−k
2t−1 . Furthermore

a2i − a2i−1 = a′2i +
g − k
2t−1

> 0 yields a2i = a′2i +
g − k
2t−1

, a2i−1 = 0,

a2i − a2i−1 = a′2i −
g − k
2t−1

≥ 0 yields a2i = a′2i −
g − k
2t−1

, a2i−1 = 0

• If a′2i = 0 and a′2i−1 > 0 then a′2i−1 ≥
g−k
2t−1 and

a2i − a2i−1 = −a′2i−1 +
g − k
2t−1

≤ 0 yields a2i = 0, a2i−1 = a′2i−1 −
g − k
2t−1

,

a2i − a2i−1 = −a′2i−1 −
g − k
2t−1

< 0 yields a2i = 0, a2i−1 = a′2i−1 +
g − k
2t−1

Using these results we calculate

2t∑
i=2

a2i = 2v−1

2t−v−1∑
l=1

(
a′2il −

g − k
2t−1

)
+ 2v−1

2t−v−1∑
l=1

(
a′2il +

g − k
2t−1

)
+2v−1

(
a′2i2t−v −

g − k
2t−1

)
+ (2v−1 − 1)

(
a′2i2t−v +

g − k
2t−1

)
= 2v

2t−v−1∑
l=1

a′2il + (2v − 1)a′2i2t−v −
g − k
2t−1
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=
2t∑
i=2

a′2i︸ ︷︷ ︸
=b1−a′2

−g − k
2t−1

≤ b1.

That means (b1, g, k) realizes Γ elementarily, too and (a2, . . . , a2t+1) is an ele-

mentary solution for (Γ, b1, g, k).

(b) We have to check the requirements of Definition 4.20. Condition (a) is obviously

met and condition (c) is fulfilled because of remark 4.21 (c). It remains to show

that the length n of C is sufficient.

n ≥ b1 +
2t∑
i=2

a′2il−1

= b1 + 2v−1

2t−v−1∑
l=1

(
a′2il−1 −

g − k
2t−1

)
+ 2v−1

2t−v−1∑
l=1

(
a′2il−1 +

g − k
2t−1

)
+(2v − 1) a′2i2t−v−1︸ ︷︷ ︸

=0

= b1 +
2t∑
i=2

a2il−1

Hence C is also suitable for (s,Γ, b1, g, k).

Example 6.25. Let

Γ′ = {{T1} , {T3} , {T1, T2} , {T1, T3} , {T1, T2, T3}} , Γ′ = {{T2} , {T2, T3}} .

V = {T1} is disjoint to all unauthorized sets in Γ′. Define

Γ = Γ′ \ {V } = {{T3} , {T1, T2} , {T1, T3} , {T1, T2, T3}} .

Then

Γ = Γ′ ∪ {V } = {{T1} , {T2} , {T2, T3}} .

The ε1-matrices and weight vectors are

ε1
Γ′

=

0 0

1 1

0 1

 , wΓ′ = (1, 4, 2)

and
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ε1
Γ

=

1 0 0

0 1 1

0 0 1

 , wΓ = (0, 3, 3, 1).

At first we illustrate how the numbers c′i of zeros in the ith row of εΓ′ determine the

numbers ci of zeros in the ith row of εΓ using the same notations as in the proof of

Proposition 6.24.

The rows of the matrices εΓ′ and εΓ are the following linear combinations of the rows

of ε1
Γ′

and ε1
Γ
:

i4 →
i1 →

i2 →

i3 →

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8



0 0

1 1

1 1

0 1

0 1

1 0

1 0


︸ ︷︷ ︸

=ε
Γ′

row 1

row 2

row 1 + row 2

row 3

row 1 + row 3

row 2 + row 3

row 1 + row 2 + row 3



1 0 0

0 1 1

1 1 1

0 0 1

1 0 1

0 1 0

1 1 0


︸ ︷︷ ︸

=εΓ

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

Let i1 = 3, i2 = 5, i3 = 7 and i4 = 2. Then c′i1 = 0, c′i2 = 1, c′i3 = 1 and c′i4 = 2. For

all j ∈ {i1, i2, i3} there are 2v = 2 rows in εΓ′ with c′j zeros:

j = i1: row 2 and row 3 have c′j = 0 zeros

j = i2: row 4 and row 5 have c′j = 1 zero

j = i3: row 6 and row 7 have c′j = 1 zero

εΓ has 2v−1 = 1 row with c′j + 1 zeros and 2v−1 = 1 row with c′j zeros:

j = i1: row 2 has 1 zero and row 3 has 0 zeros

j = i2: row 4 has 2 zero and row 5 has 1 zero

j = i3: row 6 has 2 zero and row 7 has 1 zeros

For j = i4 there is 2v − 1 = 1 row in εΓ′ with c′j = u′ = 2 zeros: row 1. εΓ has

2v−1 − 1 = 0 rows with u′ + 1 = 3 zeros and 2v−1 = 1 row with u′ = 2 zeros: row 1.

Next we have a look at the equations 2 to 8 in the linear system 4.2 for elementary

solutions (a′2, . . . , a
′
16) for (Γ′, b1, g, k) and (a2, . . . , a16) for (Γ, b1, g, k) defined by the

numbers c′2, . . . , c
′
8 and c2, . . . , c8 of zeros in the rows of εΓ′ and εΓ. Consider the case

b1 = g.
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a′3 = 0, a3 = 0

a′4 =
3

4
(g − k), a4 =

1

2
(g − k)

a′5 =
1

4
(g − k), a5 = 0

a′6 = 0, a6 = 0

a′7 =
1

4
(g − k), a7 =

1

2
(g − k)

a′8 = 0, a8 = 0

a′9 = 0, a9 = 0

a′10 =
1

4
(g − k), a10 =

1

2
(g − k)

a′11 = 0, a11 = 0

a′12 =
1

4
(g − k), a12 = 0

a′13 = 0, a13 = 0

a′14 =
1

4
(g − k), a14 =

1

2
(g − k)

a′15 = 0, a15 = 0

a′16 =
1

4
(g − k), a16 = 0

Just like in the proof we obtain

3

2
(g − k) =

8∑
i=2

a2i

= a4︸︷︷︸
a′4−

1
4

(g−k)

+ a6︸︷︷︸
a′6=0

+ a8︸︷︷︸
a′8=0

+ a10︸︷︷︸
a′10+ 1

4
(g−k)

+ a12︸︷︷︸
a′10−

1
4

(g−k)

+ a14︸︷︷︸
a′14+ 1

4
(g−k)

+ a16︸︷︷︸
a′14−

1
4

(g−k)

= 2(a′6 + a′10 + a′14) + a′4 −
1

4
(g − k)

= 2 ·
3∑
l=1

a′2il + a′2i4 −
1

4
(g − k)

=
8∑
i=2

a′2i︸ ︷︷ ︸
7
4

(g−k)

−1

4
(g − k)

and
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1

2
(g − k) =

8∑
i=2

a2i−1

= a3︸︷︷︸
a′3=0

+ a5︸︷︷︸
a′5−

1
4

(g−k)

+ a7︸︷︷︸
a′5+ 1

4
(g−k)

+ a9︸︷︷︸
a′9=0

+ a11︸︷︷︸
a′11=0

+ a13︸︷︷︸
a′13=0

+ a15︸︷︷︸
a′15=0

= 2(a′5 + a′9 + a′13) + a′3

= 2 ·
3∑
l=1

a′2il−1

=
8∑
i=2

a′2i−1.

In the general case, when the participant set V ∈ Γ′ is not disjoint to all unau-

thorized sets in Γ′, the summands ± g−k
2t−1 may be distributed differently. For an ele-

mentarily solution (a′2, . . . , a
′
2t+1) for (Γ′, b1, g, k) there may be an elementarily solution

(a2, . . . , a2t+1) for (Γ′ \ {V }, b1, g, k) such that

2t∑
i=2

a2i >
2t∑
i=2

a′2i.

But one can say at least the following.

Proposition 6.26. Let Γ′ ( P(T ) \ {∅} be an arbitrary access structure on t par-

ticipants and V ∈ Γ′. Suppose that (a′2, . . . , a
′
2t+1) is an elementarily solution for

(Γ, b1, g, k) such that

a′2 ≥ (g − k)

(
1− 1

2t−1

)
.

Then (b1, g, k) realizes the access structure Γ := Γ′ \ {V } elementarily, too.

Proof. Without loss of generality let V = {T1, . . . , Tv}. Let |Γ′| = u′. Γ = Γ′ ∪ {V }
yields |Γ| = u = u′+1 and ε1

Γ
consists of the columns of ε1

Γ
with the additional column

(1, . . . , 1, 0, . . . , 0)τ which represents V . Up to the order of the columns ε1
Γ

has the

form 

1
...

1 ε1
Γ′

0
...

0


︸ ︷︷ ︸

u=u′+1

 v

 t− v

The rows of the matrix εΓ look like the rows of εΓ with an additional leading zero or

an additional leading one. 2t−1 − 1 rows are the sums of an even number of columns
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of ε1
Γ
. In this case the row starts with a zero. The remaining 2t−1 rows of εΓ belong

to sums with an odd number of summands and start with one.

Suppose that a2, . . . , a2t+1 solve equations 2 up to 2t of the linear system 4.2 for

Γ, b1, g, k. Then there are 2t−1 − 1 indices i such that

a2i − a2i−1 = a′2i − a′2i−1 +
g − k
2t−1

and 2t−1 indices i such that

a2i − a2i−1 = a′2i − a′2i−1 −
g − k
2t−1

.

Hence

2t∑
i=2

a2i ≤
2t∑
i=2

a′2i︸ ︷︷ ︸
b1−a′2

+(2t−1 − 1) · g − k
2t−1

= b1−a′2 + (g − k)

(
1− 1

2t−1

)
︸ ︷︷ ︸

≤0

≤ b1.

Therefore (a2, . . . , a2t+1) is an elementary solution for (Γ, b1, g, k).



Chapter 7

Special Access Structures

In this chapter we apply the results and techniques of the previous chapters on special

classes of access structures. This yields access structures which are far superior with

regard to efficiency and security to the general realization provided by Theorem 4.22

We start with access structures whose elementary distance vectors come from the

evaluation vectors of special Boolean polynomials by replacing 0 by k and 1 by g.

Then we deal with access structures which are defined by so-called necessary sets

and veto sets of different types.

7.1 Access Structures Related to Boolean Polyno-

mials

In this section we present an interesting connection between access structures on t

participants and Boolean polynomials with t variables. This connection comes from the

fact that any access structure Γ is completely characterized by the indices j ≥ 2 where

it’s elementary weight vector has the value g (or k, respectively). Hence the distance

vector b corresponds to the vector (v2, . . . , v2t) in Z2t−1
2 with vj = 1 iff bj = g. Adding

another bit v1 we receive one of the vectors (0, v2, . . . , v2t) or (1, v2, . . . , v2t) ∈ Z2t

2

which both characterize the access structure. We know that any vector in Z2t

2 can

be considered as the evaluation vector of a Boolean polynomial. Hence there are two

Boolean polynomials which are related to (v1, v2, . . . , v2t) and therefore related to b

and to Γ.

This approach enables us to identify classes of access structures with consider-

able better parameters than the parameters provided by Theorem 4.22. We will see

that access structures related to Boolean polynomials which belong to codewords in

RM1(1, t) allow the parameters g = b1 and arbitrary small code lengths n ≥ b1. Fur-

thermore we study elementary realizations for access structures related to Boolean

monomials depending on the degree of the monomial.

Definition 7.1. Let Γ be an access structure on t participants and b = (b1, . . . , b2t)
τ

the elementary distance vector for Γ with respect to (b1, g, k). If there is a Boolean
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polynomial p : Zt2 → Z2 with evaluation vector p = (p
1
, . . . , p

2t
) such that

(b2, . . . , b2t) = g · (p
2
, . . . , p

2t
) + k ·

(
(1, . . . , 1)− (p

2
, . . . , p

2t
)
)

we say that b and Γ are related to p, b ∼ p and Γ ∼ p.

That means b is related to a Boolean polynomial p when

bτ =

{
g · p+ k · ((1, . . . , 1)− p) + (b1 − g) · e1 if p(0, . . . , 0) = 1

g · p+ k · ((1, . . . , 1)− p) + (b1 − k) · e1 if p(0, . . . , 0) = 0.

Example 7.2. Consider the access structure Γ = {{T1} , {T1, T2} , {T3} , {T2, T3}}
from Example 4.25. Γ is related to the Boolean polynomial p : Z3

2 → Z2 defined by

(x1, x2, x3) 7→ 1 + x1 + x3 of degree one. The evaluation vector of p is calculated as

follows

x3 0 0 0 0 1 1 1 1

x2 0 0 1 1 0 0 1 1

x1 0 1 0 1 0 1 0 1

p 1 0 1 0 0 1 0 1.

Since the 2nd, the 4th, the 5th and the 7th element of (P({T1, T2, T3}),4) are autho-

rized, any elementary distance vector of Γ has the form

bτ = (b1, k
↑
2

, g, k
↑
4

, k
↑
5

, g, k
↑
7

, g)

= g · (1, 0, 1, 0, 0, 1, 0, 1)︸ ︷︷ ︸
p

+k · (0, 1, 0, 1, 1, 0, 1, 0)︸ ︷︷ ︸
(1,...,1)−p

+(b1 − g) · e1.

Γ is also related to the Boolean polynomial q : Zt2 → Z2, defined by (x1, x2, x3) 7→
1 + x1 + x3 + (1 + x1)(1 + x2)(1 + x3) with the following evaluation vector

x3 0 0 0 0 1 1 1 1

x2 0 0 1 1 0 0 1 1

x1 0 1 0 1 0 1 0 1

q 0 0 1 0 0 1 0 1

as

bτ = g · (0, 0, 1, 0, 0, 1, 0, 1)︸ ︷︷ ︸
q

+k · (1, 1, 0, 1, 1, 0, 1, 0)︸ ︷︷ ︸
(1,...,1)−q

+(b1 − k) · e1.

The dual access structure is Γ = {{T2} , {T1, T3} , {T1, T2, T3}} and it is remarkable

that the vectors (x1, x2, x3)τ in the positions ≥ 2, where p or q have the value one, are

exactly the characteristic vectors the unauthorized sets. The other positions ≥ 2 of the

evaluation vectors belong to the characteristic vectors of the authorized sets. There

the evaluation vectors have the value zero. This is not a coincidence. The following
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lemma describes the connection between the authorized subsets and the zeros of the

related Boolean polynomials.

Lemma 7.3. Suppose that the access structure Γ is related to the Boolean polynomial

p : Zt2 → Z2. Then the set A = {Ti1 , . . . , Til} is authorized iff

p(y1, . . . , yt) = 0 for yi =

{
1 if Ti ∈ A
0 if Ti /∈ A

.

Proof. Since Γ is related to p, the elementary weight vector b = (b1, . . . , b2t)
τ for Γ

with respect to (b1, g, k) has the property

(b2, b3, . . . , b2t) = g · (p
2
, . . . , p

2t
) + k ·

(
(1, . . . , 1)− (p

2
, . . . , p

2t
)
)
.

Let {Ti1 , . . . , Til} be the jth element of P(T ). By construction of b

{Ti1 , . . . , Til} ∈ Γ ⇔ bj = k ⇔ p
j

= 0.

p
j

is the value of p when the argument is the jth vector of Zt2 with regard to the order

defined in Remark 4.4. This is exactly the desired vector y.

Remark 7.4. Lemma 7.3 yields the following connection between the Boolean poly-

nomials of an access structure and it’s dual access structure:

Γ ∼ p ⇔ Γ ∼ p+ 1.

Now we use the observations above to find classes of access structures which allow

favorable parameters. We start with access structures related to Boolean polynomials

of degree ≤ 1 like the access structure in Example 7.2. Indeed, these access structures

turn out to have very good realizations.

Example 7.5. Again we consider the access structure

Γ = {{T1} , {T3} , {T1, T2} , {T2, T3}}

on t = 3 participants with the elementary distance vector b = (b1, k, g, k, k, g, k, g)τ .

Let b1 be an arbitrary natural number, g = b1, and k ∈ N0 arbitrary with k < b1
2

.

εΓ =



0 1 1

1 0 1

1 1 0

0 1 1

0 0 0

1 1 0

1 0 1


yields di =

{
2 6 times

0 once,
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where di is the number of ones in the ith row of εΓ for all i = 1, . . . , 2t− 1. We obtain

the following equations for an elementary solution a = (a2, . . . , a8):

a2i − a2i−1 =

{
1
4
(b1 − k − (g − k)) = 0 6 times

1
4
(b1 − k + 3(g − k)) = g − k once

Define a2 = k. Then

8∑
i=1

a2i = k + g − k = g = b1

shows that the chosen parameters realize Γ elementarily. Even the choice k = 0 is

possible. In this case Lemma 5.26 (a) implies that Zn2 , n ≥ b1 +
2t∑
i=2

a2i−1︸︷︷︸
=0

= b1, is

suitable for (s,Γ, b1, b1, 0) for all words s ∈ Zn2 with weight b1.

The elementary solution a has the property that all its odd numbered components

are zero. Hence there are no positions where the secret has the value 0 and at least

one share has the value 1. Furthermore exactly one entry in {a4, a6, a8, . . . , a16} is

non-zero and has the value g − k. This entry has to be

a12 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3).

Otherwise {T1} and {T3} could not be authorized and {T2} unauthorized. Apart from

the order of the positions, the secret and the shares have the following structure.

1 . . .1 1 . . . . . . . . 1 0 . . . . . . . . 0 s

1. . .1 1 . . . . . . . . 1 0 . . . . . . . . 0 k1

1. . .1 0 . . . . . . . . 0 0 . . . . . . . . 0 k2

1. . .1 1 . . . . . . . . 1 0 . . . . . . . . 0 k3︸ ︷︷ ︸
a2=k≥0

︸ ︷︷ ︸
a12=g−k

︸ ︷︷ ︸
a1≥0

Hence T1 and T3 receive the secret s as shares and T2 receives the zero vector.

We will see that it is not a coincidence that the access structure in Example 7.2

has such a good realization. The following proposition states that all access structures

related to Boolean polynomials of degree ≤ 1, which have the constant summand 1,

have these realizations. Furthermore access structures related to Boolean polynomials

of degree ≤ 1 without the constant summand 1 allow significantly better elementarily

solutions than the universal solution provided by Theorem 4.22.

Proposition 7.6. Let Γ be an access structure on t participants such that the ele-

mentary distance vectors are related to a Boolean polynomial p of degree ≤ 1. Then

the following parameters b1, g, k are possible.
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(a) Let p = (0, . . . , 0). Then Γ = P(T ) \ {∅} and (b1, g, k) is an elementary realiza-

tion for Γ if

• 2t−1|(b1 − k)

• b1 > k ≥ b1

(
1
2
− 1

2t+1−2

)
.

(One possible elementary realization is (b1, g, k) with b1 = 2e+t+1, k = 2e+t − 2e

for e ∈ N, e ≥ t− 1, g arbitrary.)

Furthermore the minimum code length of each suitable code is b1.

(b) Let p = (1, . . . , 1). Then all subsets are unauthorized and the parameters b1 = g

are possible for all b1 ∈ N. For all n ≥ b1 all subsets of Zn2 , which contain a

word s with weight b1 and a word c with weight < b1, are suitable codes for

(s,Γ, b1, g, k).

(c) Let p : Zt2 → Z2 be a Boolean polynomial with p ∈ RM0(1, t) \ {(0, . . . , 0)}.
Then (b1, g, k) realizes Γ elementarily if

• 2t−1|(b1 − k)

• b1 > k ≥ b1

(
1
2
− 1

2t−2

)
.

• b1 ≥ g ≥ k + b1−k
2t−1 .

(One possible elementary realization is (b1, g, k) with b1 = g = 2h+t and k =

2h+t−1 − 2h+1 for all h ∈ N, h ≥ t− 2.)

Furthermore the minimum code length of each suitable code is at least b1 + g −
k − b1−k

2t−1 .

(d) Let p : Zt2 → Z2 be a Boolean polynomial with p ∈ RM1(1, t) \ {(1, . . . , 1)}.
Then (b1, g, k) realizes Γ elementarily if

• 2t−1|(b1 − k)

• 2t−1|(g − k)

• b1 > k ≥ b1

(
1
2
− 1

2t−2

)
.

• b1 ≥ g ≥ b1 − 2t−1

2t−1−1
k.

(One possible elementary realization is (b1, g, k) with b1 = g and k = 0.)

Furthermore the minimum code length of each suitable code is b1.

Proof. (a) Let p = (0, . . . , 0). Choose parameters b1, k with the properties stated in

the proposition. Since all nonempty sets of participants are authorized, equations

2 up to 2t in the linear system 4.2 have the form

a2i − a2i−1 =
1

2t−1
(b1 − k) > 0.
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Hence we define a2i = 1
2t−1 (b1 − k), which is a natural number since 2t−1|b1 − k,

and a2i−1 = 0 for all i = 2, 3, . . . 2t. Then

2t∑
i=2

a2i = (2t − 1)
1

2t−1
(b1 − k)

≤ (2t − 1)
1

2t−1

(
b1

2
+

b1

2t+1 − 2

)
= b1,

which shows that a = (a2, . . . , a2t+1) is an elementary solution for (Γ, b1, g, k) for

a2 = b1 − (2t − 1) 1
2t−1 (b1 − k).

Furthermore the code length of each suitable code has to be at least

2t∑
i=1

a2i︸ ︷︷ ︸
=b1

+
2t∑
i=2

a2i−1︸︷︷︸
=0

= b1.

(b) When all sets of participants are unauthorized, we choose an arbitrary code

length n ≥ b1 and consider an arbitrary subset C ⊆ Zn2 which contains a word

s with weight b1 and a word c with weight < b1. Then we give the zero word

of length n as share to all participants. The consequence is that all sums S of

shares are also the zero vector and fulfill

d (s, S) > d (c, S) .

Hence Hamming decoding yields the wrong codeword.

(c) In this case b is related to a Boolean polynomial p of degree 1 without the

constant summand 1. W.l.o.g. let p(x1, . . . , xt) = x1 + . . .+xv, v ≤ t. According

to Lemma 7.3, a vector y = (y1, . . . , yt)
τ ∈ Zt2 is the characteristic vector of an

unauthorized set iff p(y1, . . . , yt) = y1 + . . . + yv = 1. That means the set V of

the characteristic vectors of the unauthorized sets is the preimage of 1 under the

linear transformation (y1, . . . , yt)
τ 7→ y1 + . . .+yv of rank 1. Hence V is an affine

subspace of Zt2 with dimension t − 1 which does not contain the zero vector.

Because of Proposition 5.21 we can assume w.l.o.g. that V = et + 〈e1, . . . , et−1〉.
This yields

ε1
Γ

=

(
∗

1 . . . 1

)
︸ ︷︷ ︸

u=2t−1

} t− 1

where the submatrix (∗) consists of all possible columns with t − 1 entries.

According to Remark 5.15, the number di of ones in the ith row of εΓ is

di =

{
2t−2 2t − 2 times

2t − 1 once
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and we obtain the equations

a2i − a2i−1 =
1

2t−1
(b1 − k) 2t − 2 times

a2i − a2i−1 =
1

2t−1
(b1 − k − 2t−1(g − k)) once.

We choose parameters b1, g, k with the properties stated in the proposition. In

the first case we define a2i = 1
2t−1 (b1 − k) which is > 0 since b1 > k, and integer

since 2t−1|(b1 − k). In this case a2i−1 = 0. In the second case we define a2i = 0

and a2i−1 = − 1
2t−1 (b1 − k − 2t−1(g − k)) because b1 − k − 2t−1(g − k) < 0 for

g ≥ k + b1−k
2t−1 . Hence

2t∑
i=2

a2i = (2t − 2)
1

2t−1
(b1 − k)

≤ (2t − 2)
1

2t−1

(
b1

2
+

b1

2t − 2

)
= b1.

Define a2 = b1 − (2t − 2) 1
2t−1 (b1 − k). Then (a2, . . . , a2t+1) is an elementary

solution for (Γ, b1, g, k).

Furthermore the code length of each suitable code has to be at least

2t∑
i=1

a2i︸ ︷︷ ︸
=b1

+
2t∑
i=2

a2i−1︸ ︷︷ ︸
=g−k− b1−k

2t−1

= b1 + g − k − b1 − k
2t−1

.

(d) b is related to a Boolean polynomial p of degree one with the constant sum-

mand 1. W.l.o.g. let p(x1, . . . , xt) = x1 + . . . + xv + 1, v ≤ t. Then a vector

y = (y1, . . . , yt)
τ ∈ Zt2 is the characteristic vector of an unauthorized set iff

p(y1, . . . , yt) = y1 + . . . + yv + 1 = 1, which is equivalent to y1 + . . . + yv = 0.

That means the set V of the characteristic vectors of the unauthorized sets is

a linear subspace of Zt2 of dimension t− 1. Because of Proposition 5.21 we can

assume w.l.o.g. that V = 〈e1, . . . , et−1〉. This yields

ε1
Γ

=

(
∗

0 . . . 0

)
︸ ︷︷ ︸

u=2t−1−1

} t− 1

where the submatrix (∗) consists of all possible columns with t−1 entries without

the zero column. According to Remark 5.15, the number di of ones in the ith

row of εΓ is

di =

{
2t−2 2t − 2 times

0 once
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and we obtain the equations

a2i − a2i−1 =
1

2t−1
(b1 − k − (g − k)) 2t − 2 times

a2i − a2i−1 =
1

2t−1
(b1 − k + (2t−1 − 1)(g − k)) once.

We choose parameters b1, g, k with the properties stated in the proposition. In

the first case we define a2i = 1
2t−1 (b1−k− (g−k)) which is ≥ 0 and a2i−1 = 0. In

the second case we define a2i = 1
2t−1 (b1−k+(2t−1−1)(g−k)) ≥ 0 and a2i−1 = 0.

This yields

2t∑
i=2

a2i =
1

2t−1

(
(2t − 1)(b1 − k)− (2t − 2)(g − k) + (2t−1 − 1)(g − k)

)
= b1

(
2− 1

2t−1

)
− g

(
1− 1

2t−1

)
− k

≤ b1

(
2− 1

2t−1

)
−
(
b1 −

2t−1

2t−1 − 1
k

)(
1− 1

2t−1

)
− k

= b1.

Choose a2 =
2t∑
i=2

a2i − b1. Then (a2, . . . , a2t+1) is an elementary solution for

(Γ, b1, g, k).

Furthermore the code length of each suitable code has to be at least

2t∑
i=1

a2i︸ ︷︷ ︸
=b1

+
2t∑
i=2

a2i−1︸︷︷︸
=0

= b1.

Remark 7.7. (a) If p is a Boolean polynomial of degree ≤ 1 with constant sum-

mand 1, Proposition 7.6 says that (b1, g, k) = (b1, b1, 0) is an elementary realiza-

tion. According to Lemma 5.26 (a), C = Zn2 is suitable for (s,Γ, b1, g, k) for all

n ≥ b1 and all s ∈ Zn2 with weight b1.

(b) Suppose that p is a Boolean polynomial of degree 1 without the constant sum-

mand 1. Proposition 7.6 yields the following elementary realization (b1, g, k):

b1 = 2h+t = g and k = 2h+t−1 − 2h+1 for an arbitrary h ∈ N, h ≥ t− 2.

According to Lemma 5.26 (b), the first order Reed Muller code RM(1, h +

t + 1) is suitable for (s,Γ, b1, g, k) for all codewords s ∈ RM(1, h + t + 1),

s 6= (0, . . . , 0), (1, . . . , 1).
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In the general solution provided by Theorem 4.22 we have the restrictions

b1 ≥ 22t − 2t and g ≤ b1

(
1

2
+

1

2t

)
− 2t−1.

Hence the solutions provided by Proposition 7.6 mean an improvement concern-

ing the code length and therefore the efficiency of the scheme. With regard to

the security of the scheme, the parameters provided by Proposition 7.6 are far

superior to the universal parameters, since g exceeds the covering radius.

At this point we want to mention another approach towards the elementary re-

alizations of access structures related to Boolean polynomials of degree one. This

approach uses the fact that the structure of the matrix E defined in 4.11 is also given

by Boolean polynomials of degree one (see Lemma 4.12).

Remark 7.8. Each Boolean polynomial p : Zt2 → Z2 of degree one represents a

codeword in RM(1, t). If it has the summand 1, then p is contained in RM1(1, t).

Otherwise p lies in RM0(1, t).

Recall that the matrix E = E(t) is also related to codewords in RM(1, t). It’s rows

are defined by the codewords of RM0(1, t) ordered by 4 in the way that all zeros in

the codewords are replaced by ones and all ones by minus ones.

These observations yield an alternative way to prove Proposition 7.6 (c) and (d):

Equation 2 up to equation 2t in the linear system 4.2 come from the equation

E · b =


a4 − a3

a6 − a5

...

a2t+1 − a2t+1−1

 .

If b is related to a Boolean polynomial p with p = c ∈ RM(1, t) we have

E · b = E · (g · c+ k · c+ (b1 − k)e1)τ

= g · Ecτ + k · Ecτ + (b1 − k) · Eeτ1
= (g − k) · Ecτ + (b1 − k) · (1, . . . , 1)τ

for c ∈ RM0(1, t) and

E · b = E · (g · c+ k · c+ (b1 − g)e1)τ

= g · Ecτ + k · Ecτ + (b1 − g) · Eeτ1
= (g − k) · Ecτ + (b1 − g) · (1, . . . , 1)τ

for c ∈ RM1(1, t).

Since the rows of E belong to the codewords in RM0(1, t) ordered by 4, it can be
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shown that

E · cτ =


(0, . . . , 0,−2t−1

↑
l
↓

, 0, . . . , 0) if c is the lth codeword in RM0(1, t)

(0, . . . , 0, 2t−1, 0, . . . , 0) if c is the lth codeword in RM1(1, t).

These calculations yield the same elementary solutions (a2, . . . , a2t+1) as the proof of

Proposition 7.6 (c) and (d):

For c ∈ RM0(1, t) we have

a2i − a2i−1 =

{
1

2t−1 (−2t−1(g − k) + b1 − k) if i = l
1

2t−1 (b1 − k) if i 6= l.

c ∈ RM1(1, t) yields

a2i − a2i−1 =


1

2t−1 (2t−1(g − k) + b1 − g)

= 1
2t−1 (b1 − k + (2t−1 − 1)(g − k)) if i = l

1
2t−1 (b1 − g)

= 1
2t−1 (b1 − k − (g − k)) if i 6= l.

We have seen that access structures related to Boolean polynomials of degree ≤ 1

have very nice realizations. But how do these access structures look like? We have a

look at these access structures for t = 3 participants.

Example 7.9. For t = 3 we have the following access structures related to Boolean

polynomials p of degree ≤ 1:

p bτ Γ

0 (b1, k, k, k, k, k, k, k) P(T ) \ {∅}
x1 (b1, g, k, g, k, g, k, g) {A 6= ∅ : T1 /∈ A}
x2 (b1, k, g, g, k, k, g, g) {A 6= ∅ : T2 /∈ A}
x1 + x2 (b1, g, g, k, k, g, g, k) {A 6= ∅ : T1, T2 ∈ A or T1, T2 /∈ A}
x3 (b1, k, k, k, g, g, g, g) {A 6= ∅ : T3 /∈ A}
x1 + x3 (b1, g, k, g, g, k, g, k) {A 6= ∅ : T1, T3 ∈ A or T1, T3 /∈ A}
x2 + x3 (b1, k, g, g, g, g, k, k) {A 6= ∅ : T2, T3 ∈ A or T2, T3 /∈ A}
x1 + x2 + x3 (b1, g, g, k, g, k, k, g) {A 6= ∅ : |A| even}
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p bτ Γ

1 (b1, g, g, g, g, g, g, g) ∅
1 + x1 (b1, k, g, k, g, k, g, k) {A : T1 ∈ A}
1 + x2 (b1, g, k, k, g, g, k, k) {A : T2 ∈ A}
1 + x1 + x2 (b1, k, k, g, g, k, k, g) {A 6= ∅ : T1 ∈ A XOR T2 ∈ A}
1 + x3 (b1, g, g, g, k, k, k, k) {A : T3 ∈ A}
1 + x1 + x3 (b1, k, g, k, k, g, k, g) {A 6= ∅ : T1 ∈ A XOR T3 ∈ A}
1 + x2 + x3 (b1, g, k, k, k, k, g, g) {A 6= ∅ : T2 ∈ A XOR T3 ∈ A}
1 + x1 + x2 + x3 (b1, k, k, g, k, g, g, k) {A : |A| odd}

In Chapter 4 we considered the access structure Γ = {A : Tj ∈ A} for a fixed j. We

now know that this access structure is related to the Boolean polynomial 1 + xj. The

special feature of this access structure is, that it can be realized using only the secret

s itself and the zero vector as shares. There are only a few access structures which

allow these shares and we are able to describe them in terms of Boolean polynomials.

Proposition 7.10. Let Γ be an access structure on the participant set T = {T1, . . . , Tt}.
Then the following statements are equivalent:

(a) Γ is related to a Boolean polynomial p with p ∈ RM1(1, t).

(b) Γ can be realized by assigning the following shares:

Tj receives

{
the secret s if {Tj} ∈ Γ

the zero vector if {Tj} ∈ Γ
for all j = 1, . . . , t.

Proof. “⇒” Suppose that (a) holds. For p = 1 this is Proposition 7.6 (b).

W.l.o.g. let p(x1, . . . , xt) = x1 + . . .+ xv + 1. Lemma 7.3 yields

A = {Ti1 , . . . , Til} ∈ Γ

⇔ p(y1, . . . , yt) = y1 + . . .+ yv + 1 = 0

for yi =

{
1 if Ti ∈ A
0 if Ti /∈ A

for all i = 1, . . . , t

⇔ A contains an odd number of participants of the set {T1, . . . , Tv} .

When we give the secret s as share to each participant in {T1, . . . , Tv} and the

zero vector to all other participants, this access structure is realized.

“⇐” Suppose that (b) holds. When there is no Tj ∈ Γ, all participants receive the

zero word and Γ ∼ 1. Now assume that w.l.o.g. exactly for j = 1, . . . , v the sets

{Tj} are the authorized sets with one element. Let V = {T1, . . . , Tv}. Consider

an arbitrary non-empty set A ⊆ T and the related sum S of the shares.

• If A ∩ V = ∅, S = 0 and A is unauthorized.
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• If A ∩ V = {Ti1 , . . . , Til}, S =

{
s if l is odd

0 if l is even
and A ∈

{
Γ if l is odd

Γ if l is even
.

Hence Γ ∼ 1 + x1 + . . .+ xv.

Next we have a look at access structures related to Boolean monomials of higher

degree and their duals.

Proposition 7.11. Let Γ be an access structure on t participants related to a Boolean

monomial p : Zt2 → Z2 of degree v, 1 ≤ v ≤ t.

(a) (b1, g, k) is an elementary realization for Γ if

• b1 ≥ 22t−1 − 2t and 2t|b1

• k = b1
2
− 2t−1

• b1

(
1
2

+ 1
2t−v+1

)
− 2t−1(2t−v − 1) ≤ g ≤ b1

(
1
2

+ 1
2t−v+1

)
such that 2v−1|g − k.

Furthermore the minimum code length of each suitable code is n ≥ b1 + g− k−
b1−k
2t−v

.

(b) The dual access structure Γ is related to the Boolean polynomial p + 1 and

(b1, g, k) is an elementary realization if

• k < b1

• b1 ≥ g ≥ max
{
b1 − k, k + b1−k

2t−v+1

}
.

• 2t−1|(b1 − k), 2t−1|(g − k).

The parameters b1 = g and k = 0 are possible for all b1 ∈ N with 2v−1|b1.

The minimum code length of each suitable code is
1

2t−1 ((2t−1 − 2v−1 + 1)b1 + (2t−1 + 2v−1 − 2t−v − 1)g − (2t−1 − 2t−v)k).

Proof. (a) W.l.o.g. we assume that p(x1, . . . , xt) = x1 · . . . ·xv. According to Lemma

7.3 the vector y = (y1, . . . , yt)
τ ∈ Zt2 is the characteristic vector of a subset in Γ

iff p(y1, . . . , yt) = 0. This is equivalent to y1 · . . . · yv = 0 and happens iff there is

at least one yj = 0 for 1 ≤ j ≤ v. Only y1 = . . . = yv = 1 yields y1 · . . . · yv = 1.

That is why we know that Γ = {A ⊆ T : {T1, . . . , Tv} ⊆ A}. ε1
Γ

consists of all

possible columns in Zt2 which have the form (1, . . . , 1︸ ︷︷ ︸
v

, ∗, . . . , ∗︸ ︷︷ ︸
t−v

)τ . This means

that there are u = 2t−v unauthorized sets and

ε1
Γ

=


1 . . . 1
...

...

1 . . . 1

∗


︸ ︷︷ ︸

2t−v

 v

} t− v
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where the columns of the matrix (∗) are all vectors in Zt−v2 . The matrix εΓ,

which consists of all possible linear combinations of the rows of ε1
Γ
, has the

weight vector

wΓ = (2v−1 − 1
↑
0

, 0, . . . , 0, 2t − 2v
↑

2t−v−1

, 0, . . . , 0, 2v−1

↑
2t−v

)

(see Remark 5.15). The related equations of the linear system 4.2 are

a2i − a2i−1 =


1

2t−1 (b1 − k + 2t−v(g − k)) 2v−1 − 1 times,
1

2t−1 (b1 − k) 2t − 2v times,
1

2t−1 (b1 − k − 2t−v(g − k)) 2v−1 times.

Choose b1, g, k as stated in the proposition. Then b1 − k − 2t−v(g − k) ≤ 0.

For all i = 2, . . . , 2t define a2i to be the right hand side of the equation and

a2i−1 = 0, if this side is positive. When the right hand side is negative we

choose a2i = 0 and define a2i−1 to be the absolute value of the right hand side.

This yields an elementary solution (a2, . . . , a2t+1) for (Γ, b1, g, k) since
2t∑
i=2

a2i ≤ b1

holds:

2t∑
i=2

a2i =
1

2t−1

(
(2t − 2v−1 − 1) (b1 − k)︸ ︷︷ ︸

=
b1
2

+2t−1

+(2v−1 − 1)2t−v (g − k)︸ ︷︷ ︸
≤ b1

2t−v+1 +2t−1

)
≤ 1

2t−1

(
b1(2t−1 − 1) + 2t−1(2t − 2)

)
= b1 + 2t − 2− b1

2t−1︸︷︷︸
≥2t−2

≤ b1.

Furthermore

2t∑
i=2

a2i−1 =
1

2t−1
· 2v−1

(
2t−v(g − k)− (b1 − k)

)
= g − k − b1 − k

2t−v

shows that the length of each suitable code has to be ≥ b1 + g − k − b1−k
2t−v

.

(b) In the proof of part (a) we determined the weight vector wΓ of the matrix εΓ.

ε
Γ

= εΓ contains the remaining columns of the matrix ε with the first row and
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first column removed, and we deduce that the weight vector of εΓ has to be

wΓ = (0, . . . , 0, 2v−1

↑
2t−1−2t−v

, 0, . . . , 0, 2t − 2v
↑

2t−1−2t−v−1

, 0, . . . , 0, 2v−1 − 1
↑

2t−1

, 0, . . . , 0).

Γ contains 2t − 2t−v − 1 sets and the related equations of the linear system 4.2

are

a2i − a2i−1 =


1

2t−1 (b1 − k + (2t−v − 1)(g − k)) 2v−1 times,
1

2t−1 (b1 − k − (g − k)) 2t − 2v times,
1

2t−1 (b1 − k − (2t−v + 1)(g − k)) 2v−1 − 1 times.

Choose b1, g, k as stated in the proposition. Then b1 − k − (2t−v + 1)(g − k)

is negative as g ≥ k + b1−k
2t−v+1

. For all i = 2, . . . , 2t we define a2i and a2i−1

as described in part (a). This yields an elementary solution (a2, . . . , a2t+1) for

(Γ, b1, g, k) since

2t∑
i=2

a2i =
1

2t−1

(
(2t − 2v−1)(b1 − k) + (2v−1(2t−v − 1)− (2t − 2v))(g − k)

)
= b1 − k +

1

2t−1
(2t−1 − 2v−1) (b1 − g)︸ ︷︷ ︸

≤k

≤ b1 −
1

2t−v
k ≤ b1.

The parameters b1 = g, k = 0 have the property that k < b1
2

and g ≥ max{b1 −
k, k + b1−k

2t−v+1
}. In this case the requirements 2t−1|(b1 − k = g − k = b1) can

be weakened: For all i = 2, . . . , 2t we have a2i − a2i−1 ∈
{

0,± b1
2v−1

}
and the

requirement 2v−1|b1 is sufficient.

Furthermore

2t∑
i=2

a2i−1 =
1

2t−1
(2v−1 − 1)

(
(2t−v + 1)(g − k)− (b1 − k)

)
=

1

2t−1

(
(2t−1 + 2v−1 − 2t−v − 1)g − (2t−1 − 2t−v)k − (2v−1 − 1)b1

)
shows that the length of each suitable code has to be

n ≥ b1 +
1

2t−1

(
(2t−1 + 2v−1 − 2t−v − 1)g − (2t−1 + 2t−v)k − (2v−1 − 1)b1

)
=

1

2t−1

(
(2t−1 − 2v−1 + 1)b1 + (2t−1 + 2v−1 − 2t−v − 1)g − (2t−1 + 2t−v)k

)
.
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Example 7.12. Let Γ be an access structure on t = 4 participants which is related

to the Boolean polynomial p(x1, x2, x3, x4) = 1 + x1x2x3. Then

Γ = {{T1.T2, T3} , {T1, T2, T3, T4}}

and

εΓ =



1 0 1 0 1 0 0 1 0 1 0 1 0

0 1 1 0 0 1 0 0 1 1 0 0 1

1 1 0 0 1 1 0 1 1 0 0 1 1

0 0 0 1 1 1 0 0 0 0 1 1 1

1 0 1 1 0 1 0 1 0 1 1 0 1

0 1 1 1 1 0 0 0 1 1 1 1 0

1 1 0 1 0 0 0 1 1 0 1 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 1 0 0 1 1 0

1 1 0 0 1 1 1 0 0 1 1 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0

1 0 1 1 0 1 1 0 1 0 0 1 0

0 1 1 1 1 0 1 1 0 0 0 0 1

1 1 0 1 0 0 1 0 0 1 0 1 1


︸ ︷︷ ︸

u=13

6

6

8

6

8

8

6

7

7

7

7

7

7

7

7

.

The additional row contains the weights of the rows. Choose b1 = g = 8 and k = 0.

The related equations of the linear system 4.2 are

a2i − a2i−1 =
1

8
(b1 + (13− 2 · 6)b1)

=
b1

4
for i = 2, 3, 5, 8

a2i − a2i−1 =
1

8
(b1 + (13− 2 · 7)b1)

= 0 for i = 9, 10, . . . , 16

a2i − a2i−1 =
1

8
(b1 + (13− 2 · 8)b1)

= −b1

4
for i = 4, 6, 7.

We choose a4 = a6 = a10 = a16 = a7 = a11 = a13 = b1
4

= 2 and the remaining aj = 0.

Then
16∑
i=2

a2i = b1 and
16∑
i=2

a2i−1 = 3
4
b1 and we choose a2 = 0 and a1 = 1

4
b1 = 2.

Let s = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) be the secret to be shared. That means

supp(s) = {1, 2, . . . , 8}.
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I4
1 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) ∩ supp(k4)

I4
4 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) ∩ supp(k4)

I4
6 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) ∩ supp(k4)

I4
7 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) ∩ supp(k4)

I4
10 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) ∩ supp(k4)

I4
11 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) ∩ supp(k4)

I4
13 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) ∩ supp(k4)

I4
16 = supp(s) ∩ supp(k1) ∩ supp(k2) ∩ supp(k3) ∩ supp(k4)

Let a4, a6, a10, a16 determine the positions {1, 2}, {3, 4}, {5, 6}, {7, 8} and a1, a9, a11, a13

the positions {9, 10}, {11, 12}, {13, 14}, {15, 16}, respectively- This yields the follow-

ing shares:

k1 = (1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0)

k2 = (0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1)

k3 = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1)

k4 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Remark 7.13. (a) For Γ ∼ xi1 · . . . · xiv the parameters provided by Proposition

7.11 (a) represent a slight improvement on the parameters provided by Theorem

4.22: b1 is improved from

b1 ≥ 22t − 2t to b1 ≥ 22t−1 − 2t

and g is improved from

b1

2
< g ≤ b1

(
1

2
+

1

2t

)
− 2t−1

to

b1

(
1

2
+

1

2t−v+1

)
− 2t−1(2t−v − 1) ≤ g ≤ b1

(
1

2
+

1

2t−v+1

)
.

k is subject to the same condition k = b1
2
− 2t−1.

(b) For Γ ∼ xi1 ·. . .·xiv+1 the parameters b1 = g and k = 0 are possible. Proposition

7.11 (b) and Lemma 5.26 (a) imply, that for all n ≥ b1

(
2− 1

2v−1

)
the code C = Zn2

is suitable for (s,Γ, b1, b1, 0) for all words s ∈ Zn2 with weight b1.

When an access structure Γ is related to a Boolean polynomial of the form p =

xi1 · . . . · xiv + 1, a set is authorized iff it contains the set {Ti1 , . . . , Tiv}. That means

{Ti1 , . . . , Tiv} is a necessary subset of all authorized sets and Γ is defined by this nec-

essary set. The dual access structure Γ consists of all non-empty sets which do not
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contain the whole set {Ti1 , . . . , Tiv}. For this access structure one can say that the par-

ticipants Ti1 , . . . , Tiv have veto power. When they work together and collectively join

the reconstruction process, they prevent the recovery of the secret. Γ is characterized

uniquely by the veto set {Ti1 , . . . , Tiv}.
This motivates us to have a closer look at access structures defined by necessary

sets and veto sets and their realizations.

7.2 Access Structures Defined by Necessary Sets

and Veto Sets

In this section we deal with classes of access structures defined by so-called necessary

sets and veto sets. It will turn out that some of these classes match perfectly to our

approach using error-correcting codes and allow large security distances g and small

code lengths n.

By a necessary set we mean a subset N ⊆ T such that a set of participants can

only be authorized if it contains certain participants of N . A subset V ⊆ T is called

a veto set when all sets of participants, which contain certain participants of V , are

unauthorized. In other words these certain participants are able to compromise the

correct reconstruction of the secret: They have veto power.

In [8] Blundo et al. also consider access structures with veto capability, which can

be realized using error-correcting codes. However, the way in which the participants

use their vetoes is different and the resulting access structures cannot be described by

veto sets. Additionally the use of the error-correcting code is completely different from

our approach. Blundo et al. study threshold access structures with veto capability.

In such a (r,m, t)-access structure on a set of t participants a set is authorized iff it

contains at least r participants from whom at most m − 1 members want to prevent

the correct reconstruction of the secret. Each participant can decide whether he wants

to recover the secret or whether he wants to compromise the reconstruction. For this

purpose he has two different shares: one share to enable the reconstruction of the

secret and another share to prevent it. This means, strictly speaking, this is not an

access structure in the sense of Definition 2.1.

Blundo et al. show how these access structures can be realized using Reed Solomon

codes. They start with a realization for the case m = 1 where all sets with at least r

participant are authorized if no participant uses his veto. Their method is an expansion

of Shamir’s scheme and works as follows.

Consider a secret s ∈ GF (pm), p prime, and choose random elements s1, s2 ∈
GF (pm) such that s = s1 + s2 (componentwise addition modulo p). Choose two

polynomials f, g ∈ GF (pm)[x] randomly with deg(f) = 2r − 2 and deg(g) = r − 1

such that f(0) = s1 and g(0) = s2. Let c be the codeword of a Reed Solomon code

over GF (pm) which belongs to the polynomial f . The shares of each participant

consist of some correct digits of the codeword c, some random elements of GF (pm),

which are not components of c, and one interpolation point of g. In the recreation
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process each participant provides his interpolation point. When he wants to recover

the secret, he also provides his correct parts of c. Otherwise, when he wants to

prevent the reconstruction, he uses his veto by giving his random elements. When

at least r participants join the reconstruction process, their interpolation points yield

the polynomial g and therefore g(0) = s2. Fewer than r interpolation points provide

no information about s2. This is Shamir’s scheme. In addition to that, when no

participant uses his veto, there are enough correct digits to recover c with an errors-

and-erasures algorithm. The codeword c yields s1 = f(0) and therefore the secret

s = s1 + s2. When at least one participant refuses to give his correct digits, there are

too few digits to decode c and s1 cannot be found.

For m > 1 a (r,m, t)-access structures can be derived from (r, 1, t)-access structures

in the following way. Choose a random polynomial f ∈ GF (pm)[x] of degree t − m
such that s = f(0) is the secret and choose t further interpolation points s1, . . . , st of

f such that each participant Tj has the power to prevent the reconstruction of one

interpolation point sj by providing his random elements instead of the correct com-

ponents. In the reconstruction process the participants try to recreate as many as

possible of the interpolation points of f and use them to recover s just as in Shamir’s

scheme. When less than r participants join the reconstruction, no interpolation point

can be found and s cannot be recovered. Suppose that at least r participants take

part. When m or more participants use their vetoes, at most t − m interpolation

points can be reconstructed- too few to recover f and s. Otherwise the secret can be

found, since at least r −m+ 1 interpolation points can be recovered.

Now we return to access structures defined by necessary sets and veto sets. At first

we have a closer look on those defined by necessary sets. We consider two kinds:

Definition 7.14. Let T be a set of participants, Γ an access structure on T and

N ⊆ T , N 6= ∅.

• N is called strongly necessary, when all authorized sets contain the whole set N .

That means the whole set N is necessary for reconstructing the secret.

• We call N weakly necessary, when each authorized set contains at least one par-

ticipant of N . Here at least one participant of N is necessary for reconstruction.

Note that there can be unauthorized sets containing N or participants from N .

Access structures with necessary sets are generally non-monotone.

Example 7.15. Let T = {T1, T2, T3, T4} and N = {T1, T2}. For

Γ = {{T1, T2} , {T1, T2, T4}}

N is strongly necessary and for

Γ = {{T1, T2, T3} , {T2, T4}}
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N is weakly necessary.

Note that a strongly necessary set N is also weakly necessary, since all authorized

sets have to contain N and therefore at least one element of N .

Definition and Remark 7.16. Let T be a set of participants and N ⊆ T . The

largest access structure (e.g. the access structure with the largest cardinality) on T
with N being strongly necessary is

Γsn(T , N) := {A ⊆ T : N ⊆ A} .

The largest access structure on T with N being weakly necessary is

Γwn(T , N) := {A ⊆ T : N ∩ A 6= ∅} .

When the participant set T is clear, we omit the parameter T .

Remark 7.17. We have the inclusion Γsn(T , N) ⊆ Γwn(T , N) because

A ∈ Γsn(T , N) ⇒ N ⊆ A

⇒ A ∩N 6= ∅
⇒ A ∈ Γwn(T , N).

Example 7.18. For T = {T1, T2, T3, T4} and N = {T1, T2}

Γsn(N) = {{T1, T2} , {T1, T2, T3} , {T1, T2, T4} , {T1, T2, T3, T4}}

and

Γwn(N) =
{
{T1} , {T1, T3} , {T1, T4} , {T1, T3, T4} ,
{T2} , {T2, T3} , {T2, T4} , {T2, T3, T4} ,
{T1, T2} , {T1, T2, T3} , {T1, T2, T4} , {T1, T2, T3, T4}

}
.

Now we will have a closer look at access structures defined by veto sets. Again we

consider two kinds:

Definition 7.19. Let T be a set of participants, Γ an access structure on T and

V ⊆ T , V 6= ∅.

• We say that V is a strong veto set , when all sets of participants, which contain at

least one participant of V , are unauthorized. That means each single participant

of V has veto power.

• We say that V is a weak veto set , when all sets containing the whole set V

are unauthorized. Here the participants of V have veto power when all of them

collaborate.
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When a set V is a strong veto set, it is also a weak veto set: Suppose that all subsets

containing at least one element of V are unauthorized. Then all sets containing the

whole set V must be unauthorized, too.

Example 7.20. Let T = {T1, T2, T3, T4} and V = {T1, T2}. For

Γ = {{T3} , {T3, T4}}

V is a strong veto set, since all sets containing T1 or T2 are unauthorized. For

Γ = {{T1, T3} , {T2, T4}}

V is a weak veto set, since all sets , which contain T1 and T2, are unauthorized.

Definition and Remark 7.21. Let T be a set of participants and V ⊆ T . Then

Γsv(T , N) := {A ⊆ T : A 6= ∅, V ∩ A = ∅}

is the largest access structure on T with V being a strong veto set.

Γwv(T , N) := {A ⊆ T : A 6= ∅, V * A} .

is the largest access structure on T with V being a weak veto set. When the participant

set T is clear, we omit the parameter T .

Remark 7.22. We have the inclusion Γsv(T , V ) ⊆ Γwv(T , V ) because

A ∈ Γsv(T , V ) ⇒ A ∩ V = ∅
⇒ V * A

⇒ A ∈ Γwv(T , V ).

There is an interesting connection between the access structures defined by neces-

sary sets and those define by veto sets.

Remark 7.23. Let T be an arbitrary set of participants and N ⊆ T . Then

• Γsn(T , N) = {A : N ⊆ A} is dual to Γwv(T , N) = {A 6= ∅ : N * A} and

• Γwn(T , N) = {A : N ∩ A 6= ∅} is dual to Γsv(T , N) = {A 6= ∅ : N ∩ A = ∅}.

Example 7.24. Let T = {T1, T2, T3, T4} and V = {T1, T2}. Then

Γsv(V ) = Γwn(V ) = {{T3} , {T4} , {T3, T4}}

and
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Γwv(V ) = Γsn(V )

=
{
{T3} , {T4} , {T3, T4} ,
{T1} , {T1, T3} , {T1, T4} , {T1, T3, T4} ,
{T2} , {T2, T3} , {T2, T4} , {T2, T3, T4}

}
.

In the following we will study the access structures Γsn(N), Γwn(N), Γsv(V ) and

Γwv(V ) with regard to elementary realizations and suitable error-correcting codes.

7.2.1 Access Structures Defined by Necessary Sets

Elementary Realizations and Suitable Codes for Γsn(N)

Let N ( T be a subset of participants, N 6= ∅, and let

Γ = Γsn(N) = {A ⊆ T : N ⊆ A} .

Then a subset is authorized iff it contains all members of N . We can assume without

loss of generality that N = {T1, . . . , Tv}, 1 ≤ v ≤ t. That means a vector y =

(y1, . . . , yt)
τ ∈ Zt2 is the characteristic vector of an unauthorized set iff there is at

least one j, 1 ≤ j ≤ v, with yj = 0. Hence Γ is related to the Boolean polynomial

p(x1, . . . , xt) = 1 + x1 · . . . · xv (see Lemma 7.3). According to Proposition 7.11, the

only restrictions on the parameters are the following.

Parameters for Γsn(N)

• k < b1

• b1 ≥ g ≥ max
{
b1 − k, k + b1−k

2t−v+1

}
• 2t−1|(b1 − k), 2t−1|(g − k)

In particular, the parameters b1 = g divisible by 2v−1 and k = 0 are possible. Further-

more the code C = Zn2 is suitable for (s,Γ, b1, b1, 0) for all words s ∈ Zn2 with weight

b1 for all n ∈ N, n ≥ b1

(
2− 1

2v−1

)
(see Remark 7.13 (b)) .

Elementary Realizations and Suitable Codes for Γwn(N)

Let N ( T , N 6= ∅, and define

Γ = Γwn(N) = {A ⊆ T : N ∩ A 6= ∅} .

Here a set is authorized iff it contains at least one member of N . For an arbitrary h ∈ N
with h ≥ v− 1 the following calculations show that (b1, g, k) realizes Γ elementarily if

the following restrictions hold:
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Parameters for Γwn(N)

• b1 = g

• k = g
2
− 2h

• g ≥ 2v+h+1 − 2h+1

• 2v|g

Again let w.l.o.g. N = {T1, . . . , Tv} with v < t. Then the dual access structure is

Γ = Γsv(N) = {B : B ⊆ {Tv+1, . . . , Tt}} \ {∅} (see Remark 7.23) and

ε1
Γ

=


0 . . . 0
...

...

0 . . . 0

∗


︸ ︷︷ ︸

u=2t−v−1

 v

} t− v

.

The submatrix (∗) consists of all columns in Zt−v2 except for the zero vector. The

related weight vector is given by

wΓ = (2v − 1
↑
0

, 0, . . . , 0, 2t − 2v
↑

2t−v−1

, 0, . . . , 0)

(see Remark 5.15).

Hence we have the following types of equations

a2i − a2i−1 =
1

2t−1
(b1 − k + (u− 2 · 0)(g − k))

=
1

2t−1

(
b1 − k + (2t−v − 1)(g − k)

)
2v − 1 times,

a2i − a2i−1 =
1

2t−1

(
b1 − k + (u− 2 · 2t−v−1)(g − k)

)
=

1

2t−1
(b1 − k − (g − k)) 2t − 2v times.

For an arbitrary h ∈ N, h ≥ v − 1, let b1 = g ≥ 2v+h+1 − 2h+1 be divisible by 2v and

k = g
2
− 2h. We define

a2i = 1
2v−1 (g − k) = g

2v
+ 2h−v+1, a2i−1 = 0 2v − 1 times and

a2i = a2i−1 = 0 2t − 2v times.

Note that a2, a3, . . . , a2t+1 ∈ N0 since 2v−1|g−k = g
2
−2h. Let a2 = g

2v
−2h+1 + 2h−v+1.

Then a2 ≥ 0 since g ≥ 2h+v+1 − 2h+1 and we have
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2t∑
i=1

a2i = a2 + (2v − 1) · 1

2v−1
· (g − k)

=
g

2v
− 2h+1 + 2h−v+1 +

(
2− 1

2v−1

)
·
(g

2
+ 2h

)
︸ ︷︷ ︸

g− g
2v

+2h+1−2h−v+1

= g = b1.

Hence (a2, . . . , a2t+1) is an elementary solution for (Γ, b1, b1, k). Additionally, the first

order Reed-Muller code RM(1, v+h+2) is suitable for (s,Γ, 2v+h+1, 2v+h+1, 2v+h−2h)

for all secrets s ∈ RM(1, v + h+ 2) \ {(0, . . . , 0), (1, . . . , 1)} (see Lemma 5.26 (b)).

7.2.2 Access Structures Defined by Veto Sets

Elementary Realizations and Suitable Codes for Γwv(V)

Let V be a subset of T with 0 < v < 2t elements. Consider the access structure

Γ = Γwv(V ) = {A ⊆ T : A 6= ∅, V * A} .

Here a subset is unauthorized iff it contains all participants of V . That means the

participants of the veto set V have a collective veto right.

As pointed out in Remark 7.23, this access structure is dual to the access structure

Γsn(V ), where V acts as a strongly necessary set. We assume without loss of generality

that V = {T1, . . . , Tv}. We have seen above that Γsn(V ) is related to the Boolean

polynomial 1 +x1 · . . . ·xv. Hence the dual access structure Γwv(V ) must be related to

the Boolean monomial x1 · . . . ·xv of degree v. Proposition 7.11 (a) yields the following

parameters:

Parameters for Γwv(V )

• b1 ≥ 22t−1 − 2t

• k = b1
2
− 2t−1

• b1

(
1
2

+ 1
2t−v+1

)
− 2t−1(2t−v − 1) ≤ g ≤ b1

(
1
2

+ 1
2t−v+1

)
• 2t−1|g − k, 2t|b1

We also know from Proposition 7.11 (a) that the minimum length of a suitable code

is b1 + g − k − b1−k
2t−v

.

Elementary Realizations and Suitable Codes for Γsv(V)

Again let V ⊆ T be a subset with 0 < v < 2t elements. Define

Γ = Γsv(V ) = {A ⊆ T : A 6= ∅, A ∩ V = ∅} .
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Here all subsets are authorized iff they do not contain any participant of V . That

means each member of the veto set V has the power to impede the reconstruction of

the secret.

According to Remark 7.23, this access structure is dual to the access structure

Γwn(V ). Using Proposition 6.2 we can find an elementary realization (b1, g, k) and an

elementary solution (a2, . . . , a2t+1) for (Γsv(V ), b1, g, k).

We have seen above that (b1, g, k) with b1 = g divisible by 2v, k = g
2
− 2h and

g ≥ 2v+h+1 − 2h+1 for an arbitrary h ∈ N, h ≥ v − 1, realize Γwn(V ) elementarily.

For applying Proposition 6.2 we need g − k to be divisible by 2t−1. Furthermore we

require b1 ≥ 2t−v+h+1 − 2h+1. This yields the following parameters.

Parameters for Γsv(V )

• b1 = g

• k = g
2
− 2h

• g ≥ max
{

2v+h+1 − 2h+1, 2t−v+h+1 − 2h+1
}

• 2t|g

Suppose that (a2, . . . , a2t+1) is an elementary solution for (Γwn(V ), b1, b1, k). The linear

system 4.2 for Γwn(V ) provides two types of equations for a3, . . . , a2t+1 :

a2i = 1
2v−1 (g − k) = g

2v
+ 2h−v+1, a2i−1 = 0 2v − 1 times and

a2i = a2i−1 = 0 2t − 2v times.

Using the notations of Proposition 6.2 the number x of all pairs (a2i, a2i−1) with

a2i − a2i−1 <
1

2t−1 (2b1 − g − k) is x = 2t − 2v and S =
2t∑
i=2

0≤a2i<
2b1−g−k

2t−1

a2i = 0. Furthermore we

know from the observations about Γwn(V ) that
2t∑
i=2

a2i−1︸︷︷︸
=0

= 0. Therefore

x · 2b1 − g − k
2t−1

− S︸︷︷︸
=0

= (2t − 2v) · g − k
2t−1

= (2t − 2v) ·
g
2

+ 2h

2t−1

= g − g

2t−v
+ 2h+1 − 2h−t+v+1

≤ g − 2t−v+h+1 − 2h+1

2t−v
+ 2h+1 − 2h−t+v+1

= g = b1 −
2t∑
i=2

a2i−1︸ ︷︷ ︸
=0

.
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This means that all requirements of Proposition 6.2 are met and (b1, b1, k) with the

stronger restrictions stated above is an elementary realization for both access struc-

tures, Γwn(V ) and Γsv(V ).

According Lemma 5.26 (b), the first order Reed-Muller code RM(1, v + h+ 2) is also

suitable for (s,Γsv(V ), 2v+h+1, 2v+h+1, 2v+h− 2h) for all secrets s ∈ RM(1, v+ h+ 2) \
{(0, . . . , 0), (1, . . . , 1)}.

It is also possible to define access structures by necessary sets and veto sets at the

same time. Finally, we have a look at their realizations.

7.2.3 Access Structures Defined by Necessary Sets and Veto

Sets

Definition and Remark 7.25. Let T be a set of participants and N, V ( T disjoint

non-empty subsets. Then

•
Γsn,sv(N, V ) := {A ⊆ T : N ⊆ A, A ∩ V = ∅}

is the largest access structure on T with N being strongly necessary and V being

a strong veto set.

•
Γsn,wv(N, V ) := {A ⊆ T : N ⊆ A, V 6⊆ A}

is the largest access structure on T with N being strongly necessary and V being

a weak veto set.

•
Γwn,sv(N, V ) := {A ⊆ T : N ∩ A 6= ∅, A ∩ V = ∅}

is the largest access structure on T with N being weakly necessary and V being

a strong veto set.

•
Γwn,wv(N, V ) := {A ⊆ T : N ∩ A 6= ∅, V 6⊆ A}

is the largest access structure on T with N being weakly necessary and V being

a weak veto set.

Elementary Realizations and Suitable Codes for Γsn,sv(N,V)

Let

Γ = Γsn,sv(N, V ) = {A ⊆ T : N ⊆ A and V ∩ A = ∅} .

That means a set of participants is authorized iff it contains all members of the nec-

essary set N and no member of the veto set V . We will see that Γ allows the same
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favorable parameters as the access structure Γsn(N ∪ V ). This comes from the fact

that Γsn,sv(N, V ) = Γsn(N ∪ V ) M V :

• Let A be arbitrary with (N ∪ V ) ⊆ A. Then

A M V = (A ∪ V︸ ︷︷ ︸
=A

) \ A ∩ V︸ ︷︷ ︸
=V

= A \ V ∈ Γsn,sv(N, V )

since N ⊆ A \ V . This means Γsn,sv(N, V ) ⊇ Γsn(N ∪ V ) M V .

• Let A be arbitrary with N ⊆ A and A ∩ V = ∅. Then

A = A \ V = (A ∪ V ) ∪ V︸ ︷︷ ︸
=A∪V

\ (A ∪ V ) ∩ V︸ ︷︷ ︸
=V

= (A ∪ V )︸ ︷︷ ︸
⊇N ∪̇V

M V

Hence Γsn,sv(N, V ) ⊆ Γsn(N ∪ V ) M V .

Γsn(N ∪ V ) consists of all sets of participants, which contain all members of N ∪ V .

Without loss of generality assume that V = {T1, . . . , Tv} and N = {Tv+1, . . . , Tv+w}.
We obtain the matrices

ε1
Γsn(N∪V ) =



1 . . . 1
...

...

1 . . . 1

1 . . . 1
...

...

1 . . . 1

∗


︸ ︷︷ ︸

2t−v−w

 v

w

} t− v − w

and ε1
Γsn,sv(N,V ) =



0 . . . 0
...

...

0 . . . 0

1 . . . 1
...

...

1 . . . 1

∗


︸ ︷︷ ︸

2t−v−w

 v

w

} t− v − w

,

where the submatrix (∗) contains all vectors in Zt−v−w2 as columns.

According to Remark 6.19 (b) the access structures Γsn(N ∪ V ) and Γsn,sv(N, V )

have the same linearity type and we can use the same parameters for realizing both

of them. These are

Parameters for Γsn,sv(N, V )

• k < b1

• b1 ≥ g ≥ max
{
b1 − k, k + b1−k

2t−v+1

}
• 2t−1|(b1 − k), 2t−1|(g − k).

For k = 0 and b1 = g divisible by 2v−1 the code C = Zn2 is suitable for (s,Γ, b1, b1, 0)

for all words s ∈ Zn2 with weight b1 for all n ∈ N, n ≥ b1 + b1
2v−1 . (see Remark 7.13)

(b).
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ElementaryRealizationsandSuitableCodesforΓsn,wv(N,V)

Let

Γ=Γsn,wv(N,V)={A⊆T :N⊆AandV⊆A}.

That meansasetofparticipantsisauthorizediffitcontainsall membersofthe

necessarysetN andnotall membersofthevetosetV. W.l.o.g. assumethat

N={T1,...,Tw}andV={Tw+1,...,Tw+v}.

Thecolumnsofthematrixε1Γare

N

V

T\(N∪V)













1 ...1
...

...

1 ...1

∗













2t−w





w





t−w

withoutthecolumns

N

V

T\(N∪V)
















1 ...1
...

...

1 ...1

1 ...1
...

...

1 ...1

∗
















2t−w−v





w





v

}t−w−v

wherethecolumnsofthesubmatrices(∗)and(∗)areallpossiblevectorsinZt−w2
andZt−v−w2 ,respectively. Thenumberoftheunauthorizedsetsisu=2t−2t−w+

2t−w−v−1.InordertofindtheweightdistributionwΓoftherowsofεΓwedetermine

theweightsofallnon-triviallinearcombinationsoftherowsofε1Γ.Inthiscontext,

linearcombinationsareregardedasdifferent,whentheircoefficientsaredifferent,even

whentheresultingvectorsareequal. WeuseRemark5.15andhavetoconsiderthe

followingcases:

linearcombinationsof

rowsbelongingto...
number weight

N 2w 1−1 0 #rowseven

2w 1 2t w−2t w v #rowsodd

V 2v 1−1 2t w 1 #rowseven

2v 1 2t w 1−2t w v #rowsodd

T\(N∪V) 2t w v−1 2t w 1−2t w v 1

N,V (2w 1−1)(2v 1−1) 2t w 1 #rowsofNeven,

#rowsofVeven

(2w 1−1)·2v 1 2t w 1−2t w v #rowsofNeven,

#rowsofVodd

2w 1·(2v 1−1) 2t w 1−2t w v #rowsofNodd,

#rowsofVeven

2w 1·2v 1 2t w 1 #rowsofNodd,

#rowsofVodd

N,T\(N∪V) (2w−1)(2t w v−1) 2t w 1−2t w v 1

V,T\(N∪V) (2v−1)(2t w v−1) 2t w 1−2t w v 1

N,V,T\(N∪V) (2w−1)(2v−1)(2t w v−1) 2t w 1−2t w v 1

(#meansthenumberoftherows.)
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Overall the row weight of εΓ are

0 2w−1 − 1 times,

2t−w − 2t−w−v 2w−1 times,

2t−w−1 2w+v−1 − 2w−1 times,

2t−w−1 − 2t−w−v 2w+v−1 − 2w−1 times,

2t−w−1 − 2t−w−v−1 2t − 2w+v times.

This yields the following row weights di of εΓ:

2t−1 2w−1 − 1 times,

2t−1 − 2t−w + 2t−w−v 2w−1 times,

2t−1 − 2t−w−1 2w+v−1 − 2w−1 times,

2t−1 − 2t−w−1 + 2t−w−v 2w+v−1 − 2w−1 times,

2t−1 − 2t−w−1 + 2t−w−v−1 2t − 2w+v times.

If there is an elementary solution (a2, a3, . . . , a2t+1) for (Γ, b1, g, k), the following equa-

tions provided by the linear system 4.2 have to be fulfilled:

a2i − a2i−1

= 1
2t−1 (b1 − k + (2t − 2t−w + 2t−w−v − 1︸ ︷︷ ︸

u

−2 · 2t−1︸︷︷︸
di

)(g − k))

= 1
2t−1 (b1 − k + (−2t−w + 2t−w−v − 1)(g − k)) 2w−1 − 1 times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · (2t−1 − 2t−w + 2t−w−v))(g − k))

= 1
2t−1 (b1 − k + (2t−w − 2t−w−v − 1)(g − k)) 2w−1 times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · (2t−1 − 2t−w−1))(g − k))

= 1
2t−1 (b1 − k + (2t−w−v − 1)(g − k)) 2w+v−1 − 2w−1 times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · (2t−1 − 2t−w−1 + 2t−w−v))(g − k))

= 1
2t−1 (b1 − k − (2t−w−v + 1)(g − k)) 2w+v−1 − 2w−1 times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · (2t−1 − 2t−w−1 + 2t−w−v−1))(g − k))

= 1
2t−1 (b1 − k − (g − k)) 2t − 2w+v times.
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For b1 = g that means

2t∑
i=2

a2i =
1

2t−1

(
2w−1 · (2t−w − 2t−w−v) + (2w+v−1 − 2w−1) · 2t−w−v

)
(g − k)

=
1

2t−1
(2t − 2t−v)(g − k).

Let g
2
> k ≥

(
1
2
− 1

2v+1−2

)
g. Then

2t∑
i=2

a2i ≤
1

2t−1
(2t − 2t−v)

(
1

2
+

1

2v+1 − 2

)
g = g = b1.

Hence there is an elementary solution for (Γsn,wv(N, V ), b1, g, k) for the following pa-

rameters.

Parameters for Γsn,wv(N, V )

• b1 = g

• g
2
> k ≥

(
1
2
− 1

2v+1−2

)
g

• 2w+v−1|g − k

For example (2e, 2e, 2e−1 − 2t−1) realize Γsn,wv(N, V ) elementarily for all e ∈ N, e ≥
t + v. According to Lemma 5.26 (b), the first order Reed-Muller code RM(1, e + 1)

is suitable for (s,Γsn,wv(N, V ), 2e, 2e, 2e − 2t−1) for all codewords s ∈ RM(1, e + 1) \
{(0, . . . , 0), (1, . . . , 1)}.

Elementary Realizations and Suitable Codes for Γwn,sv(N,V)

We consider the access structure

Γ = Γwn,sv(N, V ) = {A ⊆ T : N ∩ A 6= ∅ and V ∩ A = ∅} .

Here a set of participants is authorized iff it contains at least one member of the

necessary set N and no member of the veto set V . This access structure allows

the same parameters as the access structure Γsn,wv(V,N) since Γwn,sv(N, V ) is the

symmetric difference Γsn,wv(V,N) M (N ∪ V ):

• Let A ∈ Γsn,wv(V,N) be arbitrary. Then V ⊆ A, N 6⊆ A and

A M (N ∪ V ) = (A ∪ V︸ ︷︷ ︸
=A

∪N) \ (A ∩ (N ∪ V ))

= A ∪N \ (A ∩N ∪ A ∩ V︸ ︷︷ ︸
=V

)

= (A M N) \ V ∈ Γwn,sv(N, V ),
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since ((A M N) \ V ) ∩ V = ∅ and ((A M N) \ V ) ∩N 6= ∅.

This means Γwn,sv(N, V ) ⊇ Γsn,wv(V,N) M (N ∪ V ).

• Let A ∈ Γwn,sv(N, V ) be arbitrary. Then A ∩N 6= ∅, A ∩ V = ∅ and

A = (A ∪ V ) \ V
= (((A \N) ∪ V ) ∪ (N ∪ V ))︸ ︷︷ ︸

=A∪V

\ (((A \N) ∪ V ) ∩ (N ∪ V ))︸ ︷︷ ︸
=V

= ((A \N) ∪ V ) M (N ∪ V ) ∈ Γsn,wv(V,N) M (N ∪ V ),

since V ⊆ ((A \ N) ∪ V ) and N 6⊆ ((A \ N) ∪ V ). Hence Γwn,sv(N, V ) ⊆
Γsn,wv(V,N) M (N ∪ V ).

W.l.o.g. let V = {T1, . . . , Tv} and N = {Tv+1, . . . , Tv+w}. The columns of the matrix

εΓsn,wv(V,N) are

V

N

T \(N∪V )



1 . . . 1
...

...

1 . . . 1

∗


︸ ︷︷ ︸

2t−v

 v

 t− v

without the columns

V

N

T \(N∪V )



1 . . . 1
...

...

1 . . . 1

1 . . . 1
...

...

1 . . . 1

∗′


︸ ︷︷ ︸

2t−w−v

 v

w

} t− w − v

where the columns of the submatrices (∗) and (∗′) are all possible vectors in Zt−v2 and

Zt−v−w2 , respectively. That means a linear combination of the columns can only be the

zero vector, if the number of the summands is even. By Remark 6.19 (b) the access

structures Γwn,sv(N, V ) and Γsn,wv(V,N) have the same linearity type and we can use

the same parameters for realizing Γwn,sv(N, V ) and Γsn,wv(V,N). These are

Parameters for Γwn,sv(N, V )

• b1 = g

• g
2
> k ≥

(
1
2
− 1

2w+1−2

)
g

• 2w+v−1|g − k.

Also here (2e, 2e, 2e−1 − 2t−1) realize Γwn,sv(N, V ) elementarily for all e ∈ N, e ≥
t + w. According to Lemma 5.26 (b), the first order Reed-Muller code RM(1, e + 1)

is suitable for (s,Γwn,sv(N, V ), 2e, 2e, 2e − 2t−1) for all codewords s ∈ RM(1, e + 1) \
{(0, . . . , 0), (1, . . . , 1)}.
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Elementary Realizations and Suitable Codes for Γwn,wv(N,V)

Let

Γ = Γwn,wv(N, V ) = {A ⊆ T : N ∩ A 6= ∅ and V 6⊆ A} .

In this access structure a set of participants is authorized iff it contains at least one

member of the necessary set N and not all members of the veto set V . The columns

of the matrix ε1
Γ

are

N

V

T \(N∪V )



0 . . . 0
...

... ∗
0 . . . 0

1 . . . 1
...

...

∗′ 1 . . . 1

∗′′



w

 v

} t− w − v︸ ︷︷ ︸
2t−w−1

︸ ︷︷ ︸
2t−v

without



0 . . . 0
...

...

0 . . . 0

1 . . . 1
...

...

1 . . . 1

∗′′′


︸ ︷︷ ︸

2t−w−v

w

 v

} t− w − v

.

The columns of the second matrix occur in both parts of the first matrix. Hence

one set of these columns has to be omitted such that they do not occur twice. The

columns of the submatrices

(
∗
∗′′

)
and (∗′′′) are all possible vectors in Zt−v2 and Zt−w−v2 ,

respectively. The columns of the submatrix (∗′) are all vectors in Zt−w2 except for the

zero vector. We have to omit the zero vector because εΓ does not contain the zero

column. We have u = 2t−w + 2t−v − 2t−w−v − 1 unauthorized sets. Now we determine

the weight distribution wΓ of the rows of εΓ. Again we use Remark 5.15.

linear combinations of

rows belonging to ... number weight

N 2w − 1 2t−v−1

V 2v−1 − 1 2t−w−1

2v−1 2t−w−1 + 2t−v − 2t−w−v

T \ (N ∪ V ) 2t−w−v − 1 2t−w−1 + 2t−v−1 − 2t−w−v−1

N , V (2w − 1)(2v−1 − 1) 2t−w−1 + 2t−v−1

(2w − 1) · 2v−1 2t−w−1 + 2t−v−1 − 2t−w−v

N , T \ (N ∪ V ) (2w − 1)(2t−w−v − 1) 2t−w−1 + 2t−v−1 − 2t−w−v−1

V , T \ (N ∪ V ) (2v − 1)(2t−w−v − 1) 2t−w−1 + 2t−v−1 − 2t−w−v−1

N , V , T \ (N ∪ V ) (2w − 1)(2v − 1)(2t−w−v − 1) 2t−w−1 + 2t−v−1 − 2t−w−v−1

(As in the study of Γsn,sv(N, V ) there are cases where we have to distinguish between

even and odd numbers of summands.)

This yields the following row weight of εΓ:
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2t−v−1 2w − 1 times,

2t−w−1 2v−1 − 1 times,

2t−w−1 + 2t−v − 2t−w−v 2v−1 times,

2t−w−1 + 2t−v−1 2w+v−1 − 2w − 2v−1 + 1 times,

2t−w−1 + 2t−v−1 − 2t−w−v 2w+v−1 − 2v−1 times,

2t−w−1 + 2t−v−1 − 2t−w−v−1 2t − 2w+v times.

If there is an elementary solution (a2, a3, . . . , a2t+1) for (Γ, b1, g, k), it has to fulfill the

following equations:

a2i − a2i−1

= 1
2t−1 (b1 − k + (2t−w + 2t−v − 2t−w−v − 1︸ ︷︷ ︸

u

−2 · 2t−v−1︸ ︷︷ ︸
di

)(g − k))

= 1
2t−1 (b1 − k + (2t−w − 2t−w−v − 1)(g − k)) 2w − 1 times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · 2t−w−1)(g − k))

= 1
2t−1 (b1 − k + (2t−v − 2t−w−v − 1)(g − k)) 2v−1 − 1 times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · (2t−w−1 + 2t−v − 2t−w−v))(g − k))

= 1
2t−1 (b1 − k − (2t−v − 2t−w−v + 1)(g − k)) 2v−1 times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · (2t−w−1 + 2t−v−1))(g − k))

= 1
2t−1 (b1 − k − (2t−w−v + 1)(g − k)) 2w+v−1 − 2w − 2v−1 + 1

times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · (2t−w−1 + 2t−v−1 − 2t−w−v))(g − k))

= 1
2t−1 (b1 − k + (2t−w−v − 1)(g − k)) 2w+v−1 − 2v−1 times,

a2i − a2i−1

= 1
2t−1 (b1 − k + (u− 2 · (2t−w−1 + 2t−v−1 − 2t−w−v−1))(g − k))

= 1
2t−1 (b1 − k − (g − k)) 2t − 2w+v times.

Unfortunately, an elementary realization with b1 = g is only possible for w = 1 or

v = 1. In this case we have
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2t∑
i=2

a2i =
1

2t−1

(
(2w − 1)(2t−w − 2t−w−v) + (2v−1 − 1)(2t−v − 2t−w−v)

+(2w+v−1 − 2v−1) · 2t−w−v
)
(g − k)

=
1

2t−1
(2t+1 − 2t−w+1 − 2t−v+1 + 2t−w−v+1)(g − k)

= 4 ·
(

1− 1

2w

)(
1− 1

2v

)
(g − k)

=

(
2− 1

2max{w,v}−1

)
(g − k) as w = 1 or v = 1.

Let g
2
> k ≥ g

2
− g

2max{w,v}+1−2
. Then

2t∑
i=2

a2i ≤
(

2− 1

2max{w,v}−1

)(
g

2
+

g

2max{w,v}+1 − 2

)
= g = b1.

That means there is actually an elementary solution (a2, a3, . . . , a2t+1) for (Γ, b1, b1, k)

with w = 1 or v = 1, if

Parameters for Γwn,wv(N, V ) for w = 1 or v = 1

• b1 = g

• g
2
> k ≥

(
1
2
− 1

2max{w,v}+1−2

)
g

• 2w+v−1|g − k

In this case Lemma 5.26 (b) says that for all e ≥ t+max {w, v} the code RM(1, e+1)

is suitable for (Γwn,wv(N, V ), 2e, 2e, 2e−1 − 2t−1) for all codewords s ∈ RM(1, e + 1) \
{(0, . . . , 0), (1, . . . , 1)}.
For larger necessary sets or veto sets there is no elementary realization with b1 = g,

since v, w ≥ 2 yields

2t∑
i=2

a2i = 4 ·
(

1− 1

2w

)(
1− 1

2v

)
(g − k)

≥ 4 ·
(

3

4

)2

(g − k) >
9

8
g > g = b1.

We show that in this case the following parameters are suitable:



144 Chapter 7. Special Access Structures

Parameters for Γwn,wv(N, V ) for w, v ≥ 2

• b1 ≥ 22t

• g = b1

(
1
2

+ 1
2t+2−v

)
• k = b1

2
− 2t−1

• 22t+1−v|b1

For those parameters all right hand sides of the equations 2 up to 2t of 4.2 are positive

since for all i = 2, . . . , 2t

a2i − a2i−1 ≥
1

2t−1

(
b1 − k︸ ︷︷ ︸
b1
2

+2t−1

−(2t−v − 2t−w−v + 1)(g − k)︸ ︷︷ ︸
b1

2t+2−v +2t−1

)
=

1

2t−1
b1︸︷︷︸
≥22t

(1

4
+

1

2w+2
− 1

2t−v+2︸ ︷︷ ︸
>0

)
− 2t−v + 2t−w−v

≥ 2t−1 − 2t−v︸ ︷︷ ︸
≥0

+2t−w−v ≥ 0.

Hence we can apply Lemma 4.12(d) and obtain

2t∑
i=2

a2i =
1

2t−1

(
(2t − 1)(b1 − k)− u(g − k)

)
=

1

2t−1

(
(2t − 1)

(
b1

2
+ 2t−1

)
− (2t−w + 2t−v − 2t−w−v − 1)

(
b1

2t+2−v + 2t−1

))
=

b1

2t−1

(
2t−1 − 3

4
− 2v−w−2 + 2−w−2 + 2v−t−2

)
+ 2t

(
1− 1

2w

)(
1− 1

2v

)
= b1 −

(
3

4
+ 2v−w−2 − 2−w−2 − 2v−t−2

)
b1

2t−1︸︷︷︸
≥2t+1

+2t
(

1− 1

2w

)(
1− 1

2v

)

≤ b1 − 2t
(1

2
+ 2v−w−1 − 2−w−1︸ ︷︷ ︸

≥0

−2v−t−1 + 2−w︸ ︷︷ ︸
≥0

+ 2−v − 2−w−v︸ ︷︷ ︸
≥0

)
≤ b1.

This show that there is an elementary solution for (Γwn,wv(N, V ), b1, g, k) with the

restrictions stated above. It has the property that all odd numbered components are

zero. This is also the case in Theorem 4.22 (a) and it can be shown as in the proof of

Theorem 4.22 (b), that each binary (not necessary linear) code C with minimum dis-

tance d(C) = b1, which contains the zero word, is suitable for (s,Γwn,wv(N, V ), b1, g, k)

for all codewords s ∈ C with weight b1. For example RM(1, e + 1), e ≥ 2t + 1, is

suitable for (s,Γwn,wv(N, V ), 2e, 2e−1 + 2e−t−2+v, 2e−1− 2t−1) for all s ∈ RM(1, e+ 1) \
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{(0, . . . , 0), (1, . . . , 1)} (see Corollary 4.24).

We end this chapter with a detailed example for the realization of the access structure

Γsn,wv(N, V ) on an arbitrary number t ≥ 5 of participants, where the disjoint subsets

N, V both contain two elements. Compared to the universal solution provided by

Theorem 4.22 this realization is far superior with regard to efficiency and security.

Instead of a code length n ≥ b1 ≥ 22t − 2t the code length n = 128 is sufficient

for all t ≥ 5. Furthermore we have the security distance g = b1 instead of g ≤
b1

(
1
2

+ 1
2t

)
− 2t−1.

Example 7.26. Let T = {T1, . . . , Tt}, t ≥ 5, N = {T1, T2} and V = {T3, T4}.
Consider the access structure Γ = Γsn,wv(N, V ) which consists of all subsets of T
which contain T1 and T2 and at most one of the participants T3 and T4. For t = 5

there are u = 2t − 2t−2 + 2t−2−2 − 1 = 25 unauthorized subsets. The resulting matrix

εΓ can be seen at the the end of the example. The weights of the rows are written in

the additional column.

We choose the parameters b1 = g = 64, k = 24 and the binary code C = RM(1, 7).

Let s = (1, . . . , 1︸ ︷︷ ︸
32

, 0, . . . , 0︸ ︷︷ ︸
32

, 1, . . . , 1︸ ︷︷ ︸
32

, 0, . . . , 0︸ ︷︷ ︸
32

) ∼ 1 + x6 be the secret to be shared.

The row weights of εΓ yield the following system of linear equations:

a2i − a2i−1 = 1
16

(b1 − k + (u− 2 · 10)(g − k)) = 15 for i = 2, 3

a2i − a2i−1 = 1
16

(b1 − k + (u− 2 · 12)(g − k)) = 5 for i = 6, 7, 10, 11, 13, 16

a2i − a2i−1 = 1
16

(b1 − k + (u− 2 · 13)(g − k)) = 0 for i = 17, 18, 19, . . . , 32

a2i − a2i−1 = 1
16

(b1 − k + (u− 2 · 14)(g − k)) = −5 for i = 5, 8, 9, 12, 14, 15

a2i − a2i−1 = 1
16

(b1 − k + (u− 2 · 16)(g − k)) = −15 for i = 4

In order to find an elementary solution we choose

a2i = 15, a2i−1 = 0 for i = 2, 3

a2i = 5, a2i−1 = 0 for i = 6, 7, 10, 11, 13, 16

a2i = 0, a2i−1 = 0 for i = 17, 18, 19, . . . , 32

a2i = 0, a2i−1 = 5 for i = 5, 8, 9, 12, 14, 15

a2i = 0, a2i−1 = 15 for i = 4.

Then we calculate

a2 = b1 −
2t∑
i=2

a2i = 64− 2 · 15− 6 · 5 = 4

and

a1 = n− b1 −
2t∑
i=2

a2i−1 = 128− 64− 6 · 5− 15 = 19.

a2i = a2i−1 = 0 for all i ≥ 17 means that |supp(k5)| = 0, hence k5 is the zero word

and we can exclude it from the further observations. We define the other shares by

deciding which positions should be determined by the single aj, j = 1, 2, . . . , 32:
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j s k1 k2 k3 k4 aj positions

1 0 0 0 0 0 19 33− 51

2 1 0 0 0 0 4 1− 4

4 1 1 0 0 0 16 67− 81

6 1 0 1 0 0 16 10− 24

7 0 1 1 0 0 16 104− 119

9 0 0 0 1 0 5 57− 61

12 1 1 0 1 0 5 87− 91

14 1 0 1 1 0 5 30− 32, 65, 66

15 0 1 1 1 0 5 124− 128

17 0 0 0 0 1 5 52− 56

20 1 1 0 0 1 5 82− 86

22 1 0 1 0 1 5 25− 29

23 0 1 1 0 1 5 119− 123

26 1 0 0 1 1 5 5− 9

27 0 1 0 1 1 5 99− 103

29 0 0 1 1 1 5 62− 64, 97, 98

32 1 1 1 1 1 6 92− 96

This yields the shares

k1 = 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

0011 1111 1111 1111 1111 1111 1111 1111

0011 1111 1111 1111 1111 1111 1111 1111,

k2 = 0000 0000 0111 1111 1111 1111 1111 1111

0000 0000 0000 0000 0000 0000 0000 0111

1100 0000 0000 0000 0000 0000 0001 1111

1100 0001 1111 1111 1111 1111 1111 1111,

k3 = 0000 1111 1000 0000 0000 0000 0000 0111

0000 0000 0000 0000 0000 0000 1111 1111

1100 0000 0000 0000 0000 0011 1111 1111

1111 1110 0000 0000 0000 0000 0001 1111

and

k4 = 0000 1111 1000 0000 0000 0000 1111 1000

0000 0000 0000 0000 0001 1111 0000 0111

0000 0000 0000 0000 0111 1100 0001 1111

1111 1110 0000 0000 0000 0011 1110 0000.

When a subset of participants is authorized, the sum of their shares differs from the se-

cret in 24 positions. Since 24 <
⌊
d(C)−1

2

⌋
=
⌊

63
2

⌋
, Hamming decoding yields the secret.
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Otherwise, when the subset is unauthorized, the following table shows that Hamming

decoding yields always the wrong codeword. Even the next non-zero codeword is not

the secret. Furthermore, there are various codewords which have the same distance

from the sum as the secret.

unauthorized nearest codeword(s) # codewords c with

sum S c 6= 0 d(S, c) = 64

k1 c ∼ x7, d(S, c) = 4 192

k2 c ∼ 1 + x6 + x7, d(S, c) = 24 68

k3 c ∼ 1 + x4 + x5, d(S, c) = 30 80

k1 + k3 c ∼ 1 + x4 + x5 + x7, d(S, c) = 34 74

k2 + k3 c ∼ 1 + x6 + x7, d(S, c) = 24 138

k1 + k2 + k3 c ∼ 1 + x6, d(S, c) = 24 138

k4 c ∼ 1 + x5 + x6 + x7, d(S, c) = 44 64

k1 + k4 c ∼ x7, d(S, c) = 40 64

k2 + k4 c ∼ 1 + x6 + x7, d(S, c) = 28 60

k1 + k2 + k4 c ∼ 1 + x6, d(S, c) = 24 70

k3 + k4 c ∼ x5, d(S, c) = 28 70

k1 + k3 + k4 c ∼ x5 + x7, d(S, c) = 28 70

k2 + k3 + k4 c ∼ 1 + x5 + x6 + x7, d(S, c) = 32 70

k1 + k2 + k3 + k4 c ∼ x4 + x5 + x6, d(S, c) = 30 72

kj, j ≥ 5 all c ∈ C \ {(0, . . . , 0)(1, . . . , 1)}, 254

d(S, c) = 64

In the case t > 5 all participants kj with j ≥ 6 receive the zero word as share. The

shares of T1, . . . , T5 remain the same.
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εΓ =



1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1

0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1

1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0

0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0

1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1

0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1

1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0

0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 0 0 1

0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0

1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1

0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 0 0 0 1 1

1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0

0 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0

1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1

1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 0 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1

0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1

1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0

0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1

1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 0 1 0 1 0

0 1 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0

1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 1 0 0 1



10

10

16

14

12

12

14

14

12

12

14

12

14

14

12

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

.
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Conclusion

In this thesis we introduced a new approach towards secret sharing using error-

correcting codes. We developed a method which enables us to realize arbitrary access

structures. It turned out that the price for this generality is a limitation regarding the

security and the efficiency of the scheme.

The secret is a codeword in a binary error-correcting code and the shares are binary

words of the same length. They have the property that Hamming decoding applied to

the sum of the shares of a set of participants yields the secret iff the set is authorized.

The following restrictions were made: We studied the case that there is only one

large distance g from the share sums of the unauthorized sets to the secret and only

one small distance k from the share sums of the authorized sets to the secret. This

enabled us to describe each set of suitable shares in terms of non-negative integer

solutions of the linear system 4.2:

2t∑
i=1

a2i = b1

a4 − a3 =
1

2t−1
E2 · b

...

a2i − a2i−1 =
1

2t−1
Ei · b

...

a2t+1 − a2t+1−1 =
1

2t−1
E2t · b,

where we considered only elementary solutions with a2i = 0 or a2i−1 for all i = 2, . . . , 2t.

Based on these considerations Theorem 4.22 provides parameters b1, g, k depending

only on the number t of the involved participants, which can be used to realize all

access structures. b1 is the weight of the secret to be shared.

• b1 ∈ N, b1 ≥ 22t − 2t such that 2t | b1

• k = b1
2
− 2t−1
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• g ∈ N, b1
2
< g ≤ b1

(
1
2

+ 1
2t

)
− 2t−1 such that 2t−1 | g

Furthermore, Theorem 4.22 says that each binary (not necessarily linear) code C
with minimum distance d(C) = b1 which contains the zero word is suitable for sharing

all codewords in C with weight b1.

Using the parameters provided by Theorem 4.22, the security distance g is rather

small and large code length n ≥ b1 ≥ 22t − 2t are required. The problem of the small

distances g can be overcome by the use of a combiner, but the large code lengths remain

problematic. So, it must be said that our realization for arbitrary access structures is

unsuitable in practice.

In order to find special access structures which allow better parameters, we classi-

fied all access structures, such that all access structures lying in the same class allow

the same parameters. Furthermore we studied the impact of changes in the access

structure on the elementary realizations. As a result, we have been able to identify

special classes which are far superior with regard to efficiency and security.

On the one hand these are access structures related to Boolean polynomials of

degree one with the constant summand 1. In these access structures a set is autho-

rized iff it contains an odd number of participants of an arbitrary fixed subset of the

participant set. Here the security distance g = b1 is possible and the weight b1 of the

secret can be chosen arbitrarily with 2t−1|b1. Furthermore Zn2 is a suitable code for

all n ≥ b1 and all words with weight b1. On the other hand, some access structures

defined by necessary sets and veto sets allow larger security distances and smaller code

lengths:

•
Γsn(N) = {A : N ⊆ A}

defined by a strongly necessary set N allow the parameters b1 = g, k = 0 where

b1 has to be divisible by 2t−1. C = Zn2 is suitable for all n ≥ b1

(
2− 1

2|V |−1

)
.

•
Γwn(N) = {A : N ∩ A 6= ∅}

defined by a weakly necessary set N allows g = b1 and C = RM(1, |N |+ 2 + h)

for all h ≥ |N | − 1.

•
Γsv(V ) = {A 6= ∅ : V ∩ A = ∅}

defined by a strong veto set V allows g = b1 and C = RM(1, |V |+ 2 + h) for all

h ≥ |V | − 1.

•
Γsn,sv(N, V ) = {A : N ⊆ A and V ∩ A = ∅}

defined by a strongly necessary set N and a strong veto set V , allow g = b1 with

2|V |−1|b1, k = 0 and C = Zn2 for all n ≥ b1 + b1
2|V |−1 .
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•
Γwn,sv(N, V ) = {A : N ∩ A 6= ∅ and V ∩ A = ∅}

defined by a weakly necessary set N and a strong veto set V , allow g = b1 and

C = RM(1, e+ 1) for all e ≥ t+ |N |.

•
Γsn,wv(N, V ) = {A : N ⊆ A and V 6⊆ A}

defined by a strongly necessary set N and a weak veto set V , allow g = b1 and

C = RM(1, e+ 1) for all e ≥ t+ |V |.

•
Γwn,wv(N, V ) = {A : N ∩ A 6= ∅ and V 6⊆ A}

defined by a weakly necessary set N and a weak veto set V , allow g = b1 and

C = RM(1, e+ 1) for all e ≥ t+ max{|N |, |V |}.

Besides the results of this thesis, there are still many open questions and ideas for

further research, which are not followed yet.

Firstly the question arise, whether there are further classes of access structures,

which have efficient and secure realizations using our approach. For this purpose it

might be helpful to develop more techniques for changing access structures and to

study their influence on the realizations.

Another question is, what kinds of realizations can be found when different large

and different small distances are allowed, or when we do not consider elementary

solutions.

Furthermore a change in the methods for finding integer solutions for the linear

system 4.1 might bring interesting results. For example, methods from linear opti-

mization could be used .
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